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An Energy-Efficient Data Gathering Scheme Exploiting
Spatial Correlation in Wireless Sensor Networks

Student : Kuan-Han Chen Advisors : Jiun-Long Huang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

In this thesis, we propose an energy-efficient.data gathering scheme over a highly
spatial-correlated region in wireless sensor networks. First, we present a mechanism to
group sensor nodes into a set of clusters, which have monitored similar phenomena by
exploiting spatial correlation. The member readings in a cluster are bounded within an
user-tolerable threshold and each cluster is.represented by one clusterhead to answer
queries. Second, in order to further reduce energy consumption, we merge the clusters
which got resembled readings. The problem to merge clusters is modeled as an
infer-graph set problem. We devise a greedy-based heuristic algorithm to acquire the
near-optimal solution of choosing the new representative clusters. Third, we design a
safe region for each sensor (even clusterhead or member sensor) not to casually leave
the cluster and strengthen the persistence of clusters. It avoids the overheads of
frequently rebuilding clusters. Experimental results show that our work is superior to
previous techniques by saving 11 percent of bytes count and decreasing 15 percent of
clusterhead count. Furthermore, our scheme is more suitable for dynamic sensing
environment than competing techniques.
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Chapter 1

Introduction

1.1 Overview

Recent advances in wireless networking and electronics have enlightened the development of
wireless sensor node. Such nodes are smallscale in_size, low-power in communication and low-
cost in production. Each sensor node ‘would be able to:sense ambient states in the environment,
process the collected data by simple functions and transmit the results to neighboring nodes.
A wireless sensor network (abbreviated.as-AWSN) is' made up of a large amount of wireless
sensor nodes, which randomly or arbitrarily scattered over the sensing field and cooperated to
accomplish specific purposes. Since sensor nodes are restricted by the transmission range, they
route data to the sink by a multi-hop manner that surrounding sensors help the source sensor to
relay data. Sink is a base station to collect and deal with the raw data. Sink may communicate
with Internet and answer the current states about the sensing field. Therefore, WSN can be
deployed in some unreachable terrains or dangerous circumstances, such as calamity monitoring
(forest fire), firsthand information in battlefield, and the care of medical treatment.

Nowadays, there are many existing issues in wireless sensor networks. One of the most com-
mon concerns is energy efficiency. As sensor nodes only have limited source of energy, power
management and power conservation take on a very important role. In-network query processing
with data aggregation is one way to prolong the lifetime of sensor nodes in many surveillance ap-
plications. In such environment, the raw data sensed by the sensor nodes are ordinarily processed

within the network and only aggregated information would return to the sink. Certain nodes



which collect and process the other sensors’ information are called aggregated nodes. These nodes
are usually designed for higher efficiency in data gathering and computing power. They transform
raw data into serviceable information by using functions such as suppression, MIN, MAX, SUM,
and AVERAGE. Furthermore, since the transmission cost is higher than computation, sensor
nodes are usually organized into clusters. The members of a cluster elect a representative node,
called clusterhead, to manage the whole cluster. Aggregated nodes are similar to clusterheads in
some network applications. It conserves a great deal of power consumption for sensor networks
because a part of nodes pre-process and compress the data information within the network.

In WSN, data correlation is usually related to different spatial districts. Sensors observe
correlated readings when they are placed into a geographical environment which is appearing
the same events. For instance, if we densely deployed the sensors over many classrooms and
monitored the variations of temperature, we would discover that the sensors in the same classroom
detected similar temperature readings simply because the air conditioner is shared in the same
spatial region. The appearance of things implies.that data correlation is proportional to spatial
correlation. Therefore, we can merely select.some reépresentative sensors to stand for others in
the same region. Then, only representative sensors need: to report the data so the overall energy

consumption would be much lower.

1.2 Objective

In this thesis, we address the problem of data gathering over a highly spatial-correlated region,
which means adjacent sensors have the similar readings. We then propose an energy-efficient
data gathering (EDG) scheme to partition the network into such a set of clusters, which have
monitored similar phenomena. Each cluster is represented by a clusterhead that is responsible
for reporting the current sensing reading to the sink periodically. The establishment of clusters
is via a query from the sink to the whole networks accompanied with an user-tolerable threshold.
The sensing readings are accepted by the users when the readings are within the threshold with
respect to the corresponding clusterheads.

After establishing the set of clusters, each cluster reports information to the sink. EDG

utilizes the information for merging and reducing the number of clusters which have similar



readings in vicinity for the sake of preserving energy consumption. The conditions of combining
the clusters are based on the geographical distributions and the relations with their readings. In
the process of dealing with the combinations, we derive an interesting problem called infer-graph
set problem which tends to select the minimal number of representative clusters. We propose a
greedy-based algorithm to acquire the near-optimal solution in our thesis.

