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Speeding up SEA Algorithm for Elliptic Curves

Student: Yung-Hsiang Liu Advisor: Dr. Rong-Jaye Chen

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

In 1985, Miller proposed the use of elliptic'cunves in puiky cryptosystem, and so did Koblitz in
1987. The rational points of an ellibéic _cur\_/_(_e_f(:)_rm_s an addigroup. The discrete logarithm problem
of this group is called elliptic curve _pliscrete_ logérithm)b_lém (ECDLP). There is no method to solve
ECDLP efficiently. The security of é_itig't.i-c" cu._rve.'.'(::ryp't'dslagm (ECC) is based on ECDLP. Therefore,
The key of ECC can be shorter than that of RS-A |n order to reaelsame secure strength.

In using the elliptic curve cryptosystem, it is importantsiect a secure elliptic curve. There are
three methods to select secure elliptic curves. The sugdj@séthod is counting the number of rational
points of elliptic curves generated randomly. Therefore can determine whether a randomly generated
elliptic curve is suitable for the security consideratibtence, solving the point counting problem plays
a crucial role in the design of elliptic curve cryptosysterB&hoof-Elkies-Atkin(SEA) algorithm is an
important method to solve the point counting problem. Irs tthiesis, we propose strategies of Atkin
primes, Elkies primes, and Baby-step-giant-step. It im@sdhe original SEA algorithm a lot for elliptic

curves defined over big prime fields.

Keywords: elliptic curve, SEA algorithm, Atkin prime, Elkies prime.
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Chapter 1

Introduction

The use of elliptic curves in public-key cryptography istfpeoposed in the works of Koblitz[13]
and Miller[17]. Each elliptic curve defined over a finite fiétms an abelian group. The secure
strength is based on the discrete .Iogarithm prpbl-e'm(DLIﬂ)isfgroup, which is called elliptic
curve DLP(ECDLP). The public-key crypte.):s;ystéms_,'are baseldavd mathematical problems.
For example, integer factorizati(')h'afl.(-fthe DLP on finite Belce hard mathematical problems,
and so is ECDLP. The previous two p.roble-m.s. can be solved iregpbnential time via index
calculus method and the number field sieve. However, thexrééan no known sub-exponential
algorithm to solve ECDLP so far.

Generally, in order to break the elliptic curve cryptosystd&=CDLP needs to be solved.
Because ECDLP is much harder than the other hard problelpsiogturve cryptography(ECC)
can reach the same secure strength as RSA with the key oéshargth. Table 1.1 is the key
size comparison[26].

Some protocols based on ECC take advantage of shorter key lsizhe use of ECC in
public-key cryptosystem, there are ECDSA[11], ECIES[2]d &£CMQV[14] corresponding

to digital signature, encryption, and key-exchange pmcThe idea of identity-based en-



Symmmetric Key| 80 | 112 | 128 | 192 | 256

RSA and DH 1024 | 2048| 3072 | 7680 | 15360

Elliptic Curve 160 | 224 | 256 | 384 | 521

Table 1.1: NIST Recommended Key Sizes(bits)

cryption scheme was proposed by Shamir in 1984. Boneh amdklfrgproposed the practical
scheme by using the Weil pairing, a bilinear pairing of é¢ltpcurves. It is also called the
pairing-based cryptography.

There is no efficient algorithm for solving ECDLP. Neverttsd, there are some properties
which make elliptic curves weak. Léf be an elliptic curve defined over a finite fiel and
#E(F;) = n. The curves of = ¢ is called anomalous curves, attF,) = (F,, +). The
explicit isomorphism fromt (F,) t_(')'.<]F_q, +)/can F.)e-g'omputed. So, ECDLP can be transformed
to a division over the finite fielﬂ’q. Addit_i.al;'élly, .the_"bilinear pairings, Weil pairing and €&at
pairing, corresponding to MOV 'ait'taf:.i([la and FR attackgfk used for solving ECDLP. Let
r be a big prime factor oftE/(FF,). ECDLP ca-m. be transformed to DLP over the extension field
I« of IF,, wherek is the smallest positive integer, called the embeddingeskegf £, such that
r|l¢® — 1. Besides, iff, is an extension field of a base field, the curves can be transfibto the
abelian variety by use of Weil descent method. Then, thexitmdéculus can be applied to the
DLP on the abelian variety[8]. It is feasiblelif, = F;- for a smalls.

The methods mentioned above are named “isomorphism aftask<lliptic curve which
is suitable for cryptography needs to obstruct isomorplagacks. Explicitly, a curve which is
good for cryptography has to satisfy the following propesti

(1) n has a large prime factot, orn = r is prime.

2)n #q.



(B)ntq —1for1 <i<20.

(4) ¢ = p*, wherep is a prime, andk is eitherl or a prime.

There are three techniques to generate the secure curvesis Gubfield curves[25], also
called a curve of Koblitz type. The coefficients of this kintdcorves are in a small subfield
of F,. Another technique is complex multiplication[1]. Thesevas also have some features.
Although there are no known attacks directed toward theseesuthe security of these curves
is in doubt. Nowadays, the point counting methods on randomes, a third technique, is
most suggested because there is no character for theses clByehis method, we choose a
finite field first, and generate the coefficients of ellipticvas randomly. Schoof gives the first
polynomial time algorithm, of time comple_xity_(l_o_g8 q), to count the number of rational points
overlF,[20]. This algorithm profits'"fro_m t_he _i_mp_.rO\-/.'ements of Elkeasd Atkin, and is therefore
called Schoof-Elkies-Atkin(SEA) algorit_h‘r-hﬁl]. SEA alghhm improves Schoof's original
algorithm so that the complexity :(é'(l:o.;gb q)., ir.'l.'s_tea:d'.

In this thesis, we propose three h-euristiés for SEA algorittOne is for the selection of
Atkin primes. Another is to determine the power of the isggeyctle method of Elkies primes.
The other is to bound the time used in the baby-step-giapt-at SEA algorithm. These three
heuristics can help us speed up SEA algorithm. The followimgvs how the rest of the thesis
organized.

In Chapter 2, we describe relevant mathematical backgsotordhis thesis, including the
theories and properties of abstract algebra, the defisiodrgroups, rings, and fields, and the
properties of the group structure. Some mathematical diefinof algebra used later is also
listed properly. The general elliptic curves and the altigurves over prime fields of charac-

teristic> 3 are introduced. We also introduce some theories developeldeoelliptic curves



overC for the reason that they are closely linked with Elkies’ imy@ments. The last js-adic
numbers. In the implementation of SEA algorithm, the Heéadegmma forp-adic fields is
used.

In Chapter 3, we introduce the point counting problem fapat curves over finite fields.
The Schoof’s idea for point counting, and the improvememtshfAtkin's and Elkies’ works is
also described here. After SEA algorithm is described, we girough complexity analysis of
the algorithm. The previous improvements are listed in @vap, including isogeny cycles[5],
index of Atkin primes[9], virtual method[9], and “ChinesecaMatch” method[12].

In Chapter 5, we propose our two heuristics for SEA algoritkive also describe the reason
for the heuristics. Next, the implementation details arelrtbmerical results are shown. The

conclusion is given in section 6.



Chapter 2

Mathematical Backgrounds

The theories of SEA algorithm is developed from algebra dgelaaic curves. Here, we intro-
duce algebra first, and then elliptic curves, of algebraivesir After that, the-adic number is

also mentioned.

2.1 Abstract Algebra™;

The rational points of an elliptic curve forms a group. A léfpooperties of elliptic curves are

from the abstract algebra. So, here we introduce the theeforss.

2.1.1 Group Theory

A binary operation: on a setS is a function mapping x S into S. In other words,S is closed
under the operation. And (S, =) is called a binary structure. An element S is an identity
elementfor«if exs = s=e = sforall s e S. For somez € S. The inverse element af is

a' € Ssuchthatt/ «a =a=+d =e.

Definition 2.1 (Group) A group{G, =) is a binary structure such that the following axioms are

satisfied:



1. (Associativity) For all, b, c € GG, we have
(axb)xc=a=(b=c).

2. (Identity)G contains the identity element fer

3. (Inverse) For alk € GG, there exists the inverse elemenof a in G.

If the cardinality of a groug- is finite, then( is a finite group. The number of elements in
G called the group order. A groufd-, «) is abelian if« is commutative.
If H < G and(H, =) is a group, ther{ is a subgroup of7. Itis denoted byH < G or

G>H,andH <G orG > HmeansH < GbutH #d.

Theorem 2.2. Let (G, =) be a group and € G. Denotea = a by a?, and so on. Then
H-2U0 . %)
is a subgroup of~ and is the smallest suBg_r_oup @fthat contains:. H is called the cyclic

subgroup of7 generated by, and deno_ted bya). :

If there is some elemeitin a groupG such thata) = G, thenG is cyclic. Anda is called

a generator ofs. Moreover, every cyclic group is abelian.

Definition 2.3 (Finitely generated group)Let G be a group and lei; € G fori € I. The
smallest subgroup af containing{a;|i € I} is the subgroup generated ky;|i € I}. If this
subgroup is all of7, then{a;|i € I} generates’ anda, are generators df. If there is a finite

set{a;|i € I} that generate&, thenG is finitely generated.

Note that every group of finite order is finitely generated.

Theorem 2.4(Theorem of Lagrange)Let H be a subgroup of a finite group. Then the order

of H is a divisor of the order of;.



2.1.2 Homomorphisms and Factor Groups
A map ¢ of a groupXG, =) into a group(G’, o) is a homomorphism if
¢(a=b) = ¢(a) o p(b) foralla,be G

Definition 2.5 (Image and inverse imagelet¢ : X — Y, andletA € X andB < Y. The
image¢|[A] of AinY underg is {¢(a)|a € A}. The setp[X] is the range ofs. The inverse

image¢![B] of Bin X is {zx € X|¢(z) € B}.

Theorem 2.6. Let ¢ be a homomorphism of a grodpinto a groupG’.
(1) If e is the identity element af7, theng(e) = ¢’ is the identity element i
(2) If a € G, theno(a™) = ¢(a)™. B) If H < G, theng[H] < G'. (4) If K’ < @', then

oK'l <G.

