EAREE

fir
|
1
Wt
S
&
;In_{

B+t @ X

Fir B WG A Tl b2
R A B T G

=

Constructing the Rectilinear Steiner Tree in 3D ICs with
Integer Extended Compact Genetic Algorithm

A

HE S S NN PR s

PEREBE ht+t £t A

Fi2gzafHlin

FUw gl ® SO AT
e

Constructing the Rectilinear Steiner Tree in 3D ICs with

Integer Extended Compact Genetic Algorithm

Sl R Student : Wen-yu Lee
h¥gE RgEe Advisor : Ying-ping Chen
CRERT TP
FRPLET B B LT
LG
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2008

Hsinchu, Taiwan, Republic of China

12 S+ & £

Constructing the Rectilinear Steiner Tree in 3D ICs with
Integer Extended Compact Genetic Algorithm

Student : Wen-yu Lee Advisor : Ying-ping Chen

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

Rectilinear Steiner Tree (RST) has wide researches and applications in Very Large
Scale Integrated (VLSI) circuit design. Generally, the RST is used to pre-estimate the
circuit wire length before the VLSI routing stage, which is applied to interconnect
different circuit components. Unfortunately, how to construct a RSMT is a
NP-Complete problem. To make things worse, with the developing technology of
Three-Dimensional Integrated Circuits (3D ICs), the complexity of the RST
construction in 3D space is much higher than traditional RST construction, which
only focuses on the two dimensional plane. Obviously, it is quite urgent to develop an
effective way to construct a 3D RST.

Therefore, the author presents the use of Integer Extended Compact Genetic
Algorithm (iIECGA), which can effectively solve highly complicated problems, to
construct a 3D RST for 3D ICs. The experimental results show that the iIECGA can
effectively construct 3D RSTs in a reasonable time and outperforms than traditional
Genetic Algorithm (GA). The author believes that the proposed strategy may be
suitable for larger problems and can be extended to the problem of obstacle-aware 3D
RST construction with in the future.

v EAuEd ARG AFIFE 223 A BT R
E iy

Fi 0 35 I EFR PR

Bz i« B T E 1 e g

-] v;}ﬁ_ﬂ
g 3 RBLR EL ST I S AR wj;f_;- BT e n et

MERMTRERGEZ T I R RTRDERLRE - Ra 0 73 %
PR - B =M°‘3Ln; # NP-Complete mﬁ: Heom ¥ - >0

=

FEOHWZAFMIEREOT R ER A R BB OE > {40FT L S

éﬁmﬁﬁa’vﬂ’@é*”'ﬁﬁ TR ARSI PR LR

IR R o FE AR Bl p R Ay E ek e
r;‘]LLL , (EX

K g WS L TR 2 (IECGA) » % kRt R AT R
gq_F'“QJ-E PREEHR AL 1R T SR T A S A PR
”up TR RSP T D Az B B R B i e
éﬂﬁﬁémwo¢%%m%Yﬁ’&Pi%%FUé—%H%%*iﬁ%ﬁ

lt\

BAL > Gl4ed B8 M hz R R R AR

Contents

Abstract

Table of Contents

List of Figures

List of Tables

1. Introduction

1.1 The Three-Dimensional Rectilinear Steiner Tree..........cccocvvvviiineennnll
1.2 Previous WOTK.ot e e e e e 3
RSBV (o] £)7 LA o] PO O 4
1.4 .0Ur ContriDULION. ee e e e e e e e e e e e e 5
2. Problem Formulation 6
3. Previous Work 10
3.1Preliminary............... 508, . BT T . 0. e 10
3.2 The Deterministic Approaches for RST.CoNstructionc.ccocevvvvviveinannns 12
3.3 The GA-based 2D RST ConstruCtionocoevvvneviiienineienennnen .13
3.4 The GA-based 3D RST Constructionocoevvvieiiiiiineinnennnnen. ... 16
4. Algorithm and Design Flow 18
4.1 Evolutionary Algorithm (EA) ... e e e 18
4.2 Genetic Algorithm (GA) ... 20
4.3 Chromosome ENCOTING ...ovvvvore it i e e e e eeee e e e e 21
4.4 FItNESS FUNCLION oottt e e e e e e e e e e e e 22
4.5 Integer Extended Compact Genetic Algorithm (IECGA)c.ccovviinnne 23
4.6 DESIGN FIOW v e e e e e e e e e 32
5. Experiment Result 34
5.1 Experiment and Parameters.ovv.veeeee et it e e e e 34
5.2 Population Size Selection...........ccccviiii i 203D
5.3 Solution Quality ANAlYSIS........oveirii e e e 43
5.4 The Comparison between GAand IECGAccovviiiiii i, 46

6. Conclusion 51

6.1 Summary of the thesisovii i e 51
8.2 FULUIE WOTK e e e e e e e e e e e e e e e, 52
(SRS O] 011 1T] [0 o I 53

Bibliography 54

List of Figures

11

2.1

2.2

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.5

A 4 pins rectilinear spanning tree and a 4 pins RST with 2 Steiner points 3
Five pins are distributed on 3D space, the complete graph of the five pins, the
MST of the pins and a RST connects fivecooiiiiiiiiii e 8
A RST respects to the objective funCtion ..., 9
Anexample of Ks ..o 1
A graph consists of four vertices and five weighted edges 11
An example of rectilinearization e oo 15
Two different ways to rectilinearize aslantedgecccooeiveiininnns 15
The pseudo code of the GA .. il i e, 21
Six possible combination for rectilinearizing a slanted edge 22
The overall ECGA flowchart ...l 29
The pseudo code of the ECGA ..., 30
The flowchart of our algorithm ..., 33
Population size and tournament selection effectooiil, 36
Comparisons between the solution quality and the population size 38-42
Comparisons between G(0) and IECGAcooiiiiiiiiiiiiiiiiie e e 44
The cost reduction percentage of the IECGA for each problem size 45

5.5 The cost reduction percentage for each problem sizeoco. L.

5.6 Comparisons between G(0), GAand IECGAc.ccevennnn..

5.7 Comparisons of the convergence rate between GA and iECGA

List of Tables

4.1

5.1

5.2

5.3

A four genes MPMs model example ... 26
The cost reduction percentage of IECGA for each problem size 46
Comparisons between GA and IECGA ... e 48

Comparisons of the convergence rate between GA and iIECGA 49

Chapter 1
Introduction

In the first part of the chapter, Section 1.1, the 3D RST will be briefly introduced.
Then, the author would like to roughly review.the previous work in Section 1.2.
Subsequently, the motivation of the thesis will be ‘given in Section 1.3. Finally, the

conclusion of this chapter will be.shown in Section 1.4.

1.1 The Three-Dimensional Rectilinear Steiner Tree

Many techniques have been widely proposed to pre-estimate the circuit wire length
before the practical routing stage, which is applied to interconnect different circuit
components. One measure of circuit wire length is Half Perimeter Wire Length
(HPWL). This method only measures the half perimeter of the bounding box which is
a smallest rectangle to cover all the pins of a net to predict the wire length.

Unfortunately, the method is too optimistic and often underestimates routing length.

