

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

無線感測網路中利用空間關聯性

之節能資料收集方法

An Energy-Efficient Data Gathering Scheme Exploiting

Spatial Correlation in Wireless Sensor Networks

 研 究 生：陳冠翰

 指導教授：黃俊龍 教授

中 華 民 國 九 十 六 年 九 月

無線感測網路中利用空間關聯性之節能資料收集方法

An Energy-Efficient Data Gathering Scheme Exploiting
Spatial Correlation in Wireless Sensor Networks

研 究 生：陳冠翰 Student：Kuan-Han Chen

指導教授：黃俊龍 Advisor：Jiun-Long Huang

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

September 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年九月

 i

無線感測網路中利用空間關聯性

之節能資料收集方法

 學生：陳冠翰

指導教授：黃俊龍

國立交通大學 資訊科學與工程研究所

摘 要

隨著科技的發展與網路的普及，無線感測網路日益展露其重要性與實用

性。因此，本論文在無線感測網路中，提出一利用空間關聯性之節能資料收集方

法。第一，我們利用空間關聯性將一大群感測節點分類為一個個叢集，每個叢集

中的節點感測相似的環境讀數並僅挑選出一個代表點回報該叢集的讀數。第二，

為了進一步節省能源的消耗，各叢集回報少量的資訊給伺服器，由伺服器重新選

擇可合併的叢集，並把選擇組合叢集的方式模組化為 infer-graph set 問題，提

出一貪婪式演算法去解決。第三，我們提供每個感測節點一個 safe region，避

免經常性的溫度改變導致叢集的重建以增加叢集存在的持久性。實驗顯示本論文

提出之方法明顯降低了資料傳輸量以及叢集的數目，因此增加了無線感測節點的

生命週期，實驗結果並証明了提出之方法較適用於動態的感測環境。

 ii

An Energy-Efficient Data Gathering Scheme Exploiting

Spatial Correlation in Wireless Sensor Networks

Student：Kuan-Han Chen Advisors：Jiun-Long Huang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

In this thesis, we propose an energy-efficient data gathering scheme over a highly
spatial-correlated region in wireless sensor networks. First, we present a mechanism to
group sensor nodes into a set of clusters, which have monitored similar phenomena by
exploiting spatial correlation. The member readings in a cluster are bounded within an
user-tolerable threshold and each cluster is represented by one clusterhead to answer
queries. Second, in order to further reduce energy consumption, we merge the clusters
which got resembled readings. The problem to merge clusters is modeled as an
infer-graph set problem. We devise a greedy-based heuristic algorithm to acquire the
near-optimal solution of choosing the new representative clusters. Third, we design a
safe region for each sensor (even clusterhead or member sensor) not to casually leave
the cluster and strengthen the persistence of clusters. It avoids the overheads of
frequently rebuilding clusters. Experimental results show that our work is superior to
previous techniques by saving 11 percent of bytes count and decreasing 15 percent of
clusterhead count. Furthermore, our scheme is more suitable for dynamic sensing
environment than competing techniques.

 iii

誌 謝

回想起過去兩年碩士班點點滴滴的學習歷程，如今得以順利的完成論文，首

先誠摯的感謝指導教授 黃俊龍博士於課業及生活上的指導及幫忙，老師開明的

指導風格，引導學生構思實驗的可能，使我在這些年中獲益匪淺，老師對學問的

嚴謹更是我學習的典範。感謝畢業口試委員，彭文志博士以及劉傳銘博士撥冗蒞

臨指導，提供寶貴的建議與指導，使本研究論文能更臻完善。

感謝工程三館 219 實驗室的成員們：博士班士銓學長；同學承恩、信翰及瑞

男，在兩年的日子裡培養共同修課的革命情感以及學術上的討論洞悉，都讓我在

觀察事物時有更精闢銳利的眼光；學弟妹壬禾、國禾、建平、欣怡、亭瑩，你們

的陪伴與幫忙都讓我銘記在心。

本論文的完成最要感謝家父，您是我一生的榜樣，每當我軟弱無助向您求助

時，您總是能給予我力量與希望，分析問題的困境並提出解決之道，讓我有勇氣

處理問題不致迷失方向，有你這樣的父親是我永遠的驕傲。感謝家母在我論文遇

到瓶頸時也常打電話給我加油鼓勵，為我向主禱告，讓我感受到主的溫暖與實

際。兄長在工作之餘也會抽空關心我的近況，使我能在家人的關懷與愛之下完成

論文。

最後，謹以此文獻給我摯愛的阿嬤與雙親。

陳冠翰 謹誌
2007 年 10 月 于交通大學工程三館 219 實驗室

 iv

目 錄

中文摘要 ……………………………………………………………… i
英文摘要 ……………………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
表目錄 ……………………………………………………………… v
圖目錄 ……………………………………………………………… vi
一、 Introduction………………………………………………… 1

1.1 Overview…………………………………………………… 1
1.2 Objective…………………………………………………… 2
1.3 Contribution………………………………………………… 3
1.4 Organization………………………………………………… 3

二、 Related Work………………………………………………… 5
2.1 Flat Routing………………………………………………… 6
2.2 Hierarchical Routing………………………………………… 7

2.2.1 General Routing……………………………………………… 7
2.2.2 Spatial-Correlated Routing………………………………… 8

2.3 Comparison………………………………………………… 9
三、 EDG: Energy-Efficient Data Gathering Scheme…………… 11

3.1 System Overview…………………………………………… 11
3.2 Clustering…………………………………………………… 12
3.3 Regrouping…………………………………………………… 15

3.3.1 Conditions of Regrouping………….………………………… 15
 3.3.2 Infer-graph Set Problem……………………………………… 18

 3.4 Safe Region…………………………………………………… 20
四、 Performance Evaluation……………………………………… 23

4.1 Simulation Model…………………………………………… 23
 4.2 Impact of Simulation Time…………………………………… 23
 4.3 Impact of Sensor Number…………………………………… 26
 4.4 Impact of User-tolerable Threshold………………………… 28
 4.5 Impact of Changed Events…………………………………… 29
五、 Conclusion…………………………………………………… 31
參考文獻 ……………………………………………………………… 32

 v

表 目 錄

表 2.1 Comparisons of related works……………………………………… 10
表 3.1 Data report by clusterheads………………………………………… 16
表 4.1 System parameters………………………………………………… 24

