
國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 
 
 
 

從 COTS/Binary 元件中解析條件參數以輔助隨機測試 

 
Resolving Constraints from COTS/Binary components 

for Concolic Random Testing 
 
 
 
 
 

研 究 生：范揚杰 

指導教授：黃世昆  教授 
 

 

 
 
 

中 華 民 國 九 十 六 年 六 月 

 



 II

Resolving Constraints from COTS/Binary Components 
 for Concolic Random Testing 

從 COTS/Binary 元件中解析條件以輔助隨機測試 
 
 
 
 

研 究 生：范揚杰          Student：Yang-Chieh Fan 
指導教授：黃世昆          Advisor：Shih-Kun Huang 

 
國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 
碩 士 論 文 

 
 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

June 2007 

 

Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十六年六月 



 III

 

從 COTS/Binary 元件中解析條件以輔助隨機測試 

學生：范揚杰 指導教授：黃世昆

 

國立交通大學資訊科學與工程研究所碩士班 

摘 要       

 
軟體品質透過軟體測試來達到驗證。軟體測試是想要找到程式缺陷而進行技

巧性審查的過程。目前有許多的方式應用在軟體測試上，但是有些臭蟲是卻很難

用傳統的測試方法來找到，假如他們不常發生在一般的情況下。為了改進軟體測

試的涵蓋率，許多研究中提出自動化產生所有可能輸入資料的技術。 
    近期，較先進的做法是將具體和符號執行結合應用於隨機測試中。先簡化受

測程式的原始碼成基本的指令型式，然後依據不同指令附加額外的程式碼以描述

程式的行為，使用者提供具體的輸入值來執行轉換後的程式。在實際執行後，相

關的條件參數會被儲存起來，然後再解析條件參數以產生測試的例子。但是這種

方法不適合使用在沒有原始碼的程式上，特別是程式中使用到商業軟體或執行檔

的部份。我們在 ALERT（自動化隨機與邏輯推理運算測試）中提出一個解決之

道，以接近原本程式語意的原則建立符號參數跟相依變數之間的關係。因此，可

以保有原本符號的屬性，並且抵達更多的程式路徑。 



 IV

Resolving Constraints from COTS/Binary Components 

 for Concolic Random Testing 

 

Student : Yang-Chieh Fan Advisor : Dr. Chih-Ming Huang 

 

Institute of Computer Science and Engineering 
National Chiao Tung University 

 

Abstract 

Software quality is verified through software testing, which is a process of technical 

investigation that is intended to reveal faults. There are many approaches to software testing, but 

bugs are difficult to find in conventional testing if they occur infrequently. In order to improve the 

test coverage, several techniques have been proposed to automatically generate all possible values of 

the inputs.  

Recently, the developed methods are combining concrete and symbolic execution for Random 

Testing. They first try to instrument the source code of a program under testing. The program is 

executed on some user-provided concrete input values. After the concrete run, symbolic constraints 

are stored and then generate concrete test cases by solving these symbolic constraints. Unfortunately, 

access to instrument source code is often infeasible especially for COTS/Binary component. We 

present a method in the framework, ALERT (Automatic Logic Evaluation for Random Testing), 

which approximates the program semantics, and establishes a connection between symbolic 

parameters and dependent variables. As a result, the symbolic property can be preserved and more 

paths will be reached. 



 V

誌 謝       

感謝一直以來默默付出的父母，當兵退伍後決定繼續求學，由於他們的支持才能順利地完

成學業。黃世昆老師認真地培養實驗室成員分析、解決問題的能力，除了每週固定的 Group 

meeting 之外，老師還費心地一一指導個人論文的方向，不時地跟大家分享相關領域的新知與

願景，從決定題目到論文撰寫，都不遺餘力地指導。蔡昌憲學長幫忙克服許多實作上的困難，

適時地給予建議，分配協調 ALERT 計劃的實作細節。彥佑和立文一起參與整個計劃的執行，以

及後來熱心加入計劃的學弟們，沒有大家的幫忙就不會有這篇論文的產生，謝謝你們。 

范揚杰謹誌 

民國九十六年八月二十八日 



 VI

Table of Contents 
摘要.................................................................................................................................................................................... Ⅲ 
ABSTRACT ......................................................................................................................................................................IV 
誌謝..................................................................................................................................................................................... V 
TABLE OF CONTENTS.................................................................................................................................................VI 
LIST OF FIGURES ....................................................................................................................................................... VII 
LIST OF TABLES ........................................................................................................................................................VIII 
1 INTRODUCTION ............................................................................................................................................... - 1 - 

1.1 AUTOMATED TEST GENERATION .................................................................................................................- 1 - 
1.2 CONSTRAINT PROPAGATION ........................................................................................................................- 2 - 
1.3 PATH EXPLOSION ..........................................................................................................................................- 3 - 
1.4 MOTIVATION .................................................................................................................................................- 4 - 
1.5 OBJECTIVE....................................................................................................................................................- 5 - 

2 RELATED WORK .............................................................................................................................................. - 7 - 
2.1 RANDOM TESTING (RT) ...............................................................................................................................- 7 - 
2.2 MODEL CHECKING .......................................................................................................................................- 7 - 
2.3 CONCOLIC TESTING .....................................................................................................................................- 8 - 
2.4 PATH COMPACTION ......................................................................................................................................- 9 - 

3 POST-CONDITION AIDED SYMBOLIC EXECUTION ..............................................................................- 11 - 
3.1 STRONGEST POST-CONDITION.................................................................................................................... - 11 - 
3.2 RETURN VALUES DRIVEN CONSTRAINT.....................................................................................................- 12 - 