Another way to estimate the wire length is Rectilinear Minimum Spanning tree

(RMST). However, this method also cannot accurately estimate the wire length.

Fortunately, the construction of Rectilinear Steiner Tree (RST) has been widely

researched and provides a promising way to effectively pre-estimate the length of

interconnect in the last decade.

The concept of the RST is quite similar to the rectilinear spanning tree. Given a set

of vertices, called as pins in VLSI terminology, a rectilinear spanning tree can span all

the pins by vertical and horizontal line segments. In other words, the tree is composed

of all the pins without any cycle, asishown in Figure 1.1(a). The difference between a

RST and a rectilinear spanning tree is that the RST can introduce Steiner points,

vertices with degree greater or équal to 3, to further reduce the wire length. That is,

the rectilinear spanning tree is a special case of the RST. Therefore, the rectilinear

spanning tree in Figure 1.1(a) is also a RST. Assume that the length and width for

each grid are the same, 1 unit; the total wire length of the rectilinear spanning tree is

14 units. Obviously, it seems the wire length cannot be further reduced without adding

any new Steiner points. In Figure 1.1(b), by appropriately adding two Steiner points

(red vertices), the total wire length can be reduced to 8 units. This tree is a RST, not a

rectilinear spanning tree anymore.

The aforementioned RST is located in Two-Dimensional (2D) plane. In fact, in

present System-on-Chip designs, people suppose to vertically stack multiple dies in a

package, called Three-Dimensional Integrated Circuit (3D IC), in order to integrate

more functions into a single chip and further decrease total wire length. The definition

of 3D IC is a chip with two or more layers of active electronic components, integrated

both vertically and horizontally into a single circuit. Therefore, it is quite necessary to

extend the original 2D RST to 3D space; that is, 3D RST.

‘ F=—==f==== mEmmmpm===n
1 1 1
1 1]
L} L})] 1
1 1 1 1 1 1 1
i e e kd o et R R S |
1 1 1 1 1
1 1 1 1 [} [}
]]] [}
1 1
]
1 1 1
| [} [} L}
)] 1 1 I
1 1 1 1 1 1
===y === = - r 3 r-——=——f-—-=-1-—---
I I [[1 1 1
|| || 1 | T 1 1
1 i] ' ' '
1 | 1 I 1 1
L '._-_-.v L
L6 iy

Figure 1.1: (2) A 4 pins rectilinear spanning tree, and (b)-a 4 pins RST with 2 Steiner points.

1.2 Previous Work

However, how to construct a RST is a NP-Complete problem [1]. Although RST is

a NPC problem, it is still worth researching because of its accuracy. Many prominent

approximation approaches have been proposed. Griffith et al. [5] proposed a speedup

implantation of RMST based on the Iterated-1 Steiner (I1S) technique. This heuristic

approach can obtain a near-optimal solution in the polynomial time. On the contrary,

an exact algorithm called GeoSteiner was implemented by Warme et al. [6]. After that,

Chen et al. [7] developed an efficient heuristic approach called Refined Single Trunk

Tree (RST-T), which can efficiently predict the net length of no more than 10 pins

within 6% of the optimal solution. Furthermore, Zhou [8] provided an O(nlogn) RST

algorithm based on the spanning graph and the sequentially a fast table lookup

technique was presented by Chu [9]. However, the aforementioned previous work

only focuses on 2D plane. Obviously, the 3D RST is more complex and difficult than

the 2D case.

1.3 Motivation

In order to effectively address the complex problem, the author has observed that

the Genetic Algorithms (GAs) have been successfully applied to many NPC problems

and can get an excellent result. For RST, the GAs first applied to the RST problem in

2002 [10]. Julstrom solved the RST problem through extend coding of spanning trees

to specify Steiner point choices for the spanning trees to minimize the total wire

length. Afterwards, Kanemoto et al. [12] extended the previous work and considered

the RST for 3D ICs. They claimed that their algorithm can get a good RST in 3D

space.

Although the aforementioned researches can apply the GAs to 2D or 3D RST

problems and get a good result. However, their method only can solve small problem.

For large problems, the runtime of their methods may be too long and cannot get a

feasible result in a reasonable time. The reason may be because that the performance

on large instances with GA is not very wellness. Therefore, it only can adapt to solve

small problem, not suitable for large problems. Based on this observation, the author

would like to improve the previous work and develop an effective and efficient to

construct a 3D RST.

1.4 Our Contribution

In this thesis, the author proposes the use of Integer Extended Compact Genetic

Algorithm (iECGA), which can éffectively solve highly complicated problems, on

construction a 3D RST for 3D-IC designs. The experimental results show that the

iIECGA can effectively construct 3D RSTs in reasonable time and outperforms than

traditional GAs.

The remainder of the thesis is organized as follows. In Chapter 2, we would like to

formulate the 3D RST problem formally. Then, the previous work will be reviewed in

Chapter 3. Subsequently, the Chapter 4 will elaborate our iIECGA. Finally, the

experimental results and the conclusion will be described in Chapter 5 and Chapter 6,

respectively.

Chapter 2
Problem Formulation

Here, we formulate the 3D RST formally. Given a set of pins P = { p1,p2, P3,-....Pn }
on 3D spaces, each pin p; has coordinate location. (i, Yi, zi), where X;j and y;jrepresent
pin location on a plane exactly-as traditional 2D chips, the z; denotes which routing
layer this pin lies on. Our objective consists of two:parts: 1) interconnection cost and
2) maximum propagation time. For the first part, since the vertical-connection (via)
cost is larger than the horizontal-connection one, we multiply a factor Cy to the
vertical length to emphasize the cost of the vertical-connection, as shown in equation
(1).

OL)= Xx 1+Xy 1+C,*Xz 1, (1)
where ®(L) is cost of the wire length, and x 1,y 1, and z 1 represent the wire length
in x-direction, y-direction, and z-direction, respectively. For the second part, the

maximum propagation time can be estimated by the maximum distance between two

pins on the tree. Since the unit between the interconnection cost and propagation time

cost is different, these two terms should be normalized and then could be considered

in the equation, as shown in equation (2).

O =Cy* O(L) + C* O(T), (2)

where @ and ®(T) indicate the overall cost and the cost of the maximum propagation

time. The proposed algorithm should construct a 3D RST and minimize the overall

cost.

Here shows an example to illustrate this problem. Generally, the problem input is a

number of pins, five pins in our example, distributed on 3D space, as shown in Figure

2.1(a). The goal of the problem is to connect all the pins through proper Steiner

points’ generation and forms a RST with the objective function consideration. This

scene can be illustrated as Figure 2.1(d). Generally, the basic steps to solve this

problem can be illustrated as follows. First, construct a complete graph for the five

pins, as shown in Figure 2.1(b). Second, the Minimum Spanning Tree (MST) can be

extracted from this graph, as shown in Figure 2.1(c). Note that the total wire length of

the MST is calculated based on the Manhattan distance, not the Euclidean distance. In

addition, the edges of the MST are slant, not rectilinear ones. Finally, through proper

optimization strategies, the slant edges can be rectilinearized and generate the final

RST, as shown in Figure 2.1(d). Note that different objective functions may lead to

different RSTs. The Figure 2.2 shows a RST respecting to our objective function.