In addition to the greedy algorithm, we also introduce the concept of safe region for sensor
nodes to avoid the overhead of rebuilding the clusters. In WSNs, users usually pay attention
to dramatic data changes rather than slight variances in states or numbers such as temperature
or humidity. Moreover, the changes may lead to sensors out of the restriction of a cluster and
have to re-establish the clusters, especially for the clusterhead nodes. To avoid this situation,
the safe region allow each node (even clusterhead or member node) a floating range. That means
sensors will not leave their clusters unless the readings are beyond the pre-determined range. It

economizes a great deal of power consumption on unnecessary cost of rebuilding clusters.

1.3 Contribution

Overall, we summarize the contribations of this thesis as follows:

1. We propose a mechanism to collect. sensor-nodes into clusters by exploiting the spatial

correlation of sensing readings.

2. We present an algorithm in the sink that merge some clusters with similar readings un-
derlying the user-tolerable threshold, and we offer an heuristic algorithm to select minimal

representative clusters.

3. We further propose the concept of safe region so that each sensor node will not easily break

the condition in a cluster. It reduces the overhead of rebuilding clusters.

1.4 Organization

The remainder of this thesis is organized as follows. First, Section 2 presents related works that

has been done previously. The system architecture and the proof are then described in Section 3.



Section 4 evaluates our scheme and shows the experimental results. Finally, Section 5 concludes

this thesis.




Chapter 2

Related Work

In this chapter, we survey several in-network aggregation routing protocols in WSN. They are
classified into two categories, which are flat (data-centric routing, hierarchical routing. Different
types of routing protocols are beneficial to dissimilar applications. In flat routing, sink sends
queries for data to certain regions and the:néighbor,nodes in the communication range report the
answers to the sink if they got the sources that sink wanted. SPIN [4] and DD [5] are typical
routing manners in this category. = Hierarchical’ routing is suitable for the large-scale sensing
environment. We further subdivide hierarchical routing into two categories. One is general
hierarchical routing, the other is spatial-correlated hierarchical routing. General hierarchical
routing distinguishes sensors into multi-tiers that sensors deal with diverse duties in each layer.
Some of general hierarchical routings combine data aggregation and fusion in the cluster and
only clusterheads(representative nodes) transmit messages to the sink in order to decrease the
energy usage, such as TTDD [7], LEACH [3]. The others permit approximated answers. They
are designed to be responsive to sudden changes and allowing continuous responses to increase
the practicability of routing tree, such as TEEN [8] and APTEEN [9]. As to spatial-correlated
hierarchical routing, it integrates the features of the former routing approaches. A user requests
a query from a single node that establishes the forwarding tree and identifies the cluster through
distributed algorithms in real-time, such as DSC [10], SnapshotQueries[6] and CAG [12]. In
the following sections, we briefly sketched these routing protocols and illustrated one of each

category particularly.



(d) G] f)

Figure 2.1: SPIN protocol
Node A advertises its data to node B (a). Node B responds by sending a request to node A (b).
After receiving the requested data (c), node B then sends out advertisement to its neighbors
(d), who in turn send request back to B (e-f).

2.1 Flat Routing

Sensor Protocols for Information via Negotiation (abbreviated as SPIN) [4] is a data-centric
routing structure which disseminates:information from each node to the whole network. A
source node first broadcasts its neighbor/modes with an advertising packet(ADV), called meta-
data, which shortly describes the skeleton that the source node got. When a neighbor node
receives the advertisement, it responds a requested packet(REQ) to the source node in the cause
of retrieving the data. Eventually, the source node sends out the completed data to the requested
neighbor node. The illustration is shown as Fig. 2.1. Unlike the classic problems in flooding,
SPIN utilizes meta-data with small memory size to avoid the shortcomings of flooding, such
as sensing areas overlapping and redundant information passing. Nevertheless, SPIN cannot
guarantee the delivery of interested data. If a node is interested in the data from the other
source node and the relayed nodes between source and destination are not interested in that
data, the destination will never acquire the data.

Another flat routing approach is Directed Diffusion (abbreviated as DD) [5].The idea aims at

diffusing data through sensor nodes which creating gradients of information in their respective



neighbor nodes. The sink node broadcasts interests for requesting data. If gradients and interests
match, information paths are established between sink and sources for the sake of diminishing
communication costs by aggregating data on the way. However, since Directed Diffusion focuses
on query-driven model, it will work inefficiently in continuous response-based applications, such

as environmental monitoring.

2.2 Hierarchical Routing

2.2.1 General Routing

LEACH (3], also known as Low-Energy Adaptive Clustering Hierarchy, is one of the first hier-
archical routing methods for wireless sensor networks. The idea of LEACH is to group together
the sensor nodes by exploiting the received signal strength and randomly change local cluster-
heads as routers, so the transmission cost can be spread to all the sensors in the cluster. Under
LEACH mechanism, each node choosess@random nwmber between 0 and 1. The node turns into

a clusterhead if the number is less than ‘the following threshold:

P :
T(n) - { l—p*(rmad%) ifneG

0 otherwise
where p is the desired precentage of clusterheads, r is the current round, and G is the set of nodes
that have not been clusterheads in the last % rounds. Only five percent of the total sensor nodes
became chusterheads. It will save energy because transmissions are made solely by clusterheads
and clusterheads take turns to balance the energy cost. However, LEACH has an irrational
assumption that each node can transmit immediately to the sink.

