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Resolving Unspecified Software Features

by Directed Random Testing

Student: Li-Wen Hsu Advisors: Prof. Shih-Kun Huang

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Testing is one of the most important phases of software quality assurance, for the

process of software construction cannot guarantee the absence of bugs. Dynamic and

static analysis tools are maturely developed in recent years. In 2005, the concept of

concolic (combined word of concrete and symbolic) testing was proposed, which combines

static and dynamic program analysis methods. In this thesis, we implement ALERT, a

concolic testing framework and an Unspecified Software Feature (USF) Checker based

on ALERT. By using automatic theorem prover library for satisfiability modulo theories,

we can analyze and determine the inputs to direct program’s execution along particular

paths. With this mechanism, we can control the values in stack section. It can also be

used to manipulate the values of uninitialized variables and to trigger specific behavior of

the program. We present a two-phase testing algorithm in this thesis. In the first phase,

we use dynamic analysis tool to retrieve real run-time information. In the second phase,

we analyze the program by using concolic testing method with the data collected in the

first phase. The result generated by the prover will be the input for the next testing

run. This testing process iterates until a fault is found or all the program execution

paths are enumerated. We use this tool to resolve unspecified program features caused

by uninitialized variables. It successfully extracts the program behavior which cannot be

found with traditional program analysis methods. The method in this thesis resolves the

information lost problem caused by source code instrumentation in the process of testing

and improves the accuracy of the test.

Keywords: Software Testing, Directed Random Testing, Uninitialized Variable
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1 Introduction

For the hardware manufacturing technique getting mature, the software begins to re-

ceive the attention and not just as the accessory of hardware anymore. Hence, software

engineering becomes a profession [4].

For the critical software, testing is the most important part in the developing process.

Minor errors in the developing process may cause large damages. To reduce the fault in

the software, many techniques are developed for software testing and verification.

When designing the security-related mechanism, we usually use formal method to

prove if the design is reliable through the verification process done by theoretical analyses.

Moreover, the developing process lacks concrete execution verification through testing.

During the testing process, since the full coverage is hard to archive, the fault in the

program may cause deviation in the design and implementation. Non-syntax errors would

lead the program to accept more inputs than the program is designed. And such errors

may not be found and warned by the compiler or traditional program checker. This gap

between design and implementation causes a critical security issue. We want to design a

mechanism that can automatically discover these “out-of-specification” inputs, and locate

the cause of the fault. In this thesis, we introduce this using uninitialized variables in the

program.

1.1 Background

Research on the testing and verification in software engineering has been mounting steadily

for a number of decades.

1.1.1 Software Property Checking

Property checking is the way to determine if the software is built right with respect to its

specification. There are two approaches for property checking:

1. Testing

Find inputs and one or more execution paths that demonstrate a property violation.

It works when errors are easy to find and is inefficient to find a proof.

2. Verification

1



Find a proof that all execution paths of the program satisfy a property. It works

when proofs are easy to find and is inefficient for finding errors.

The design of an algorithm of the program can be proved, but testing is the only

effective way to find the implementation problem in the software.

1.1.2 Software Testing

Software Testing can be generally divided into three phases:

1. Unit Testing

Unit testing is also called component testing. Components may be simple enti-

ties such as functions or classes. All components are tested individually to ensure

that everyone operates correctly. Each component is tested independently, without

interaction with other components.

2. System testing

The main goal of this process aims at finding errors from unanticipated interactions

between components and interface problems. It is also concerned with validating

that the system meets its functional and non-functional requirements and testing

the emergent system properties.

3. Acceptance testing

The last phases of the testing process before the system is accepted for operational

use. The system is tested with “real” data from users rather than with simulated

test data from testing engineers. Acceptance testing may reveal errors and omissions

in the system specification because the real data reflect the users’ interactions with

the system. Acceptance testing may also reveal specification problems that the

system does not really meet the user’s needs or the performance is unacceptable.

We focus on unit testing, which is the base of all testing techniques. Before assembling

all the components into one system, we must check all units are acting as we expect first.

There are three main testing mechanisms:

1. Functional Testing

Test if the unit contains all specified features, and is built right.

2



2. Random Testing

Inputing random control/data to the unit, for checking if it can tolerate the unex-

pected inputs. This testing can not be omitted in the processing because human-

written test cases can easily contain blind spots. Random testing can avoid false

negative result due to biased test cases.

3. Directed Random Testing

In 2005, Godefroid, Klarlund and Sen developed a new testing techniques, DART

[15]. This work integrated the static analysis and dynamic analysis methods.

1.1.3 Unspecified Software Features

Unwanted or incomplete software behaviors can be called as software defects. Most soft-

ware defects are caused by the fault in the implementation. Software defects can easily

lead to trigger an unspecified software feature.

We can classify software implementation defects into two types:

1. Under-implementation

The implemented features are omitted and incomplete as specified in the specifica-

tion. This kind of bug can be easily discovered by the traditional unit testing, or the

acceptance testing. With the modern test-driven developing development process,

every function specification should have a corresponding test case to guarantee the

system is well implemented. Developers can claim the program implemented all the

specification according to an all-pass unit testing result.

2. Over-implementation

Extra features not specified in the specification are implemented. The unwanted

feature is surely a bug. However, to locate this kind of feature is relatively harder.