4 IMPLEMENTATION........................................................................................................................................ - 14 - 
4.1 ALERT FRAMEWORK ................................................................................................................................- 14 - 
4.1.1 PREPROCESS – CIL (C INTERMEDIATE LANGUAGE).................................................................................- 14 - 

4.1.1.1 Source to Source Translation .......................................................................................................... - 15 - 
4.1.1.2 Instrumentation ............................................................................................................................... - 15 - 

4.1.2 SYMBOLIC EXECUTION – CVCL................................................................................................................- 16 - 
4.1.3 TEST DRIVER ..............................................................................................................................................- 22 - 
4.2 SP MODULE .................................................................................................................................................- 23 - 

5 EXPERIMENTAL RESULTS........................................................................................................................... - 24 - 
5.1 A SIMPLE EXAMPLE: TRITYPE ...................................................................................................................- 24 - 
5.2 POST-CONDITION: ABS ................................................................................................................................- 25 - 
5.3 POST-CONDITION: STRCMP.........................................................................................................................- 26 - 
5.4 DISCUSSION.................................................................................................................................................- 27 - 

6 CONCLUSIONS ................................................................................................................................................ - 29 - 
REFERENCES............................................................................................................................................................ - 31 - 

 



 VII

List of Figures 

FIGURE 1: EXAMPLE CODE THAT CAN NOT BE REASONED ABOUT SYMBOLICALLY .............................................................- 2 - 
FIGURE 2: EXAMPLE CODE THAT LOSES A PATH DUE TO CONCRETIZATION .........................................................................- 3 - 
FIGURE 3: (A) EXAMPLE CODE (B) CFA (CONTROL FLOW AUTOMATON)...........................................................................- 4 - 
FIGURE 4: STRONGEST POST CONDITION .........................................................................................................................- 12 - 
FIGURE 5: REFINE THE POST-CONDITION .........................................................................................................................- 13 - 
FIGURE 6: ALERT FRAMEWORK .....................................................................................................................................- 14 - 
FIGURE 7: VARIABLE TRANSLATION SYSTEM ..................................................................................................................- 18 - 
FIGURE 8: THE EVALUATION OF -128 / -1 IN C .................................................................................................................- 19 - 
FIGURE 9: THREE-ADDRESS CODE TRANSLATION.............................................................................................................- 19 - 
FIGURE 10: RIGHT SHIFT PROCEDURE IN SYMBOLIC EXECUTION .....................................................................................- 20 - 
FIGURE 11: CRED BASED MEMORY ACCESS ....................................................................................................................- 21 - 
FIGURE 12: CODE OF THE TRITYPE PROGRAM..................................................................................................................- 24 - 
FIGURE 13: SIMPLE PROGRAM INCLUDING A LIBRARY CALL ABS......................................................................................- 25 - 
FIGURE 14: SIMPLE PROGRAM INCLUDING A LIBRARY CALL STRCMP ...............................................................................- 26 - 

 



 VIII

List of Tables 

TABLE 1: COMPARISON BETWEEN STATIC AND DYNAMIC TEST GENERATION......................................................................- 1 - 
TABLE 2: COMPARISON BETWEEN CUTE AND EXE ..........................................................................................................- 9 - 
TABLE 3: THE EFFECT WHEN THE TIMES OF CALLING ABS IN INCREASE............................................................................- 27 - 
TABLE 4: COMPARISON BETWEEN CUTE AND ALERT....................................................................................................- 28 - 



 - 1 -

1 Introduction 

1.1 Automated Test Generation 

Automated test generation problem has been studied since 70’s and comes to 

significant progress in recent years [1-4]. Attributed to the increasing computational 

power available on modern computers, sophisticated program analysis techniques, 

such as symbolic execution engines and constraint solvers, becomes more practical on 

real programs. It regains interest in automated test generation with program analysis 

and makes a considerable impact on this domain. Based on the approaches of analysis, 

there are two categories: static and dynamic test generation. Dynamic test generation 

can be viewed as extending static generation with additional runtime information, and 

is more general and powerful (Table 1). Hence the latest trend is to blend dynamic test 

generation and model checking based on symbolic execution to find program errors 

[5-8]. It can systematically execute all feasible paths of a program and then use 

run-time checking tools [9] or universal checks for detecting software failures, like 

null pointer deference, memory leak, buffer overflow, etc. Remarkable achievements 

are that new bugs can be revealed in their demonstration. This novel work for 

automated checking indeed has a great impact on modern software industry. 

 
 

Table 1: Comparison between static and dynamic test generation 

 
 

 Execute 
program 

Symbolic 
execution 

Target Problem 

Static Test 
Generation 

No Computation tree Enumerate all paths
Unresolvable 

Constraint 

Dynamic Test 
Generation 

Yes Run-time trace 
A given location / 

specific path 
Missing 

Constraint 



 - 2 -

1.2 Constraint Propagation 

Symbolic execution is a well known technique, which represents values of 

program variables with symbolic values instead of concrete data and manipulates 

expressions involving symbolic values [10]. It is traditionally used for context 

checking in program analysis and greatly evolved in automated test generation. The 

behavior of a program can be analyzed as constraints, which includes operations and 

predicates. Constraints, like a formula, are then resolved by a constraint solver to 

generate a test input of a specific path [4]. Naturally this approach suffers when the 

program contains statements involving constraints outside the scope of reasoning of the 

solver. As shown in Figure 1, because hash(y) can not be resolved statically, symbolic 

execution can not progress. Dynamic analysis is introduced to cope with this problem 

[5-8]. At runtime hash(y) is nothing but a concrete value, and can be compared with x 

successfully. This kind of problem usually happens in external calls, like system or 

library functions.  