 vi

圖 目 錄

圖 2.1 SPIN protocol……………………………………………………………… 6
圖 2.2 Hierarchical clustering in TEEN and APTEEN……………………… 8
圖 2.3 DSC protocol……………………………………………………………… 9
圖 3.1 System Architecture……………………………………………………… 11
圖 3.2 Example of clustering…………………………………………… 13
圖 3.3 Example of regrouping…………………………………………… 17
圖 3.4 Infer-graph set problem…………………………………………………… 17
圖 3.5 Example for regrouping algorithm………………………………… 19
圖 3.6 Example of safe region…………………………………………………… 21
圖 4.1 Number of bytes vs simulation time………………………………… 24
圖 4.2 Number of alive sensors vs simulation time………………………… 25
圖 4.3 Number of alive sensors vs simulation time………………………… 26
圖 4.4 Number of clusterheads vs sensor nodes…………………………… 27
圖 4.5 Number of messages vs sensor nodes……………………………… 27
圖 4.6 Normalized number of clusterheads vs user-tolerable threshold……… 29
圖 4.7 Normalized number of messages vs user-tolerable threshold………… 30
圖 4.8 Impact of changed events………………………………………………… 30

Chapter 1

Introduction

1.1 Overview

Recent advances in wireless networking and electronics have enlightened the development of

wireless sensor node. Such nodes are small-scale in size, low-power in communication and low-

cost in production. Each sensor node would be able to sense ambient states in the environment,

process the collected data by simple functions and transmit the results to neighboring nodes.

A wireless sensor network (abbreviated as WSN) is made up of a large amount of wireless

sensor nodes, which randomly or arbitrarily scattered over the sensing field and cooperated to

accomplish specific purposes. Since sensor nodes are restricted by the transmission range, they

route data to the sink by a multi-hop manner that surrounding sensors help the source sensor to

relay data. Sink is a base station to collect and deal with the raw data. Sink may communicate

with Internet and answer the current states about the sensing field. Therefore, WSN can be

deployed in some unreachable terrains or dangerous circumstances, such as calamity monitoring

(forest fire), firsthand information in battlefield, and the care of medical treatment.

Nowadays, there are many existing issues in wireless sensor networks. One of the most com-

mon concerns is energy efficiency. As sensor nodes only have limited source of energy, power

management and power conservation take on a very important role. In-network query processing

with data aggregation is one way to prolong the lifetime of sensor nodes in many surveillance ap-

plications. In such environment, the raw data sensed by the sensor nodes are ordinarily processed

within the network and only aggregated information would return to the sink. Certain nodes

1

which collect and process the other sensors’ information are called aggregated nodes. These nodes

are usually designed for higher efficiency in data gathering and computing power. They transform

raw data into serviceable information by using functions such as suppression, MIN, MAX, SUM,

and AVERAGE. Furthermore, since the transmission cost is higher than computation, sensor

nodes are usually organized into clusters. The members of a cluster elect a representative node,

called clusterhead, to manage the whole cluster. Aggregated nodes are similar to clusterheads in

some network applications. It conserves a great deal of power consumption for sensor networks

because a part of nodes pre-process and compress the data information within the network.

In WSN, data correlation is usually related to different spatial districts. Sensors observe

correlated readings when they are placed into a geographical environment which is appearing

the same events. For instance, if we densely deployed the sensors over many classrooms and

monitored the variations of temperature, we would discover that the sensors in the same classroom

detected similar temperature readings simply because the air conditioner is shared in the same

spatial region. The appearance of things implies that data correlation is proportional to spatial

correlation. Therefore, we can merely select some representative sensors to stand for others in

the same region. Then, only representative sensors need to report the data so the overall energy

consumption would be much lower.

1.2 Objective

In this thesis, we address the problem of data gathering over a highly spatial-correlated region,

which means adjacent sensors have the similar readings. We then propose an energy-efficient

data gathering (EDG) scheme to partition the network into such a set of clusters, which have

monitored similar phenomena. Each cluster is represented by a clusterhead that is responsible

for reporting the current sensing reading to the sink periodically. The establishment of clusters

is via a query from the sink to the whole networks accompanied with an user-tolerable threshold.

The sensing readings are accepted by the users when the readings are within the threshold with

respect to the corresponding clusterheads.

After establishing the set of clusters, each cluster reports information to the sink. EDG

utilizes the information for merging and reducing the number of clusters which have similar

2

readings in vicinity for the sake of preserving energy consumption. The conditions of combining

the clusters are based on the geographical distributions and the relations with their readings. In

the process of dealing with the combinations, we derive an interesting problem called infer-graph

set problem which tends to select the minimal number of representative clusters. We propose a

greedy-based algorithm to acquire the near-optimal solution in our thesis.

In addition to the greedy algorithm, we also introduce the concept of safe region for sensor

nodes to avoid the overhead of rebuilding the clusters. In WSNs, users usually pay attention

to dramatic data changes rather than slight variances in states or numbers such as temperature

or humidity. Moreover, the changes may lead to sensors out of the restriction of a cluster and

have to re-establish the clusters, especially for the clusterhead nodes. To avoid this situation,

the safe region allow each node (even clusterhead or member node) a floating range. That means

sensors will not leave their clusters unless the readings are beyond the pre-determined range. It

economizes a great deal of power consumption on unnecessary cost of rebuilding clusters.

1.3 Contribution

Overall, we summarize the contributions of this thesis as follows:

1. We propose a mechanism to collect sensor nodes into clusters by exploiting the spatial

correlation of sensing readings.

2. We present an algorithm in the sink that merge some clusters with similar readings un-

derlying the user-tolerable threshold, and we offer an heuristic algorithm to select minimal

representative clusters.

3. We further propose the concept of safe region so that each sensor node will not easily break

the condition in a cluster. It reduces the overhead of rebuilding clusters.

1.4 Organization

The remainder of this thesis is organized as follows. First, Section 2 presents related works that

has been done previously. The system architecture and the proof are then described in Section 3.

3

Section 4 evaluates our scheme and shows the experimental results. Finally, Section 5 concludes

this thesis.

4

Chapter 2

Related Work

In this chapter, we survey several in-network aggregation routing protocols in WSN. They are

classified into two categories, which are flat (data-centric routing, hierarchical routing. Different

types of routing protocols are beneficial to dissimilar applications. In flat routing, sink sends

queries for data to certain regions and the neighbor nodes in the communication range report the

answers to the sink if they got the sources that sink wanted. SPIN [4] and DD [5] are typical

routing manners in this category. Hierarchical routing is suitable for the large-scale sensing

environment. We further subdivide hierarchical routing into two categories. One is general

hierarchical routing, the other is spatial-correlated hierarchical routing. General hierarchical

routing distinguishes sensors into multi-tiers that sensors deal with diverse duties in each layer.