Since the possible input data domain is infinitely large, it is hard to test all possible

data. If an implementation contains this kind of bug, the program would accept the

data which should be rejected by the design, and the behaviors of the program are

not expected.

3



1.2 Problem Description

The most common bugs in the software are due to over-implementation. In this thesis,

we want to develop a method to test the presence of unspecified software features caused

by over-implementation. Following are three main types of software defects:

1. Use of uninitialized variables

2. NULL-pointer dereferences

3. Out-of-bounds array indexing

If software has these defects, it contains behavior not included in the original design. It

will be easily used in malicious way, and in other words, has vulnerability.

In this thesis, we focus on the problems caused by using of uninitialized variables.

1.3 Motivation

An uninitialized variable is a variable that is declared but not set to a known value

before it is used. Using an uninitialized variable triggers an undefined behavior in C and

C++. In the common system implementation, uninitialized global variables are stored in

BSS section and will be automatically initialized with all bits filled by 0’s when program

loading. On the other hand, uninitialized local variables are stored in the program’s stack

section, which is filled by some value, but not a predictable one. However, program stack

in the memory will be reused, and uninitialized local variables are implicitly “initialized”

by previous function calls.

As a result, if we can control what are leftover when the previous function call ends,

we can indirectly control the value of uninitialized local variable. In this way, we can

trigger many vulnerabilities caused by uses of uninitialized local variable, such as null

pointer dereferences, memory corruption, authentication bypass and so on.

1.4 Objective

Our main goal is to systematically check whether the program would accept “out-of-

specification” inputs. We use directed random testing method to check if we can manipu-

late the undefined behavior cause by using uninitialized variables. This kind of bug is not

4



easy to discover though traditional testing mechanism, but can be done effectively with

concolic and directed random testing.

1.4.1 Concept

Figure 1 shows the relation of “implementation-acceptance” domain and the “specification-

acceptance” domain. The inputs in “implementation-acceptance” but not in “specification-

acceptance” are bugs, and may cause a security hole. Our goal is to find the possible input

which can cause the wrong behavior of the program.

�����������	
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������
���	�	���	
�

�����������	
� 
���	�	���	
�

�����������������	
�����������������	
��������

Figure 1: The “Out-of-Specification” Input

The “bug” is the deviation between implementation and design. The concept of

“under-implementation” means that the specifications are not fully implemented. It is

easy to detect under-implementation through test-driven process. However, the “over-

implementation” is relatively harder to detect, since the domain of possible input is uni-

versally large, and cannot be fully tested.

1.5 Simple Example

Figure 2 is a simple code snippet with an uninitialized local variable:

The integer variable data in the danger() function is uninitialized, and it has the

same address as i in func1().

The corresponding stack transition is shown in Figure 3. In the transition diagram,

we can find that the variable data in function danger() and i in func1() use the

same address. The value of variable data will be implicitly “initialized” by the value

5



1 #include <stdio.h>
2

3 void func1(int arg)
4 {
5 int i = arg;
6 printf ("func1(): i == %d\n", i);
7 }
8

9 void func2(int arg)
10 {
11 printf("func2(): arg == %d\n", arg);
12 }
13

14 void danger(int dummy)
15 {
16 int data;
17 printf ("danger(): data == %d\n", data);
18 if (data == 5)
19 printf("access permit!\n");
20 else
21 printf("access deny!\n");
22 }
23

24 int main(int argc, char *argv[])
25 {
26 int n;
27

28 scanf("%d", &n);
29

30 if (n < 10)
31 func1(n);
32 else
33 func2(n);
34 danger(n);
35

36 return 0;
37 }

Figure 2: A Program Uses Uninitialized Value and Has Data Overlap
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of i, whose values are from func1()’s argument, arg. We traced back to the caller,

and can find that this argument is from outer input, and can be manipulated from the

external.
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Figure 3: Stack Transition

1.6 Thesis Synopsis

Chapter 2 describes the related work and state of the art. Chapter 3 is the design

and implementation of the ALERT concolic software testing platform and Unspecified

Software Feature (USF) Checker. Chapter 4 presents the experimental results. Finally,

Chapter 5 concludes and discusses about the future work.
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2 Related work

We discuss excellent work related to ours in this chapter. In recent years, static and

dynamic program analysis have been well developed. Both of them can check properties

of the program effectively.

2.1 Static Program Analysis

Static program analysis is to analyze source code without concrete execution.

1. Lint [20]:

It is developed by Stephen Johnson in Bell Laboratories. Lint is one of the earliest C

program checker that examines C source code and provides feedback to developers

about issues not usually caught by a compiler. It uses static analysis and some

heuristics to detect common programming errors, such as type errors, abstraction

violations, and memory management bugs, but does not detect buffer overflows.

2. Splint [21]:

Splint is the short name of “Secure Programming Lint”, formerly called LCLint

[13], which is used for statically checking if C programs contains vulnerabilities and

coding mistakes. It can statically detect likely buffer overflow vulnerabilities.

3. UNO [19]:

As developed by Gerard J. Holzmann in Bell Laboratories, user can define properties

for checking, and make the analyzer more precise. The default properties UNO aims

to are three most common causes of serious error in C programs: use of uninitialized

variables, null-pointer dereferencing, and out-of-bound array indexing. The check-

ing capabilities of UNO can be extended by the user with application-dependent

properties, whose syntax is similar to ANSI-C functions.