Corollary 2.7. Let¢ : G — G' be a hom_.o@rphismlof groups and éébe the identity of7’.
Then,¢![{¢'}] is a subgroup of7, called the ke_rne'.l'odb, and is denoted by Kepj. Moreover,

¢ is one-to-one if and only if Ketf) = {e}.

A homomorphism ofA into itself is an endomorphism of.
Definition 2.8 (Isomorphism) Let ¢ : G — G’ be a homomorphism, antlis one-to-one and
onto. Theng is an isomorphism, and' is isomorphic toG’, denoted byG =~ G'. G andG’

have the same group structure.

An automorphism ofd into itself is an automorphism of.

Theorem 2.9 (Fundamental Theorem of Finitely Generated Abelian Grhupsery finitely

abelian groug- is isomorphic to a direct product of cyclic groups in the form

Tiri X Dora X oo X lorn X L X T X ... X Wb
Do Pn 9

Py

7



wherep; are primes, not necessarily distinct, anére positive integers.

Let H < G. The subset H = {ah|h € H} of G is the left coset of H containing, while
the subsetia = {ha|h € H} is the right coset of H containing A subgroupH of a groupG
is normal ifvg € GG

gH = Hg.
Note that all subgroups of abelian groups are normal.

Theorem 2.10. Let H be a subgroup of a group. Then left coset multiplication is well defined
by the equation

(aH)(bH) = (ab)H

if and only if H is a normal subgroup @f.

Let H be a normal subgroup ©#. The:ﬁ t_ﬁé cbéets;df form a group/H under the binary
operation(aH)(bH) = (ab)H. The grduhé/_li'-i's the factor group (or quotient group) 6fby

H.

2.1.3 Rings and Integral Domains

Definition 2.11 (Ring). A ring (R, +,-) is a set with two binary operations, which we called
addition and multiplication, defined aR such that the following axioms are satisfied:

(1) (R, +) is an abelian group.

(2) Multiplication is associative.

(3)Va,b,c e R,

a-(b+c)=a-b+a-c, and(a+b)-c=a-c+b-c

For ringsR andR’, amapy : R — R’ is a homomorphism ifa,b € R

8



(D) o(a+b) = ¢(a) + ¢(b).
(2) p(ab) = d(a)¢(b).

An isomorphismy : R — R’ is a homomorphism that is one-to-one and onto. The ridgs
andR’ are then isomorphic. A ring in which the multiplication istmutative is a commutative
ring. The multiplication identity element of a ring is callunity.” A ring which contains
the unity is called ring with unity, and an elemeanis a unit of ring with unity if it has the
multiplicative inverse. A division ring is a ring with unityf the property that every nonzero

elementis a unit.

Definition 2.12 (Field). A field is a commutative division ring. Hence, a fi€lH, +, -) satisfies
(1) (F, +) is a abelian group.
(2) F* = F\{0}. (F*,-) is a abelian group:

(3) Distributive law.

Let R be a ring. The seR[z] of.all‘polynomials in an indeterminatewith coefficients in
R is a ring under polynomial addition and multiplication.

Definition 2.13(ldeal) An additive subgroupV of a ring satisfying the properties
aN € N and Nbc N foralla,be R

is an ideal.

Let NV be an ideal of a ring?. Then the additive cosets &f form a ring R/N with the

binary operations defined by
(a+N)+(b+N)=(a+b)+N

and
(a+N)(b+ N)=ab+ N.

9



TheringR/N is the factor ring (or quotient ring) a® by N.

Definition 2.14 (Maximal ideal) A maximal ideal of a ringR is an idealM different from R

such that there is no proper ideslof R such thatM = N < R.

Definition 2.15 (Prime ideal) An ideal N # R in a commutative ringr is a prime ideal if

ab € N implies that either e N orbe N fora,b € R.

If @ andb are two nonzero elements of a ridgysuch thatub = 0, thena andb are zero

divisors. An integral domain is a commutative ring with yraind contains no zero divisors.

Theorem 2.16. Every finite integral domain is a field.

Theorem 2.17. For a commutative ringz with unity:
(1) Anideal M of R is maximal if_énd only ifR/M i a field.
(2) Anideal N of R is prime if and only ifR-/N is an integral domain.

(3) Every maximal idea of is a prime ideal.
Corollary 2.18. If pis a prime, therZ, is a field.

The characteristic of the ring is the smallest positive integersuch that.-a = 0 Va € R.

If no such positive integer exists, théhis of characteristi©.

Theorem 2.19. Any integral domainD can be enlarged to a fielél such that every element of

F' can be expressed as a quotient of two elemenis3.of

2.1.4 Algebraic Closure and Finite Fields

If a subsetF” of a field F' is a field, thenF” is a subfield off". A field E is an extension field of

Fif F'is a subfield of&.

10



Definition 2.20(Degree) If an extension field” of a field F' is of finite dimensiom as a vector

space over’, thenF is a finite extension of degreeover £. It is denoted by E : F'| = n.

Theorem 2.21(Kronecker’s Theorem)Let F' be a field and leff(z) be a non-constant poly-

nomial in F'[x]. Then there exists an extension figldof /" and anu € £ such thatf («) = 0.

A field F'is algebraically closed if every non-constant polynomiakiz| has a root inF.

An algebraic extensioR’ of F' is the algebraic closure @f if F is algebraically closed.

Theorem 2.22. Every field has an algebraic closure.

A field of finite order is called a finite field.

Theorem 2.23. Let p be a prime. IfE is a finite field of characteristig, thenE contains exactly

p" elements for some positive in_téger _

Theorem 2.24. Let E be a field ofp" elements-contained in an algebraic clostijef Z,. The

elements oft’ are precisely the zeros ify-of the polynomiak?” — z in Z,[z].

Theorem 2.25. The multiplicative group(#™,-) of nonzero elements of a finite fieldl is

cyclic.

A finite field GF@p™) of p™ elements exists for every prime power.

Theorem 2.26.Let p be a prime and lek € Z*. If £ and E’ are fields of ordep™, then

Ex~F.

2.1.5 Separable Extension and Galois Theory

Definition 2.27 (Conjugate) Let £ be an algebraic extension of a field Two elementsy,

(3 € E are conjugate oveF if irr (o, F') = irr(3, F'), that is, ifa and 3 are zeros of the same

11



irreducible polynomial ovef'. Note that irf=, F') is the irreducible polynomial of over F.

Theorem 2.28(Congjugation isomorphisms).et F' be a field, and letv and 5 be algebraic

over I with deg(a, F') = n. The mapy, s : F(«) — F(3) defined by
Vaplco+cra+ .. +cp 10" ) =cop+c1f+ ...+ 1!

for ¢; € F'is an isomorphism of'(«) onto F'(3) if and only if « and3 are conjugate ovef'.

Let{o; | ¢ € I} be a collection of automorphisms of a figld Then the set’;,, ofalla € £
left fixed by everyo; for i € I forms a subfield oF. Ey,,, is the dixed field offo; | i € I}. The
set of all automorphisms of a fiell is a group under function composition. The 6&tF/F)
is the collection of automorphisms ﬂtleaying_F_ fixed. The groupAut(F) is the group of all

automorphisms oF.

Theorem 2.29. Let £ be a field; and lef” be a subfield ofs. Then the set/(E/F) forms a

subgroup ofdut(FE). FurthermoreF < EG(E/}.)

Definition 2.30 (Frobenius automorphism).et F' be a finite field of characteristjc Then the
mapo, : F' — F defined by

oy(a) = af forae F

is the Frobenius automorphism bt Also, Fi,,, = Z,.

Theorem 2.31. Let F andF” be two algebraic closures éf. ThenF is isomorphic tof” under

an isomorphism leaving each elementrofixed.

Definition 2.32 (Index of £ over F'). Let E be a finite extension of a field. The number of

isomorphisms of2 onto a subfield of” leaving F’ fixed is the indeX E : F'} of E overF.

12



Let F be a field with algebraic closuté. Let {f;(z) | i € I} be a collection of polynomials
in F[z]. Afield E < F is the splitting field of{f;(x) | i € I} over F if E is the smallest
subfield of ' containingF” and all the zeros it of each of thef;(x) fori e I. Afield K < F

is a splitting field ovel” if it is the splitting field of some set of polynomials ii[x].

Theorem 2.33. A field £, whereF < E < F, is a splitting field over if and only if every
automorphism of* leaving F fixed mapsFE onto itself and thus induces an automorphisniof

leaving I fixed.

A polynomial f(z) € F[x] splits in £ if it factors into a product of linear factors ifi[z].

Theorem 2.34.1f E < F is a splitting field of finite degree ovét, then
{BREP=IG(E/F))|
Let f(x) € F[z]. An elementy of FF such 'thatf(oz)' = 0 is a zero off (z) of multiplicity v
if 1 is the greatest integer such tfat= ) is-a factor off (z) in F[z].

Theorem 2.35. Let f(z) be irreducible inF[z]. Then all zeros off () in F have the same

multiplicity.
Theorem 2.36. If F is a finite extension of’, then{E : F'} divides[E : F].

Definition 2.37 (Separable) A finite extensionE of F' is a separable extension 6fif {£ :
F} = [E : F]. An elementa of F is separable oveF if F(a) is a separable extension of
F. An irreducible polynomialf(x) € F[z] is separable oveF if every zero off(z) in F is

separable oveF'.

A field is perfect if every finite extension is a separable esiten. Every field of character-

istic zero is perfect. Every finite field is perfect.

13



Definition 2.38 (Totally inseparable)A finite extensionE of a field F is a totally(purely)
inseparable extension éfif {F : F} =1 < [E : F]. An element of F is totally inseparable

over F'if F(«) is totally inseparable over.

Theorem 2.39.Let F' have characteristip = 0, and letE be a finite extension of’. Then
a e E,a ¢ F,is totally inseparable over if and only if there is some integeér> 1 such that

t
aP e F.

Theorem 2.40(Separable closure)l et F' have characteristip # 0, and letE be a finite
extension ofF’. There is a unique extensidi of F', with I < K < FE, such thatK is
separable oveF’, and eitherE = K or E is totally inseparable ovek’. The unique field¥ is

the separable closure éfin E.