Most of the previous work are focused on the final step and change the optimization

strategy. The next chapter will review the previous work more detailed.

ta} {by

(c) ‘ ‘ S d}

Figure 2.1: (a) Five pins are distributed on 3D space. (b) The complete graph of the five pins. (c) The

MST of the pins. (d) A RST connects five pins.

oEBESsEBEBE S

Chapter 3
Previous Work

In this chapter, the previous work is reviewed. First, to facility the explanation, the
construction of complete graph and MST are roughly reviewed in Section 3.1. Second,
Section 3.2 presents some general deterministic strategies for RST problem. Third,
Section 3.3 introduces some ‘prior+ reseéarches +based on the GA, which are
non-deterministic methods, for common 2D RST problem. Finally, the GA-based 3D

RST construction algorithm is described in Section 3.3.

3.1 Preliminaries
3.1.1 Complete Graph Construction

A complete graph is a simple graph in which every pair of distinct vertices is
connected by an edge. Therefore, the complete graph on n vertices have overall

n*(n-1)/2 edges with each vertex connected to other (n-1) vertices and denotes by K,

10

Figure 3.1 illustrates an example of Ks. Given five vertices, the complete graph of

these vertices contains overall ten edges.

Figure 3.1: An example of K.

3.1.2 Minimum Spanning Tree (MST) Construction

Given a connected undirected graph, a spanning tree of that graph is a subgraph

which is a tree and connects all.the vertices togethér. A single graph can have many

different spanning trees. Generally, eachtree edge can be assigned a weight which is a

number representing how unfavorable it is, and the spanning tree with minimum

weight sum is called the MST. Note that the MST may not be unique.

2 2
() (b)

Figure 3.2: (a) A graph consists of four vertices and five weighted edges. (b) The MST of (a).

The reason why many prior researches tended to construct a MST before practically

generating an optimal RST is that they attempted to provide a “good enough” solution

11

to their heuristic algorithm engine. In other words, they believe that a good “guess” is
much important to this problem. The “guess” is according to the well-known property,
cost (MST (P))/ cost (MRST (P)) <=3/2 [5]. That is, the MST is a fairly good

approximation to the minimum RST [2].

3.2 The Deterministic Approaches for RST Construction

To date, there are many research efforts have been dedicated to the development of
deterministic algorithms for RST construction. Among these works, Zhou’s spanning
graph based RST construction strategy [8] and Chu’s lookup table based RST
construction strategy [9], particularly draw much attention. Therefore, let us focus on
these two works.

In Zhou’s work, a worst case running time of O (nlogn) efficient RST construction
algorithm was developed [8]. This work is based on a spanning graph which can
retain the ideal Steiner tree and simultaneously reduce the solution space. In other
words, the optimal solution still exists on the spanning graph. After building a
spanning graph, the proposed algorithm effectively consider the connection of nearby
edges and deletion of longest edges to avoid the cycle formation. Finally, the resulting
RST can be obtained.

In Chu’s work, a lookup table based strategy was proposed [9]. The underlying idea

12

of this approach is to pre-compute the basic problem structures and record the

corresponding results into a lookup table for future use. Once the simple problem

structure is met, the result can be efficiently obtained. If the complex problem

structure is met, the complex problem structure can be decomposed into several basic

problem structures and efficiently solve. Then, the individual result of the basic

problem structures can be merged to overcome the original problem. Obviously, this

is a divide-and-conquer based strategy. The runtime of this work is quite fast. In

addition, this method can also obtain high quality solution.

3.3 The GA-based 2D RST Construction

Since the nature of the RST construction 1S NP-Complete. To date, no one can find

any deterministic algorithm to efficiently solve this kind of problems. Therefore,

many researchers prefer to solve this kind of problems based on GAs, which are

non-deterministic methods, providing the chance to efficiently address the

NP-Complete problems.

The development of the GA-based RST construction algorithms can trace back to

the early days of Julstrom’s research [27]. This work encodes the underlying spanning

trees by Priifer numbers. The binary symbols are adapted to indicate the Steiner point

choices and then generate a genetic coding for RST. However, this work inevitably

13

leads to bad performance. What’s worse, the quality of the final result is not good

enough even though the problem size is small. Afterwards, Palmer and Kirshenbaum

proposed a new representation for trees in GA [28] and then Julstrom et al. extended

this representation for RSTs [26]. Subsequently, Julstrom encoded the RST as lists of

spanning tree edges with corresponding Steiner points [29]. Recently, Julstrom

artfully circumvented the large solution space of the RST and focus on the Steiner

point assignment [10]. This work dramatically reduced the search space for a good

RST. Here, let us review this work more detailed.

A RST composed of points on the 2D plane can be derived from a spanning tree by

choosing Steiner points. The aim of this work'is to seek a RST with near-shortest wire

length on the given pins. Through properly observation, the author reduced the

solution space of the original problem to the space of the spanning trees on given pins

product the space of Steiner point choices for spanning tree edges. For clarity, please

focus on an example shown in Figure 3.3. Given a spanning tree with slant edges, it is

necessary to rectilinearize the edges to horizontal edges and vertical edges. If the

left-bottom one is chosen, the total wire length is large. Nevertheless, if the

right-bottom one is chosen, the total wire length can be reduced by introducing a

Steiner point. Therefore, given a slant edge, the author defined two different ways to

rectilinearize this edge as shown in Figure 3.4. In other words, two L-shape can be

14

chosen. Therefore, each edge can be encoded to a bit. By applying the GA, the author

can obtain a RST with minimal total wire length. The overall flow can be described as

follows. Given the pins, the author first constructs a MST. Then, the author encodes

all the edges of the spanning tree as binary strings. After that, the conventional genetic

operators, two-point crossover and position-by-position mutation, can be applied to

search the RST with minimal total wire length.

Figure 3.3:An example of rectilinearization.

. .
e .
* e

Figure 3.4: Two different ways to rectilinearize a slant edge.

The experimental results show that this method can effectively get good, though

never optimal RSTs. In addition, the performance of this method is reasonable even

though the problem size is reach to 500 pins.

15

3.4 The GA-based 3D RST Construction

Afterwards, Kanemoto et al. extends the previous research which only considered

the 2D RST to 3D space and further considers the diameter in 3D VLSI layout design

[12]. Note that the diameter refers to the longest routing path between all pins on a

RST in this work. Similar to the previous research, the complete graph is constructed

first. Then, the Euclidean MSTs for the given pins on the space can be extracted. Note

that there may be several MSTs with the same total wire length. At this time, a tree

with minimum diameter is chosen among the Euclidean MSTs. After that, the GA is

applied to minimize the total wireilength and the diameter, and finally, each edge

segment of the Euclidean MST can be replaced by-one of the six permutations of

three segments which are parallel:to the X-axis, Y-axis, Z-axis, respectively.

To verify the effectiveness of the work, the author tested their algorithm on ten test

data. The smallest problem size is 5 pins and the largest one is 14 pins. The

experimental results showed that the adoption of GA for 3D RST construction is very

effective when the problem size is small. However, the work is only suitable for

smaller problem size. Intuitively, the efficiency of the program may deteriorate for

larger cases. Therefore, new methodology should be proposed to overcome this

problem. This demand exposes the motivation of this thesis.