2.1.1 Software Model Checking

There are two approaches to software model checking. One is “abstraction” and the other

is “to improve model checker to accept programs as input.” The trend is starting from

program abstraction, since program execution is a kind of asynchronal model, and it is

hard to make such a model checker.

8



Currently software model checking contains three phases: (Figure 4)

1. Abstraction

Program execution will expand the execution tree into infinite states. However,

the model checking techniques can only deal with finite states. Thus we must

perform abstraction over the program to map its behavior into finite state machine.

Abstraction could be one of the three cases:

(a) Under-Abstraction

The abstraction is too specific to fully specify the program behaviors. Usually,

we remove the irrelevant property of the program, for example, limiting the

integer range or fixing variable into constant.

(b) Over-Abstraction

The abstraction is more general than the original program. There are two

popular ways:

i. Type-based Abstraction

For example: map integer into sign abstraction: {negative, positive, zero}

ii. Predicate Abstraction

Replace predicates in the program with boolean variables, and replace each

instruction that modifies the predicate with a corresponding instruction

that modifies the boolean.

(c) Precise-Abstraction

The behavior of program and the finite state machine are identical.

2. Checking

Using model checker to query the model if it satisfies the property we are interested

in.

3. Refinement

If the model checking result is infeasible, we should refine the abstraction model. In

most of the cases, false positives are due to rough abstraction. Refining process is

guided by these counter-examples. This is the famous CEGAR (Counterexample-

guided Abstraction Refinement) loop [12].

There are many advanced research on software model checking:

9



Figure 4: Abstract-Check-Refine Loop of Software Model Checking

1. SLAM [8]:

SLAM project is conducted by Microsoft Research, which is widely used in the Win-

dows driver verification. It firstly automatically abstracts C programs to boolean

predicates, by using C2BP [5], conducts model checking with BEBOP [6] (a symbolic

model checker), and refines the abstraction by Newton tool [7].

2. BLAST [17]

BLAST is a software model checker for C programs. BLAST stands for “Berke-

ley Lazy Abstraction Software Verification Tool.” It also uses concept of CEGAR

loop for checking software properties. The “Lazy Abstraction” feature performs

abstraction process on-the-fly, only when needed.

3. Java PathFinder [28, 22]

Java PathFinder (JPF) is a special Java Virtual Machine (JVM) that can systemat-

ically explore program execution paths. It can verify bytecode programs by finding

violations of properties from all program execution paths. JPF reports the entire

execution path that leads to a defect.

10



2.1.2 Abstract Interpretation

Abstract interpretation models the effect produced by every statement on the state of an

abstract machine. In other words, it “executes” the software based on the mathematical

properties of each statement and declaration. The abstract machine specifies an over-

abstraction on the behaviours of the program, and this makes the program simpler to

analyze, at the expense of incompleteness. The abstract interpretation is sound, that

is, every true property of the abstract system can be mapped to a true property of the

original program.

2.1.3 Assertions and Hoare logic

Hoare logic [18] is the first suggestion to use assertions in programs. There are many tools

using this to check program property, and aim on specific program languages.

ESC/Java [14] is a representative work. ESC, standing for Extended Static Check-

ing, is an interactive extension of compile-time program checking. User can add con-

straints to provide more information of the program via a pre-defined language, such as

pre-conditions and post-conditions. These additional information can help static checker

probe the source code, and generate documentation. This work affects the following

checking tools a lot.

2.2 Dynamic Program Analysis

Dynamic Program analysis is to analyze source code by executing it on a real or virtual

processor. In some cases, we may need special external library to collect program status

and run-time information.

2.3 Concolic Testing

Last one decade saw a number of attempts to merge static and dynamic program analysis.

In recent years, the concept of “directed random testing” has been brought up, and

immediately became the major pioneer work.

In the following, we list the leading researches on directed random testing.

1. DART [15]:

An automatic component testing tool that guarantees full coverage of path testing.

11



It uses symbolic evaluation and concrete evaluation to find associations between

inputs and conditional control variables, and generates feasible input to cover all

execution path of program.

2. CUTE [25]:

It is the follow up work of DART. CUTE stands for “Concolic Unit Testing Engine

for C”. Concolic is a combined word of concrete and symbolic, and the mechanism

of combining these two analyses is admirable.

3. EGT [10]:

It is very similar to DART and can effectively generate the test case to make program

crash.

4. EXE [11]:

It is EGT’s following work, which uses the fork model, rather than the iteration

model of DART and CUTE. The “best-first” searching method is admirable, which

can effectively speed up the testing process.

5. Synergy[16]:

Synergy uses DART’s concolic execution and combines the property checking tech-

niques. It perfectly combines testing and verification techniques. With its algorithm,

we can check if the bug truly exists, or the software can be verified.

2.4 Ad-hoc Techniques

Traditionally, we can only exploit uninitialized data manually by guessing the program

execution path, and use debuggers to measure the variable address in the memory, and

then collect variables address overlapping information.

With this work, we can use computer’s computing power and enumeration ability to

help people to do this.

2.5 Comparison of Program analysis

Table 1 shows comparisons of main program analysis methods.