A finite extensionk of F is a-finite normal exténsion df if i is a separable splitting field

overF'.

Theorem 2.41.If K is a finite normal éxten-si'o.n df, then
|G(K/F)|={E: F}=|FE:F].

Theorem 2.42. Let K be a finite normal extension @f, and letE’ be an extension of’, where
F < E < K < F. ThenK is a finite normal extension of, andG(K/E) is precisely the

subgroup ifG(K/F') consists of all those automorphisms that leavixed.

Definition 2.43(Galois group) If K is a finite normal extension of a field, thenG(K/F) is

the Galois group of< over F'.

Theorem 2.44(Galois Theory) Let K be a finite normal extension of a field, with Galois
groupG(K/F). For a fieldE, whereF < F < K, let A\(E) be the subgroup of/(K/F)

14



leaving E fixed. Then\ is a one-to-one map of the set of all such intermediate figldsito the
set of all subgroups af (K /F'). The following properties hold fok:

(W A(E) = G(K/E).

(2) £ = Kak/p) = Kx(p).-

(3)ForH < G(K/F),\(Ey) = H.

A [K : E] = |NFE)|and[E : F| = (G(K/F) : A\(F)), the number of left cosets of( £) in
G(K/F).

(5) E is a normal extension af if and only if \(E') is a normal subgroup &¥ (K /F). Further-
more,

G(E/F) ~ G(K/F)/G(K/E).

2.2 Elliptic Curves

In the section, we introduce the:e_lliptic"cﬁv.és as the algelcurves in algebraic geometry.
The important theories related to SEA—aIgo'ritﬁm are devadogery well in algebraic geometry.

We focus on the case of elliptic curves.

2.2.1 Algebraic Varieties

Let K be a perfect field. An algebraic set is any set of the fofmif 1 is an algebraic set, the

ideal of V' is given by
I(V)={feK[X]|f(P)=0 VYPeV}.
If 1(V) is a prime ideal inK[X], V is called an variety.

Definition 2.45 (Coordinate ring) The coordinate ring of a variety

KV = %

15



It is an integral domain, and its quotient field, denotedyl/), is called the function field

of V.

2.2.2 General Elliptic Curves
Definition 2.46 (Weierstrass equation)he affine Weierstrass equation, given by
E:y? +axy + asy = 2° + axx® + aur + ag,

wherea; € K, is the general equation of elliptic curves.

Note that we also use
E(z,y) =y* + arzy + asy — ° — axx® — ayx — ag = 0

to express elliptic curves.

Definition 2.47 (Elliptic curves) :The elliptic curve overs is defined as the set of the solutions
of E in K2, and the point at infinityﬁ'o._ The set iS so-called -rational points of(K).

Figure 2.1 shows the elliptic cuné : v = 2® — = overR.

For the Weierstrass equation of elliptic curves the det@inibf the constants:
b2 = CL% + 4&2, b4 = aias + 2@4, b6 = CL% + 4(16,

bs = alag + dasag — ayazay + azai — a2,

Cy = b% — 24b4, Cg = —b% + 36bgb4 - 216b6

Definition 2.48 (Discriminant) The discriminant of the curve is defined as
A = —bibg — 8b — 27b; + 9bobybg.

When the characteristic df # 2, 3, the discriminant can also be expressed as

3 2
_ G =G

1728 °
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Figure 2.1.F : y> = 2% — o
Definition 2.49 (j-invariant) When&'= 0, thej-invariant of the curve is defined by

b X 3
2
Lo o
J( g1
Theorem 2.50. Two elliptic curves'th'at_are isomorphic overhave the samginvariant. Con-

versely, two elliptic curves with the samjeénvariant are isomorphic ovex .

Definition 2.51 (Group law) Let P and(@ be two distinct rational points of'. The straight
line joining P and@ must intersect the curve at one further point, SaidThen, we reflecf?’

in the z-axis to obtain another rational poiftt thenR = P + ) (See Figure 2.2). To ad# to
itself, or to doubleP, we take the tangent to the curvefainstead of the line joining® and@
(See Figure 2.3). The group law is often called the chordeanprocess. We say that a vertical

line also intersects the curveat

Definition 2.52 (multiplication-bysn map) For a positive integem, we let[m] denote the

multiplication-by+sn map from the curve to itself. This map takesapdiio P+ P+ ... + P

17
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Figure 2.2: Group Law(chord process)

4.5

Figure 2.3: Group Law(tangent process)
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(m summands). The notatidm| is extended ton < 0 by defining[0]P = oo, and[—m|P =

—([m]P).

2.2.3 Elliptic Curves over Prime Fields of Characteristic> 3

Definition 2.53 (Short Weierstrass form)Assumek” = F,, whereq = p > 3. The curve

equation can be simplified to the short Weierstrass form
Elap - y* = 2% + ax + b.
The discriminant of the curve then reducesto= —16(4a® + 270?), and itsj-invariant to

J(E) = —1728(4a’)/A.

Theorem 2.54. Ej, ) = Ejv ) if and onlyiifa/ .= u*a, b = u°b for someu € F.

For pointsP(xz1,y1), Q(x2,92) € E(IFq'), the formula for the group law is

. Y (55'17—1'{1-')-
Whenz, # x5, we set
\ = Y2 — Y1 ’
To — T1
and whenr, = x5, y; # 0, we set
\ 33 + a
2u1

R(z3,y3) = P+ Q # 0,
thenz; andys are given by
T3 = N — 11 — 29,
ys = (1 — 23)A —y1.
The rational points of order two on the curve are of the f@¢nb).
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Theorem 2.55. The group structure of an elliptic curve over a finite fieldF, satisfies
E(Fq) = Zd1 X ZdQ.

Moreover,E(F,) is a finite abelian group, sé divides bothi, andg — 1, including the case of

dy = 1.

Definition 2.56 (Twist curve) A twist of a curve given in short Weierstrass forf, ;; is given
by Ejw v, whered' = v?a, b = v°b for some quadratic non-residues F,,. and thej-invariant

of these two curves are the same.

The twist is unique up to isomorphisms oWy, and it is itself isomorphic to the original curve
overF, (in fact, it is so oveff,). The orders,of the groups of rational points of the two carve

satisfy the relation

# Elap) (Fo) 1 #E[a',b'] (FgF = 2q + 2.

Definition 2.57 (Trace of Frobeniué)The number of rational points of an elliptic curzeover

a finite fieldF, is finite and is denoted b E(F,). The quantityt defined by
tZQ+1_#E(Fq)

is called the trace of Frobeniusat

2.2.4 Isogenies

Definition 2.58 (Morphism) Let E; and E5 be elliptic curves defined over a field, with
respective function field&'(F,) and K (E,). A morphism fromE; to E, is a rational map

which is regular (defined) at every point bf.

Definition 2.59 (Isogeny) A non-constant morphisng, which maps the identity element on
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E to the identity element of; is called an isogeny,

¢:E1HE2.

The map which sends every point @ to the identity elemento on E, is called the zero
isogeny. It is the only constant isogeny. Every non-corssamgenyq is surjective overy, that

is¢p(E,) = E,. Anisogeny is always a group homomorphism, and the kerrnelnain-constant
isogenyo is always a finite subgroup df, (K ). A non-constant isogenyinduces an injection

of function fields which fixedy,
¢* : F(Ez) = F(El)

defined byp*(f) = fo¢. We say that the isogeny is separable, inseparable or posglgarable
if the corresponding extension of functiendields(E, ) /¢o* K (E,) is separable, inseparable or

purely inseparable.

Definition 2.60 (Degree) The degreé of an 1s0gefyis
deg ¢ = [K(E)) : 9K (E,)].

Definition 2.61(Frobenius map) The Frobenius map(endomorphism) on an elliptic CUtye, )

is

The degree: of a separable isogeny is equal to the size of the kernel of The sim-
plest example of a separable isogeny is the multiplicatigm: map. If K is a finite field, the
simplest example of a purely inseparable isogeny is thedfriols endomorphisi.

Theorem 2.62. Let E denote an elliptic curve defined over a fidldand letS denote a finite

21



subgroup ofF which is Galois stable ovek, that is,(S) = S. Then there exists an elliptic
curveE’, also defined oveK’, and a unique separable isogeny £ — E’ with kernel equal to

S. The notationZ/S is often used for the curvg’.

Theorem 2.63(Dual isogeny) To every non-constant isogemy,there is a unique dual isogeny

~

quEQF—)El.

Theorem 2.64. Two isogenous elliptic curves over a finite field have the saomaber of ratio-

nal points.

2.2.5 Elliptic Curves overC

An elliptic curve overC defines a lattice ||<C and. hence a torus. In Figure 2.4, the lattice will

be denoted b\ = Zw; + Zws, whe'ifewil", wz 2 ére the periods of the associated, doubly

periodic Weierstrasg-function
1T 1

p(x) =5+ (72——2>'
S (z —w) w

The periodsw; andw,, can be suitably chosen so that the quantity

Wi
T=—
%)

lies in the upper half of the complex plarié, = {z € C | Im(z) > 0}. The map fromC/A to

points on the corresponding elliptic curé, 5 is given by

(0(2), 9'(2)/2), z¢ A,
2+ A

o0, ze A
The coefficients of the elliptic curve are obtained with therula

1 1
92260237 932140257
weA\0 weA\0
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v

Figure 2.4: Lattice\ = Zw, + Zw»

anda = —g»/V/4, b = —gs.

An elliptic curve overC associated te is denoted bye,.. Letq = 2™,

Definition 2.65 (Dedekind’sy-function) _

77(7') = q1/24 (1 -+ Z (_1)n (qn(3n—1)/2+gn(3n+1)/2)>

4 1BBG
And A(7) = n(7)*. The function-A(.T) is'also related tg(7) using the formula

L (256h(r) + 1)?
A 0T T

Moreover,j(7) = j(E,) is periodic of period one. So the complex number F = {7 € C |

Im(7) > 0,—1/2 < Re(r) < 1/2,|7| > 1} characterizes elliptic curves up to isomorphism.