In this chapter, we roughly review the previous work. On one hand, the

16

deterministic approaches can solve the RST problem in reasonable time. However,
there is still much room for improvement on these techniques. On the other hand, the
non-deterministic approaches provided another way to search a good RST.
Nevertheless, these approaches may suffer from large runtime. In this thesis, we
would like to improve the previous non-deterministic approaches and efficiently

obtain a good solution. The detail of our approach is shown in the next chapter.

17

Chapter 4
Algorithms and Design Flow

In this chapter, we will introduce our algorithm for RST construction problem. First,
the Evolutionary Algorithm and Genetic Algorithm are described in Section 4.1 and
Section 4.2, respectively. Nest, Section 4.3 introduces how to encode input pins to
genotype which is what we need to feed in.our algorithm. Then, Section 4.4
establishes our fitness function. After that, Section 4.5 details our method. Finally,

Section 4.6 presents our overall design flow.

4.1 Evolutionary Algorithm (EA)

In this section, the concept of the Evolutionary Algorithm (EA) and how it can be
applied on real world problems are concisely described. The EA, which is a generic
population-based meta-heuristic optimization algorithm, is a concept of algorithms

originated from the evolutionary computation, which is a subfield of artificial

18

intelligence that involves combinatorial optimization problems in computer science.

Generally, EAs are search methods that take their inspiration form natural selection

and survival of the fittest in the biological world.

Basically, the EA ingeniously uses some mechanisms according to the biological

evolution: reproduction, selection, mutation, and recombination. In a population, each

individual represents a candidate solution to the optimization problem. To identify

which individuals are better and which individuals are worse, the fitness function can

be defined. The fitness function determines the environment within which the

solutions are fitted or not. The higher the fitness value evaluated from the fitness

function, the more suitable the-individual 1s:" Evolution of the population then takes

place through the repeated application ‘of the aboye operators. EAs consistently obtain

well approximating solutions to all types of problems because they do not embed any

assumption about the underlying fitness landscape; this generality can be shown by

successes in fields as diverse as engineering, art, biology, economics, marketing,

genetics, operations, research, robotics, social sciences, physics, and chemistry.

In addition, apart from their use on the mathematical optimizers, the EAs have also

been used as an experimental framework within which to validate theories about

biological evolution and natural selection, particularly through work in the field of

artificial life.

19

4.2 Genetic Algorithm (GA)

To date, most people believe that the GA was initially conceived by Holland by
means of studying adaptive behavior and it has largely been considered as function of
optimization methods nowadays [11].

GA was proposed based on the concept of natural selection. Mainly, the operators
of the GA contain selection, crossover, mutation and replacement. Initially, the
population is composed of random generated individuals. These individuals form the
first generation. In each generation, the fitness of every individual of the population is
evaluated. Then, multiple individuals are stochastically selected from the current
population based on their fitness|values. After proper crossover and mutation, the
replacement operator will be performed to form a new population. These procedures
finish a generation and then the new population can be used in the next iteration of the
algorithm to form next generation. Commonly, the algorithm terminates when either a
given maximum number of generations has been achieved, or a satisfactory fitness
level has been reached for the current population. Note that if the algorithm has
terminated due to a maximum number of generations has been achieved, the

satisfactory solution cannot be guaranteed. Figure 4.1 demonstrates the pseudo code

of the GA.

20

Algorithm 1 GA procedure

1: Initialize the population

2: Generation €— 1

3: Evaluate initial population

4: while the stopping criteria are not met do

5: Perform competitive selection

6: Apply genetic operators to generate new solutions
7: Evaluate solutions in the population

8: Generation=Generation+1

9: end while

10: Output the result

Figure 4.1: The pseudo code of the GA.

4.3 Chromosome Encoding
In this section, we would like to introduce the chromosome encoding method in our
work. The encoding method is similar to the previous work [12]. For each slanted

edge of the MST, there are six possible orientations can be chosen, as shown in Figure

21

4.2.

Z

X-¥-Z X-Z-¥Y Y-¥-Z ["

Y-Z-X Z-X-¥ 2-¥-X

Figure 4.2: Six possible combination for rectilinearizing a slanted edge.

Obviously, these orientations include all possible routing topology for

rectilinearizing each slanted edge. Therefore, each gene of a chromosome can be an

integer value range from 0 to 5 to represent one. of the six orientations for each MST

edge. Certainly, each chromosome is. composed of (n-1) genes if the number of input

pins is Nn.

4.4 Fitness Function

As mentioned earlier in Chapter 2, the objective of this thesis is to construct a RST

with the interconnection cost and the maximum propagation time minimization.

Therefore, for total wire length estimation, the slanted edges are transformed into

three rectangular edges similar to the normal methods. Then, based on the equation (1)

of the Chapter 2, the interconnection cost induced from the wire length can be

computed. Note that there may be some edges are overlapped and the overlapped

22

length must be calculated at most once.

Subsequently, the maximum propagation time can be computed by performing the
well-known Breath-First Search algorithm for each pin and then pick the maximum
length of the routing path. After that, the maximum propagation time can be estimated
based on the linear model which assumes time is linear proportional to distance. After
that, the interconnection cost and the maximum propagation time can be combined
together based on the equation (2) of the Chapter 2. Hence, we defines the fitness
function is the inverse value of the equation (2) of the Chapter 2. Note that the

coefficients of this equation are used for normalization and weight.

4.5 Integer Extended Compact Genetic Algorithm (IECGA)

4.5.1 Linkage Problem
Since the GA was proposed, the importance of Building Blocks (BBs) [16] and their
role in the working of GAs has long been recognized. By BBs, partial solutions of a
problem are meant. In most situations, a problem could be divided into smaller
sub-problems. Under this hypothesis, the problem solutions could be decomposed into
some little parts, each of them is named “Building Block™.
However, BBs are often destructed by the crossover operation during the GA

processing. Based on this description, we could conclude that if the algorithm can

23

correctly identify BBs and mix all BBs without any disruption, it can be expected that

the good solution may be obtained very fast by merging the good BBs. The problem

of the BB disruption is often referred to as the “linkage problem” [18].

4.5.2 Extended compact genetic algorithm (ECGA)

In order to enhance the ability of the sub-solution identification into the crossover

and mutation operators in GAs, Estimation of Distribution Algorithms (EDAs) are

proposed and developed by utilizing probabilistic models to capture and reflect the

problem structure [22].

Compact Genetic Algorithm-{(¢GA) is one kind of-the EDAs. The cGA is a robust

and efficient GA that possesses linkage learning ability. To enhance the ability of the

cGA, the Extended Compact Genetic Algorithm (ECGA) was initially proposed by

Harik [13] based on the cGA. The underlying idea of ECGA is that the ECGA tends to

choose a good probability distribution to progress; this concept is equivalent to

linkage learning. Therefore, ECGA has two important contentions should be

concerned: one is how to select a “good” probability distribution; the other one is how

to learn a genetic linkage. To explain how ECGA deals with these two concerns, it is

essential to introduce the probability model for ECGA first. Then, how to evaluate a

probability distribution will be described. Finally, an example will be given to

24

demonstrate how ECGA select a “good” probability distribution and learn a genetic
linkage.