Threshold sensitive Energy Efficient sensor Network protocol (abbreviated as TEEN) [§]
and Adaptive Threshold sensitive Energy Efficient sensor Network protocol (abbreviated as
APTEEN) [9] are other hierarchical protocols which utilizing thresholds to decrease the amount
of transmissions. Fig. 2.2 depicted the construction, which is redrawn from [8]. TEEN forms
nearby nodes as clusters which are separated into several levels. The nodes in each cluster report
back to clusterhead only when the sensed reading fall above the hard threshold, and clusterheads

further reduce the number of transmissions when changes by a given soft threshold. Nevertheless,
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Figure 2.2: Hierarchical clustering in TEEN and APTEEN

TEEN does not support periodic reports since data only transmits while it broke the thresholds.
In view of this, APTEEN addresses both periodic data collection and reporting of time-critical
events. TEEN and APTEEN guide a concept:through permitting approximate results instead

of exact answers.

2.2.2 Spatial-Correlated Routing

Distributed Spatial Clustering in Sensor Networks(DSC) [10] addresses the problem of discovering
spatial relationship in sensor data through the identification of clusters. DSC proposed a d-cluster
structure that the sensors were partitioned into cluster according to the §. It broadcasts a packets
from a root node to its neighbors with a threshold ¢, if the feature distance between two nodes
is less than g, the root node includes the neighbor in its cluster. Since the distance between the
feature value of any node in the cluster and the root feature is at most g, triangle inequality
ensures that the distance between the feature values of any two nodes in the cluster is at most
. Fig. 2.3 is an example that redrawn from [10].

Snapshot Queries [6] aims at determining the representative nodes among groups of sensors
with similar observation. Snapshot exchanges data information with neighbors 1-hop away and

predicts the similarity by employing a linear regression model for the sake of establishing clusters.
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(a) Feature distance to node D (b) Root initiates the Clustering

root

(c) Node B and F in expansion process (d) Final Clustering

Figure 2.3: DSC protocol
For § = 6, the feature distance of every other node to sentinel node D are shown in (a). The
expansion of cluster C1 starts as shown in (b), continues as shown in (c), and terminates as
shown in (d).

The sensor nodes make use of the distribufed algorithins to maintain and elect a smaller set of
representative nodes in a localized fashion using a smallfup to six) number of messages per node.

Exploiting Spatial Correlation Towards-anEnergy Efficient Clustered AGgregation Technique
(abbreviated as CAG) [12] allows approximate results to aggregate queries by utilizing the spatial
correlation of sensor data and save energy. The CAG algorithm operates in two phase: query
and response. The former phase forms clusters by broadcasting a user-specified error threshold
7 on the way of establishing the forwarding tree. Each clusterhead can choose its own members
depends on the sensed reading of each clusterhead and threshold 7. Once all the nodes receive
the query packets, the latter phase starts. Only a select of clusterheads transmit to the sink
where they represented. Considering the phenomena of spatial correlation in sensor networks,

CAG further improve the utilization of energy.

2.3 Comparison

Table 2.1 summarizes the classification of the above protocols. We further included two metrics

in the table. One is to see if the protocol has the ability of aggregation, since it is an significant



Routing protocol Flat | Hierarchical | Spatial correlation | Aggregation | Approximate answer
SPIN Yes | No No Yes No
Directed Diffusion Yes | No No Yes No
LEACH No | Yes No Yes No
TEEN and APTEEN | No | Yes No Yes Yes
Snapshot Queries No | Yes Yes Yes Yes
DSC No | Yes Yes Yes Yes
CAG No | Yes Yes Yes Yes

Table 2.1: Comparisons of related works

index for power consumption. The other is to examine whether the protocol accepts approximate

answer or not, which allowed the protocol to deal with data flexibly. We can observe a trend

that protocols exploiting spatial correlation are all capable of accepting approximate answers

and utilizing data aggregation. As facing increasingly difficult of sensing environments, more

techniques are provided for routing protocols to handle the complexity.
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Chapter 3

EDG: Energy-Efficient Data Gathering

Scheme

An overview of scheme EDG is described in Section 3.1. We then subdivide EDG into three
procedures. First, Section 3.2 introducesdiow to’establish and determine the clusters. Then we
present an algorithm in the sink to regroupthe clustets into fewer, larger representative clusters
in Section 3.3. Finally, Section 3.4=provides each sensor node a safe region to avoid rebuilding

the network topology frequently.