The Fourier series of(7)

1 o0
j(r) = p + 744 + Z g™,
n=1

where the,, are positive integers.
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2.3 p-adic Arithmetic

Thep-adic number system is described first by Hensel in 1897 el#fit from the real analysis
or the complex analysis, it provides theadic analysis, alternatively. Here, we only introduce

the basic ofp-adic numbers.

2.3.1 p-adic Numbers

A p-adic numbery can be uniquely written in the form

0
7
i=n

where each ofi; € [0,p — 1] and thep-adic norm of the numbet is defined ag|a|| = p™.
Note that the series
=R O
converges tqi—p in thep-adic norm. %
which can be written in the form

Takingp = 5, we obtains-adic expansion of = z,

1
3= 231313131... = .231.

o 341x5 5 1
9T =245x 22 X2 9 2 _°
tOoX T 373

2.3.2 Hensel's Lemma

The first form of Hensel's Lemma is related to our work, so Ipaiut it here.

Lemma 2.66. Let f(x) be a polynomial with integer coefficientsan integer not less than two

andp a prime number. Suppose thais a solution of the congruence

f(r)=0 (mod p"~1)
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If f'(r) %0 (mod p), then there is a unique integei) < ¢ < p — 1, such that
fer+tp"™) =0 (mod p")

with ¢ defined by

) = —F (mod p).

If, on the other handf’(r) = 0 (mod p), and in additionf(r) = 0 (mod p*), then
fer+tp" =0 (mod p*)

for all integers t.
Also, if f'(r) =0 (mod p) andf(r) # 0 (mod p*), thenf(x) = 0 (mod p*) has no solution

foranyz =r (mod p*1).

25



Chapter 3

Schoof-Elkies-Atkin Algorithm

It is crucial for ECC to pick an appropriate elliptic curvehd point counting problem is per-
formed to determine whether a curve, is suitable for ECC. Ldte an elliptic curve defined
overF,, the number of rational pointg-E(F,) = ¢ + 1 —t. Hasse pointed out an important

property of the number of the rational points of an éllipuixr\xE in 1933.

Theorem 3.1(Hasse’s Theorem)Th'e_.t éatisfiés
1 <2/

In other wordsg + 1 —2,/g < #E(F,) < ¢+ 1+2,/4.

3.1 Before Schoof

A naive way to solve the point counting problem is to check thbethere are roots af of

E(x,y) = 0 for all elements: of the finite field.

Example 3.2. Let E be an elliptic curve over a prime field,.

E:y*=2°+azx +0.
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The number of rational points is

Pl fad far+b
ey 15 (Preee)
x=0

where(;) is the Legendre symbol.

There is a sub-exponential time algorithm for point coumtproblem. It makes use of
the concept of Shanks and Mestre Baby-step-giant-stepf33@rst, it generates a random
point P on the curve, and computég = [¢ + 1 + [2,/q|]P. Since[q + 1 —t]P = oo,

Q@ = [t + [2,/q]]P. Inaddition,-2,/q <t < 2,/q,t + [2,/q] € [0,4,/q]. So this problem is
reduced to searchsatisfyingQ = kP, andk € [0,4,/q]. Letm = [\/4,/q] = [2¢"/¥]. Then

k can be written as + bm for a,b < m. Compute eacli|P fori = 0, 1,...,m — 1 in the baby
step. Forj = 0,1,...,m — 1, computé'the giantistep — [j]([m]P), and find(7, j) such that
[[]P = Q — [7]([m]P). Therefoféx = iE| 124} == + jm — |2,/q] is obtained. The time

complexity isO(¢/Y*). And the':method—_i's outlingd in Algorithm 1.

Algorithm 1: BSGS Algorithm for Point Counting

INPUT: An elliptic curveE over a finite fieldF,
OUTPUT: #5(F,)

1. Find arandom poinP € E(F,)

2. Computel = [¢ + 1+ [2,/q]]P

3. Calculaten = [2¢(V/], andR = [m]P

4. Fori=0,1,...,m — 1 (Baby step)

5. Computdi| P, and stordj, [¢] P)

6. Sort(i, [¢]P) pairs by ther-coordinate ofi| P
7. Forj=0,1,...,m — 1 (Giant step)

8. ComputeS = @ — [j]|R
27



9. if there existgi|P = S

10. t=1i+jm—|[2,/q]

11. Returny +1 —t¢

3.2 Schoof’s Idea

The BSGS algorithm for point counting introduced in the jpveg section is infeasible to find
secure curves whenis large. The point counting problem is solved when the ted¢&obenius
t is found. In Schoof’s point of \_/iéw; can _be re'(;o'vered from someby Chinese Remainder
Theorem(CRT), wherg =t (moq . Because ié bound in[—2,/4, 2,/q], we have obtained
enought, suchthaf [/ > 4,/qto 'd_ete'r"miﬁ'_e th"é exatt From the Prime Number Theorem, the
number of primes needed@(log ¢/ log log q)-. 'T.he largest prime neededd¥log q).

To find each,, we use a zero map @ (F,). The zero map is related toThe point of order
¢ can help obtain,. Here we describe some materials which are helpful to fintd gac

The map(¢®—[t]p+[q]) is azero map. ThatisyP € E(F,), p*(P)—[t]¢(P)+[q] P = oo.

The characteristic polynomial of Frobenius map is
F(z) =2tz +¢q (3.1)

However, there may be not a poift € E(F,) of order/ for some/. We cannot calcu-
late t, because of lacking the point of ordéin the base field. The following is to avoid the

computation on the extension field.
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Definition 3.3 (Torsion points) For a positive integem, m-torsion points ofF, denoted by
E|m], is defined by

E[m] = {P € E(F,) | [m]P = oo}.
Of course,[m] is a subgroup of?(F,). If ged(m, q) # 1,
Elm| = Zy, ® Zy,.

Lemma 3.4. Let m be a positive integer. There exist polynomigls, 0,,,, w,, € F,[z,y]. For

P = (z,y) € E(F,) where[m]P # oo,

Ol y) wnl(z,y)
P = (G )

The polynomiak),, (z, y) is called themz*¢h-division polynomial.
Theorem 3.5. Let P = (z,y) be a pqint'sihE.’E(QFq), where[2]P # oo, and letm > 3 be an odd

integer. Note that),,(x, y) has noy ter_m._-Llsg/zm(x),'instead. ThenP € E[m] if and only if

Um(x) = 0.

Now, the points of ordef satisfyi,(z) = 0. Also, the points satisfy the equation of the
elliptic curve. So, the computation is on the polynomiabrin, [z, y|, and is reduced modulo
the curve equation ang,(z). Besides, the zero map with respecttcan be written agp* —
[te]e + [qe]), hereg, = g (mod ¢).

The remaining is the case whén= 2. This case is easy. If the elliptic curve is defined
over the field of characteristic two and is not supersingias 1. For the curves defined over
the field of odd characteristigstE(F,) = ¢ + 1 — ¢, andq is odd. Sof = #E(F,) (mod 2).
According to the group structuré;E(F,) = 0 (mod 2) if and only if there is a subgroup of
order2. Moreover, thg/-coordinate of the points of orderis 0. Therefore, if€(x, 0) has a root
inF,, to = 0. So,t, is obtained from the degree géd(E(z,0), z¢ — z).
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This algorithm is briefly listed in Algorithm 2.

Algorithm 2: Schoof’s Algorithm

INPUT: An elliptic curveE over a finite fieldF,
OUTPUT: #E(F,)
1. Findt,, and stordt,, 2)

2. M=2/1=3

3. WhileM <4,/

4. Calculate)(X (z,y), Y (z,vy)) = p*(P) + [q] P, whereP(z,y) € E[/(]
5. CalculateR(X (z,y), Y (z,y)) = ¢(P), whereP(z,y) € E[(]
6. Fort, =0,1,.., 5

7. if z-coordinates o_[tdé r.:_md Q are the same

8. if y-coordina.tes bt tiﬁ'ej_.r_'r:-i"ar.e 'tﬁe.'same

9. store(t; 6) LT

10. else

11. store(¢ — t,, ()

12. break

13. M = M x (,{ = nextprimé/)

13. Compute t usingt,, ¢) pairs and CRT

14. Returny+1—¢

The routine nextprimé] will return the smallest prime larger thdn

For each?, the computation is in the polynomial ring reduced modulj¢z) of degree

(¢ — 1)/2. The powers ofy are reduced modulo the curve equation, and hence the degree
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are at most one ip of the polynomials. The computation gf (P) andp(P) is O(¢*log q)
field multiplications. The number of primes needed)fog ¢/loglog q). So the total time

complexity isO(log® ¢) field multiplications, and i$) (log® ¢) bit operations.

3.3 Atkin’s Idea and Elkies’ Idea

Though Schoof proposed a polynomial time algorithm for poounting in 1985, it is still too
slow to determine the group order of an elliptic curve. Attez improvements of Atkin's and
Elkies’ works, the time complexity of SEA algorithmd(log® ¢) bit operations.

The characteristic polynomial of Frobenius mapis— ¢,z + ¢, overF,. If there is a root
of 22 — t,x + q, = 0 onTFy, ¢ is an Elkies prime. In this case, we can find another cuityeand
an isogeny from¥ to E,. The cardinality 6f tk.l.e'- Kernel of this isogenydslf there is no root
onkF,, ¢ is an Atkin prime. For thi.s caise; :'o._ri:l'y the bossiQIare obtained. Whileéis unknown,

the modular polynomials can hel:plsplLt the type of.a prime.

3.3.1 Modular Polynomial

The classical modular polynomialé,, (z,y), play a significant role in SEA algorithm. Here

we focus on the casen = /, a prime.

Definition 3.6 (Classical modular polynomial)

() = = (e [ Lo -3 (S5 ))

k=0

Then,®(x,y) € Z|z, y].

Lemma 3.7. Let £, E5 be two elliptic curves, there is an isogeny of degiré®m E; to F; if

and only if®,(j(E1), j(Es)) = 0.
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Theorem 3.8. [20] Let £ be a non-supersingular elliptic curve oy with j-invariant; #
0,1728. For an odd primé, ®,(z, j) € F,[z] is a univariate polynomial. Thus, there are three
cases of the number of roots ®f(z, j) onF,

(1) Oneroot, of + 1 roots. Elkies prime, wher& — 4¢ = 0 (mod /).