For ECGA, Marginal Product Models (MPMs) have been known to be a class of
probability models used in probability distribution of ECGA. The underlying idea of
MPMs is to divide the gene or variables into several linkage groups, which are
mutually independent with each other, and then specify marginal probabilities for
each linkage group. That is, MPMs are formed as a product of marginal distributions
on a partition of the genes and are similar to those cGA and PBIL [15, 19, 20], except
that they can represent the joint probability distribution over more than one gene at a
time. Following is an example of the MPM to‘explain-what it is and how it works.

As shown in Table 4.1, the following MPM of a-four-bit problem consists of three
linkage groups [19]. Each linkage group maps to a gene partition. This model shows
that the 1% and 3" genes are linked together, but are independent to the other two
genes. Moreover, the 2" and 4" genes are independent to each other. In addition to
the relationship specification, an MPM also specifies the marginal probabilities for
each linkage group. Note that in this table, X; means the value of the i gene, and the
symbol, P, represents to the marginal probability. This marginal probability can be

computed based on the allele occurrence ratio of different patterns in past populations.

25

Table 4.1: A four genes MPMs model example.

Group [1, 3] Group [2] Group [4]
P(X;=0, X5=0) P(X,=0) P(X4=0)
P(X;=0, X5=1) P(X;=1) P(X4=1)
P(X=1, X5=0)

P(X=1, X5=1)

Generally, the measure of a good distribution can be quantified by Minimum

Description Length (MDL) models. MDL models can be used to identify MPMs

quality and define the model complexity and the compressed population complexity

of a probability distribution. Obviously, suppose that all the given conditions are equal,

simpler distributions are betterthan complex. ones: The identification of MPMs in

every generation can be formulated as-a-constrained optimization problem. The

definition of the combined complexity (Cc) is

Cc=Cm+ Cp

where Cm is the model complexity which represents the cost of a complex model and

Cp is the compressed population complexity which represents the cost of using a

simple model as against a complex one. Obviously, the combined complexity is the

summation of the model complexity and the compressed population complexity. The

detail of the model complexity and compressed population complexity is shown in

26

following two equations.

Model Complexity (Cm) = log, N Z 2°

i=1

Compressed Population Complexity (Cp) =N Zm:i —p; log p;
i=1 j=1

where N is the population size, m is the number of groups (BBs), S; is the length of
chromosome of each group. There are some basic assumptions in these two equations.
Given a problem, it is assumed that this problem.can be partitioned into “m” groups
with each group has its size Sj,'i=l...m. The overall problem size is certain the
summation of the size of total m.groups. As for Pj; it is the number of chromosomes
in the current population possessing bit-sequence; in other words, it is the frequency
of the jth possible partial solution to the ith variable subset observed in selection
population.

After introducing the probability model and the evaluation model, we would like to
give an example to demonstrate how ECGA select a “good” probability distribution
and learn a genetic linkage as follows. Given a binary coding problem which length is

L and its genes are independent, the problem can be partitioned into independent

sub-problems in the initial building process of the MPM model as shown below.

27

[0][1] [L-2][L-1]

Then, we try to merge each pair of groups to form a new MPM. The candidates can

be shown as follows.

[0, 1][2] ... [L-2][L-11, [0][1, 2] [L-2][L-1], ... [O][1] ... [L-2, L-1]

The combined complexity of each produced:MPM is computed, and then these

combined complexities including the original one are:compared. After that, the MPM

with smallest combined complexity can' be obtained. For example, if a MPM, [0, 1] ...

[L-2][L-1], has the smallest complexity, group [0] and group [1] can be combined into

a new group [0, 1]. This above procedure continues until there is no way to further

reduce the complexity, and then the procedure terminates. Finally, a MPM represents

the linkage between genes can be obtained.

Here, the overall ECGA flowchart and the pseudo code of ECGA are described in

Figure 4.3 and Figure 4.4, respectively. As can be seen, the procedure of ECGA is

quite similar to traditional GA. The ECGA also have the procedures of population

initialization, fitness evaluation, parent selection and crossover. The most difference

28

between ECGA and traditional GA is that the parent selection of ECGA is based on
probability distribution and then uses the MPM to find genes linkage relationship.
Note that the BBs of ECGA do not break in crossover step. Therefore, the evolution
speed of ECGA is expected to be faster than traditional GA and coverage to the high

quality solution.

population initialization

N,: population Size _ fitness .| toumament

s: tournament size 3 "l evaluation T selection

P crossover prob. l
MPM

consirucltion

with MDI.

Np*Pc chromosomes

creation by crossover

converge

Np*(1-Pc) best
chromosomes reserve

Figure 4.3: The overall ECGA flowchart.

29

Algorithm 2 ECGA produce

I: Random generate individuals

2: Generation €— 1

3: while the stopping criteria are not met do

4: Calculate fitness values of individuals

5: Perform tournament selection

6: Use MPM to build a joint probability distribution
7: Use the generated MPM to.perform crossover

8: Generation=Generation+1

9: end while

10: Output the result

Figure 4.4: The pseudo code of the ECGA.

4.5.3Integer Extended compact genetic algorithm (IECGA)

The aforementioned ECGA encodes the genes into real numbers. However, we

need to encode genes into integers due to six orientations, as mentioned in Section 4.4.

Therefore, the original ECGA can be restricted into integer domain, called Integer

Extended Compact Genetic Algorithm (iIECGA). The most different between ECGA

30

and iIECGA is that all genes of iECGA are represented as integers, not real numbers.
Based on the aforesaid standpoint, a chromosome of iECGA is an integer vector,
instead of a bit vector of the original ECGA. In addition, the MPMs and MDL
criterion are modified to fit new representation [14].

In fact, the implementation of the MPM is a counting process in ECGA. For
iIECGA, the MPM also has to count the occurrence of all possible patterns [14]. To
this end, we can assume that the range of genes value are from lower bound | to upper
bound u, and the cardinality is d = u - I+ 1. There are d* patterns of a group with gene
size |s|. Therefore, it is necessary to:éount all d¥patterns before building the MPM of
1IECGA.

For the MDL model of iECGA, the‘formula of the complexity has to be modified.
Considering the iECGA, there are two criteria of a good distribution. One is the small
model representation, and the other one is small population representation. Both of the
criteria can be applied to integer vectors. As shown below, the base number in the
formula of the model complexity is changed from 2 to k, but the compressed

population complexity is unchanged.

Model Complexity (Cm) = logx N Z k®

i=1

Compressed Population Complexity (Cp) =N ZZ —p; log p;

i=l j=l

31

Except the MPMs and the formula of model complexity, the rest parts of iECGA are
the same as ECGA. Therefore, the iIECGA can be conveniently applied to the 3D RST

problem and produces a feasible solution.

4.6 Design Flow

Figure 4.5 shows our overall design flowchart. Given a 3D chip information and
input pins information, including the 3D chip size, number of pins, and pins’ locations,
the proposed algorithm first builds a complete graph to connect all the pins with each
other as we described in Section 3,1.1. Then, the.well-known Kruskal algorithm will
be performed to extract a MST-from the complete graph. Note that the concept of the
MST is shown in Section 3.1.2. Finally, the kernel algorithm, iECGA will be applied
to obtain a feasible RST to minimize the total wire length and maximum propagation

time.