From the table, we can see that concolic testing is both source code aware and runs

the program concretely. Thus concolic testing will have the advantages from static and

12



Program Source Code Language Complete Sound
Execution Inspection Dependant

Static Analysis No Yes Yes Yes No
Dynamic Analysis Yes No No No Yes
Concolic Testing Yes Yes Yes No Yes

Table 1: Comparison of Program Analysis

dynamic program analysis. Concolic testing is sound, since it launches the program in

each iteration, and every error run is caused from a real test case input. However, concolic

testing cannot guarantee completeness, since the coverage of concolic testing will be bound

by the ability of constraint solver.
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3 Design and Implementation

In this chapter we discuss the design and implementation of our concolic testing frame-

work, ALERT, and the Unspecified Software Feature Checker.

3.1 ALERT

ALERT stands for “Automatic Logic Evaluation for Random Testing.” ALERT is a

software testing framework combining static and dynamic program analysis techniques.

ALERT project started in fall, 2006, by the members of Software Quality Laboratory,

College of Computer Science, National Chiao Tung University, under the supervision of

Prof. Shih-Kun Huang, ALERT is a concolic software testing platform with various

features and many applications.

3.1.1 ALERT System Architecture

The components in ALERT automatic testing framework and how the program is pro-

cessed to become “self-testing program” are shown in Figure 5.

There are three phases to process the original source code:

1. Simplification

Before inserting our checking code in the original source file, we perform source code

simplification for reducing the complexity of analysis procedure. We mainly simplify

the program statements, and many sugar forms in the language are eliminated. After

simplification, the program still preserves the original semantics.

We use CIL [24] (C Intermediate Language) for source-level transformation. CIL is

developed in Berkeley, which can parse C language into syntax tree and express it

using tuple type in OCaml [2], and users can adjust the syntax tree for specified pur-

poses. After the precessing on syntax tree, the syntax-tree will be interpreted back

to simpler C language, which can be accepted by standard C compilers. CIL pro-

vides a high-level representation of C programs, and it is distributed with modules

for helping C program analysis.

In ALERT, we mainly take advantage of CIL to perform the following simplifica-

tions:

14
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Figure 5: ALERT System Architecture
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(a) Loop statements (while, for and do-while) are changed to a single while(1)

looping with goto statements for break.

(b) All branch statements (if, if-else, if-elseif-else and switch) are

rewritten into if-else statements.

(c) All predicates in the if-statement are transformed to a binary relation with

atomic variables.

Besides, we also enable the following CIL modules for advanced simplification:

(a) Simple Three-Address Code

Reduce the complexity of program expressions, give us a form of three-address

code, and preserve the semantics of the original program. The unified expres-

sion enables us not to deal with various program syntax.

(b) Simple Memory Operations

Allow variables that contain pointer operation to be simplified via introduction

of well-typed temporaries. This promises that each expression will contain only

one-level pointer dereference, and reduces the complexity of handling pointer

arithmetic.

(c) One Return

This transformation makes each function with only one return statement. With

this assurance, we can safely insert codes which should be executed when re-

turning from a called function at the unique return point of the function.

2. Instrumentation

As the simplification phase, we also use CIL as our instrumentation tool. It is

also used by [15, 25, 10, 11]. We use this tool to modify the program to collect

the constraint data when the program executes, without modifying the semantic of

the original program. In the instrumentation phase, we insert symbolic execution

function codes into the test program. The objective and the implementation detail

will be discussed in “Symbolic Execution” section (3.1.4).

3. Compiling

We use GNU’s C compiler (gcc) to compile the self-testing source code to the self-

16



testing program. In the compilcation process, we link our symbolic execution library

and theorem prover library.

3.1.2 ALERT Execution Logic

Execution logic of ALERT is shown in Figure 6.

When the first time testing starts, a set of initial values as the seed input is given.

While the “self-testing” program executes, the constraints of execution path are collected

by the instrumented code. If any error occurs during the execution, a bug is found. The

input of this run is saved for reproducing the fault. While the program executes and exits

normally, the last one of the constraints will be negated to make a new constraint set.

Then this new constraint set is solved by the constraint solver to generate a input, which

directs the program executions along alternative path in the next run.

3.1.3 Program Simplification

Figure 7 is an example of program simplification.

We can see the for statement (line 4-5) and the if-elseif-else statement (line

6-11) in the original program are transformed into simpler forms. The for statement is

replaced with while(1) and goto statements. The if-elseif-else statement is

rewritten into two-level if-else statement.

3.1.4 Symbolic Execution

We usually use values to indicate the program execution state, such as variables val-

ues and program counter. Symbolic execution is performed by using logic formulas to

represent the state of program execution. In symbolic execution, each executed state-

ment is transformed to a symbolic logical formula. Through symbolic execution of each

statement, these symbolic logic formulas will be combined with conjunction operators.

When the program terminated, the final conjunction-form formula is the constraints of

the execution path we just walked along.