(2) Two roots. Elkies prime, wheré — 4¢ is a square off,.

(3) Noroot. Atkin prime, and all roots lie df,- for somer|¢ + 1.

In practice, the coefficients of the classical modular poiyral are very large asincreases.

In 1995, Miller proposed alternative modular polynomials, which®ger, y). First let

(-1 12 )\
e . T n(r) \™
ged(12,0 — 1) ged(12,0 — 1) n(lr)
Definition 3.9 (Alternative modular polynomials)There exist coefficients, ;, € Z such that

£— 14

ZZ@rkf

r=0 kE0- Eic]k
. Then the alternative modular polynom_iaf is c_:Jefined by
. é 1 .v . :

@Z(xy. ZZarkxy € Z|x,y].

r=0k=0

Alternative modular polynomials satisfy Theorem 3.8. $e,degree ofcd(P¢(x, j), z? —
x) is sufficient to disjoin Elkies primes and Atkin primes. Fbetreason that the modular
polynomials can be pre-computed, the complexity to dedideytpe of a primé is O (¢ log q).

The following are the examples of two kinds of modular polyrials.

O5(z,y) = a* +362° + 27022 — zy + 7562 + 729

d¢(2,y) = 25 + 302° + 3152 + 13002% + 157522 — 2y + 7502 + 125

Os(m,y) = a* — 23y® + v + 2232(2y? + 2%y%) — 1069956(23y + 2°)
+36864000(2% 4 3°) 4 25879180862%y> + 8900222976000 (2%y + 212)
+452984832000000(2% + 32) — 7708459663360000002y

+1855425871872000000000(z + y).
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Os(z,y) = 25— 2Py° + ¢ + 3720(2%y* + 2y®) — 4450940(2°y> + 23¢°)
+2028551200(x%y? + 22y°) — 246683410950(a°y + x1/°)
+1963211489280(2° + 3/°) + 1665993646002y
+107878928185336800(x%y* + 2%y*)
+383083600779811215375(x"y? + 2%y*)
+128541798906828816384000(x %y + xy*)
+1284733132841424456253440(2" + )
—4412069655129148352461002%°
+26898488858380731577417728000(x%? + 22%)
—192457934618928299655108231168000(x% + 23/%)
+2802447778284395978043345G529 7868800 (< + y?)
+511()9417775_-5_54.1805;:31519:/6'515%)3.6000091:@2
+365547365839496_2__92_9.%&27.0@4723_3_2.656640000(ny + 2y?)
+6692500042627'9:97_%;)848.71_4921.'1:.5015068467200(3:2 + 1)
—2640734570766205962597157902479787829493 762y

+53274330803424425450420160273356509151232000(= + y)

+141359947154721358697753474691071362751004672000
3.3.2 Elkies’ Improvement
Let ¢ be an Elkies prime. There is an elliptic curig and an isogeny; such that
I: Ew— Ey.

The degree of, is ¢, so is the cardinality of kef(). More precisely, lefP(x, y) be a point on

E(F,), then




Since|ker(l;)| = ¢ andI; () = oo, deg(hyi(z)) = (¢ — 1)/2. Note thatdeg(k;(z)) = ¢

The curveE; andh,(z) can be derived from the root df}(zx, j), ®¢(z,y), and some in-
variants ofE. Here we specify how to find, () for fields of characteristic greater than three.
First, letj = j(£), and compute a roog, of the polynomiald§(z, j(E)). Set
b E, - E,

27 EG = 3 A=
3 2 1728

Ei=-—

After that,
0 we : (0 . .
Dy =g\ 7%y |(9.5),  Dj= a—y%(ﬂf,y) (9,7)
The coefficient of the isogenous curve will be givendyy and have the associated invariants

Eff)’ Jop ,A(Z)

A(Z) = E_HAgng(u’é_l)

b= 20\ (072D, p =0,
Now assumeD; # 0

B 12 =+ —12E¢D; , 5
ged(12,4 — 1) B B

. 25 A - = = B -
j = —E,EsA™, Ey = E¢(E,E,)!

Then, we need to compute the quantities
D/ _ a @C -
0 =9\ 5,2y ) (9.5)+

g [ <;22 P7(z, y)> (9,5) +J' (aj;yq)i(m, y)) (gyj)]

Y A .
D= <a—y@z(x,y)> (9,9)+

j[ <§22<1>e(f6 y)) (9,5) +4' <652x<1>2($,y)) (gyj)]

34




Now, we can determine

So, we have

—w (= | .E E B —
O - . <E4 -z 12% +6=1 —4:6] +E22>

0 Eg Ey

The j-invariant of the isogenous curve

— ()3
(o) _ B
J A©)

Settingf = (g7, f' = E, f/gcd(12,£ — 1)
D; = (oitea)) (1. D = (850 ()
g or L\ ) ) j ay AN )

Finally, we compute

o —(0) .y
Jlog. i Dg ol B 79
I bl R 6 " .
; EDJ E -3 ](2)
Thus, we have three desired quantities_aé'_ :
i =3B, Mg E", p = _(E;

Therefore, we can use the special vajyeand the coefficients, b of curve E;, which are
derived to findh, (z).

Let £, be an elliptic curve defined over a finite figlg, then

1 1 1 I @ o
p(Z)ZZ—2+Z m—ﬁ =§+ch2’
k=1

weA\0

where the coefficients, are obtained from the following recursion:

b

Gl = — Co = 7,

and
k—2

Z Cjck—l—j7 ]{I Z 3

j=1

3
(k —2)(2k + 3)

Cr =
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Let thep-Weierstrass functions df andE; be p(z) andg; (z), respectively.

1 e ] o0 R
o(z) = = + Z 22k, p1(z) = = + Z 22k
k=1

Thenh, (z) satisfies the equation

0

1 ¢, — Lle
2 Thy(p(2)) = exp <——p1Z2 — Z b k )22’”2) .

2 2k + 1)(2k + 2

Using the fact that, (x) is a monic polynomial of degre@ — 1)/2, we can figure oub, (z)
by the comparison of the coefficients afwhere the right hand side is expanded by Taylor’'s
series.

Becausd; is a homomorphism, kek{) is a subgroup of?. Moreover,|ker(l;)| = (. ker(l;)

contains a subgroup d@f[¢], also a point of ordet. There is an important property that
o(PY = [Py " for Pc ker(7y)

where) is a root of the charactefi_stip.pdtyrrqmial__ o_f Frobenius maerd,. \ is derived first,
and then another rogt = ¢,/\ onF,. Thereforet; = A + » (mod ¢). Here we can only check

they-coordinates from Nller’'s work.

Algorithm 3: Elkies Procedure

INPUT: An elliptic curveE over a finite fieldF,, and an Elkies primé
OUTPUT:t,

1. Compute the polynomial, (z)

2. Calculate)(X (z,y),Y (z,y)) = ¢(P), whereP € E satisfiesh, (x)

3. ForA=0,1,... 5

4, if y-coordinates of \| P and( are the same
3. = qe/A
6. break
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7. if the sum ofy-coordinates of \| P and@ is O
8. A=L0— X\ pu=q/\
9. break

10. Return(A + p) mod ¢

In Schoof’s algorithm, the points of ordéris observed by using the division polynomial
Y(z) of degreg(¢? — 1) /2. Elkies improved this part by usirfg (z) of degreg¢ —1)/2. Thus,

the complexity of Elkies procedure (¢ log® ) bit operations.

3.3.3 Atkin’s Method

Let us consider thatis an Atkin:prime now: There is no root af — ¢, + ¢, = 0 onF,. But

the two roots lie orf 2.

Theorem 3.10. If the roots of ®¢(x, j)‘lieionF,., for the smallest, the rootsA and i of

x? — tyx + g, = 0 satisfy that% is an element of order exactiyin [F -

Denote ther of Theorem 3.8 of an Atkin primé by r,. It can be found by observing
the degree ofcd(®§(x, j), 7 — x) for increasingi|¢ + 1. The complexity isO(¢* log® ¢) bit
operations. When, is derived, the following is a way to find the set of all possifl

We may letF,. = F,[+/d] for a quadratic non-residuge F,. Since) andy lie in Fy\F,,

A\ = 21 + Vdzo, 1 = x1 — Vdz,, for somezy, z, € Fy. Also, the order offracAp is ry. Let

Yr, = g1 + V/dg, is an element of order, for someg,, g, € F,, then
)\2

g1+ Vdgy = ’m=§=m

— % (1‘% + da3 + 2:1:11:2\/3).
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Hence

qg1 = 22+ dx3 (mod /),

g2 = 2x119 (mod /),

q 2?2 — dx3 (mod /).

x? = q(g1 + 1)/2, andt, = 2z, (mod ¢). Hence, possible, can be derived frong; of ,,.

Therefore, the rest of the work is to find out all elementsFanof order exactlyr,. It is easy
i(2=1)

because the generatgof F,2 can be searched quickly. Ang, = ¢ " for0 < < r, and

ged(i, ) = 1. Note that the number of possilflés is ¢(r,), whereg is Euler totient function.

The procedure is given below.

Algorithm 4 : Atkin Procedure

INPUT: An elliptic curveZ’ over a__finité .fieid]Fq.., éhd_ an Atkin prime/
OUTPUT: a set of, candidates .' | |

1. Forr,=2.3,....0+1, wheréﬂjé.‘ﬁ T (Find T’g).-_...

2. if ged(®G(x, j), 29" — ) 75 1

3. break

4. Find a quadratic non-residde

5. Find a generatay of F,[+/d]*

6. S={}7. Fori=1,2,...,r,—1,gcd(i,ry) =1
8. Computey;, + Vdg, = gmiie_l)

9. Find a square roat; of ¢(g; + 1) onTF,

10. store{2z,, —2z1} in S

11. ReturnS
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3.3.4 Baby-step-giant-step(BSGS) Strategy
The information from Elkies primes is determinate, whilattirom Atkin primes is not. Actu-
ally, the number of candidates of possible

=[] oo
¢ is Atkin

There is a sub-exponential time BSGS algorithm for this.part

First, the Atkin primes are partitioned into two seétsand S, such that] [, ¢(r,) and
[ lses, #(r¢) are roughly the same. Let,, m, be the products of the primes i#, S, re-
spectively, andns be the product of Elkies primes. Ang = ¢ (mod ms3) is determined by
CRT.