3.1 System Overview

Fig. 3.1 illustrates the procedures of scheme EDG. A number of sensors are deployed in a sensing
field to monitor the environment. Since our scheme is based on an interactive query system

and accepts approximate answers, users request a query from the sink with a user-tolerable
Lo Do
e e

o o L4

@ (b)Clustering (c)Regrouping

Figure 3.1: System Architecture
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threshold. Sink then broadcasts the messages to the whole networks to build up the first version
of clusters based on the threshold. The result is shown as Fig. 3.1b after clustering procedure.
Then in regrouping procedure, each cluster reports some information to sink. Sink calculates
the representative relations of every two clusters according to their reported values. To obtain
the number of representative clusters, we model it as an infer-graph set problem. In addition,
we devise a heuristic algorithm, i.e., algorithm Regrouping, to acquire the approximate optimal
solution of the number of representative clusters. Then sink again broadcasts the adjusted
messages to merge networks into fewer clusters, as shown in Fig. 3.1c. In the last procedure,
we propose each sensor a safe region to float the reading within the range. It conserves a large
amount of power consumption since sensors do not reconstruct the topology on lightly reading

changes.

3.2 Clustering

First, when a user makes a query from the sink, the query is defined as < F, e >. F (Feature) is the
feature value, which the user inquirés about a region; like Humidity, Temperature and so forth. e
(error threshold) is the user-providéd thresheld which thie user estimates. After the sink receives
the query the user makes, it starts fo form the former phase clustering. The sink broadcasts a
query packet and the ingredients are Q=<'F;TCID,TCR, MylID,e >. F (feature) is the user-
specified feature value, TCID (Temporary Clusterhead ID) represents the identification of the
temporary clusterhead, TCR (Temporary Clusterhead Reading) is the reading of the temporary
clusterhead, MyID is the identification of the sensor itself used for transmitting the result and
‘is the error threshold of estimated answers.

After a sensor near the sink receives a packet, it will confirm the feature and then retrieve
its Local Reading (LR, Local Reading) to compare it with TCR of Q. If LR falls between
[TCR —¢,TCR + € , the sensor will be taken as a clusterhead and broadcast the same Q to the
neighbor sensors. If LR is not within TCR, the sensor needs to establish another new cluster
and becomes its Temporary Clusterhead, in the meanwhile broadcasting a new query packet
Q=< F,TCID',TCR',MyID,e > . TCID’ is the identification of its sensor and TCR’ is the

LR of the sensor. It’ll be broadcasted in this way until all the sensors in the sensor field receive

12



g [Clusterl] (10+10.5+10.6+11+9.8)/5 = 10.38

Cluster2| (11.5+10.7+10.5+10.5)/4=10.8

Cluster3 (11.2+11.7+10.7)/3=11.2

_— —

e - _
Can)
0, () S
(a) Before (b) After

Figure 3.2: Example of clustering with user-tolerable threshold € = 1

a query packet.

After the sensors receive the packets, they’ll transmit a response packet, which can be defined
as R=< MenberID, LR >. Member D is the identification of the sensor and LR is the local
reading of the sensor. After a temporaryiclusterhead. aggregates all the information from its
cluster members, it has to reselect anew clusterhead. The temporary clusterhead averages all the
local readings and gets an average value. Themmostrapproximate member is the new clusterhead,
which will transmit the result to the sink: The main purpose is to keep the clusterhead reading
in the middle value of all the cluster members and to decrease the possibility of reforming a new
cluster for a minor reading floating among some marginal members, which will be explained in
Section 3.4. When all the new clusterheads are determined, later on only they aggregate and
transmit the information in the whole sensor field. The reading of each clusterhead represents
the readings of all the cluster members to achieve the energy saving.

The algorithmic form of algorithm Clustering is as follows.

Algorithm Query(do in each node)

1. if (T'CR-¢€) < LR <(TCR + ¢) then
clsuterID = TCID
clusterhead = false
broadcast query Q with same TCID, TCR
else
TCID = i.getlD
TCR = i.getReading

13



8:  broadcast query Q with new TCID, TCR
9: end if

Algorithm Re-electing Clusterhead and Response

1: for each member node do

2:  Report current sensing reading to the temporary clusterhead.
3: end for

4: for each temporary clusterhead node do

5. if collect all the member nodes’ readings then

6: average the members’ readings as avg.

7 take the member whose reading is most close to the avg as NewCluster Head(NCH).
8: notify all members in the cluster.

9: end if

10: end for

11: NCHs response the current readings periodically

Take Fig. 3.2 for example, when a user wants to know the reading of the sensor field and
makes a request in the sink: < F,e >=< Temperature,1 >, the sink initiates the pack-
age and then node a transmits the query to its neighbor nodes b, ¢, g. The query is Q=<
Temperature, I Da,10, [ Da,1 >. When node b receives the query, it will check if its local
reading falls within [TCR - €, TCR +%¢|([9A11]lin this example) Because the local reading
of node b falls within the range, nodé b!becomes a-member of node a and belongs to the
same cluster and then keeps broadeasting the same query to its neighbors.(only changing MyID
to IDb) If node g receives the query from mode a,/its local reading is exceeding 11.5, so it
would become a new clusterhead itselfs When_ it-goes on broadcasting, it will revise the query:
Q=< Temperature, IDg,11.5,IDg,1 >. It will keep broadcasting this until all the nodes in the
sensor field receive the query. In this example, the readings of node b, ¢, d and e are within the
error range and thus they all become in the same cluster. The way to select a clusterhead is
the first node whose sensor reading is outside of the tolerable error range. Clusterhead selection
policy is the first node becomes a clusterhead if its sensor reading is outside of the tolerable error
range. Therefore, node g and node f in this example form new clusters.