Figure 8 is an example of program with inserted symbolic code. The predicate of dif-

ferent branches are collected by add predicate() function in line 2 and 8. Statements

are followed by a respective symbolic execution() function (line 5), which are also

used for constraint-collecting.
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Figure 6: ALERT Execution Logic
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Origional Program:

1 void testme(int i)
2 {
3 int j;
4 for( j = 0; j < 10; ++j )
5 i = 2 * j + i;
6 if (i == 10)
7 printf("if block\n");
8 else if (i == 20)
9 printf("else if block\n");

10 else
11 printf("else block\n");
12 }

Simplified Program:

1 void testme(int i )
2 {
3 int j ;
4 int __cil_tmp3 ;
5 int __cil_tmp4 ;
6 int __cil_tmp5 ;
7

8 j = 0;
9 while (1) {

10 __cil_tmp3 = j < 10;
11 __cil_tmp5 = ! __cil_tmp3;
12 if (__cil_tmp5 != 0) {
13 goto while_0_break;
14 }
15 __cil_tmp4 = 2 * j;
16 i = __cil_tmp4 + i;
17 j ++;
18 }
19 while_0_break:
20 ;
21 if (i == 10) {
22 printf("if block\n");
23 } else {
24 if (i == 20) {
25 printf("else if block\n");
26 } else {
27 printf("else block\n");
28 }
29 }
30 return;
31 }

Figure 7: Program Simplification

3.1.5 Theorem Prover Library

We use CVCL [27, 9], a descendant of *VC Systems from Stanford University, developed

under Professor Clark Barrett’s leading in New York University. CVCL is an automatic

19



Origional Program:

1 if (predicate) {
2 a = b + 37;
3 /* ... */
4 } else {
5 /* ... */
6 }

Instrumented Program:

1 if (predicate) {
2 add_prediecte(branch_id, 1, predicate);
3 /* ... */
4 a = b + 37;
5 symbolic_execution(a, OP_PLUS, b, 37);
6 /* ... */
7 } else {
8 add_prediecte(branch_id, 0, !predicate);
9 /* ... */

10 }

Figure 8: Symbolic Execution Code

theorem prover for Satisfiability Modulo Theories (SMT) problems. It can be used to

prove the validity (or, dually, the satisfiability) of first-order formulas in a large number

of built-in logical theories and their combination. We use its power of bit-level constraint

solving to automatically determine the feasible inputs that reach our goal, the given state

of program.

3.2 Unspecified Software Feature (USF) Checker

In this section we discuss the design and implementation of USF Checker. USF Checker is

based on the ALERT concolic testing framework, combining with other dynamic program

analysis tools and integrated with ALERT’s symbolic execution library.

3.2.1 USF Overview

The USF Checker uses directed random testing ability of ALERT to generate the test

inputs, and checks the existence of “out-of-specification” inputs of the program under

testing.

For the external dynamic program analysis tools, we use GDB, GNU Project Debug-

ger [1], which is a powerful debugger for program instrumentation. We use it to collect the

run-time information of the uninstrumented program, which can reflect the real situations

20



of the program during execution.

3.2.2 USF Execution Logic

Execution Logic of USF Checker is shown in Figure 9.

Following are the execution steps of USF:

1. Initialize input values for the first-run

We should give the same input to uninstrumented program and instrumented one.

Therefore, the input values of first run should be generated by instrumented pro-

gram. We modify the initialized part of ALERT, with an option for producing the

initial input values to an external file, which can be used for the input values for

the first uninstrumented run.

2. Launch the uninitialized program via GDB script

Use our GDB script to collect the “real” run-time information from the uninstru-

mented program. The details of GDB script will be discussed in the “Integration

with GDB” section.

3. Run the instrumented program

In this step, the instrumented program is launched in the same way as traditional

concolic testing. However, the “extra” information collected in the step 2 is mixed

into the execution.

4. Convert the output from instrumented program

The outputs from one ALERT’s execution contain too much information, but for the

uninstrumented program, only raw inputs are needed. For this reason, we should

convert the output generated by instrumented program to the form that original

program accepts.

5. Repeat step 2 to 4, until all the paths of programs are enumerated, or a bug is

found.

Execution Logic of ALERT with USF Checker is shown in Figure 10.
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Figure 9: The USF Execution Logic

3.2.3 Symbolic Value Propagation

In an assignment expression, the evaluation result of right-hand-side will be assigned to

the variable in the left-hand-side. If the evaluation result of right-hand-side is a symbolic

value, then left-hand-side variable will also get the “symbolic” attribute.

The USF Checker extends this concept. In our implementation, we model not only the

normal assignment-based symbolic value propagation but also unconventional symbolic

value propagations. In order to “initialize” the uninitialized local variables, we should

model the symbolic relation between the values left in stack from previous function calls

and the local variables in the current function. This relation is lost in the traditional

concolic testing, since the frames of function calls in program stack are changed due to

the extra local variables and the function calls introduced by instrumentation.

3.2.4 Stack Map

We use storage concept to model the operations of random access memory when the

program executes. We use a hash-based map to implement the storage, named StackMap.

Each item in the hash map is a structure called StackObject, used to store both byte-level

symbolic and concrete value. The definition of StackObject is shown in Figure 11.

Refer to the code in Figure 11. The first three fields in the structure are used to store

symbolic values: name, type and cn, which save the symbolic name, type and context

number of the variable, respectively. This three-tuple is sufficient to uniquely locate one
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Figure 10: ALERT with USF Checker Execution Logic
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1 struct StackObject{
2 string name;
3 TypeName type;
4 int cn;
5 int which_byte;
6 unsigned char byte_value;
7 };

Figure 11: Definition of struct StackObject

variable in the program. The following field, which byte, indicates which byte of the

variable for this StackObject item. The last field is used to store concrete values.

3.2.5 Integration with GDB

We implement a GDB script to automatically collect the run-time stack transition in-

formation. The GDB interrupts program execution at each function’s entry point. The

“info locals” and “info args” commands in GDB list all local variables and arguments in

the current stack frame. Every local variable and argument’s addresses in the function

are recorded.