Some of general hierarchical routings combine data aggregation and fusion in the cluster and

only clusterheads(representative nodes) transmit messages to the sink in order to decrease the

energy usage, such as TTDD [7], LEACH [3]. The others permit approximated answers. They

are designed to be responsive to sudden changes and allowing continuous responses to increase

the practicability of routing tree, such as TEEN [8] and APTEEN [9]. As to spatial-correlated

hierarchical routing, it integrates the features of the former routing approaches. A user requests

a query from a single node that establishes the forwarding tree and identifies the cluster through

distributed algorithms in real-time, such as DSC [10], SnapshotQueries[6] and CAG [12]. In

the following sections, we briefly sketched these routing protocols and illustrated one of each

category particularly.

5

A

B

ADV

A

B

A

B

A

B

A

B

A

B

(a) (b) (c)

(d) (e) (f)

ADV

REQ

REQ

DATA

DATA

Figure 2.1: SPIN protocol
Node A advertises its data to node B (a). Node B responds by sending a request to node A (b).
After receiving the requested data (c), node B then sends out advertisement to its neighbors

(d), who in turn send request back to B (e-f).

2.1 Flat Routing

Sensor Protocols for Information via Negotiation (abbreviated as SPIN) [4] is a data-centric

routing structure which disseminates information from each node to the whole network. A

source node first broadcasts its neighbor nodes with an advertising packet(ADV), called meta-

data, which shortly describes the skeleton that the source node got. When a neighbor node

receives the advertisement, it responds a requested packet(REQ) to the source node in the cause

of retrieving the data. Eventually, the source node sends out the completed data to the requested

neighbor node. The illustration is shown as Fig. 2.1. Unlike the classic problems in flooding,

SPIN utilizes meta-data with small memory size to avoid the shortcomings of flooding, such

as sensing areas overlapping and redundant information passing. Nevertheless, SPIN cannot

guarantee the delivery of interested data. If a node is interested in the data from the other

source node and the relayed nodes between source and destination are not interested in that

data, the destination will never acquire the data.

Another flat routing approach is Directed Diffusion (abbreviated as DD) [5].The idea aims at

diffusing data through sensor nodes which creating gradients of information in their respective

6

neighbor nodes. The sink node broadcasts interests for requesting data. If gradients and interests

match, information paths are established between sink and sources for the sake of diminishing

communication costs by aggregating data on the way. However, since Directed Diffusion focuses

on query-driven model, it will work inefficiently in continuous response-based applications, such

as environmental monitoring.

2.2 Hierarchical Routing

2.2.1 General Routing

LEACH [3], also known as Low-Energy Adaptive Clustering Hierarchy, is one of the first hier-

archical routing methods for wireless sensor networks. The idea of LEACH is to group together

the sensor nodes by exploiting the received signal strength and randomly change local cluster-

heads as routers, so the transmission cost can be spread to all the sensors in the cluster. Under

LEACH mechanism, each node chooses a random number between 0 and 1. The node turns into

a clusterhead if the number is less than the following threshold:

T (n) =

{ p
1−p∗(rmod 1

p
)

if n ∈ G

0 otherwise

where p is the desired precentage of clusterheads, r is the current round, and G is the set of nodes

that have not been clusterheads in the last 1
p

rounds. Only five percent of the total sensor nodes

became chusterheads. It will save energy because transmissions are made solely by clusterheads

and clusterheads take turns to balance the energy cost. However, LEACH has an irrational

assumption that each node can transmit immediately to the sink.

Threshold sensitive Energy Efficient sensor Network protocol (abbreviated as TEEN) [8]

and Adaptive Threshold sensitive Energy Efficient sensor Network protocol (abbreviated as

APTEEN) [9] are other hierarchical protocols which utilizing thresholds to decrease the amount

of transmissions. Fig. 2.2 depicted the construction, which is redrawn from [8]. TEEN forms

nearby nodes as clusters which are separated into several levels. The nodes in each cluster report

back to clusterhead only when the sensed reading fall above the hard threshold, and clusterheads

further reduce the number of transmissions when changes by a given soft threshold. Nevertheless,

7

Clusters

Base Station

Simple Node

1st Level Clusterhead

2nd Level Clusterhead

Figure 2.2: Hierarchical clustering in TEEN and APTEEN

TEEN does not support periodic reports since data only transmits while it broke the thresholds.

In view of this, APTEEN addresses both periodic data collection and reporting of time-critical

events. TEEN and APTEEN guide a concept through permitting approximate results instead

of exact answers.

2.2.2 Spatial-Correlated Routing

Distributed Spatial Clustering in Sensor Networks(DSC) [10] addresses the problem of discovering

spatial relationship in sensor data through the identification of clusters. DSC proposed a δ-cluster

structure that the sensors were partitioned into cluster according to the δ. It broadcasts a packets

from a root node to its neighbors with a threshold δ, if the feature distance between two nodes

is less than δ
2
, the root node includes the neighbor in its cluster. Since the distance between the

feature value of any node in the cluster and the root feature is at most δ
2
, triangle inequality

ensures that the distance between the feature values of any two nodes in the cluster is at most

δ. Fig. 2.3 is an example that redrawn from [10].

Snapshot Queries [6] aims at determining the representative nodes among groups of sensors

with similar observation. Snapshot exchanges data information with neighbors 1-hop away and

predicts the similarity by employing a linear regression model for the sake of establishing clusters.

8

GF

A

E

DB

C

GF

A

E

DB

C

GF

A

E

DB

C

root

root root

A B C FED G

D 2 2 4 0 2 1 2
C1

C1
C1

(a) Feature distance to node D (b) Root initiates the Clustering

(c) Node B and F in expansion process (d) Final Clustering

Figure 2.3: DSC protocol
For δ = 6, the feature distance of every other node to sentinel node D are shown in (a). The
expansion of cluster C1 starts as shown in (b), continues as shown in (c), and terminates as

shown in (d).

The sensor nodes make use of the distributed algorithms to maintain and elect a smaller set of

representative nodes in a localized fashion using a small(up to six) number of messages per node.