Supposé; =t (mod my), t =t (moed: mz).__Of courseynymoms > 4,/q. Let

1 "A=i50v% 1
(mod my), My = ——— . mod-my), M3 = (mod m3).
23 myms . M1

MlE

By use of CRT, we obtain

1= m1m2M3 + m1m3M2 + QOng (HlOd mlQOg)

t = t3m1m2M3 + t2m1m3M2 + t1m2m3M1 (HlOd mlmzmg)

Let r = (tl — tg)Ml (HlOd ml), To = (tz — tB)MQ (HlOd m2), then

t = tg(l — m1m3M2 — mgmng) + tgmlmgMQ + t1m2m3M1
= t3 + mz(mire + mory) (mod mymoms)

Now, we writet = t3 + mgz(mre + mary).

Lemma 3.11. If 0 < ¢35 < mg, and[—5*| < < [5], then

o = (t — t3 — mgmng).

myms
Thus,
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ra] < —(|t] + [ts| + mams|ri])

mims3

2\/§ 1 m
< A4 o1 me
= mims + m1 + 2

mz 4 1 ma
<Q—i_ml—i_Q

SO|T’2| < Moy

Since#E(F,) = ¢ + 1 —t, for a pointP € E(F,), we have
[q¢ + 1]P = [t]P = [ts + mg(mary + mory)]| P.

Therefore,

[q +1—- tg]P — [T1m2m3]P = [T2m1m3]P.

For each possible, calculate the corresponding ong where|r;| < %, and compute the
left-hand side in the baby step. _For a po?SiBl&:dICulate twar,, where|ry| < m,. Find the

pair (ry,r3) such thafqg + 1 — tg]P - [rlmgmg]P — [rymyms] P. Thent is derived, so is the

group order. The complexity of BSGS strategyiey/C log® ) bit operations.

Algorithm 5: BSGS Strategy

INPUT: E(F,), and information gathered from Elkies and Atkin procedure
OUTPUT: #E(F,)

1. Divide Atkin primes into two sets|, S5

2. Calculate; =t (mod ms)

3. Find arandom poin? € E(F,)
4. For all possible,

5. Calculater;, where|r;| < %+
6. Compute) = [¢ + 1 — t3] P — [rymams] P, and storg@, ry)

7. Sort(Q,ry) pairs by ther-coordinate ofy)
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8. For all possible,

9. Calculatery, where|ry| < my

10. ComputeR = [romymg|P

11. if there exist3@, 1) such thaty = R
12. t =tz + ms(myry + maory)

13. Returny +1 —t¢

3.3.5 Complexity Analysis

The SEA algorithm uses Schoof’s ideaj and a(_jds some imprevesnmentioned above. The
following is the outline of SEA aléjlori_thm__.. 3 \

The Elkies primes make the (.:omple_xi't)./ .decrea_s'.e. Howevemntimber of Atkin primes is
about one half the number of p}i.rh'e_é:éon.sia:e_red.-,".vvhic(ﬂ(nsg q/loglog q). This means that
C' of BSGS strategy is exponentiallidsg-q. Eveh though we use the concept of BSGS to speed
up the algorithm, this is a sub-exponential time algoritamfprtunately.

From a complexity-theoretic point of view, we can just uske&d primes. On this condition,
the larger primes are needed due to the skipping of Atkin,aare the modular polynomials
of higher degree. The best practical compromise is to use soest’ Atkin primes in order to

avoid the use of larger primes and keep away from the subrexgi@l time complexity.

Algorithm 6 : SEA algorithm

INPUT: An elliptic curveE' over a finite fieldF,
OUTPUT: #£(F,)

1. M=2(=3A={},E={}
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w

10.

11.

12.

13.

Findt,, andE = E U (t2,2)
While M < 4,/q
Determine the type af
if £ is an Elkies prime
Elkies procedure
E=FEu(t,l)
if Zis an Atkin prime

Atkin procedure

A=Au (Ty,0), T, is aset for all possible

M = M x ¢, ¢ = nextprime()

BSGS strategy to determing g'rbup ordE(Eq)

Return #(F,)
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Chapter 4

Previous Improvements for SEA

Algorithm

There are a lot of improvements of SEA a_lgo_rithfn in recentyes\e introduce them in this

chapter.

4.1 Isogeny Cycles

This method is proposed by Couveignes and Morain first in [}94 takes advantage of the
Elkies primes. For an Elkies prinfewe findt, =t (mod ¢) originally. And the use of isogeny
cycles can help us fing: =t (mod ¢*). The following are theories about the isogeny cycles.
In this section, we suppose thésatisfies condition (2) of Theorem 3.8. The two roots
of ®$(x, 7) can be used to derive two different isogeniesi, corresponding to the different

curvesE;, andEs. Thatis,
IliEHEl, IQ:E'_)EQ
From the theorem of classical modular polynomials, theee\&o isogenies off of degree
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(. These isogenies map o, and F, separately, where thginvariant of £; and F, are roots
of ®,(x,j). Besides, an isogeny from to £, implies the existence of an dual isogeny from
E; to E. It meansj = j(F) is a root of®,(z, j(Ey)). Since the field is finite, thg-invariant
of curves found by isogenies are periodic. In addition, tteeig order of curves are the same.
Then, the curves are periodic up to isomorphism. In othedgidhe curves form a cycle, called

the isogeny cycle, and there are two directions to walk atbegycle.

Example 4.1. Let E: y? = 2 + 68z + 79, the curves derived from isogenies are as follows:

[a, b] j(E[a,b])
(68, 79] 2
[27, 68] 82
L BOYEOTISE, . 56
B b '.1(.)
[455 151 — 3;1
"[-47_, 87] 1 00
[42, 63] 20
[97, 32] 15
[56, 31] 2

If direction 1 is the direction of the cycle of curves as in Exde 4.2, direction 2 is in the
reverse order of curves. Figure 4.1 represents explidigysymbols used later on. Note that
E1111 1S Ey»4 for short. The numbers on the circle are thmvariants of elliptic curves. The
clockwise is direction 1, and direction 2 is counterclocksviHere the symbdl;, is the curve

derived from direction 2 of’;. More preciselyF, is back toF sinceE, = F.

Theorem 4.2. In a direction of the isogeny cycle, suppose frémto E,,; does not meet,
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2
5215/5 \

82 EZx’f
Elx? E]
Ess 20 Eive F11 56 Es.e
By E /
00 155 . o
E‘222 ].x:l/ E2x5
\ 34

Figure 4.1: Isogeny cycle

that is, thej-invariant of £ ; are diﬁefeht fon ;.'0,_1, ..., k. Then

ker([lx.k o lekfl.:-.:O I o Il) c E[ék]

Recall thatl; : Eyxi—1 — B defined by

klxi(x) glxi(xay)
Toa(P@y)) = ((hm@:))f <h1xi<x>>3)

The points of kerl;;) satisfyh,1(z), and the points of kef(; o I;) satisfy the numerator of

hy1 o I . Hence, a factor of the division polynomig):(x) of £ is the numerator of

" ((ffll(f)))?)

Generally, a factor of the division polynomi@j. (x) of E is the numerator o, o I1xj_1...©

Iy o I,. Thus, the degree of the division polynomial () is “—{=1.,

Suppose the characteristic of the field is greater than threel be an isogeny fronk' to
E, the method to figure out thie (x) of I is by use of the theories of elliptic curves ower
First, we have the-Weierstrass functions(z), p1(z) of E and E. Thenz-coordinate of the
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points inE(C) is p(z), and that inE(C) is g, (z). Therefore, there is a relation between them

through the isogeny

_ k(p(2))
12 = Gl
Recall that
-1y _ I - Cr — Loy 2k +2
z (p(2)) = exp —52912 _;(2/{:+1)(2k+2)2
So we have
202, _ I, ¢ — leg, o ’
z (p(2)) = p1(2) | exp —51712 - kZ::l 2k + 1)(2k + 2)2

Thenk(x) can be derived.
There is another strategy to compute a factor of the divipmlgnomial[4]. Let us look at

the picture below.

I 14 Ti11

E > Ey > By > Ey1y
(7 1 ()
0 Iy Li12 2 L1119
W W W
Eu E112 E11.12

In the picturey,, are the isomorphism of the curves, is a factor of the division polynomial
V() of Ey. Then the numerator éfi,0i, 01,1, yields a factor off;, of the division polynomial
Y2 () of Ey. Similarly, a factorf;1;, of the division polynomial),s (z) of £y, is derived from

f112 019 0 I1112, and so on.
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4.2 Re-ordering Atkin Primes

For an Atkin prime/, suppose it produces(r,) candidates of,. Izu et al[9, 10] define “Atkin

index” of ¢ by

They figured out that Atkin primes of smaller index can be usede efficiently for the com-
putation of BSGS strategy. In the next chapter, we will psgpanother way to rank Atkin

primes.

4.3 Virtual (Atkin/Isogeny cycles) Method

Izu et al proposed the virtual method:in 1998[9]._ The ideangte. For a primée, no matter
whether it is an Elkies prime or not,-weihav_e asewhich contains all possiblg. Note that

T, contains only one candidatezfor the Elkies prim@&hen thel 2 is obtained as follows.
T = {t, HilltyeT,,0<i<}

By using this method, it adds an Atkin-like prime into ga#gtmformation. However, This
is a method worse than using information of Atkin primes. &ans that the method does not
apply to the case when it skips some information from AtkmtHis point of view, this method
can just help speed up the point counting algorithm for etlipurves defined over a finite field

of small cardinality. So, we do not apply this.

4.4 Chinese and Match Method

The BSGS strategy introduced in Section 3.3 is a so-calledt¢kl and Sort” method. The

“Chinese and Match” method is proposed by Joux and Lerci@fB0[12]. It is an alternative
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way for the same problem. The advantage of this method isdioceethe space complexity.
Hence, they can count the number of points of an elliptic ed®fined oveF,iss on a network
of four Pl 300 MHz based PC’s using only 12 MB of memory.