 

Figure 1: Example code that can not be reasoned about symbolically 
 

Although dynamic concretization addresses to handle the mentioned problem, this 

method may result in the imprecise symbolic execution due to dropping some 

symbolic information (Figure 2). As shown in Figure 2, if abs(x) is concretized, and 

then assigned to y, y also becomes concrete. Eventually the branch in this code is not 

perceived in symbolic execution. Performing symbolic execution mostly relies on 

instrumentation in source code. If there is a section of un-instrumented code, related 

int foo(int x, int y) 
{ 
 if (x == hash(y)) return -1;  // error 
 return 0;      // ok 
} 



 - 3 -

constraints will be dropped. Unfortunately most COTS or binary components do not 

provide source code.  

 

Figure 2: Example code that loses a path due to concretization 
 

1.3 Path Explosion 

Programs may have infinite states while the constraint system only has finite 

states. Therefore symbolic execution can not always simulate the complete program 

behavior. For example, if the constraint system has a limited number of constraints, 

says N, the most paths that can be enumerated are N2 . Moreover only branch 

constraints are taken into consideration, and the actual paths may be fewer. Since the 

number of enumerated paths is fixed, how to effectively use this enumeration 

becomes important. Tested program usually interacts with external functions, and 

traditional symbolic execution on those also performs exhaustively. It seems useless 

and expensive because we are only interested in the top level program. That turns into 

the major factor that causes the unnecessary reach of deeper paths [11, 12]. Figure 3 

gives a clear illustration about this problem, and we use a CFA to show the program 

flow. The successive calls to strcmp hamper the search of line 10 and 11. Assume this 

path enumeration uses DFA strategy, line 10 needs the first input equal to “Hello 

World”, and this at least wastes 10 paths in strcmp. If we want to reach line 11, the 

extra paths could amount to 10*10. Obviously the redundant paths in external calls 

obstruct the testing. 

int foo (int x) 
{ 
 y = abs(x); 
 if (y > 10) return -1; // error 

return 0;    // ok 
} 



 - 4 -

 
(a)                                 (b) 

Figure 3: (a) Example code (b) CFA (Control Flow Automaton) 
 

1.4 Motivation 

The main idea in our work focuses on how to redeem the missing constraints due to 

un-instrumented function calls. Intuitively, resolving constraints from un-instrumented 

functions seems to be towards recovering their source semantics and is regarded as a 

category of reverse engineering. However, either disassembly or decompilation is a 

difficult task. Annotation-assisted static checking is a mature technology for finding 

security vulnerabilities and coding mistakes. Although it sometimes generates false 

warnings and misses real problems, annotation indeed gives an alternative view of 

functions in semantics. This idea can probably improve the partial coverage of concolic 

testing due to lack of source codes. We try to instrument a post-condition after each 

function call which will pass partial symbolic information. The post-condition like 

annotations is generated from function semantics manually. Although the source code 

is not available, we still can learn of the specification to interpret its semantics. On the 

other hand, the programmer can also provide related post-conditions to facilitate 



 - 5 -

testing if they do not want to release source code.  

Testing always intends to pass all program paths using different inputs. But the 

behaviors of external functions usually are not the major concern. Even if there are 

two inputs that can yield two different paths in an external function, the path in the 

top level function may be the same. Moreover those redundant paths obstruct our 

systematic test generation and result in path explosion problem. We compact the 

constraints of external functions using post-condition to solve this problem. 

 

1.5 Objective 

Our objective is to construct an automated test generation framework in order to 

experiment with post-condition aided symbolic execution, and to build a map that will 

establish the relationship between symbolic function arguments and its return values 

according to its semantics. We want to show how post-condition helps to resolve 

constraints from COTS or binary components. Besides, run-time information can be 

used to strengthen the aided constraints.  

Using specification to interpret functions is analogue to an approach to abstract 

the semantics of functions. As soon as functions are abstracted, added constraints can 

be compacted, and then the load of constraint system can also be eased. This method 

reduces the redundant paths in external functions and helps our testing to achieve 

deeper path enumeration.  

The external function calls should not affect the testing process because what we 

care is the behavior of the top level function. Our work aims to separate the symbolic 

execution from external functions with post-conditions. Consequently, the 

instrumentation to external functions can be omitted and can avoid the unnecessary 

path enumeration. As the specification is given, the related constraints can be 

manufactured easily. This functionality is integrated into ALERT framework for more 



 - 6 -

correct and effective testing.  



 - 7 -

2 Related Work 

2.1 Random Testing (RT) 

It randomly selects test cases from the input domain, the set of all possible inputs, 

and can detect certain failures unable to be revealed by deterministic testing. The 

advantage of RT includes its low cost, ability to generate numerous test cases 

automatically, and the generation of test cases in the absence of the software 

specifications and source code. However RT usually consumes much time to yield 

duplicate test cases and still can not achieve full path coverage. If the failure-causing 

inputs are clustered together, the fault-detection effectiveness of RT may be 

incompetent. Systematic testing is preferred because it is directed, usually toward 

exposing failures. ALERT combining concrete and symbolic execution can be viewed 

as a systematic testing to walk all the computation paths from program analysis and 

tries to find potential bugs through universal checking. Only the initial input is 

random and the power of symbolic execution makes sure that next generated input is 

for a different path. Upon the ability of completely symbolic evaluation, ALERT can 

efficiently generate all feasible paths. 