Exploiting Spatial Correlation Towards an Energy Efficient Clustered AGgregation Technique

(abbreviated as CAG) [12] allows approximate results to aggregate queries by utilizing the spatial

correlation of sensor data and save energy. The CAG algorithm operates in two phase: query

and response. The former phase forms clusters by broadcasting a user-specified error threshold

τ on the way of establishing the forwarding tree. Each clusterhead can choose its own members

depends on the sensed reading of each clusterhead and threshold τ . Once all the nodes receive

the query packets, the latter phase starts. Only a select of clusterheads transmit to the sink

where they represented. Considering the phenomena of spatial correlation in sensor networks,

CAG further improve the utilization of energy.

2.3 Comparison

Table 2.1 summarizes the classification of the above protocols. We further included two metrics

in the table. One is to see if the protocol has the ability of aggregation, since it is an significant

9

Routing protocol Flat Hierarchical Spatial correlation Aggregation Approximate answer
SPIN Yes No No Yes No
Directed Diffusion Yes No No Yes No
LEACH No Yes No Yes No
TEEN and APTEEN No Yes No Yes Yes
Snapshot Queries No Yes Yes Yes Yes
DSC No Yes Yes Yes Yes
CAG No Yes Yes Yes Yes

Table 2.1: Comparisons of related works

index for power consumption. The other is to examine whether the protocol accepts approximate

answer or not, which allowed the protocol to deal with data flexibly. We can observe a trend

that protocols exploiting spatial correlation are all capable of accepting approximate answers

and utilizing data aggregation. As facing increasingly difficult of sensing environments, more

techniques are provided for routing protocols to handle the complexity.

10

Chapter 3

EDG: Energy-Efficient Data Gathering

Scheme

An overview of scheme EDG is described in Section 3.1. We then subdivide EDG into three

procedures. First, Section 3.2 introduces how to establish and determine the clusters. Then we

present an algorithm in the sink to regroup the clusters into fewer, larger representative clusters

in Section 3.3. Finally, Section 3.4 provides each sensor node a safe region to avoid rebuilding

the network topology frequently.

3.1 System Overview

Fig. 3.1 illustrates the procedures of scheme EDG. A number of sensors are deployed in a sensing

field to monitor the environment. Since our scheme is based on an interactive query system

and accepts approximate answers, users request a query from the sink with a user-tolerable

Sink

(b)Clustering (c)Regrouping(a)

Figure 3.1: System Architecture

11

threshold. Sink then broadcasts the messages to the whole networks to build up the first version

of clusters based on the threshold. The result is shown as Fig. 3.1b after clustering procedure.

Then in regrouping procedure, each cluster reports some information to sink. Sink calculates

the representative relations of every two clusters according to their reported values. To obtain

the number of representative clusters, we model it as an infer-graph set problem. In addition,

we devise a heuristic algorithm, i.e., algorithm Regrouping, to acquire the approximate optimal

solution of the number of representative clusters. Then sink again broadcasts the adjusted

messages to merge networks into fewer clusters, as shown in Fig. 3.1c. In the last procedure,

we propose each sensor a safe region to float the reading within the range. It conserves a large

amount of power consumption since sensors do not reconstruct the topology on lightly reading

changes.

3.2 Clustering

First, when a user makes a query from the sink, the query is defined as < F, ε >. F (Feature) is the

feature value, which the user inquires about a region, like Humidity, Temperature and so forth. ε

(error threshold) is the user-provided threshold which the user estimates. After the sink receives

the query the user makes, it starts to form the former phase clustering. The sink broadcasts a

query packet and the ingredients are Q=< F, TCID, TCR, MyID, ε >. F (feature) is the user-

specified feature value, TCID (Temporary Clusterhead ID) represents the identification of the

temporary clusterhead, TCR (Temporary Clusterhead Reading) is the reading of the temporary

clusterhead, MyID is the identification of the sensor itself used for transmitting the result and

‘is the error threshold of estimated answers.

After a sensor near the sink receives a packet, it will confirm the feature and then retrieve

its Local Reading (LR, Local Reading) to compare it with TCR of Q. If LR falls between

[TCR− ε, TCR + ε] , the sensor will be taken as a clusterhead and broadcast the same Q to the

neighbor sensors. If LR is not within TCR, the sensor needs to establish another new cluster

and becomes its Temporary Clusterhead, in the meanwhile broadcasting a new query packet

Q’=< F, TCID′, TCR′,MyID, ε > . TCID’ is the identification of its sensor and TCR’ is the

LR of the sensor. It’ll be broadcasted in this way until all the sensors in the sensor field receive

12

a

cb

f

g

e

d

Sink

 10

10.6

 11.5

 10.5

 9.8

11.2

 11

h

i

j

 10.5

10.7

10.5

j k

11.7 10.7

(a) Before

a

cb

f

g

e

d

Sink

 10

10.6

 11.5

 10.5

 9.8

11.2

 11

h

i

j

 10.5

10.7

10.5

j k

11.7 10.7

Cluster1 (10+10.5+10.6+11+9.8)/5 = 10.38

Cluster2 (11.5+10.7+10.5+10.5)/4=10.8
Cluster3 (11.2+11.7+10.7)/3=11.2

Cluster1

Cluster3

Cluster2

(b) After

Figure 3.2: Example of clustering with user-tolerable threshold ε = 1

a query packet.

After the sensors receive the packets, they’ll transmit a response packet, which can be defined

as R=< MenberID,LR >. Member ID is the identification of the sensor and LR is the local

reading of the sensor. After a temporary clusterhead aggregates all the information from its

cluster members, it has to reselect a new clusterhead. The temporary clusterhead averages all the

local readings and gets an average value. The most approximate member is the new clusterhead,

which will transmit the result to the sink. The main purpose is to keep the clusterhead reading

in the middle value of all the cluster members and to decrease the possibility of reforming a new

cluster for a minor reading floating among some marginal members, which will be explained in

Section 3.4. When all the new clusterheads are determined, later on only they aggregate and

transmit the information in the whole sensor field. The reading of each clusterhead represents

the readings of all the cluster members to achieve the energy saving.

The algorithmic form of algorithm Clustering is as follows.