32

3D Chip Size
Pins Information

Build the Complete
Graph

Extracta MST

Run the iECGA Engine

The Resulting
RST

HH

Figure 4.5: The flowchart of our algorithm.

Before introducing the iIECG :f i instructive to give a preliminary introduction.
Therefore, we would like to “introduce solutionary Algorithm and Genetic
A NS A
Algorithm in the following sections. Subsequently, we would like to show our

encoding method and the fitness function. After all the knowledge is provided, the

kernel algorithm, iIECGA, will be described.

33

Chapter 5
Experimental Results

In this chapter, the author first describes our experimental conditions and the
parameter setting in Section 5.1. Fhen, Sectiont.5.2 explores how to find the most
suitable population size for any given 3D RST problem. Subsequently, Section 5.3
shows the solution qualities of the generated 3D-RSTs for all test cases. Finally,

Section 5.4 compares this work and the previous work.

5.1 Experiments and Parameters

The program was written in C++ programming language and performed on an Intel
Quad-Core CPU 2.4 GHz machine with Linux workstation. To demonstrate the power
of our approach, we would like to compare our approach with the previous work [12].
Therefore, similar to [12], we initially generated ten test cases and the number of

input pins is distributed from 5 to 14. However, this kind of problem sizes is too small

34

to satisfy the demand of current IC design. Hence, it is worth to enlarge the problem
size. In other words, to generate test cases with more input pin number. Therefore, we
added three more test cases which have 50 pins, 100 pins, and 350 pins, respectively.
For these test cases, each gene of the GA [12] and the iECGA was encoded into an
integer distributed from 0 to 5 to represent one of the six orientations as mentioned
earlier. The fitness function was discussed in Chapter 2 and Chapter 4 before. Hence,
it can be skipped here. Moreover, the remainder parameters of the GA are unchanged
to respect the previous work. For the setting of the remainder parameters of the
1IECGA, adaptive parameters are applied. The maximum generation of the iECGA is
set to be 30 for small problem size'(<= 14 pins) and 50 for large problem size (50 pins,
100 pins, and 350 pins). The parametet setting of the population size is discussed in
Section 5.2. For the selection strategy, an elite strategy, tournament selection, was
adapted. Note that the tournament size of the tournament selection is set to be 12, 14,

or 16. Furthermore, the crossover rate is set to be 0.975000; that is, 97.5%.

5.2 Population Size Selection
In this section, the author presents how to choose an appropriate population size of
a 3D RST problem. Figure 5.1 shows an illustration. The horizontal axis refers to

different problem sizes and the vertical axis represents the population size.

35

population size compare

£00
=—==tournamant size 12
200 N =E=tournament_size 14 '
tournament size 16

400 H /
300 /
200 3 \

100 g \ - ﬁ/ﬂ

population size

problem size

Figure 5.1: Population'size and tournament selection effect.

Note that each experiment répeats 50 times and-takes the average value to reduce
the noise. In the experiments, the author would like to identify the smallest population
size which is large enough to get the minimal cost, or maximal fitness value, for each
test case. To reduce the complexity, the author focuses on the small test cases (<= 14
pins) and only considers 12, 14, and 16 to be the tournament size. This parameter is
based on the experience. Moreover, the initial population size is set to be 50 units and
then increases the step by 50 units. If the cost cannot be further reduced, the
population size can be fixed. Therefore, each test case can record three optimal

population sizes.

36

It should be notice that most of the test cases can be effectively solved when the

population sizes are between 50 and 150. Furthermore, using the tournament size 14

or 16 is more stable in the 3D RST problem. To be more detailed, the author shrinks

the scale of the population size and observes the relationship between the 3D RST

solution quality/cost and the population size. Here, the author sets the population size

between 10 and 100 and increases the step by 5 units or 10 units. That is, the scale of

the population size is 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100, respectively.

The experimental results can be shown in the sequential ten figures, Figure 5.2 (a)-(j).

In these figures, the horizontal axis,tepresents the population size and the vertical axis

represents the quality of the solution.

37

solution quality (cost)

A

[\
[\
[\
I\

38

133000 . . . N . .
S L S NN SR SR SRS
popsize
(a) 5 pins.

206000

204000
Z 202000
2
200000
E
= 198000
: ~ - = ~ oo
C
2 196000
=
‘_?'J
194000

192000 : . . !

O PSR RN P DS
popsize
(b) 6 pins.

solution quality (cost)

253500
253000
252500
252000
251500
251000
250500

250000

LR DR PS

popsize

(c) 7 pins.

solution quality (cost)

225000

220000

215000

210000

205000

200000

195000

190000

AR

D D D QD DN D
™ _°: S AN N
popsize

(d) 8 pins.

39

solution quality (cost)

198000
196000
194000
192000
190000
188000
186000
184000
182000

S E P DD DD RS

popsize

(e) 9 pins.

solution quality {cost)

242000
240000
238000
236000
234000
3232000
330000
128000

NI I ST S T P SRR S
popsize

(f) 10 pins.

40

solution quality (cost)

272000
270000
268000
266000
264000
262000
260000
258000
256000
254000
252000

\Q\ \"3 ,.l?s ,f) ‘,)Q b\“ 5&\ b@ ,\R\ %% Q’Q \QQ

popsize

(g) 11 pins.

solution quality (cost)

312000
310000
3DE000
306000
304000
302000
3n0000
208000

\

P LD DD PR ER P PP
popsize

(h) 12 pins.

41

solution quality (csot)

405000
400000

395000 \

390000 \\Ef!'é‘

385000 \\\y”;&\\

380000

375000

370000 L L L L L L . .

S LD L DR P
popsize
(i) 13 pins.

284000

282000

280000 \
Z 278000
g \
—~ 276000
5.
= 274000
:’; ~ Ty
o 272000 —
g
= 270000
2 268000

266000 e — .

D O DL DR D ® R P QQ\@
popsize
(j) 14 pins.

Figure 5.2 (a)-(j): Comparisons between the solution quality and the population size.

42

As can be seen, the trend of the curve is reasonable in most of the test cases. The
well solution quality can be obtained when the population size is set to be 100. Notice
that the unreasonable part may be due to the variation from the noise of random
number generator and the sizes of the test cases which may be too small.

From now on, for the sake of clarity, the author fixed the parameter settings in the
following experiments in Section 5.3 and Section 5.4. All the experiments have 50
generations and repeats 50 times. For GA, the author adopts the same parameter as the
previous work [12]. That is, the population size is 10, the tournament size is 2, the
crossover rate is 0.6, and the mutation rate 15 0.05. Note that the previous did not
show their tournament size. Therefore, the author set the tournament size to a
common value, 2. For iECGA, the maximum model value is 10, the population size is

10000, the tournament size is 14, and the crossover rate is 0.975.