 

2.2 Model Checking 

Model checking is an automatic technique for verifying finite state concurrent 

systems. In the hardware and protocol domains, it has been widely successful in 

validating and debugging designs by algorithmic exploration of their state spaces. The 

major limitation is state-space explosion, so model checkers only explore the state 

space of an abstracted system. Recently, there has been significant interest in applying 

model checking to software, and state enumeration is viewed as computation with 

predicates that represent state sets [13, 14]. Since software is typically infinite-state, 



 - 8 -

abstraction is even more critical. One approach to model checking software is based 

on the abstract-check-refine paradigm: build an abstract model, then check the desired 

property, and if the check fails, refine the model and start over. Generally symbolic 

execution is a developed method to check property and counter-example driven 

refinement is adopted to improve accurate. Even if refinement loop is taken, model 

checking still suffer from infinite refinement loop and incorrect reports due to the 

statically modeled program. ALERT, like an explicit model checking, uses symbolic 

execution to map abstract counterexamples on concrete executions and to refine the 

abstraction, by adding new predicated discovered during symbolic execution. The 

main difference is that ALERT combines symbolic execution with concrete execution 

to alleviate the infeasible states. Consequently shortcomings described above in 

model checking will be alleviated. 

 

2.3 Concolic Testing 

Concolic testing [5-8] iteratively generates test inputs by combining concrete and 

symbolic execution, observing that the complexity and imprecision of purely 

symbolic techniques can be alleviated by using concrete values from random 

executions. During a concrete execution, a conjunction of symbolic constraints placed 

on the symbolic input variables along the path of the execution is generated. These 

constraints are modified and then solved, if feasible, to generate additional test inputs 

which would direct the program along alternative paths. There are two important 

works, DART and EGT in this domain, and they are proposed almost in the same 

period. Later come the CUTE and EXE. We compare those works below: 

 

 

 



 - 9 -

Table 2: Comparison between CUTE and EXE 

 
Target 

Search 
Strategy 

Bug  
Diagnosis 

Memory 
Model 

Target 

CUTE 
Full  

coverage 

Bounded 
Depth-First 

Search 

External 
tools 

Approximate Unit-testing

EXE 
Find bugs 

automatically 

Selective 
Depth-First

Search 

Universal 
checking 

Accurate Kernel code

 
 

2.4 Path Compaction 

This research is splintered form DART[11, 12], and focus on the path explosion 

problem for scalability, because the number of feasible execution paths of a program 

increases exponentially with the increase in the length of an execution path. SMART 

proposes to perform dynamic test generation compositionally, by adapting known 

techniques for interprocedural static analysis. LATEST explores the most abstract 

version of the program, refining the abstraction on demand based on particular 

executions. They respectively propose top-down and bottom-up fashions to solve this 

problem. An immediate way is to save symbolic execution in external functions 

because to traverse all paths in these functions makes no sense about testing. In other 

words, an external function is essentially treated as a black-box. 

SMART summarizes the pre-condition and post-condition for external functions 

in constraints according to each successive iterations on different function inputs. It 

applies DART-like search algorithm to compute summaries of functions and then 

reuses them. Because most external functions can not be reasoned about in symbolic 

execution without instrumentation, manual analysis in our work assists in breaking 

this limitation. However, the pre-condition and the post-condition stand for different 

terms in ALERT. The post-condition can be view as the side effect after a function call, 



 - 10 -

and the pre-condition, often a return value, is used to determine what post-condition 

should be added. We add post-conditions of the external functions depending on the 

outcomes concretely. 



 - 11 -

3 Post-condition Aided Symbolic Execution 

3.1 Strongest Post-condition 

The requirement of source codes for instrumentation becomes a major factor in 

the incomplete paths generation. In computer programming, the post-condition is a 

condition or predicate that must always be true. Calculation of post-conditions has 

applications in program verification, quality improvement, deriving specifications 

from programs and quality measurement. During symbolic execution, we can also use 

the constraints generated from manual analysis beforehand to interpret the semantics 

of external functions as post-conditions. In this way, the side effect of a function can 

be carried out in our constraints system. Even though the symbolic execution can not 

be properly performed in external binary components without the instrumentation of 

source codes, we can add the necessary constraints after they return to improve the 

defects of concretization. Here is an example: 

char * strcpy ( char * destination, const char * source ). 

This function will copy the string pointed by source to the location pointed by 

destination. Due to concretization, our symbolic system is not informed about this 

behavior, and then latter usage of the destination can not propagate the constraints of 

the source. In other word, the side effect of strcpy disappears under symbolic 

execution. Actually if the source can vary with the input data, it is possible to go 

through all different execution paths determined by the destination. When the side 

effect can be presented with the post-condition, the symbolic propagation can be 

ensured successfully. For instance, we add a constraint that the first byte in the 

destination is equal to the first byte of the source. We expect to correctly simulate the 

semantics of the external function with post-conditions, so there needs a joint 

post-condition regardless of the different pre-conditions. In addition the patched 



 - 12 -

constraints merely represent certain but not complete calculation of post-conditions 

because these are constructed only from the specifications. Therefore strongest 

post-condition (Figure 4) is adopted to interpret the semantics of external functions. It 

represents the necessary semantics after the external function calls, and can be easily 

described in constraints. Strongest post-condition may be imprecise, but somehow it 

overcomes the missing paths problem caused by concretization. Symbolic information 

in external function calls can not be ignored if the testing wants to achieve better path 

coverage. The semantics of functions must be analyzed in advance and this work can 

not be automated; even so, it indeed helps to redeem the lost constraints and can be 

reused in later testing. 

 
Figure 4: Strongest post condition 

  

3.2 Return Values Driven Constraint 

Strongest post-condition only supplies the most common predicates of an external 

function during symbolic execution. Although it patches the symbolic execution, it is 

not precise enough. We take the advantage of the run-time information as 

pre-conditions in order to conduct the suitable constraints. Therefore, the return value 

of a function can be taken for our selective post-condition. Consider the function in C 

Standard General Utilities Library which returns a pseudo-random integral number in 

the range 0 to RAND_MAX: 

int rand ( void ). 