Algorithm Query(do in each node)

1: if (TCR - ε) ≤ LR <(TCR + ε) then
2: clsuterID = TCID
3: clusterhead = false
4: broadcast query Q with same TCID, TCR
5: else
6: TCID = i.getID
7: TCR = i.getReading

13

8: broadcast query Q with new TCID, TCR
9: end if

Algorithm Re-electing Clusterhead and Response

1: for each member node do
2: Report current sensing reading to the temporary clusterhead.
3: end for
4: for each temporary clusterhead node do
5: if collect all the member nodes’ readings then
6: average the members’ readings as avg.
7: take the member whose reading is most close to the avg as NewClusterHead(NCH).
8: notify all members in the cluster.
9: end if

10: end for
11: NCHs response the current readings periodically

Take Fig. 3.2 for example, when a user wants to know the reading of the sensor field and

makes a request in the sink: < F, ε >=< Temperature, 1 >, the sink initiates the pack-

age and then node a transmits the query to its neighbor nodes b, c, g. The query is Q=<

Temperature, IDa, 10, IDa, 1 >. When node b receives the query, it will check if its local

reading falls within [TCR - ε, TCR + ε]([9A11] in this example) Because the local reading

of node b falls within the range, node b becomes a member of node a and belongs to the

same cluster and then keeps broadcasting the same query to its neighbors.(only changing MyID

to IDb) If node g receives the query from node a, its local reading is exceeding 11.5, so it

would become a new clusterhead itself. When it goes on broadcasting, it will revise the query:

Q=< Temperature, IDg, 11.5, IDg, 1 >. It will keep broadcasting this until all the nodes in the

sensor field receive the query. In this example, the readings of node b, c, d and e are within the

error range and thus they all become in the same cluster. The way to select a clusterhead is

the first node whose sensor reading is outside of the tolerable error range. Clusterhead selection

policy is the first node becomes a clusterhead if its sensor reading is outside of the tolerable error

range. Therefore, node g and node f in this example form new clusters.

When the temporary clusterheads, node a, g and f, are all set, it will reselect new clusterheads.

For cluster 1, temporary clusterhead node a collects all the readings from its members, it equalizes

those readings, 10.38 and reselects a node whose reading is the closest to be a new clusterhead

(NCH), node b, which will send back information in cluster1 from then on. In cluster 2, the

most closest to the average (10.8) is node I, NCH. Because the average is equal to temporary

14

clusterhead in cluster 3, node f is still the clusterhead. From above, we will finish the clustering

phase and reselect new clusters and clusterheads.

3.3 Regrouping

3.3.1 Conditions of Regrouping

After we sorted each cluster, we are thinking if it can be more energy efficient in some circum-

stances. Therefore, regrouping is developed and regarded as the main idea in this procedure.

In the sensor field of the highly spatial correlation, the sensing data are extremely close to each

other due to their spatial correlation. If there is no characteristic frequency change, we prefer

each cluster to send few messages to the sink after clustering. After the sink collects all the in-

formation from clusters and then analyzes and integrates it, the sink can combine some clusters

into a bigger one. By doing that, it can save some extra energy consumption in the next report.

Here is the detailed explanation for this process. After establishing clustering procedure, the

clusterhead(CH) of each cluster transmits the following three values to the sink. We take one

cluster Ci for example.

1. Current reading of Ci, represented as Vi.

2. The absolute value of maximum difference between all members and CH in Ci, represented

as |MaxDifi|.

3. A ID list of clusters which neighbors Ci, represented as Neighbori.

After the sink collects the three values from all the clusters, it contrasts the two conditions

of every two clusters. If the two conditions are accordable, it means that the two clusters can be

merged into one. For instance, the precondition which Ci can merge Cj is followed.

Definition 1. Given two clusters Ci and Cj, Ci can represent Cj if:

1. Vj ± |MaxDifj| ⊆ Vi ± ε.

2. Ci and Cj are neighbor clusters.

15

Ci(Clusterhead node) Vi |MaxDifi| Neighbori

1 (b) 10.5 0.7 2,3
2 (i) 10.7 0.8 1
3 (f) 11.2 0.5 1

Table 3.1: Data report by clusterheads

If the two conditions are accordable, it means Ci can represent Cj. Two clusters are merged

into new one which is led by CH of Ci. The following is the explanation for the conditions in

accordance with them. For the first condition, Vj±|MaxDifj| is the member range of Cj, which

means all the member readings of Cj fall in this range; Vi ± ε is the user-tolerable range of Ci,

which indicates user can accept the readings within this range. Thus, if the member range of Cj

falls within the user-tolerable range of Ci, it implies the CH of Ci can represent all the member

readings of Cj under user-provided threshold. For the second condition, it exists for spatial

correlation. That is only when the two clusters are spatially close, we are able to combine the

two. Otherwise, it would cause the irrational situations that the two clusters far from each other

in distance combine into one just because their similar readings. In accordance with the above,

we consider the two clusters can be merged. After the sink works out all accordance with the

above, it broadcasts the messages to the whole sensor field and informs each cluster to combine

with another one to reduce the number of clusters. In a long-term perspective, this way can be

more energy efficient.

In the following, we still use the example in Fig. 3.2b to elaborate the detailed process of the

regrouping procedure. In the clustering procedure, we make the sensor field into three clusters

and ascertain the clusterheads. In the regrouping phase, the clusterhead sends back the three

values to the sink. Take node b, the clusterhead in cluster 1, for example. It sends back its own

reading 10.5 and the absolute value of maximum difference 0.7, i.e. difference between critical

node, node e, and the clusterhead. It also sends back its neighbor cluster ID, i.e. 2 and 3. After

the sink collects all the reading from all the clusters, it will calculate to see if it can combine them

into a bigger cluster. As illustration shown in Fig. 3.3a, we take cluster 1 and 2 for instance,

the member range of cluster 1 is 10.5 ± 0.7 = [9.8,11.2], which falls in the user-tolerable range

of cluster 2, 10.7 ± 2/2 = [9.7,11.7]. It shows that all the sensing readings of cluster 1 can be

represented by the reading of the clusterhead of cluster 2 within the user-provided threshold ±1.

16

12

10.5

Cluster 1

(node b)

Cluster 2

(node i)
11

10

9

11.2

9.8

10.7

9.7

11.7

(a)

a

cb

f

g

e

d

Sink

 10

10.6

 11.5

 10.5

 9.8

11.2

 11

h

i

j

 10.5

10.7

10.5

j k

11.7 10.7
Cluster3

New Cluster

(b)

Figure 3.3: Example of regrouping

21

64

3

5

Figure 3.4: Infer-graph set problem
Nodes symbol the clusters and an arrow from node i to node j when node i can represent node

j.

Moreover, cluster 1 and cluster 2 are neighbor clusters so we can conclude that cluster 1 can

be represented by cluster 2. The two clusters can be merged into a bigger one which leads by

node i. On the other hand, we have to calculate to see if the member range of cluster 2 (10.7 ±
0.8=[9.9,11.5]) can be included by the user-tolerable range of cluster 1 (10.5 ± 2/2=[9.5,11.5]).