This is a method which saves the used space by spending mge\iie want to speed up
SEA algorithm, so it does not apply to our implementationwideer, it is useful for the point

counting problem of elliptic curves defined over a finite fiefdarge cardinality.
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Chapter 5

Our Three Heuristics for SEA Algorithm

In this chapter, we will introduce our three heuristics floe use of Atkin primes, and Elkies
primes, and the method to avoid the sub_—equnential timeBSt@ategy. We implement SEA
algorithm for elliptic curves definéd_over the prir-rje fidlgl whereq = p > 3. We will also
point out some ideas, and give:a brief expllél.nation._'

We use the MIRACL[27](Mljllti'pr_'e.-c‘lsion .'I'ritege'r and Ratioraithmetic C/C++ Library)
library in our implementation. More tHan b-ei.r.19 a big numblerdry, MIRACL provides uni-
variate and bivariate polynomial type with big number ceogffit, the big integer modulo n
arithmetic, the polynomial ring, the elliptic curve aritketic, and some tools of number theory,
such as CRT, cryptographic secure random number geneettorAlso, MIRACL contains a

simple version of SEA algorithm implementation.

5.1 Atkin Selection Heuristic

Because of the sub-exponential time complexity while usmigrmation of Atkin primes, the
‘best’ Atkin primes have to be figured out by some evaluatidite goal is to reduce the number

of candidates of possibte The first approach ranks Atkin primé# order of¢(r,). Thus, itis

49



straightforward to pick the Atkin primes of smallé(r,). 1zu et al proposed the index of Atkin

primes introduced in the previous chapter.

Example 5.1. Let 5, 11, and29 be Atkin primes, and let; = 3, r1; = 12, 199 = 15.

Clre o(re) | i(0)

5| 3 2 0.4
11 ] 12 4 0.36

29 | 15 8 0.276

Here we can easily find that it is better to usand11 rather thar29 because the number of

possibilities are the same whilex 11 > 29.

Letm; be the product of Elkies primes encountered, drige the product of selected Atkin
primes. Since Elkies primes are;never skipped, the Atkimesi are selected enough such that
ms x A > 4,/q. So A has the lower bognd\/q/mg'. Also, the smalleil”, the number of

possiblet, is better. In Izu’s point of view, -

¢ _ H o(re)
A L 14
¢ selected Atkin primes

Therefore, if the smaller index of Atkin primes, the bettérthe number of selected Atkin
primes is fixed, this may work. However, we may use more smtinAprimes to gain the
smaller§ as Example 5.1.

The problem of I1zu’s index is that it does not consider thgthrof /. Here, we define the

rank of an Atkin prime/ by
R(¢) = log ¢(r,)/logt

We can sed?(¢) simply as the number of bits @f caused by each bit dfaveragely. Thus, the
Atkin prime is ‘best’ if and only if the number of bits @' is less. Therefore, the ‘best’ Atkin
prime are those of smalldt(¢).
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Example 5.2. The same example as Example 5.1.

C e o(re) | R(O)
5 3 2 0.43
11|12 4 0.58
29 | 15 8 0.62

Here we can see that our method can figure out the error of tlex iof Atkin primes.

From the same point of view, now we consider the virtual meétihtroduced in Section 4.3.

The new information from it causes an imaginary Atkin prinie/) = 1. That is the worst

one. We propose a real example below.

Example 5.3.Let £ : 3?2

= 2° — 3z + 10 defined overfF,, ¢ = 2% — 317 is a prime.

2,3,13,23,29,31,43, 47,59, 61, 67,71, 733895101, 107, 109, 131, 137, 139, 167, 173, 223, 233,

239 are Elkies primes. The lower bound'ﬁfis about6.6 x 10'*. The following are the

selected Atkin primes according to the three methods.
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Rank in order ofy(r,) Rank in order of (¢) Rank in order ofR(¢)

¢ | ¢(ry) | Selected| ¢ | ¢(re) | i(¢) | Selected| ¢ | ¢(ry) | R(¢) | Selected
5 2 Drop 79 4 0.05 * 79 4 0.32 *

79 4 * 127 8 0.06 * 127 8 0.429 *

11 4 * 53 6 0.11 * ) 2 0.431 Drop

7 4 * 151 | 18 [ 0.12 * 53 6 0.45 *

53 6 * 1791 24 |0.13 * 41 6 0.48 *

41 6 * 41 6 0.15 * 151 | 18 | 0.576 *

17 6 * 191 | 32 |0.17 * 11 4 0.578 *

127 8 * 17 6 0.35 179 | 24 0.61 *




19 8 * 11 4 0.36 17 6 0.63
151 | 18 * 5 2 0.4 191 | 32 0.66
179 | 24 19 8 0.42 19 8 0.706
191 | 32 7 4 0.57 7 4 0.712
C = 15925248 C = 15925248 C = 11943936
A=182x10" A=11x10" A=1.1x10"

The Atkin primes are selected. one by one until the producf selected ones is larger than
the lower bound. Then, the check. goes 'thr.o_ugh.th.e.selectéd piimes in order to drop some
selected ones if they are not ngcessary.;in__other Words,rdmmaA is larger than the lower
bound. In Example 5.3, we can s'.ée t_;1e compa;i;oﬂ ahdC' of the previous two methods.
The C of these are the same, but the index is much better due tortiex l& To compare the
results of the last two, although theof the two methods are almost the same, the rank of Atkin
primes is better in the third by reason of the smatler

While using the information from Atkin primes, we just selsome for the reason of avoid-
ing a waste of time in BSGS strategy. We have mentioned teatamplexity isO(¢° log® ¢) to
find r, for each Atkin prime/. Thus, whenever we can choose enough Atkin primes such that
ms x A > 4,/q, we can get the largest valdeof R(/) of the selected Atkin primes. After that,
we never select the Atkin primésof R(¢) larger thanR. Therefore, we do not need to collect

the Atkin primes/ of R(¢) > R. So, this can help us save time to findf ¢ if the candidate of

r, makesR(¢) > R.
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5.2 Elkies Isogeny Heuristic

If an Elkies prime/ occurs, the factol, () of the division polynomial is figured out. After that,
A, a root of the characteristic polynomial of Frobenius maerdy, is computed via checking
the y-coordinates ofp(P) = (x%,y9) and[\] P.

In our consideration, the curve
Elap - y? = 2° + ax + b, a,bel,,

and the division polynomials simplify to

vy = 0,

P o= 1,

vy = 2y,

Y3 = 3zt & éamé i 12b:1:—a2, ;

de = dy(aSH 5@;54}501;@:3 4 _5__&2332 — dabz — 8V — d?),
Yot = Umsotl?, DRI m > 2,

zﬁ?m = (wm-‘rQw%_l - ¢m—2¢§1+1)¢m/2y; m > 2

For a positive integerm > 2, and a pointP(x, y) of £ such tha{m|P # oo,

B 77Z)rrz—177bm-i-1 77Z)7’rz-i-27vz}72nfl B 77Z)m—277b72n+1)

N O 4y,

The implementation of Elkies procedure of MIRACL librarydlesy term ofs,,, but keeps it
in mind. Wheny? occurs, it is replaced by using the curve equation. Theeefire division

polynomials are computed by the following recursion. Nb& f,, . | = w1 andy fo, = o
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fi =1

fro= 2

fs = 32*+6ax® + 12bx — d?,

74 = 425 + 20az* + 80bx® — 20a’x? — 16abx — 32b* — 443,
Farir = Vool — Yop U3y

— —3 — —3
= f2k+2f2ky4 - f2k—1f2k+1
-’ 73 3 b 2 r -3
= foofo(@® +ax +0)* — for i foriis
74k+3 = ¢2k+3¢§k+1 - w%w%k-ﬂ
— —3 - —3
= f2k+3f2k+1 - f2kf2k+2y4
I bl 3 2
= f2k+3f2k+_1 o for forae. + ar +b)%,

T = Yar/y - =iE[Ih?

-

= ((¢2k+2?_b.§kl..-_ wﬁk—ﬁl@kﬂ)%kﬂy)/y

.l

= ((y72k+2?§.;c:1_ 5 y?2k—27§k+1)y?2k/ 2y)/y
= (72k+27§k71 - ?2k-27§k+1)?2k/2’
Faere = Vareafy

= ((Yor+303, — Yok1U3p0)2m41/29) /Y

= ((Fapes*Fot = Fon 10 T2 Fovn/20)/y

= (Fawralor — Foti Fonso) Tarsn/2

If we pre-compute the square and cube of a division polynbamd (z* + az + b)?, it

costs five polynomial multiplication to compute a divisioalynomial, where two is for the
pre-computation step.

They-coordinate ofp(P(x,y)),

q—1
2

y?! = y(z® + ax + b)
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Hence, letV,_; = (z° + az + b)%. Then,y? = yY,_,. The way to check thg-coordinates of

©(P(z,y)) and[m]P is to compare

wm+2 %2%1 - wme wszrl
dyys,

y?! =yY, 1, and

Thus, we comparéy?y2 Y, 1 and (Y, 4202, 1 — Um_otb2, ).

Casemn =1,

Casem = 2k,

= = - =2 = =2 = =2
V2V — ¢m—2¢31+1 _ Yl oksof o1 — YSor2f ok i1 _ SowsaSon—1 = Son—afons1

AP0 Y o 4y oYy A2 + az + 0)2F Yy

Casemn = 2k + 1,

5 5 i 022 e N 92 = =2 = 2
Vm2y 1 — Ym—2¥p4 _ for Y o f_2k—1y fokso _ Jorisfor = Jor—1Sok42

=T —3
Ay Yo 43/2_.fék+1y;l—1 - 4foy1Yq—1

For each case above, Wheth.er_th'eae'Td#ﬁina_th and the nomarathe same, or the sum
of them is0, corresponding to = m-or'/\ ='€'-'— m, the check costs three polynomial multi-
plications for oddn, and four for evenn. The expected number of polynomial multiplication
needed ig5 x £ + 3.5 x £) = 174,

As the concept indicates, there are two processes of isogangs. The first one is to
compute a factor of division polynomia: (x), and search (mod ¢*). The expected number
of polynomial multiplication needed ($ x % + 3.5%’“) = L0k,

The second process is to find thgmod ¢?) for eachi < k. That means finding (mod ¢¢)
by use ofA (mod ¢~!). Suppose\ = a (mod ¢~1), then the candidates of (mod ¢%) are

a+ -t forh = 0,1,....¢ — 1. It does not mean that the expected number of the division

polynomials needed increases(éé) in this case. Here, we still can use the negative checking.
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Example 5.4. Suppose\ = 3 (mod 13), then\ = 3 + 13h (mod 13?) for someo < h < 12.