 - 13 -

The return value of the function rand() is then assigned to another variable, says 

n. The constraint system does not have any idea about n and results in constraint 

missing. If we use strongest post-condition to some value n, the constraint of 

)_()0( MAXRANDnn ≤∧≤  will be added. Obviously, this will not benefit the 

symbolic execution anymore because the range is too large. So we make use of the 

return value to refine the constraints (Figure 5). k is the key value that will influence 

the subsequent flow. 

 

 
Figure 5: Refine the post-condition 

 

We add the constrains depending on its return value because rand() can be 

evaluated dynamically. This measure can effectively reduce the range of the 

post-condition of rand() and then can improve the imprecision of strongest 

post-condition. The difficulty is how to choose the decision value. Basically we use 

the common behavior to determine, e.g. strcmp returns 0 if two strings are the same.



 - 14 -

4 Implementation 

4.1 ALERT Framework 

The development of ALERT project is raised for the purpose of automatic feasible 

input generation. Symbolic constraint system in ALERT operates like that in DART, 

but we employ more powerful constraint solver. This feature gives ALERT more 

accuracy during symbolic execution and more practicality in a real program. In the 

following sections, we will introduce several important stages in this work. 

 

 
Figure 6: ALERT framework 

 

4.1.1  Preprocess – CIL (C Intermediate Language) 

CIL is a high-level representation along with a set of tools that permit easy 

analysis and source-to-source translation of C programs. It supplies many useful 

modules for analyzing and manipulating C programs, and we utilize some of them in 

the preprocess stage. 

 



 - 15 -

4.1.1.1  Source to Source Translation 

Programs usually contain various structures and complex statements. This makes 

it difficult to normalize the symbolic execution. For this reason, we need a regular 

translation to simplify the original program into basic data types and operations with a 

very clean semantics. This idea can be viewed as a compiler to output a form suitable 

for the processing by the constraint system. CIL provides several available modules 

for us to utilize, but there are still some simplifications not handled. Therefore we add 

a module, otherSimp, in CIL to deal with the left jobs. Main modules in CIL we used 

are simplify, simpleMem, and cfg. 

simplify is responsible for the translation of program to 3-address code. Hence 

composite statements will be reduced to basic statements in the form of atomic 

operations. Moreover, structures will be interpreted in a base address and offsets to 

represent different objects. simpleMem simplifies all memory expressions. Pointer to 

pointer and reference to pointer will be simplified via the introduction of well-typed 

temporaries. After this transformation all lvalues involve at most one memory 

reference. cfg makes the program look more like CFG: for instance, while loop will be 

translated into a statement if and a branch goto. otherSimp is applied to make the 

translated code more suitable for a later instrumentation. It handles the arithmetic in 

memory access and return value expressions. 

 

4.1.1.2  Instrumentation 

After the translation, the code of the tested program turns into the simplest form. 

Most code should be instrumented into an ALERT API used to trigger the 

representing symbolic execution when the code is executed. We implement a module 

alert in charge of this work. It can automatically identify various statements, different 

operators, and decide which arguments to be used in the instrumented code.  



 - 16 -

There are two kinds of statements to be instrumented. One is the conditional 

branch, and the other is the basic instruction. We instrument a code for the truth 

predicate in if-statement while for the false predicate in else-statement. In the case of 

basic instructions, we instrument the corresponding symbolic operations. Besides, we 

also instrument code to count the frame context number after the function entry point 

and before function exit point. 

 

4.1.2  Symbolic Execution – CVCL 

Symbolic execution is mainly used to accomplish the automated test input 

generation. It provides a systematic way to enumerate different paths. All paths in a 

program can be generated through extending traces in the CFG., i.e. a computation 

tree. Therefore we can view path enumeration as a search in the computation tree of a 

program. Our symbolic execution combined with concrete execution uses DFS to 

systematically enumerate all feasible paths. The method is to gather constrains for 

symbolic execution during concrete runs, to negate the predicate in the last branch, 

and then to use the constraints to generate the next input, which can steer the program 

to an alternative path.  

Constraints propagation starts at the tested program entry point, and is carried out 

during the concrete execution. Initially, only the input values are symbolic in 

symbolic execution, i.e. the inputs can be any values in the range of their types. This 

symbolic property is propagated through various operations of assignment. If one of 

the operands is symbolic, the assigned variable also becomes symbolic, or it is still 

concrete. Therefore we maintain a hash table to check if the operand is symbolic. 

CVC Lite is an automatic theorem prover for the Satisfiability Modulo Theories 

(SMT) problem. Its features include: support for a variety of theories; interactive as 

well as C and C++ library interfaces; proof and model generation abilities; predicate 



 - 17 -

subtyping; and suppport for quantifiers. We utilize this constraint system to perform 

symbolic execution because it can accurately model the operation in memory system 

and has the interpreted theories to validate some non-linear problems.  

 

4.1.2.1  Symbolic variables 

Although CVCL provides a powerful constraint system in real and integer, we 

choose the bit vector to express different types in C because it has more precision 

under memory operation. We use 8 bits length bit vector to express a byte, and then 

concatenate bytes to express different data types in C. So there is a map from a type to 

size of bytes in ALERT for symbolic execution.  

Constraint system carries out the proper procedures relative to the 

nondeterministic operation in the program as a manner of explicit model checking. 

The relationship between variables is propagated through this way. Because our 

constraint system can not maintain temporal property, the previous relation may be 

modified by later use. So we append a number to each variable in constraint system, 

and the number will increase whenever the variable is reused in symbolic execution 

(Figure 7). First, b + c is assigned to a, and then a is assigned to b. If we do not use 

the variable translation, the constraint system is unable to distinguish the former b and 

the latter b. Therefore the constraints created in the system are abcba =∧+= , 

which induces caa += . This will cause the constraint system to be invalid, and stop 

the symbolic execution. Besides, we especially append a context number for inter 

procedures. This number helps our constraint system to make out the local variables 

of different functions in stack frames.  