5.3 Solution Quality Analysis

In this section, the author would like to verify the effectiveness of the iECGA for
3D RST problem. The experimental results can be seen in Figure 5.3. There are totally
13 test cases in the experiments. The horizontal axis refers to the different test cases
and the vertical axis represents the solution quality. G(0) is the result before the

optimization, and the iIECGA curve means the final generation of the iIECGA. In other

43

word, the author compares the results before optimization and after optimization.

solution quality (cost)
2000000
1800000
1600000

/
/4
1400000
1200000 //

1000000 =>=G(0)
800000 =&=cost of iIECGA
600000

400000 -
200000 -
0

cost

4 20 100

problem size (log scale)

Figure 5.3: Comparisonsbetween G(0) and iECGA.

Obviously, the optimization algorithm, iIECGA is effective to the 3D RST problem,
especially when the problem size becomes larger. This phenomenon occurs may be
because that the iIECGA can successfully identify the potential overlap of the wire
length regardless of the problem size.

To verify this corollary, the author performed another experiment as shown in
Figure 5.4. The detail of this figure is shown in Table 5.1. In this experiment, the cost
reduction percentages for different problem sizes are revealed. The values can be

obtained through computing the reduction ratios of the initial cost, G(0), and the final

44

cost after optimization. As can be seen, the cost reduction percentages can be held

even the problem size arises, and it corresponds to the corollary. In fact, the

complexities of small test cases are uncertainly due to the variation of the random

number generator, especially for small problem size. Therefore, for small test cases,

the cost reduction percentage is unstable. Nevertheless, the variation can be alleviated

when the problem size is getting larger. Notice that the problems with size 50 pins,

100 pins, and 350 pins. The cost reduction percentages are almost the same.

Reduction Percentage of iIECGA

[y
8]

[y
o

/N
.
. [

A

4 20 1060
problemsize (log scale)

[v.0]

reductionratio (%)

Figure 5.4: The cost reduction percentage of the iECGA for each problem size.

45

Table 5.1: The cost reduction percentage of iECGA for each problem size.

Problem G(0) Cost of [Reduction
Size 1IECGA (%)

5| 136433 133305 2.29

6 208270(197227 5.30

7| 267144 251363 591

8| 217070 201875 7.00

9 201415 187584 6.87

10| 254275] 232831 8.43

11] 285488| 257436 9.83

12| 328076 300214 8.49

13| 4154731 379807 8.58

14 297238 270642 8.95

501 620547 566851 8.65

100[991224{.. 903557 8.84

350| 1:81E+06[1.65E+06 8.84

5.4 The Comparison between GA and iIECGA

In this section, the comparison between the previous work [12] and the iIECGA is
demonstrated. The statistics is shown in Table 5.2. In Table 5.2, “Problem Size” gives
the number of the pins, “G(0)” lists the result before any optimization algorithm,
“Cost of GA” gives the result after optimization by GA; that is, the previous work
[12], “Cost of iIECGA” shows the result after optimization by iECGA, and “Reduction

(%)” shows the reduction ratio between the iECGA and GA; that is, the cost of GA

46

minus the cost of iECGA and then divided by the cost of GA. The clear view of the

reduction percentages can be found in Figure 5.5. As can be seen, the iIECGA

outperforms than the GA for 3D RST problems by almost 6% on average.

Additionally, the author plotted a figure of the original cost before any optimization

algorithm, cost after optimization by GA, and cost after optimization by iIECGA, as

shown in Figure 5.6. Obviously, the curve of the original cost and the cost after

optimization by GA almost overlap due to the stronger power of the iIECGA than the

GA.

Besides the reduction ratios, therauthor would like to compare the speed of the

convergence between two algorithms. The experimental result is shown in Table 5.3

and the Figure 5.7 clearly shows'the trend. Note that, in this table, “# of gen.” means

how many generations are required to converge. Since the experiments were repeated

50 times for each problem size and the results were averaged to filter the noise, the

number of generations here may be not an integer. Obviously, as can be seen, the

1IECGA can be converged much faster than GA. Notice that it is impossible for GA to

converge for good reason when the problem size is large, but the iECGA can. In this

experiment, the maximum number of generation is 50, but the GA cannot converge

within 50 generations when the problem sizes are 100 and 350, respectively. This

advantage also shows that the iECGA is more practical than the GA.

47

Table 5.2: Comparisons between GA and iECGA.

Problem G(0) Cost of [Costof [Reduction
Size GA iIECGA (%)

5| 136433 133305 133305 0.00

6| 208270 207924 197227 5.14

7| 267144 257808 251363 2.50

8| 2170701 2074011 201875 2.66

9 201415 200967 187584 6.66

10| 254275] 249851 232831 6.81

11] 285488| 279501 257436 7.89

12| 328076] 320830 300214 6.43

131 415473 415251 379807 8.54

14] 297238 297044 270642 8.89

501 620547 600572 566851 5.61

100[991224 977634 903557 7.58

350 1.81E+06|_1.80E+06[1.65E+06 8.34

10

[#e]

(=)

reductionratio (%)

i S IS T S

reduction ratio of the GA and iIECGA

20

100

problemsize (log scale)

Figure 5.5: The cost reduction percentage for each problem size.

48

solution quality (cost)

2000000
1800000

1600000

1400000

/
/4

1200000

y /4
/4

=>=G(0)

1000000
800000

==cost of IECGA

600000

20

100

problem size (log scale)

Figure 5.6: Comparisons between G(0), GA and iECGA.

Table 5.3: Comparisons‘ of the convergence rate between GA and iIECGA.

Problem | iIECGA GA
Size. |(#ofgen)|(# of gen.)
5 2.10 3.80
6 2.73 5.40
7 3.12 3.25
8 486 11.84
9 513 33.07
10 493 12.63
11 431 22.04
12 597 23.97
13 7.12| 29.60
14 6.07] 22.08
50 13.54] 4937
100 19.63] 50.00
3500 43.02] 50.00

49

of generation

60

50

40

30

20

10

convegence rate

e

yd

pd

[V

e A

=s=converge of GA

=—==converge of IECGA

20
problem size (log scale)

100

Figure 5.7: Comparisons of the convergence rate between GA and iECGA.

50

Chapter 6
Conclusion

In this chapter, the author would like to summarize the thesis and then present the

future work. Finally, the conclusionis'given.

6.1 Summary of the Thesis

As the technology node progresses, interconnect delays become the significant
bottlenecks of VLSI circuit performance. RST provides a promising way to
pre-estimate the wire length in earlier IC design stage and therefore can effectively
reduce the routing effort. To date, RST has had wide researches and applications in
modern VLSI circuit design. However, most of the previous work only focuses on 2D
RST construction and neglects the importance of 3D RST construction. 3D RST is
used to construct a RST for 3D-IC, which is a novel technology to integrate more

functions into a single chip and further decrease total wire length. Therefore, in main

51

contribution of this thesis is that the author proposes the use of iECGA, which can

effectively solve highly complicated problems, on construction a 3D RST for 3D-IC

designs. The iIECGA is different from the previous GA. The iECGA can converge

faster than GA and achieve a feasible solution. The experimental results show that the

iIECGA can effectively construct a 3D RST with simultaneous overall wire length

reduction and maximum propagation delay optimization even though the problem size

becomes larger and larger.