When the temporary clusterheads, node a, g and f, are all set, it will reselect new clusterheads.
For cluster 1, temporary clusterhead node a collects all the readings from its members, it equalizes
those readings, 10.38 and reselects a node whose reading is the closest to be a new clusterhead
(NCH), node b, which will send back information in clusterl from then on. In cluster 2, the

most closest to the average (10.8) is node I, NCH. Because the average is equal to temporary

14



clusterhead in cluster 3, node f is still the clusterhead. From above, we will finish the clustering

phase and reselect new clusters and clusterheads.

3.3 Regrouping

3.3.1 Conditions of Regrouping

After we sorted each cluster, we are thinking if it can be more energy efficient in some circum-
stances. Therefore, regrouping is developed and regarded as the main idea in this procedure.
In the sensor field of the highly spatial correlation, the sensing data are extremely close to each
other due to their spatial correlation. If there is no characteristic frequency change, we prefer
each cluster to send few messages to the sink after clustering. After the sink collects all the in-
formation from clusters and then analyzes and integrates it, the sink can combine some clusters
into a bigger one. By doing that, it can save some extra energy consumption in the next report.
Here is the detailed explanation for this process. After establishing clustering procedure, the
clusterhead(CH) of each cluster transmits the following three values to the sink. We take one

cluster C; for example.

1. Current reading of C;, represented as V.

2. The absolute value of maximum difference between all members and CH in Cj, represented

as |[MaxDif;.
3. A ID list of clusters which neighbors Cj, represented as Neighbor;.

After the sink collects the three values from all the clusters, it contrasts the two conditions
of every two clusters. If the two conditions are accordable, it means that the two clusters can be

merged into one. For instance, the precondition which C; can merge C; is followed.

Definition 1. Given two clusters C; and C;, C; can represent C; if:
1. V; £ |MazDif;| CV,*e.
2. C; and C; are neighbor clusters.

15



’ C;(Clusterhead node) \ Vi \ |MaxDi f;] \ Neighbor; ‘

1 (b) 105 | 0.7 2.3
2 (i) 10.7 [ 0.8 1
3 (D) 11205 1

Table 3.1: Data report by clusterheads

If the two conditions are accordable, it means C; can represent C;. Two clusters are merged
into new one which is led by CH of ;. The following is the explanation for the conditions in
accordance with them. For the first condition, V; & |MaxDif;| is the member range of C;, which
means all the member readings of C; fall in this range; V; £ € is the user-tolerable range of Cj,
which indicates user can accept the readings within this range. Thus, if the member range of C}
falls within the user-tolerable range of C}, it implies the CH of C; can represent all the member
readings of C; under user-provided threshold. For the second condition, it exists for spatial
correlation. That is only when the two clusters are spatially close, we are able to combine the
two. Otherwise, it would cause the irrational situations that the two clusters far from each other
in distance combine into one just because their similar readings. In accordance with the above,
we consider the two clusters can be merged: After.the sink works out all accordance with the
above, it broadcasts the messages to the whele sensor field and informs each cluster to combine
with another one to reduce the number ofsclusters. In‘a long-term perspective, this way can be
more energy efficient.

In the following, we still use the example in Fig. 3.2b to elaborate the detailed process of the
regrouping procedure. In the clustering procedure, we make the sensor field into three clusters
and ascertain the clusterheads. In the regrouping phase, the clusterhead sends back the three
values to the sink. Take node b, the clusterhead in cluster 1, for example. It sends back its own
reading 10.5 and the absolute value of maximum difference 0.7, i.e. difference between critical
node, node e, and the clusterhead. It also sends back its neighbor cluster ID, i.e. 2 and 3. After
the sink collects all the reading from all the clusters, it will calculate to see if it can combine them
into a bigger cluster. As illustration shown in Fig. 3.3a, we take cluster 1 and 2 for instance,
the member range of cluster 1 is 10.5 + 0.7 = [9.8,11.2], which falls in the user-tolerable range
of cluster 2, 10.7 £ 2/2 = [9.7,11.7]. It shows that all the sensing readings of cluster 1 can be

represented by the reading of the clusterhead of cluster 2 within the user-provided threshold +1.
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Figure 3.3: Example of regrouping

Figure 3.4: Infer-graph’set problem
Nodes symbol the clusters and an arrow from mnode i to node j when node i can represent node

J-

Moreover, cluster 1 and cluster 2 are neighbor clusters so we can conclude that cluster 1 can
be represented by cluster 2. The two clusters can be merged into a bigger one which leads by
node i. On the other hand, we have to calculate to see if the member range of cluster 2 (10.7 £
0.8=[9.9,11.5]) can be included by the user-tolerable range of cluster 1 (10.5 + 2/2=[9.5,11.5]).
Fortunately in this example, cluster 1 also can represent cluster 2 by node b, thus node b and
node i can be the clusterhead in turn. It further promotes the utilization of the merged cluster.