 - 18 -

 
Figure 7: Variable Translation System 

 
4.1.2.2  C Operator 

C contains many operator groups: arithmetic, assignment, logical, bitwise, and 

others. It means that our constraint system should cover all of those operations for 

accurate symbolic execution. As a theorem prover, CVCL can interpret real and 

integer arithmetic (linear and some support for non-linear), arrays, records, and 

bit-vectors. Thanks to this power of CVCL, most atomic operations in C can be 

reasoned about in symbolic execution. ALERT API indicates CVCL how to perform 

the symbolic execution depending on a given argument which is determined in the 

preprocess stage. We will describe how the symbolic execution works at those 

operators. 

Arithmetic: 

The basic operators of addition, subtraction and multiplication can be 

immediately reasoned about in real and integer in CVCL, but modulo and division are 

only in integer. We use the arithmetic formula: the dividend equals a divisor 

multiplied by a quotient plus a remainder to set up the constraints in those operations 

of modulo and division. Therefore the operators of modulo and division can also be 

reasoned about in real. As for decrement, it is translated to the operation that subtracts 

the operand with one and then assigns the result to itself in preprocess stage. Actually 

we do not need to handle the decrement, and so does the increment. 

A difference of arithmetic operations of signed values between C and CVCL is 

that CVCL uses a theory of bit vector to evaluate to the result of an operation, and it 



 - 19 -

differs a little from C. For example, -128 / -1, the result we know is 128, and so does 

in CVCL. But in C the result is actually -128 because -128 / -1 can be viewed as 

negation of -128. C uses 2’s complement to evaluate the negative value of -128, and 

then -128 / -1 is still -128 (Figure 8). Therefore we have to implement the real 

behavior of negation in C. 

 
Figure 8:  The evaluation of -128 / -1 in C 

Assignment: 

 These all perform an operation on the lvalue and assign the result to the lvalue. 

However they have been translated to the 3-address code after simplification (Figure 

9). 

 
Figure 9: Three-address code translation 

So we merely perform the symbolic execution as usual. CVCL provides an API, 

eqExpr, for the equality of two expressions. This is convenient to build the constraint, 

but the premise is that the two expressions must be the same type. Simply speaking, 

the length of bit vector of these expressions should be the same, or the type checking 

in CVCL will raise an exception. 

Logical: 

 Most of logical operators are used as predicates in branch statements, which 

control the flow of a program towards different paths. CVCL originally has a 

powerful capability on such operations, and what we need to do is to maintain the 

constraints in different branch statements. Whenever the constraint system negates the 

last predicate of a branch to generate a next input, the constraints in the indicated 



 - 20 -

branch statements require to be removed first. Otherwise those constraints will be 

misused and induce an anomaly path, which is not expected. 

Bitwise: 

 Shift operations in CVCL are originally designed for bit vector, so the semantics 

of these operators are not the same as those in C. Left shift is to append successive 

zeros after the LSB to let the bit vector move toward left. Here is an example of left 

shift:  

0bin0011 << 3 = 0bin0011000 

Obviously that does not match in C because the bit length increases after left shift 

operation. For that reason we need to choose significant bits properly to show the 

result, so the bits should be extracted with original length from the LSB.  

 As for right shift operation, we need to take the sign of a bit vector into 

consideration because the shifted bit vector differs in signed and unsigned types. The 

original right shift operation in CVCL is like in C. For example,  

0bin1100 >> 2 = 0bin0011 

However for signed type that will change the MSB and make negative become 

positive. To overcome this problem, we first execute a signed extension on the signed 

bit vector, and then extract significant bits from the extended bit vector with correct 

length (Figure 10). 

 
Figure 10: Right shift procedure in symbolic execution 

Odds and ends: 

 All of these operations will be evaluated alone and the results will be assigned to 

a temporary variable created in the CIL preprocess stage. Then the variable will 

replace the original operation in instructions. Most operations can be evaluated to a 



 - 21 -

concrete values at run-time, e.g. sizeof(), and are transparent in the constraints system.  

Only the pointer operation is related to symbolic execution because the test input 

originally can view as a logic memory map. All memory access operations should 

take into consideration during symbolic. Next section will detail how to implement 

them.  

4.1.2.3  Symbolic Pointer 

All variables used in the tested program are maintained in an object list, which 

records the name, starting address and size of the object. This list makes our symbolic 

execution support for pointer alias. Although the names of alias pointers are different, 

they have the same name in a object list if their starting addresses are equal. 

Furthermore this list help to check if a memory access is legal. We implement the 

CRED based memory access, and perform it before every memory reference and 

dereference. This execution is to calculate the range of the corresponding object and 

to verify whether the memory access is out of bound (Figure 11). If the address it 

points to is less than the lower bound or greater than the upper bound, an exception 

will raise. Because this checking is through our constraint system, its overhead is 

larger than CRED, which uses directly dynamic checking.  

 
Figure 11: CRED based memory access 

The symbolic memory access has three main cases: (1) a symbolic pointer with 

a concrete offset; (2) a symbolic pointer with a symbolic offset; (3) a concrete pointer 

with symbolic offset. First case is easy because only one symbolic variable is 

referenced. The main issue is induced by the symbolic offset since we can not 



 - 22 -

determine what memory location it pointers to in our constraint system. A possible 

solution proposed in EXE is to interpret the memory access with a disjunction of 

accessing each location, and we have implemented it in our work. As we know, the 

addressing space is up to 4 GB in IA32 system, so it is not efficient to interpret an 

uninitialized pointer. We only handle those which have a limited size in the object list. 