6.2 Future Work

For the future work, the author, would like to extend the thesis to address the 3D

RST problem with obstacles. The formation of the obstacles may be because some

routing area has been pre-routed or reserve for other applications. Hence, these

regions should be carefully considered by the RST routing engine to avoid overlap or

misestimate the routing information. The issue of the RST construction with obstacles

consideration has been well-solved for traditional 2D ICs, but not for 3D ICs. The

author believes that how to construct a 3D RST with obstacles consideration may

become increasingly important. Therefore, the author would like to focus on this issue

and expect to develop an effective method for obstacle-aware 3D RST construction in

the near future.

52

6.3 Conclusion

In the thesis, the author applied the iIECGA to construct a 3D RST in 3D space. The

thesis details the problem formulation, related work, algorithms and design flow, and

the experimental results. In fact, during the research on this thesis, the author has

observed that in many current researches, people still work by traditional GA to

optimize their individual problems. However, as the technology node progresses, the

problem size becomes more complex than before. The traditional GA may not be

enough for these problems. It is necessary to develop a more effective way to solve

these problems. iIECGA is one of .an effective and efficient algorithm can converge

fast and simultaneously get good solution quality. Here, the author only demonstrates

the use of the iECGA for 3D RST construction for 3D ICs, but the author does not

think this is the only part that the iIECGA can be applied. The author believes that the

1IECGA must be suitable for future researches.

53

Bibliography

[1] M. R. Garey and D. S. Johnson, “The Rectilinear Steiner Tree Problem is
NP-Complete,” in SIAM Journal on Applied Mathematics, Vol. 32, No. 4,
pp-826-834, June 1977.

[2] F. K. Hwang, “On Steiner Minimal Tree with Rectilinear Distance,” in SIAM
Journal on Applied Mathematics, Vol. 30, No. 1, pp.104-114, Jan. 1976.

[3] “Net wiring for large scale integrated circuits,” IBM Res. Rep RC1375, Feb. 1965.

[4] R. C. Prim, “Shortest Connecting Networks,” Bell System Tech. J., 311957, pp.
1398-1401, 1957.

[5]J. Griffith, G. Robins, J. S. Salowe, and T. Zhang, “Closing the Gap: Near-Optimal
Steiner Trees in Polynomial Time,” in IEEE Transactions on Computer-Aided
Design, Vol. 13, No. 11, pp. 1351-1385, Nov. 1994.

[6] D. M. Warme, P. Winter,.'and M. Zachatisen, “GeoSteiner 3.1 Package,”
http://www.diku.dk/geosteiner.

[7] H. Chen, C. Qiao, F. Zhou, and C.-K. Cheng,-“Refined Single Trunk Tree: A
Rectilinear Steiner Tree Genetator for Interconnect Prediction,” in Proceedings of
the International Workshop on System Level Interconnect Prediction, pp. 85-89,
2002.

[8] Hai Zhou, “Efficient Steiner Tree Construction Based on Spanning Graphs,” in
Proceedings of International Conference on Computer-Aided Design, Vol. 23,
No. 5, pp. 704-710, May 2004.

[9] Chris Chu, “FLUTE: Fast Lookup Table Based Wirelength Estimation Technique,”
in Proceedings of International Conference on Computer-Aided Design, pp.
696-701, Nov. 2004.

[10] Bryant A. Julstrom, “A Scalable Genetic Algorithm for the Rectilinear Steiner
Problem,” in Proceedings of the International Conference on Evolutionary
Computation, Vol. 2, pp. 1169-1173, Aug. 2002.

[11] A.E. Eiben and J.E. Smith, “Introduction to Evolutionary Computing,” Springer
ISBN 3-540-40184-9.

54

[12] Yukio Kanemoto, Ryuta Sugawara, and Michiroh Ohmura “A Genetic Algorithm
for the Rectilinear Steiner Tree in 3-D VLSI Layout Design,” in Proceedings of
the International Midwest Symposium on Circuits and Systems, Vol. 1, pp.
1465-1468, July 2004.

[13] G. Harik, “Linkage Learning via Probabilistic Modeling in the ECGA," in
[IIIGAL Report, No. 99010, Jan. 1999.

[14] Ping-Chu Hung and Ying-Ping Chen “iECGA: Integer Extended Compact
Genetic Algorithm,” in Proceedings of the Genetic and Evolutionary
Computation Conference, pp.1415-1416, July 2006.

[15] Kumara Sastry and David E. Goldberg, “On Extended Compact Genetic
Algorithm,” in Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 352-359, July 2000.

[16] David E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine
Learning,” Reading, MA:Addison-Wesley, 1989.

[17] Martin Pelikan, David E. Goldberg, and. Frick Cantu-Paz “Linkage Problem,
Distribution Estimation, and Bayesian Networks,” in I1liGAL Report, No. 98013,
Nov. 1998.

[18] G Harik and David E. Goldberg; “Learning linkage,” in Foundations of Genetic
Algorithms 4, pp. 247-262, 1996.

[19] G. Harik, F. Lodo, and David. E. Goldberg, “The Compact Genetic Algorithm,”
in Proceedings of the International Conference on Evolutionary Computation, pp.
523-528, Nov. 1999.

[20] S. Baluja, “Population-Based Incremental Learning: A Method of Integrating
Genetic Search Based Function Optimization and Competitive Learning,” in
Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, June 1994.

[21] Luca Fossati, Pier Luca Lanzi, Kumara Sastry, David E. Goldberg, and Osvaldo
Gomez, “A Simple Real-Coded Extended Compact Genetic Algorithm,” in
Proceedings of the Congress on Evolutionary Computation, pp. 342-348. Sep.
2007.

[22] P. Larranaga and J. A. Lozano, “Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation,” Kluwer Academic Publishers, 2001.

55

[23] G. Harik, F. G. Lobo, and David E. Goldberg, “The Compact Genetic Algorithm,”
in HHIIGAL Report, No. 97006, Aug. 1997.

[24] S. Baluja, “Population-Based Incremental Learning: A Method of Integrating
Genetic Search Based Function Optimization and Competitive Learning,” in
Tech. Rep. CMU-CS-94-163, Carnegie Mellon University, 1994.

[25] David. E. Goldberg, B. Korb, and K. Deb, “Messy Genetic Algorithm:
Motivation, Analysis, and First Results,” Complex systems, Vol. 3, pp. 493-530,
1989.

[26] Bryant A. Julstrom, “Representing Rectilinear Steiner Trees in Genetic
Algorithms,” in Proceedings of the Symposium on Applied Computing, pp.
245-250, Feb. 1994.

[27] Bryant A. Julstrom, “A Genetic Algorithm for the Rectilinear Steiner Problem,”
in Proceedings of the International Conference on Genetic Algorithms, pp.
474-480, June 1993.

[28] C.C Palmer and A. Kershenbaum;,“Representing Trees in Genetic Algorithms,”
in Proceedings of the Conference on Evolutionary Computation, Vol. 1, pp.
379-384, June 1994.

[29] Bryant A. Julstrom, “Encoding: rectilinear Steiner trees as lists of edges,” in
Proceedings of the Symposium on Applied Computing, pp. 356-360, Mar. 2001.

56

	gd1_6.pdf
	new_thesis.pdf
	論文前言.pdf
	論文初稿7_8.pdf