Fortunately in this example, cluster 1 also can represent cluster 2 by node b, thus node b and

node i can be the clusterhead in turn. It further promotes the utilization of the merged cluster.

The final result is shown in Fig. 3.3b.

17

3.3.2 Infer-graph Set Problem

After the sink calculates all the representative relations of every two clusters, it have to determine

how to choice the combinations of the new topology. As shown in Fig. 3.4, each node stands for

a cluster, and the arrow from node i to node j means cluster i can represent cluster j, we can

take the combination U = (1), (4, 2), (6, 3, 5) as the new topology, which each parentheses means

a new merged cluster and the first item of each parentheses indicates the led cluster. However,

we also can make another decision as U ′ = (1, 2), (5, 3, 4, 6) with fewer representative clusters.

Hence, there exists a problem to find the representative clusters, we called it infer-graph set

problem, the problem can be formally defined as follows.

Definition 2. Given a directed graph G = (V, E), V is set of clusters, for arbitrary clusters

u, v ∈ V , an directed edge (u, v) ∈ E indicates cluster u can represent cluster v. An infer-

graph set is to find a subset of clusters V ′ ⊆ V , such that each directed edge (u, v) in E is

incident on at most one cluster in V ′.

We therefore propose a greedy algorithm in order to earn the local maximal benefit. Here is

the algorithm for regrouping.

Algorithm Regroup Clusters by Greedy Approach
Input:
C: set of all the clusters ID
vi: reading of cluster i, i ∈ C
|maxdifi|: the absolute value of maximum difference of cluster i
ε: the user-tolerable threshold
Output:
R: set of representative clusters, where R ⊆ S

1: for each cluster i ∈ C do
2: for each neighbor cluster j do
3: if (vj ± |maxdifj| ⊆ vi ± epsilon) then
4: Cj represent Ci.
5: i adds j to its infer-candidates ui.
6: end if
7: end for
8: end for
9: while (C 6= NULL) do

10: Find a cluster i which has the maximum size of |ui|.
11: Add i to R.
12: for each cluster j ∈ ui do
13: Remove j from C.
14: end for
15: end while

18

ba

hf

c

ge

d

i

30 2

1 2 1

12

1
ba

hf

c

ge

d

i

1

0 2 1

1

ba

hf

c

ge

d

i

1 0

ba

hf

c

ge

d

i

(a) Sink computes the relations of clusters. (b) Cluster f have the maximal number of inferred-
candidates and is chosen as representative cluster.

(c) After refreshing the inferred-candidates,
cluster c is chosen.

(d) (f, c, h) are the final set of representative clusters.

Figure 3.5: Example for regrouping algorithm

16: Return R for the answer.

Line 1 to line 8 explained what Section 3.3.1 have done. Sink first computes the relations

between each cluster and its neighboring clusters. If Ci can represent Cj, then Cj will be added

to the infer-candidates of Ci. All the clusters have calculated their infer-candidates. In the first

round, sink selects the cluster who has largest number of infer-candidates, and add to the set of

representative clusters R. It can be seen in line 10 and 11. From line 12 and 13, the representative

cluster removes the members of the infer-candidates from the set of remaining clusters S. It

iterates until there is no more cluster in S. Then we can derive a set of representative clusters

from R. Fig. 3.5 illustrates an example for regrouping algorithm. The direction of an arrow

means the infer-candidate of a cluster. The number near a node is the size of infer-candidates, it

can also be seen as the number of out-degree of a node in the graph theorem. In the first iteration,

sink select cluster f as a representative cluster since it has the largest number of infer-candidates.

Then these candidates are eliminated from the set, and the remaining clusters refresh the number

of infer-candidates. In the second iteration, cluster c is chosen to be the representative cluster

among the remainder clusters. Finally, f, c, h is the greedy solution for this example.

After this regrouping procedure, the number of clusters would decrease because of the com-

19

bination. Thus, fewer clusterheads need to send back the information. In the long run, the

reporting packets would be much fewer so it will lengthen the lifetime of the whole sensor net-

work.

3.4 Safe Region

In the past, many in-network studies investigate how to effectively set up the routing tree and

form the clusters for economizing the energy attrition. Unfortunately, seldom of these works

center on maintaining the robustness of the clusters so that the sensors can further save power

by avoiding re-establishing the clusters frequently. The longer a cluster lives, the more energy

conserve for all the members in cluster. In this section, we discuss how to intensify the structure

and prolong the lifetime of a cluster.

Since we focus our work on environmental monitoring, sensor nodes report the current data

periodically to the clusterheads and clusterheads can do some aggregation and reduction of

data. At the same time, sensing attributes such as temperature varies based on terrains or

circumstances. That means the reading of a sensor node also changes over time. It brings an

inevitable problem that some member nodes which had critical readings may break the ambit

of cluster. These nodes are forced to leave the original cluster and try to join other available

clusters. Furthermore, if a clusterhead changes the reading caused by environment, it cannot

guarantee be the representative node in the future anymore. This is because the rule of electing

clusterhead is choosing the node whose reading is the nearest to the mean among the members.

Regardless of clusterhead or member nodes, it wastes power consumption on adjusting clusters,

especially on clusterhead.

In view of this, we proposed a concept of safe region, which allots each node(even clusterhead

or normal member node) a floating range. If the variance of a node drifts within the floating

range, the node will be kept in the cluster with the result that enhances the persistence of the

cluster. Now we discuss how to generate the floating region. As mention in clustering phase,

we first find out the Temporary Clusterhead(TCH) and average the readings of all the cluster

members. The movement of digging out the mean not only decided the New Clusterhead(NCH)

but shifted the value of clusterhead to middle of whole cluster members. Therefore, it will move

20

a

cb

e

d

 10

 10.5

 9.8

Sink

10.6

NCH

TCH
11

(a) Cluster

10.5

9.5

11.5

10TCH

NCH

9

11

Safe
Region

Safe
Region

No Safe
Region

9.8

11.2

a

b
c

d

e

(b) Float Region

Figure 3.6: Example of safe region with user-tolerable threshold ε = 1

out a margin of range to realize the concept of safe region. Fig. 3.6 explained this idea. Fig. 3.6b

transforms Fig. 3.6a into a temperature-like chart with pointing out the corresponding nodes.

We can discover that if TCH(node a) is decided to be the clusterhead, we have no safe region at

all. Since it exists a critical node(node d) whose reading is fell on the boundary of TCH, which is

[9,11]. After re-voting for NCH, the reading of NCH was shifted to [9.5,11.5] result in switching

the critical node to node e whose reading is 9.8. Eventually, it generates a safe region, bounded

in 0.3 in this example, for the cluster.