Consider the example: p = *tmp. The operation is to dereference tmp and then to 

assign its value to p. Assume tmp is symbolic, the object tmp points to is k (it can be 

determined dynamically), and the size of object is n, then the value of *tmp could be 

*k, *(k+1), *(k+2), …, and *(k+n-1). Therefore the symbolic read operation is 

interpreted as )*(
)(0

ikpitmp
ksizei

+=∧=∨
<≤

. The symbolic write operation is similar. 

 

4.1.3  Test Driver 

This component is responsible for driving the testing procedure. It is merely 

written as a shell script which invokes the instrumented tested program and feedback 

the generated input at the end of program in order to drive another execution. Besides, 

it provides a simple interface to set up some preferences, like depth, iteration, etc.  

We maintain a path history of last execution which marks what statements it 

chose in the passed branches. Because this work uses the systematic search algorithm 

to sweep out all feasible paths, test driver can determine if this testing should be 

terminated through this record. There are two cases for normal termination: (1) all 

paths are traversed (within the bounded depth); (2) an anomaly path. First case 

happens when only one branch in the history. Second case is that the previous 

execution does not obey the resolved path. That may be caused by path explosion or 

errors of the constraint system. Another situation is that the procedure never stops due 

to the constraints that our solver can not resolve. 



 - 23 -

4.2 SP module 

This module serves as a CIL add-on, and provides a convenient capability to add 

post-conditions of different functions. Users can easily write the constraints of 

post-condition with simple type format defined in CIL and instrument them in the 

preprocess stage. Or they can use our post library and instrument a stub function after 

the specified function in order to give the constraints.  

C standard library is usually linked in our testing program. It is inconvenient to 

add the source code of the callee functions at each test. Worse, the testers usually 

leave the matter aside by means of concretization. Therefore we obey the specification 

of standard C to build several post-conditions of general functions. But only the usual 

behaviors of functions are represented in our post-conditions. For instance, the return 

value of the function strcmp is 0 if and only if the two strings are equal. If there has 

any different character between these two strings, the return value naturally is any 

integer except 0. Actually this constraint is sufficient to deal with most cases, and it 

certainly improves the path coverage comparing to just concretization.  

 The constraints of post-conditions can be easily constructed using the implication, 

equivalence, and if-condition expression provided in CVCL. How to effectively 

interpret the semantics of external functions becomes the major work. Many extreme 

paths can be triggered on the premise that a branch predicate comprises some variable 

which is concerned with an external function. 



 - 24 -

5 Experimental Results 

We experiment on ALERT with the well-known tritype program for classification 

of triangles. And then use two cases to illustrate how the post-condition helps to 

achieve better coverage for concolic testing. 

 

5.1 A Simple Example: tritype 

The tritype program is a basic benchmark in test case generation since some 

extreme paths are hard to trigger. Many random testing tools can not generate all 

paths, or need to take long time to complete it. tritype takes three positive integers as 

inputs (the triangle sides) and returns 1 if the inputs correspond to any triangle, 2 if 

the inputs correspond to an isosceles triangle, 3 if the inputs correspond to an 

equilateral one, 4 if the inputs do not correspond to any triangle. Figure 12 gives the 

tritype program in C code. 

 
Figure 12: Code of the tritype program 

We use this program to validate the capability of a test generation in ALERT. At 

beginning, ALERT use a default input (0, 0, 0), and then drives this execution to go 



 - 25 -

through all feasible paths. Finally ALERT terminates at 14 iterations, which is the 

same as the number of paths that CUTE generates. In fact, there are only 14 different 

paths in the program. The result shows that our systematic test generation can not 

only enumerate feasible paths, but also avoid the repeated path. It confirms that our 

tool can exactly generate all inputs data for testing. 

 

5.2 Post-condition: abs 

Consider the function testme whose code is as follows: 

 
Figure 13: Simple program including a library call abs 

 We use CUTE to test this program to observe the path coverage. The result 

reports that there are only 2 paths in this program, those are (i >= 0)Λ(j <= 7)  and  

(i >= 0)Λ( j <= 7). However if we input -50, (i < 0)Λ(j > 20) can be induced. 

Actually another path (i < 0)Λ(j <= 20) is also missed in CUTE. This problem is 

caused by the external library call abs. Constraints propagation of i stopped at the 

invocation of abs due to the concretization.  

 Supported by post-condition of abs, our tool can effectively enumerate all paths 

of this program. What we do is to add the post-condition: 

⎩
⎨
⎧

>==
<−=

0,
0,

iifij
iifij

 

Through this rule, ALERT can cover four paths. 



 - 26 -

5.3 Post-condition: strcmp 

The following program icharset is a function (Figure 14) used in the 

well-known command less that displays text files. It checks if a given character set is 

valid. We apply the post-condition of strcmp() on this test, and observe the result. 

 
Figure 14: Simple program including a library call strcmp 

 For the convenience of manual analysis, we assume that the first string is 

symbolic and the other is concrete, and the length of these strings is n. Intuitively we 

may build a relation between arguments and the return value in strcmp() as follows:  

0)2,1(
)12*()11*()12*()11*(2*1*

=
−+=−+∨∨+=+∨=

strstrstrcmpiff
nstrnstrstrstrstrstr L

 

 Whenever the constraint system need to negate ret = 0 for next test input, this 

will effect the related symbolic variables, for example, ret != 0 implies *str1 - 

*str2 != 0. Therefore at the next run str1 and str2 differ in the first character. The 

difficulty is how to construct the relation when strcmp(str1,str2) != 0. We use the 

method mentioned in SP module to build the constraint. Our experiment is to 



 - 27 -

demonstrate the utility of the post-condition aided symbolic execution. CUTE 

consumes 21 iterations in the function strcmp with source code available while 

ALERT consumes only 2 iterations without source code.  