Here assuma = 3 + 13k (mod 132). ¢(P) = [3 + 13h]P. SinceP e E[13?],
—@(P) = [-3 — 13h|P = [13% —3 — 13h]P = [-3 + 13(13 — h)] P

Therefore, in this example, we can do negative checking farh < 12.
o(P)=[3+13x 7P = —p(P)=[-3+13(13-7)]P
o(P)=[3+13x8]P = —(P)=[-3+13(13—28)]|P
o(P)=[3+13x 9P = —¢(P)=[-3+13(13—-9)|P
o(P)=[3+13x10]P = —p(P)=[-3+13(13—10)]P
o(P)=[3+13 x 11]P = —¢(P)=[-3+13(13—11)]P

P(P)=[3+13x12]P = —(P)=[-3+13(13-12)]P

Now, A can be derived. To di.a'te_.rm!p(:a :Fh_e(_.mc-),d (%), i is needed. For the cage= 1,
i = q¢/A (mod /). For the casé:._lz s> 1we have)_\'. (mod ¢¢), andy (mod ¢¢71). In fact,
Mt = qos (mod £%). They (mod Ks)can be c:';.il_culgtéd from the Hensel's Lemma.
Example 5.5. Suppose; = 157, and-/\ = 1. (mod 7), p = 3 (mod 7). Also, A = 22
(mod 7%). Then, letf(z) = Az — B, whereA = 22 = X (mod 7%), B = 10 = 157 (mod 7?).

By Hensel's Lemma,

So,s =6,andy =3+ 6 x 7 = 45.

Therefore, in this case the expected number of polynomidfiptication needed ig5 x
L 435 x L) = 3k + 1)

Now, we analyze the computing cost. The complexity of they/pomial multiplication
reduced modulo a polynomial of degrees O(nlogn) via fast Fourier transformation(FFT),
saywin logn, wherew, is a constant.
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First, we define some terms for further analysis. Fifst,denotes the computing time to

derivet, for an Elkies prime. Then,

T =logq-wi(f+1)log(f + 1)+ (log (q; 1) - 17576) "Wy (6; 1> log <€;1> .

The first part is to determine a root & (x, j(£)). The second part is to computé_; and

derive A (mod /). Similarly, 7,» denotes the computing time to derige for &£ > 1 where

-1 k—1(p 1 k—1(p _ 1
Tp = log q-wq (£+1) log((+1)+ <log (%) + Zﬁk + ;ﬁ) Wy <%> log (#) :

Since the information from Elkies primes is definite, it ioiontant to increase the product
of these primes and prime powers. The concept is the samectiersg.1 that we select the
prime/ or prime powerg”* whoseT: / log ¢ is small. This value represents the computing cost
to gain the information caused by:each biiz?aaf\./e'-:fagely.

Example 5.6. Let ¢ = 252 — 569, thel;l th.é _f_c';-ll'ov.vihg.; iS the valug}: / 1og ¢ with respect to each

¢, 1 pairs. Note that we set; = 1here.»

0 i | Tuflogl | € i |Tu/logl | ¢ | Tu/logt || ¢ i|Tu/logt

3 1 1365 5 1 1695 3 2 1797 71 1939

11 1 2297 13 1 2438 17 1 2673 19 1 2774

23 1 2954 29 1 3183 31 1 3251 37 1 3438

41 1 3552 5 2 3595 43 1 3605 47 1 3708

53 1 3852 29 1 3986 61 1 4029 67 1 4153

3 3 4170 711 4232 73 1 4271 79 1 4384

5.3 Polynomial-Time BSGS Heuristic

Let us review the BSGS strategy in which lie some tricks tcesp@p. The Atkin primes are
first divided into two sets;, andS,. Letc; andc, be the number of possibtecorresponding

57



to S; andsS,. After that, the baby step performstimes to calculate;, and the corresponding
Iri| < %, and ther®),, = [¢ + 1 — #3]P — [rymams] P. So, we can reduce the time of scalar
multiplication of a point by pre-computation ¢fom3]|P. Therefore, the complexity of baby
step isO(c; log my) elliptic curve point addition.

Similarly, in the giant step, the computation pfi;m3] P reduces the time to compute
[romyms] P. Moreover, there are twe,, sayry, andrsy,, for at,. Since|ry, — rq,| = ma,
we can derivéry, mims| P from [rq, mims| P and|[m;msemgs]| P. Thus, the complexity of giant
step isO(c log msy) elliptic curve point addition.

In addition, the baby step is performed completely, whilke ghant step is not. In proba-
bilistic estimation, the giant step is half performed. Hentis better to choose the set of small
number of possibléto perform the baby step. I_—I_ence, the computing ébsf BSGS strategy
is about | ElS N

Ui kgx/alog:A,
wherew, is a constant.

It costs much time in BSGS strategy f is too large. The traditional way out of this
problem is to set a threshold for C. However, it does not seem a good way to decide the
time to perform BSGS strategy. T is big, it may cost more time in BSGS strategy of the
algorithm. But the small’ may cause a waste of time to use the larger primes. Here, we
propose a method to estimatedynamically. After the Atkin primes selection strategy, @@
estimate the computing time used by BSGS strategy. On the other hand, we also suppose that
the next prime is Elkies, and estimate the tiBievhich is taken by gathering the information of
the next prime, and then the BSGS strategy after we have fiblemation from the next prime.

If B < B’, then our implementation will perform BSGS strategy. OtVise, the informa-

tion of the next prime is collected. Thus, the next stage @&tlgorithm depends on the gathered
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information of each elliptic curve. Therefore, we can prevfeom the use of larger primes, and

can detect whethe?' is too big. This method can always be suitable for any curve.

5.4 Numerical Results

The computing environment we use is Intel Xeon 3040 Procestb 1.86GHz, 2G RAM on

FreeBSD 7.0 with the MIRACL library version 5.3.2. At firstevealculated the order of 50,
40, 30, 20, 10 different elliptic curves corresponding te gnime of 160-bit, 192-bit, 256-bit,
384-bit, and 512-bit by use of the original SEA algorithm.eTdverage time is listed in Table

5.2.

Bits of ¢ 16Q .1 . 192 256 384 | 512

Average time(s)| 9.919126:51 [90.73 | 607.8 | 2654

Table 5.2: Average compu.t_'rrig time of original SEA algorithm

Next, we calculated the order of the same elliptic curvesedsrb by applying the Atkin
selection heuristic. The average time and the improvenaattompared with the original one

are in Table 5.3.

# bits ofq 160 | 192 256 | 384 | 512

Average time(s)|| 9.68 | 26.02 | 87.20 | 574.9 | 2412

Improve rate(%)| 2.33 | 1.84 | 3.89 | 5.42 | 9.10

Table 5.3: Average computing time when applying Atkin setecheuristic

When the number of bits af increases, we need to use more primes. Hence, we encounter

more Atkin primes, which are almost useless for us. The Askilection heuristic can save the
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time, whose complexity i€ (¢* log® ¢), to find out ther, of the ‘bad’ Atkin primes. Therefore,
the impact is more evident whens large.

Table 5.4 shows the numerical result of applying the Ellksegeény heuristic.

# bits ofq 160 | 192 256 384 | H12

Average time(s)|| 9.68 | 25.27 | 83.95 | 557.0 | 2296

Improve rate(%)| 2.30 | 4.67 | 7.47 | 8.37 | 13.48

Table 5.4: Average computing time when applying Elkies eggheuristic

The effect of the isogeny cycle is to reuse the Elkies priniéss is necessary if is larger
because of the increasing number of the encountered Atkimegr So, the result presents that
the improvement is obvious wheris, large:

The result of the improvement of-the pp|ynprﬁia|—time BSGariwsic is shown in Table

5.5.

# bits of 160 L4902 256 | 384 | 512

Average time(s)|| 9.49 | 25.43 | 80.02 | 545.1 | 2278

Improve rate(%)| 4.19 | 4.07 | 11.81 | 10.31 | 14.16

Table 5.5: Average computing time when applying polynortiae BSGS heuristic

# bits ofg 160 | 192 256 384 012

Average time(s)|| 9.11 | 23.86 | 73.18 | 464.3 | 1899

Improve rate(%)| 8.03 | 10.01 | 19.34 | 23.61 | 28.43

Table 5.6: Average computing time when applying three Istiag

This heuristic brings an effective way to improve the alton as we can see. The result
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also tells that it can prevent from the use of larger primad,@n detect whethér is too big,
indeed.
Finally, if the three heuristics are applied to original SEl§orithm, then we get the result

in Table 5.6.
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Chapter 6

Conclusion & Future Work

In this thesis, we propose three heuristics to speed up tAeafforithm. These three heuristics
are more effective for large Besides, we use the pre-computation skill to speed up tli®pa
BSGS strategy. And we also probos_e the r_1eg_ati\-/.é checkintgéasogeny cycles.

Although our implementation is for the-.é.lliptic cgirves defihover prime fields, the heuris-
tics can be applied to the SEA allg'or_i't.-Hm for.'é:llipt'i'c' curvesioed over binary fieldg,, where
g = 2". Furthermore, the idea of anal;}sis ir-l t.r.we Atkin selectionrlstic and also in the Elkies
isogeny heuristic may be applied to others.

There are some improvements that mentioned by Couveigné&sfan help find a factor of
the division polynomial of smaller degree.

In the future, we will prepare to implement SEA algorithm &liptic curves defined over
binary fields. Also, we will study the theoretical part ofiglic curves, especially the part related
to SEA algorithm. Moreover, there exists Satoh’s metho[iich useg-adic analysis to find

the order of elliptic curves defined over finite fields of sncakhracteristic, such as binary fields.
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