Algorithm of GDB script is shown in Figure 12.

3.2.6 Integration with ALERT

We insert the following two functions for each local variabe and argument in every func-

tions in the program under test for simulating unconventional data propagation via the

values left in stack:

1. memstore(const char *name, void *ptr, const TypeName type)

memstore() will be called for each local variable and arguments before returning

from the function. It is used for storing variable’s symbolic and concrete value to

its “real” address of the memory in byte-level precision. After the values are stored,

they can be loaded via the memload() function.

Algorithm of memsotre is shown in Figure 13:

2. memload(const char *name, void *ptr, const TypeName type)

memstore() will be called for each local variable on entering each function. By

examining the assembly code of the entry point of a function, we can observe that

the stack pointer will be subtracted by a value, the frame size. The newly allocated
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1: P ← the uninstrumented program
2: G← new GDB wrapper
3: A← ∅ {Address information Map}
4: F ← return value of issuing “info functions” command to G

5: for all f in F do
6: G set break point at f

7: end for
8: issue “run P” command to G

9: loop
10: Name← function name of the break point
11: if P executs over then
12: break
13: end if
14: L← return value of issuing “info locals” command to G

15: R← return value of issuing “info args” command to G

16: for all var in L ∪ R do
17: X ← return value of issuing “output &var” command to G

18: A← A∪ < i, X >

19: end for
20: end loop
21: for all < name, addr > in A do
22: output < name, addr > to the “meminfo” file
23: end for

Figure 12: Algorithm of GDB Script

space is used for storing local variables. After allocation, the values of local variables

are initialized. memstore() is used to “initialize” each local variables, and simulates

the local variables “initialized” by the values left in the previous function frame,

and assigns both symbolic and concrete value for the variables.

Algorithm of memsotre is shown in Figure 14:

Besides, we also add an update addrmap() function in ALERT’s enter procedure().

update addrmap() function is used to load the address information of local variables

in current function frame.
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1: Name← name of the local variable or argument
2: Pointer ← pointer to the local variable or argument
3: Type← type of the local variable or argument
4: Addr ← “real” address of Name from “meminfo” file
5: S ← size of Type {size in bytes}
6: C ← value dereferenced from Pointer as Type

7: for i = 0 to S do
8: O ← new StackObject

/* For Symbolic Value */
9: O.name← Name

10: O.cn← Current Context Number
11: O.type← Type

/* For Concrete Value */
12: O.which byte← i

13: O.byte value← i-th byte of C

14: StackMap← StackMap∪ < Addr, O >

15: Addr ← Addr + 1
16: end for

Figure 13: Algorithm of memstore()

1: Name← name of the local variable
2: Pointer ← pointer to the local variable
3: Type← type of the local variable
4: Addr ← “real” address of Name from “meminfo” file
5: S ← size of Type {size in bytes}
6: for i = 0 to S do
7: if There is no object at Addr in StackObject then
8: break
9: end if

10: O ← StackMap[Addr]
/* For Symbolic Value */

11: x← get CVCL expression of Variable (O.name, O.cn)
12: y ← get CVCL expression of Variable (Name, Current Context Number)
13: s← CVCL expression of “EXTRACT i-th byte from x”
14: l ← CVCL expression of “EXTRACT i-th byte from y”
15: Expr ← CVCL Expression (s = l)
16: push constraint(Expr)

/* For Concrete Value */
17: Pointer[i]← O.byte value

18: Addr ← Addr + 1
19: end for

Figure 14: Algorithm of memload()
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4 Experimental Results

We conduct experiments of the programs that use uninitialized variables to prove the

applicability of our method. Our experimental environment is Intel R© Pentium R© D

CPU 3.40GHz, with FreeBSD 6.2-RELEASE-p7 and gcc in the base system (version

3.4.6 [FreeBSD] 20060305.) We use our framework to check the following three programs:

4.1 Test1: Overlap of Integer Variables

Program Test1 has an integer-type uninitialized local variable in the danger() function,

while its address overlaps the address of local variables in the previous called function,

func1(). A permission checking failure will occur if the uninitialized variable matches

the specified value. We use this test to demonstrate that our framework can handle

symbolic value propagation via address overlap.

The execution paths of Test1 are shown in Figure 16.

We find this program has three execution paths, and the error path is Path 2, which

is triggered when the uninitialized local variable, data in function danger() is 5.

By using CUTE and ALERT (without USF Checker), we have the following itera-

tions:

Iteration i (Input) data (∗) Unwanted Feature Triggered
1 0 0 No
2 2147483647 -2747 No

∗ Uninitialized Variable

Table 2: CUTE and ALERT (without USF Checker) Iterations of Test1

The corresponding stack transition analyzed by USF is shown in Figure 17.

We can observe that the local variable data in danger() and local variable i in

previous called function, func1() are with the same address. The USF Checker notices

this address overlapping relation, and reflects it into concolic execution.