The final result is shown in Fig. 3.3b.
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3.3.2 Infer-graph Set Problem

After the sink calculates all the representative relations of every two clusters, it have to determine
how to choice the combinations of the new topology. As shown in Fig. 3.4, each node stands for
a cluster, and the arrow from node i to node j means cluster i can represent cluster j, we can
take the combination U = (1), (4, 2), (6, 3,5) as the new topology, which each parentheses means
a new merged cluster and the first item of each parentheses indicates the led cluster. However,
we also can make another decision as U’ = (1,2),(5,3,4,6) with fewer representative clusters.
Hence, there exists a problem to find the representative clusters, we called it infer-graph set

problem, the problem can be formally defined as follows.

Definition 2. Given a directed graph G = (V, E), V is set of clusters, for arbitrary clusters
u,v € V, an directed edge (u,v) € E indicates cluster u can represent cluster v. An infer-
graph set is to find a subset of clusters V' C V', such that each directed edge (u,v) in E is

incident on at most one cluster in V.

We therefore propose a greedy algorithmmimsorder to earn the local maximal benefit. Here is
the algorithm for regrouping.

Algorithm Regroup Clusters by Greedy 'Approach

Input:

C" set of all the clusters ID

v;: reading of cluster 7, i € C

|maxdif;|: the absolute value of maximum difference of cluster i
€: the user-tolerable threshold

Output:

R: set of representative clusters, where R C S

1: for each cluster i € C' do

2:  for each neighbor cluster j do

3 if (v; £ |maxdif;| C v; = epsilon) then
4: C; represent Cj.

5: i adds j to its infer-candidates ;.

6

7

8

9

end if
end for
: end for
: while (C # NULL) do
10:  Find a cluster ¢ which has the maximum size of |u;].
11:  Add i to R.
12:  for each cluster j € u; do
13: Remove j from C.
14:  end for
15: end while
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(c) After refreshing the inferred-candidates, (d) (f, c, h) are the final set of representative clusters.
cluster cis chosen.

Figure 3.5: Example for regrouping algorithm

16: Return R for the answer.

Line 1 to line 8 explained what:Section -3:3.1 have done. Sink first computes the relations
between each cluster and its neighboring clusters. If Cj-can represent C;, then C; will be added
to the infer-candidates of C;. All the elusters-have calculated their infer-candidates. In the first
round, sink selects the cluster who has largest-ntimber of infer-candidates, and add to the set of
representative clusters R. It can be seen in line 10 and 11. From line 12 and 13, the representative
cluster removes the members of the infer-candidates from the set of remaining clusters S. It
iterates until there is no more cluster in S. Then we can derive a set of representative clusters
from R. Fig. 3.5 illustrates an example for regrouping algorithm. The direction of an arrow
means the infer-candidate of a cluster. The number near a node is the size of infer-candidates, it
can also be seen as the number of out-degree of a node in the graph theorem. In the first iteration,
sink select cluster f as a representative cluster since it has the largest number of infer-candidates.
Then these candidates are eliminated from the set, and the remaining clusters refresh the number
of infer-candidates. In the second iteration, cluster c is chosen to be the representative cluster
among the remainder clusters. Finally, f, ¢, h is the greedy solution for this example.

After this regrouping procedure, the number of clusters would decrease because of the com-
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bination. Thus, fewer clusterheads need to send back the information. In the long run, the
reporting packets would be much fewer so it will lengthen the lifetime of the whole sensor net-

work.

3.4 Safe Region

In the past, many in-network studies investigate how to effectively set up the routing tree and
form the clusters for economizing the energy attrition. Unfortunately, seldom of these works
center on maintaining the robustness of the clusters so that the sensors can further save power
by avoiding re-establishing the clusters frequently. The longer a cluster lives, the more energy
conserve for all the members in cluster. In this section, we discuss how to intensify the structure
and prolong the lifetime of a cluster.

Since we focus our work on environmental monitoring, sensor nodes report the current data
periodically to the clusterheads and clusterheads can do some aggregation and reduction of
data. At the same time, sensing attributes such as.temperature varies based on terrains or
circumstances. That means the reading of al/sensor node also changes over time. It brings an
inevitable problem that some meniber nodes which had critical readings may break the ambit
of cluster. These nodes are forced to leave the original cluster and try to join other available
clusters. Furthermore, if a clusterhead changes the reading caused by environment, it cannot
guarantee be the representative node in the future anymore. This is because the rule of electing
clusterhead is choosing the node whose reading is the nearest to the mean among the members.
Regardless of clusterhead or member nodes, it wastes power consumption on adjusting clusters,
especially on clusterhead.