 

5.4 Discussion 

It seems that with these results of above cases, with less iterations path coverage 

can be improved using post-condition aided execution. As for a large program, the 

invocations of external functions become frequent. And this follows the increase of 

missed constraints (Table 3). Hence, the effect of post-condition aided execution 

becomes apparent. In addition, we have not analyzed strcmp() well, or the result will 

be more notable though this analysis could be complex. If this analysis is finished, it 

can be reused extensively in other testing. 

 

Table 3: The effect when the times of calling abs in increase 

Effect of Concretization

0

20

40

60

80

1 2 3 4 5 6

Invocations of abs

W
or

st
 m

is
si

ng

co
ns

tr
ai

nt
s

 
 

We summarize the differences between CUTE and ALERT with post condition in 

the following table: 

 



 - 28 -

 Logical  

Input Map 

Constraint 

Solver 

External 

Invocation 

Symbolic 

Pointer 

CUTE Byte level lpsolver Concretization Only 

dereference 

ALERT with 

post condition 

Bit level CVCL Post-condition Reference  

and  

Dereference 

Table 4: Comparison between CUTE and ALERT 



 - 29 -

6 Conclusions 

We address a post-condition aided symbolic execution to redeem the missing 

constraints due to concretization. Even though this method employs manual analysis, 

there is no suitable solution proposed yet. Most related works are available based on 

the assumption that the source codes of all involved function. Generally speaking, the 

condition is hardly satisfied, especially in COTS components. Recent research uses 

the binary instrumentation technology to perform the symbolic execution without 

source code. However, the symbolic execution in that work is extremely restricted by 

the size of program because the granularity in symbolic execution is too fine to the 

assembly language level. Moreover, binary instrumentation is difficult to be applied 

on system calls unless it has instrumented the kennel carefully. In fact, we can avoid 

the code in kernel level, and perform the effect approximately in symbolic execution 

using well-designed constraints. 

Post-condition is interpreted from the semantics of a function, and it just gives the 

abstraction of the function. That is why manual analysis can be easily applied. The 

primary drawback is less precise. We therefore take advantage of the return value to 

refine the constraints. And the method can indirectly solve the path explosion problem 

because of its path compaction. SMART and LATEST aim at the same problem and 

have more precision than our work owing to the help of source code. Those methods 

can not be applied on un-instrumented programs.  

Although manual analysis is necessary for post-condition, the generated 

constraints can be reused. Our method does not consume any extra overhead in testing 

because it can be analyzed off-line. The experiment shows that path coverage indeed 

can be improved and path explosion problem can be alleviated using post-condition 

aided symbolic execution. The future work is to construct a set of post-conditions 



 - 30 -

which includes most popular functions in libraries. That will provide our test 

framework more capability in real program.



 - 31 -

References 

[1] D. Beyer, A. J. Chlipala and R. Majumdar, "Generating tests from 
counterexamples," in ICSE '04: Proceedings of the 26th International Conference 
on Software Engineering, 2004, pp. 326-335.  

[2] W. Visser, C. S. reanu and S. Khurshid, "Test input generation with java 
PathFinder," in ISSTA '04: Proceedings of the 2004 ACM SIGSOFT International 
Symposium on Software Testing and Analysis, 2004, pp. 97-107.  

[3] W. Visser, C. S. reanu and R. nek, "Test input generation for java containers 
using state matching," in ISSTA '06: Proceedings of the 2006 International 
Symposium on Software Testing and Analysis, 2006, pp. 37-48.  

[4] Tao Xie, Darko Marinov, Wolfram Schulte and David Notkin ER -, Symstra: 
A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution. 
2005, pp. 365-381.  

[5] P. Godefroid, N. Klarlund and K. Sen, "DART: Directed automated random 
testing," in PLDI '05: Proceedings of the 2005 ACM SIGPLAN Conference on 
Programming Language Design and Implementation, 2005, pp. 213-223.  

[6] K. Sen, D. Marinov and G. Agha, "CUTE: A concolic unit testing engine for 
C," in ESEC/FSE-13: Proceedings of the 10th European Software Engineering 
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on 
Foundations of Software Engineering, 2005, pp. 263-272.  

[7] C. Cadar and D. E. E. -, Execution Generated Test Cases: How to make 
Systems Code Crash itself. 2005, pp. 2-23.  

[8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler, "EXE: 
Automatically generating inputs of death," in CCS '06: Proceedings of the 13th 
ACM Conference on Computer and Communications Security, 2006, pp. 322-335.  

[9] C. Csallner and Y. Smaragdakis, "Check 'n' crash: Combining static 
checking and testing," in ICSE '05: Proceedings of the 27th International 
Conference on Software Engineering, 2005, pp. 422-431.  

[10] C. Csallner and Y. Smaragdakis, "Check 'n' crash: Combining static 
checking and testing," in ICSE '05: Proceedings of the 27th International 



 - 32 -

Conference on Software Engineering, 2005, pp. 422-431.  

[11] P. Godefroid, "Compositional dynamic test generation," in POPL '07: 
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on 
Principles of Programming Languages, 2007, pp. 47-54.  

[12] R. Majumdar and K. Sen, "LATEST : Lazy dynamic test input generation," 
EECS Department, University of California, Berkeley, Mar, 2007.  

[13] Huey-Der Chu, John E. Dobson and I-Chiang Liu ER -, "FAST: a 
framework for automating statistics-based testing,"  Software Quality Journal, 
vol. V6, pp. 13-36, 03/01/. 1997.  

[14] Saswat Anand, Corina S. PÄƒsÄƒreanu and Willem Visser ER -, Symbolic 
Execution with Abstract Subsumption Checking. 2006, pp. 163-181.  

 