By using ALERT with USF Checker, we have the following iterations:

From Table 3, because of the introduction of address overlapping information pro-

vided by USF, ALERT can fully enumerate three paths in the program, and successfully

trigger the unwanted features.
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1 #include <stdio.h>
2

3 void func1(int arg)
4 {
5 int i = arg;
6 printf ("func1(): i == %d\n", i);
7 }
8

9 void func2(int arg)
10 {
11 printf("func2(): arg == %d\n", arg);
12 }
13

14 void danger(int dummy)
15 {
16 int data;
17 printf ("danger(): data == %d\n", data);
18 if (data == 5)
19 printf("access permit!\n");
20 else
21 printf("access deny!\n");
22 }
23

24 int main(int argc, char *argv[])
25 {
26 int n;
27 FILE *f;
28

29 f = fopen("input", "r");
30 fscanf(f, "%d", &n);
31

32 if (n < 10)
33 func1(n);
34 else
35 func2(n);
36 danger(n);
37

38 fclose(f);
39

40 return 0;
41 }

Figure 15: Test1: Overlap of Integer Variables
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Figure 16: Execution Paths of Test1
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Figure 17: Stack Transition of Test1
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Iteration i (Input) data (∗) Unwanted Feature Triggered
1 0 0 No
2 5 5 Yes
3 2147483647 2147483647 No

∗ Uninitialized Variable

Table 3: ALERT with USF Iterations of Test1

4.2 Test2: Two Short Variables Flowing into One Integer Value

Program Test2 has an integer-type uninitialized local variable in the danger() function,

while its address overlaps the addresses of local variables in the previous called function,

func1(). A permission checking failure will occur if the uninitialized variable matches

the specified value. We use this test to demonstrate our framework handles symbolic

value loading in byte-level precision.

The execution paths of Test2 are shown in Figure 19.

We find this program has three execution paths, and the error path is Path 3,

which is triggered when the uninitialized local variable, data in function danger()

is 2134843151 (0x7f3f1f0f).

By using CUTE and ALERT (without USF Checker), we have the following itera-

tions:

Iteration i (Input) i2 (Input) data (∗) Unwanted Feature Triggered
1 0 0 483 No
2 11 0 -10755993 No

∗ Uninitialized Variable

Table 4: CUTE and ALERT (without USF Checker) Iterations of Test2

The corresponding stack transition analyzed by USF is shown in Figure 20.

We can observe that the integer-type local variable data in danger() and short-

type local variable i in previous called function, func1() are with the same address.

Moreover, the address of short-type local variable i2 in func1() is also in the space

of data. The USF Checker notices the address overlapping relation between these three

variables. Since we model the stack memory in the byte-level precision, which reflects

these relations into concolic execution, USF can establish the following two symbolic

propagations:

1. i in func1() to the lower two bytes in the data in danger()
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1 #include <stdio.h>
2

3 void func1(short arg, short arg2)
4 {
5 short i = arg;
6 short i2 = arg2;
7 printf ("func1(): i == %d\n", i);
8 printf ("func1(): i2 == %d\n", i2);
9 }

10

11 void func2(int arg)
12 {
13 printf("func2(): arg == %d\n", arg);
14 }
15

16 void danger(short dummy, short dummy2)
17 {
18 int data;
19 printf ("danger(): data == %d\n", data);
20 if (data == 2134843151)
21 printf("access permit!\n");
22 else
23 printf("access deny!\n");
24 }
25

26 int main(int argc, char *argv[])
27 {
28 short n, n2;
29 FILE *f;
30

31 f = fopen( "input-short2int", "r" );
32 fscanf( f, "%hd", &n );
33 fscanf( f, "%hd", &n2 );
34

35 if ( n > 10 )
36 func1( n, n2 );
37 else
38 func2( n );
39 danger( n );
40

41 fclose(f);
42

43 return 0;
44 }

Figure 18: Test2: Two Short Variables Flowing into One Integer Value
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Figure 19: Execution Paths of Test2
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Figure 20: Stack Transition of Test2
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2. i2 in func1() to the higher two bytes in the data in dnager()

By using ALERT with USF Checker, we have the following iterations:

Iteration i (Input) i2 (Input) data (∗) Unwanted Feature Triggered
1 0 0 0xbfbfe774 No
2 0x000b 0xffff (-1) 0x000bffff No
3 0x7f3f 0x1f0f 0x7f3f1f0f Yes

∗ Uninitialized Variable

Table 5: ALERT with USF Iterations of Test2

From Table 5, because of the introduction of address overlapping and variables com-

bining information provided by USF, ALERT can fully enumerate three paths in the

program, and successfully trigger the unwanted feature.

4.3 Test3: One Integer Variable Flowing into Two Short Vari-

ables

The following program has two short-type uninitialized local variables in the danger()

function, while their addresses overlap the address of integer local variable in the previous

called function, func1(). A permission checking failure will occur if the two uninitialized

variables match the specified value. We use this test to demonstrate that our framework

handles symbolic value storing in byte-level precision.

The execution paths of Test3 are shown in Figure 22.

We find this program has four execution paths, and the error path is Path 4, which is

triggered when both the uninitialized local variable, data and data2 in function danger

equal to 3871 (0x0f1f) and 16255 (0x3f7f) respectively.