In view of this, we proposed a concept of safe region, which allots each node(even clusterhead
or normal member node) a floating range. If the variance of a node drifts within the floating
range, the node will be kept in the cluster with the result that enhances the persistence of the
cluster. Now we discuss how to generate the floating region. As mention in clustering phase,
we first find out the Temporary Clusterhead(TCH) and average the readings of all the cluster
members. The movement of digging out the mean not only decided the New Clusterhead(NCH)

but shifted the value of clusterhead to middle of whole cluster members. Therefore, it will move
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Figure 3.6: Example of safe region with user-tolerable threshold ¢ = 1

out a margin of range to realize the concept of safe region. Fig. 3.6 explained this idea. Fig. 3.6b
transforms Fig. 3.6a into a temperature-like chart with pointing out the corresponding nodes.
We can discover that if TCH(node a) is decided to be the clusterhead, we have no safe region at
all. Since it exists a critical node(node d) whose reading:is fell on the boundary of TCH, which is
[9,11]. After re-voting for NCH, thereading of NCH was shifted to [9.5,11.5] result in switching
the critical node to node e whose reading/is 9.8.-Eventually, it generates a safe region, bounded
in 0.3 in this example, for the cluster.

Different clusters generate distinct safe regions because the generation of a safe region is
depended on NCH and critical node. The closer readings between NCH and critical node, the
larger safe region sharing for a cluster. We now further divide the safe region into two sub-
regions, called clusterhead floating range and membership floating range, respectively. The
clusterhead floating region is allocated to clusterhead, so the membership floating range is to the
members of clusters. We prefer to allow clusterheads wider floating range since the changes of
the clusterheads may result in extremely energy cost, such as cluster recovering. Member nodes,
however, got narrower membership floating range because they will not destroy the completeness
of the clusters. In Fig. 3.6b, we got a safe region with 0.3 degrees, we might allocate NCH(node

b) a clusterhead floating range with 0.2 and members a membership floating range with 0.1
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degrees, respectively. This phase diminishes the possibilities of a node to switch between the

clusters, thus retrenches the energy consumption.
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Chapter 4

Performance Evaluation

4.1 Simulation Model

We developed a network simulator based on JSIM [13] to generate the queries and the sensors
associated with their readings. Our expefimentsrare conducted on network sizes ranging with
600 sensor nodes in a 500m x 500m two-ditnensional sensing field. The field is divided into
20m x 20m grid cells. Users request the queries from the sink at point (0,0). The transmission
range of each sensor node is set to 30m.yThesimulation time is 600 seconds and sensors report
data every 10 seconds. Sensing reading.of each node is generated with a uniform probability
distribution from 16 to 24. Packets are divided into two categories, which are data packets
and broadcast packets. The energy consumption model refers to [11]. Table 4.1 summarizes
the system parameters and setting. Be convenient to narrate, we name our scheme as EDG

(Energy-efficient Data Gathering) for the rest experiments.

4.2 Impact of Simulation Time

In Fig. 4.1, we compare the number of bytes of CAG and EDG approaches. The total numbers of
sensor nodes are 600. Nodes report the readings in the sensing range every 10 seconds periodically.
For CAG and EDG approaches, the user-tolerable threshold is set to be 0.1 with respect to
corresponding clusterheads. CAG proposes an algorithm to build up the message-forwarding

tree and generate the clusters in the same time. It decreases the number of bytes because only
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Number of bytes

350000

300000

250000

200000

150000

100000

50000

0

’ Parameter \ Setting
Sensing field size 500 m x 500 m
Number of nodes 600
Report rate 10 sec
Transmission range 30 m
Sensing Reading range | 16 - 24
Threshold distance (dy) | 75 m
Eoee 50 nJ
Efs 10 pJ/bit/m?
Eamp 0.0013 pJ/bit/m*
Data packet size 100 bytes
Broadcast packet size 25 bytes
Packet header size 25 bytes
Initial energy 2J
Simulation Time 600 sec

Table 4.1: System parameters
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Figure 4.1: Number of bytes vs simulation time
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Figure 4.2: Number of alive sensors vs simulation time

clusterheads have to report the information. Howevet; EDG not only does what CAG has done
but also improves the CAG algorithm. by reducing the number of clusterheads and offering the
sensors the structure of safe region,s0 EDGhas less total messages than CAG. However in 30 to
45 seconds, EDG has the overheads for waiting the regrouping messages and broadcasts adjusting
messages from the sink to all the sensors for mew network topology. Fig. 4.2 shows the details
of total messages. We separate messages into control messages and report messages. Control
messages are responsible for establishing forwarding tree and clusters, regrouping clusters in
EDG approach. Periodical data reports are included by report messages. At 30 seconds, EDG
has more control messages than CAG because EDG needs to exchange messages between local
clusters and sink. And EDG has the same report messages due to sink not broadcast clusters
combinations yet. When time increased, the number of EDG’s report messages decrease caused
by regrouping, and the number of control messages are the same. So in long-term viewpoint,
EDG still outperforms CAG by 11 percent of the number of bytes.