Different clusters generate distinct safe regions because the generation of a safe region is

depended on NCH and critical node. The closer readings between NCH and critical node, the

larger safe region sharing for a cluster. We now further divide the safe region into two sub-

regions, called clusterhead floating range and membership floating range, respectively. The

clusterhead floating region is allocated to clusterhead, so the membership floating range is to the

members of clusters. We prefer to allow clusterheads wider floating range since the changes of

the clusterheads may result in extremely energy cost, such as cluster recovering. Member nodes,

however, got narrower membership floating range because they will not destroy the completeness

of the clusters. In Fig. 3.6b, we got a safe region with 0.3 degrees, we might allocate NCH(node

b) a clusterhead floating range with 0.2 and members a membership floating range with 0.1

21

degrees, respectively. This phase diminishes the possibilities of a node to switch between the

clusters, thus retrenches the energy consumption.

22

Chapter 4

Performance Evaluation

4.1 Simulation Model

We developed a network simulator based on JSIM [13] to generate the queries and the sensors

associated with their readings. Our experiments are conducted on network sizes ranging with

600 sensor nodes in a 500m × 500m two-dimensional sensing field. The field is divided into

20m × 20m grid cells. Users request the queries from the sink at point (0,0). The transmission

range of each sensor node is set to 30m. The simulation time is 600 seconds and sensors report

data every 10 seconds. Sensing reading of each node is generated with a uniform probability

distribution from 16 to 24. Packets are divided into two categories, which are data packets

and broadcast packets. The energy consumption model refers to [11]. Table 4.1 summarizes

the system parameters and setting. Be convenient to narrate, we name our scheme as EDG

(Energy-efficient Data Gathering) for the rest experiments.

4.2 Impact of Simulation Time

In Fig. 4.1, we compare the number of bytes of CAG and EDG approaches. The total numbers of

sensor nodes are 600. Nodes report the readings in the sensing range every 10 seconds periodically.

For CAG and EDG approaches, the user-tolerable threshold is set to be 0.1 with respect to

corresponding clusterheads. CAG proposes an algorithm to build up the message-forwarding

tree and generate the clusters in the same time. It decreases the number of bytes because only

23

Parameter Setting

Sensing field size 500 m × 500 m
Number of nodes 600
Report rate 10 sec
Transmission range 30 m
Sensing Reading range 16 - 24
Threshold distance (d0) 75 m
Eelec 50 nJ
εfs 10 pJ/bit/m2

εamp 0.0013 pJ/bit/m4

Data packet size 100 bytes
Broadcast packet size 25 bytes
Packet header size 25 bytes
Initial energy 2 J
Simulation Time 600 sec

Table 4.1: System parameters

050000100000150000200000250000300000350000

30 40 50 60 80 100 120Time (sec)
Number of byte
s CAG EDG

Figure 4.1: Number of bytes vs simulation time

24

050000100000150000200000250000300000350000

30 40 50 60 80 100 120Time
Number of byte
s CAG control msg EDG control msgCAG report msgEDG report msg

Figure 4.2: Number of alive sensors vs simulation time

clusterheads have to report the information. However, EDG not only does what CAG has done

but also improves the CAG algorithm by reducing the number of clusterheads and offering the

sensors the structure of safe region, so EDG has less total messages than CAG. However in 30 to

45 seconds, EDG has the overheads for waiting the regrouping messages and broadcasts adjusting

messages from the sink to all the sensors for new network topology. Fig. 4.2 shows the details

of total messages. We separate messages into control messages and report messages. Control

messages are responsible for establishing forwarding tree and clusters, regrouping clusters in

EDG approach. Periodical data reports are included by report messages. At 30 seconds, EDG

has more control messages than CAG because EDG needs to exchange messages between local

clusters and sink. And EDG has the same report messages due to sink not broadcast clusters

combinations yet. When time increased, the number of EDG’s report messages decrease caused

by regrouping, and the number of control messages are the same. So in long-term viewpoint,

EDG still outperforms CAG by 11 percent of the number of bytes.

We now compare the number of alive sensors with time series of different approaches. We

deploy 600 sensors in sensing field. In the Naive approach, all nodes in sensing field report

their readings to the sink periodically. As shown in Fig.4.3, the number of alive sensors in

25

0100200300400500600700

100 200 300 400 500 600Time
Number of aliv
e sensors CAGEDGNaive

Figure 4.3: Number of alive sensors vs simulation time

Naive approach died rapidly especially from 200 seconds to 400 seconds since every sensor has

to report the reading. In both CAG and EDG, they are cluster-based approaches so that the

member sensors in a cluster are representative of exactly one clusterhead. Thus, the number

of alive sensors diminishes slightly since only clusterheads report the readings. Moreover, EDG

reduces the number of clusterheads than CAG, so sensors on the path to the sink of these reducing

clusterheads have no longer to forward the messages. In the end we can see that the number of

alive sensors in EDG is more than the number of alive sensors in CAG.

4.3 Impact of Sensor Number

To measure the scalability between CAG and EDG, we change the number of sensor nodes in

the simulated network from 100, 200, 300, 400, 500 to 600. We vary the size of the simulated

area according to keep a fixed node density. Fig. 4.4 depicts the relation between the number

of clusterheads and the network size. We see the superior performance of our EDG approach.

This is because EDG merged the clusters at the regrouping procedure. In CAG, some neighbor

clusters which have the similar readings cannot integrate with each other since they have critical

26

050100150200250300350400

100 200 300 400 500 600Number of nodes
Number of clus
terheads CAGEDG

Figure 4.4: Number of clusterheads vs sensor nodes

05000100001500020000250003000035000

100 200 300 400 500 600Number of nodes
Number of byte
s(K) CAG control msgEDG control msgCAG report msgEDG report msg

Figure 4.5: Number of messages vs sensor nodes

27

point between them. However, EDG solve the situation by exchanging some messages between

sink and clusters to reduce the number of clusters.

Fig. 4.5 shows the number of bytes count for different number of nodes. EDG outperforms CAG

in all cases. We also can discover as the network size enlarged, the number of messages of CAG

raised heavily where EDG raised lightly. There are two reasons to explain this situation. One is

that EDG has fewer number of clusterheads so less messages are send. The other reason is when

the network size enlarged, the average distance from a sensor to sink increased. It leads more

cost to transmit messages. If a clusterhead is far from sink and is merged by EDG approach,

it can save a great deal of messages than CAG. This is why the message overheads of CAG is

outstandingly higher than EDG.