By using CUTE and ALERT (without USF Checker), we have the following itera-

tions:

Iteration i (Input) data (∗) data2 (∗) Unwanted Feature Triggered
1 0 6213 -861 No
2 11 2 214 No

∗ Uninitialized Variable

Table 6: CUTE and ALERT (without USF Checker) Iterations of Test3

The corresponding stack transition analyzed by USF is shown in Figure 23.
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1 #include <stdio.h>
2

3 void func1(int arg)
4 {
5 int i = arg;
6 printf ("func1(): i == %d\n", i);
7 }
8

9 void func2(int arg)
10 {
11 printf("func2(): arg == %d\n", arg);
12 }
13

14 void danger(int dummy)
15 {
16 short data, data2;
17 printf ("danger(): data == %hd\n", data);
18 printf ("danger(): data2 == %hd\n", data2);
19 if (data == 3871) {
20 if (data2 == 16255)
21 printf("access permit!\n");
22 else
23 printf("access deny!\n");
24 } else
25 printf("access deny!\n");
26 }
27

28 int main(int argc, char *argv[])
29 {
30 int n;
31 FILE *f;
32

33 f = fopen( "input-int2short", "r" );
34 fscanf( f, "%d", &n );
35

36 if ( n > 10 )
37 func1(n);
38 else
39 func2(n);
40 danger(n);
41

42 fclose(f);
43

44 return 0;
45 }

Figure 21: Test3: One Integer Variable Flowing into Two Short Variables
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Figure 22: Execution Paths of Test3
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Figure 23: Stack Transition of Test3
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We can observe that the short-type local variables data and data2 in danger(),

and integer-type local variable i in previous called function, func1() are with the same

address. Moreover, the address of local variable data2 in danger() is also in the

space of i. The USF Checker notices the address overlapping relation between these

three variables, and reflects this relations into concolic execution. USF can establish the

following two symbolic propagations:

1. Higher two bytes of i in func1() to data in danger()

2. Lower two bytes of i in func1() to data2 in dnager()

By using ALERT with USF Checker, we have the following iterations:

Iteration i (Input) data (∗) data2 (∗) Unwanted Feature Triggered
1 0 0 0 No
2 11 0 11 No
3 0x0f1f0000 0x0f1f 0x0000 No
4 0x0f1f3f7f 0x0f1f 0x3f7f Yes

∗ Uninitialized Variable

Table 7: ALERT with USF Iterations of Test3

From Table 7, because of the introduction of address overlapping and variables com-

bining information provided by USF, ALERT can fully enumerate four paths in the pro-

gram, and successfully trigger the unwanted feature.

4.4 Summary

Table 8 shows comparision of UFS checker and traditional concolic tester (CUTE).

Generated Paths UFS CUTE Unwanted Feature Founded UFS CUTE
Test1 3 2 Test1 Yes No
Test2 3 2 Test2 Yes No
Test3 4 2 Test3 Yes No

Table 8: Comparison of UFS Checker and CUTE

We find that our ALERT with UFS checker can traverse the program with more paths.

And since we model the unconventional symbolic data propagation, we can effectively

trigger the unwanted features of a program.
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5 Conclusion

Our work presents a tool which can effectively find the “acceptable wrong inputs” which

cause the program to act abnormally. These inputs are called the “out-of-specification”

inputs, and the presence of this kind of input means the program implementation does

not exactly meet its design.

We do not simulate all local variables operations in stack when symbolic execution,

such as stack space allocation, since the addresses of local variables depend on the com-

piler, operating system and computer architecture. Simulating all combinations of above

three items is tedious, and cannot be fully enumerated. Instead, once we discover a mem-

ory overlap phenomenon that can cause a fault, we will calculate if we can repeat it in

other combination of compiler, operating system and computer architecture by modifying

the arguments when conducting symbolic execution.

Our USF Checker extends the ability of concolic testing. The two phase execution

and simulation of real memory operations push the concolic testing closer to the concrete

side of the program testing. With our work, the information lost in the instrumenting

process is recovered, thus we can get more accurate program testing result.

5.1 The Uncertainty Principle

Currently, concolic testing schemes are all done by an instrumented program, and collects

information only from it. This may lose important information of the original (uninstru-

mented) program. In our work, we collect the real information from the original program

first, then mix them into concolic execution. So concrete part of our testing is closer to the

program’s real behavior. That is why we can capture and resolve the “real” unspecified

software features.

5.2 Future Work

ALERT platform with the USF Checker is a promising tool. After resolving unspecified

software features, we can further manipulate the program behavior. In other words, we

can evaluate the program’s vulnerability.

1. More uninitialized parts
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(a) Union data type

Union data type is a special structure in C/C++ language, which can store

more types with different size and share with the same space. If we use larger

type before smaller type, the bytes used by larger type will not be cleared, and

the left-over values can be used for other way.

(b) Unused padding bytes

When conducting experiments, we found that the padding for alignment be-

tween a function’s two arguments may change from the options given to the

compiler. These unused padding bytes may also be used for storing information

and shell codes for malicious usage.

2. Integration with other dynamic analysis tools

(a) Valgrind [3]

In this thesis, we choose GDB as the tool for run-time information collection.

However, GDB’s capability is limited. For example, we cannot retrieve the

information such as external library calls and malloc()/free() operations

in the heap section. Seward and Nethercote’s work [26] presented a method

to shadow memory by a piece of metadata, called a definedness bit, which can

globally locate used but not defined error. We would integrate Valgrind into

our framework to improve the accuracy in testing.

3. Exploit Generator

With the tool like Metasploit [23], whose ability of customizing attacking, and the

ability to find the attacking point for our tool, we can develop a powerful exploit

generator. The symbolic propagation chain in the program found by our testing

framework can be used for advanced attacks. That is, we can inject exploit code

through the symbolic propagation chain
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