We now compare the number of alive sensors with time series of different approaches. We
deploy 600 sensors in sensing field. In the Naive approach, all nodes in sensing field report

their readings to the sink periodically. As shown in Fig.4.3, the number of alive sensors in
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Figure 4.3: Number of alive sensors vs simulation time

Naive approach died rapidly especially from 200 seconds to 400 seconds since every sensor has
to report the reading. In both CAG and EDG, they' are cluster-based approaches so that the
member sensors in a cluster are répresentative of exactly one clusterhead. Thus, the number
of alive sensors diminishes slightly since only clusterheads report the readings. Moreover, EDG
reduces the number of clusterheads than CAGG, so sensors on the path to the sink of these reducing
clusterheads have no longer to forward the messages. In the end we can see that the number of

alive sensors in EDG is more than the number of alive sensors in CAG.

4.3 Impact of Sensor Number

To measure the scalability between CAG and EDG, we change the number of sensor nodes in
the simulated network from 100, 200, 300, 400, 500 to 600. We vary the size of the simulated
area according to keep a fixed node density. Fig. 4.4 depicts the relation between the number
of clusterheads and the network size. We see the superior performance of our EDG approach.
This is because EDG merged the clusters at the regrouping procedure. In CAG, some neighbor

clusters which have the similar readings cannot integrate with each other since they have critical
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Figure 4.5: Number of messages vs sensor nodes
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point between them. However, EDG solve the situation by exchanging some messages between
sink and clusters to reduce the number of clusters.

Fig. 4.5 shows the number of bytes count for different number of nodes. EDG outperforms CAG
in all cases. We also can discover as the network size enlarged, the number of messages of CAG
raised heavily where EDG raised lightly. There are two reasons to explain this situation. One is
that EDG has fewer number of clusterheads so less messages are send. The other reason is when
the network size enlarged, the average distance from a sensor to sink increased. It leads more
cost to transmit messages. If a clusterhead is far from sink and is merged by EDG approach,
it can save a great deal of messages than CAG. This is why the message overheads of CAG is

outstandingly higher than EDG.

4.4 Impact of User-tolerable Threshold

The following experiments investigate the variations of user-tolerable threshold. We deployed
sensors in the sensing field and report¥ate is set to be 10 seconds in 200 seconds total simulation
time. Fig. 4.6 and Fig. 4.7 display the number of.clustertheads and messages of EDG normalized
by that of CAG under the different thresholds; respectivély. As shown in Fig. 4.6, when threshold
is set to 0, that means users do notspermit any errors for reporting answers. Every sensor is
identical to a clusterhead to report exactly. what it sensed. In this case, CAG and EDG are
retrograded as same as Naive approach. With increasing the value of threshold, EDG reduces 15
percent of the number of clusterheads as the threshold is 0.15. In this best case, EDG diminishes
49 clusterheads than CAG. An interesting result is that the number of clusterheads of EDG
is closing to CAG again when threshold is increasing. This is because the condition to form
a cluster became loosed, a cluster can include more members thus the number of clusters get
lessened. Considering an extreme case, all the sensors are included in one cluster because the

threshold is too big, then EDG is hard to merge clusters anymore.
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Figure 4.6: Normalized number of clusterheads vs user-tolerable threshold
4.5 Impact of Changed Events

Monitoring phenomena usually vary their features accompanied with time series so that sensors
detect different sensing readings. We then evaluate the impact of the number of changed events.
In Fig. 4.8, we examine the overheads for different ratios of changed events over total 600 sensors.
A changed event means that a sensor node varies its sensing reading. The readings are changed by
uniform distribution between a half of user-tolerable threshold with respect to the corresponding
clusterheads. The number of bytes count of EDG is less than CAG all the time. By increasing
the ratio of changed events, the benefit of safe region in EDG approach appears obviously. This
is because EDG allows each sensor a floating range to avoid rebuilding the clusters where CAG

does not have. It shows that EDG is more suitable for dynamic sensing environments.
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Chapter 5

Conclusion

In this thesis, we considered the problem of approximate query processing over spatial clustering
in sensor networks. We formed sensors into clusters which were bounded by an user-tolerable
threshold. We further merged clusters and found an innovative issue called infer-graph set
problem. We then designed an heuristicsalgorithm to devise near-optimal solution. Moreover,
the safe region robusts the persistence of chisters'without losing the precision. Our experiments
showed that EDG outperforms CAG 11 percent of bytes count and 15 percent of clusterheads
and EDG was suited in dynamic sensing environments- We concluded that our scheme effected

better energy usage of sensors and prélonged the lifetime of sensor networks.
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