4.4 Impact of User-tolerable Threshold

The following experiments investigate the variations of user-tolerable threshold. We deployed

sensors in the sensing field and report rate is set to be 10 seconds in 200 seconds total simulation

time. Fig. 4.6 and Fig. 4.7 display the number of clusterheads and messages of EDG normalized

by that of CAG under the different thresholds, respectively. As shown in Fig. 4.6, when threshold

is set to 0, that means users do not permit any errors for reporting answers. Every sensor is

identical to a clusterhead to report exactly what it sensed. In this case, CAG and EDG are

retrograded as same as Naive approach. With increasing the value of threshold, EDG reduces 15

percent of the number of clusterheads as the threshold is 0.15. In this best case, EDG diminishes

49 clusterheads than CAG. An interesting result is that the number of clusterheads of EDG

is closing to CAG again when threshold is increasing. This is because the condition to form

a cluster became loosed, a cluster can include more members thus the number of clusters get

lessened. Considering an extreme case, all the sensors are included in one cluster because the

threshold is too big, then EDG is hard to merge clusters anymore.

28

0.750.80.850.90.9511.05

0 0.05 0.1 0.15 0.2 0.3 0.4ThresholdNormalized num
ber of clusterhe
ads

CAGEDG
Figure 4.6: Normalized number of clusterheads vs user-tolerable threshold

4.5 Impact of Changed Events

Monitoring phenomena usually vary their features accompanied with time series so that sensors

detect different sensing readings. We then evaluate the impact of the number of changed events.

In Fig. 4.8, we examine the overheads for different ratios of changed events over total 600 sensors.

A changed event means that a sensor node varies its sensing reading. The readings are changed by

uniform distribution between a half of user-tolerable threshold with respect to the corresponding

clusterheads. The number of bytes count of EDG is less than CAG all the time. By increasing

the ratio of changed events, the benefit of safe region in EDG approach appears obviously. This

is because EDG allows each sensor a floating range to avoid rebuilding the clusters where CAG

does not have. It shows that EDG is more suitable for dynamic sensing environments.

29

0.860.880.90.920.940.960.9811.02

0.05 0.075 0.1 0.125 0.15 0.175 0.2ThresholdNormalized num
ber of message
s

CAGEDG
Figure 4.7: Normalized number of messages vs user-tolerable threshold

0100002000030000400005000060000700008000090000

0 10 20 30 40 50Ratio of changed events (%)
Number of byte
s (K) CAGEDG

Figure 4.8: Impact of changed events

30

Chapter 5

Conclusion

In this thesis, we considered the problem of approximate query processing over spatial clustering

in sensor networks. We formed sensors into clusters which were bounded by an user-tolerable

threshold. We further merged clusters and found an innovative issue called infer-graph set

problem. We then designed an heuristic algorithm to devise near-optimal solution. Moreover,

the safe region robusts the persistence of clusters without losing the precision. Our experiments

showed that EDG outperforms CAG 11 percent of bytes count and 15 percent of clusterheads

and EDG was suited in dynamic sensing environments. We concluded that our scheme effected

better energy usage of sensors and prolonged the lifetime of sensor networks.

31

Bibliography

[1] J. Gray, A. Bosworth, A. Layman and H. Pirahesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining and Knowledge
Discovery, 1(1):29-53, 1997.

[2] H. Gupta, V. Navda, S. R. Das and V. Chowdhary. Efficient Gathering of Correlated Data
in sensor Networks. In Proceedings of the 6th ACM International Symposium on Mobile Ad
Hoc Networking and Computing(MobiHoc), Urbana-Champaign, IL, May 2005.

[3] W. Heinzelman, A. Chandrakasan and H. Balakrishnan. Energy-efficient communication
protocol for wireless sensor networks. In Proceedings of IEEE Hawaii International Confer-
ence System Sciences, Hawaii, January 2000.

[4] W. Heinzelman, J. Kulik and H. Balakrishnan. Adaptive protocols for information dis-
semination in wireless sensor networks. In Proceedings of the 5th ACM/IEEE Annual In-
ternational Conference on Mobile Computing and Networking(MobiCom’99), Seattle, WA,
August 1999.

[5] C. Intanagonwiwat, R. Govindan and D. Estrin. Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. In Proceedings of the 6th ACM Annual In-
ternational Conference on Mobile Computing and Networking(MobiCom’00), August 2000,
Boston, Massachusetts.

[6] Y. Kotidis. Snapshot Queries: Towards Data-Centric Sensor Networks. In Proceedings of
the 21th IEEE International Conference on Data Engineering(ICDE), 2005.

[7] H. Luo, F. Ye, J. Cheng, S. Lu and L. Zhang. TTDD: Two-Tier Data Dissemination in
Large-Scale Wireless Sensor Networks. In Proceedings of ACM International Coference on
Mobile Computing and Networking (MobiCom’02), Atlanta, Georgia, USA, September 2002.

[8] A. Manjeshwar and D. P. Agrawal. TEEN : A Protocol for Enhanced Efficiency in Wireless
Sensor Networks. In Proceedings of the 1st IEEE International Workshop on Parallel and
Distributed Computing Issues in Wireless Networks and Mobile Computing, San Francisco,
CA, April 2001.

[9] A. Manjeshwar and D. P. Agrawal. ”APTEEN: A Hybrid Protocol for Efficient Routing and
Comprehensive Information Retrieval in Wireless Sensor Networks,. In Proceedings of the
2nd IEEE International Workshop on Parallel and Distributed Computing Issues in Wireless
Networks and Mobile computing, Ft. Lauderdale, FL, April 2002.

[10] A. Meka and A. K. Singh. Distributed Spatial Clustering in Sensor Networks. In Proceedings
of the 10th International Conference on Extending Database Technology(EDBT), 2006.

32

[11] O. Younis and S.Fahmy. HEED: A Hybrid, Energy-Efficient, Distributed Clustering Ap-
proach for Ad-hoc Sensor Networks. IEEE Transactions on Mobile Computing, vol. 3, no.
4, pp. 366-379, Oct-Dec 2004.

[12] S. Yoon and C. Shahabi. Exploiting Spatial Correlation Towards an Energy Efficient Clus-
tered AGgregation Technique(CAG). In Proceedings of IEEE International Conference on
Communications(ICC), 2005.

[13] JSIM: A Java-based simulation and animation environment.
http://www.cs.uga.edu/ jam/jsim/.

33

	1.doc
	2.doc
	圖書館1.pdf

