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適用於嵌入式處理器之高階軟體耗能評估工具 

 

 

學生: 陳建臻                  指導教授: 曹孝櫟 博士 

 

國立交通大學 資訊學院 

資訊科學與工程研究所 碩士班 

 

摘要 

為了處理日趨複雜的嵌入式軟體並盡量降低嵌入式處理器的耗能，近年來，提昇能

源效率 (energy-efficiency) 已經成為設計嵌入式系統時的一大重點，在提昇能源效率的

研究當中，軟體耗能評估工具經常被用來評估一項電源管理政策的優劣以及它對嵌入式

軟體之執行時間與耗能的影響。雖然目前已經存在許多套軟體耗能評估工具，但它們大

多需要花費很多時間去評估耗電，或是沒有考慮到處理器的電源管理狀況，因此並不適

合在較複雜的嵌入式系統當中被用來評估支援電源管理 (power management) 功能之處

理器的耗電。本論文提出之高階軟體耗能評估工具 SEProf 即是一套能夠在具作業系統

之嵌入式系統裡，快速評估支援電源管理功能之處理器耗電的工具，我們已經將 SEProf 

實做於 Linux 核心 2.6.19 當中，並以一個具 ARM11 MPCore 處理器的嵌入式系統平

台為例做了許多實驗，實驗結果顯示在大多數的情況之下，SEProf 所評估出來的平均

功率誤差是在 2% 以內，而功率誤差的標準差則是在 6% 以內。 
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Abstract 

In order to handle the growing complexity of embedded system while minimizing its 

energy consumption, energy-efficiency of embedded software recently has become one of the 

most important issues in the design of embedded systems. To examine the energy-efficiency 

of embedded software, estimation of the energy consumption of embedded software is very 

critical. Although a number of software energy estimation tools have been proposed, most of 

them are not able to efficiently estimate the energy consumption of embedded processors with 

power management features, e.g. dynamic voltage and frequency scaling (DVFS). Therefore, 

this paper presents a high-level software energy profiling tool, called SEProf, targeted toward 

energy estimation of embedded processors on operating system (OS)-based embedded 

systems with power management functions enabled. We implemented the proposed SEProf in 

Linux kernel 2.6.19 and conducted a number of experiments on an ARM11 MPCore processor. 

The experimental results demonstrate that the average error of the power estimation using 

SEProf is within 2%, and the standard deviation of the power estimation error is under 6% in 

most cases. 
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1. Introduction 

Recently, energy-efficiency has become an important focus in the design of embedded 

systems in order to handle the growing complexity of embedded software while minimizing 

the energy consumption of embedded systems. In energy-efficiency research, energy 

estimation of embedded software is very critical in examining the effectiveness of 

energy-efficiency strategies and in analyzing the effects of power management, e.g. DVFS 

[1][2], on the execution time and energy consumption of embedded software. Prior works on 

energy estimation of embedded software could be classified into two categories, 

measurement-based and modeling-based, according to the way that they estimate the power 

consumption of embedded processors. In measurement-based approaches, such as [3], the 

power consumption of embedded processors is directly measured from a hardware device, e.g. 

an oscilloscope or a digital multimeter. Using measurement-based approaches could precisely 

measures the energy consumption of embedded software without knowing the implementation 

of embedded processors, but the difficulty of synchronization between the measured energy 

consumption and system activities limits its usefulness in analyzing software energy 

consumption in detail. The other way to estimate the energy consumption of embedded 

software is based on power modeling techniques. Some modeling-based approaches model 

the power consumption of embedded processors at lower level, such as architecture-level 

[4][5] and instruction-level [6][7][8][9][10][11], based on power measurement or low-level, 

e.g. circuit-level and gate-level, power estimation. Although most of them are able to produce 

accurate energy estimation results by performing detailed analysis on hardware events and 

software behaviors, they usually need to spend a lot of time to perform detailed energy 

analysis of larger systems. Since most embedded software remains the same in the design 

phase of energy-efficiency strategies, a detailed energy analysis for all embedded software 

may not be necessary every time the strategies are slightly modified. Therefore, estimating the 
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energy consumption of embedded software at higher level may be an attractive option. 

In high-level modeling-based approaches, the power consumption of embedded 

processors is modeled at software level, such as basic-block-level [6][12] and function-level 

[13][14], based on measurement-based approaches or lower level modeling-based approaches. 

They are usually coupled with performance analysis tools which are executed on the target 

system to collect execution information. With proper design of power models, high-level 

modeling-based tools could estimate the energy consumption of embedded software more 

quickly while maintaining reasonable accuracy. Unfortunately, most of the existing high-level 

modeling-based tools do not consider that the operating voltage and frequency of embedded 

processors which support power management features may be dynamically changed. Without 

noticing the power levels of embedded processors, the accuracy of software energy estimation 

results could be significantly degraded. 

In this paper, a high-level modeling-based software energy profiling tool, SEProf, is 

presented. It is aware of the changes in the operating voltage and frequency of embedded 

processors at runtime, and supports software energy estimation on OS-based embedded 

systems. Besides, an extensible software design is proposed and adopted in SEProf to meet 

different requirements of accuracy and efficiency. SEProf was implemented in Linux kernel 

2.6.19, and a number of experiments were conducted to examine the accuracy and efficiency 

of SEProf executing on an ARM11 MPCore processor [15]. The experimental results show 

that the average power estimation error of using SEProf is less then 2%, and the standard 

deviation of the power estimation error is within 6%. The observed performance overhead 

introduced by SEProf is less than 1%.  

The remainder of this paper is organized as follows. Related work is discussed in Section 

2. Design and implementation of the proposed tool, SEProf, is described in Section 3. A case 

study on the ARM11 MPCore processor and experimental results are presented in Section 4. 

Conclusions and future works are given in Section 5.  
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2. Related Work 

With the increasing attention to energy consumption issues in embedded systems, 

extensive energy estimation tools have been investigated. According to the way that they 

estimate the power consumption of embedded processors, the existing energy estimation tools 

could be classified into measurement-based and modeling-based tools. In [3], a 

measurement-based energy profiling tool, PowerScope, was presented. It measured the power 

consumption of the target system through a digital multimeter, and a System Monitor was 

implemented and executed on the target system to perform statistical sampling of system 

activities. By using PowerScope, the granularity of software energy estimation is primarily 

restricted by the sampling rate of the System Monitor. Another way to estimate the energy 

consumption of embedded software is based on power modeling techniques. In Wattch [4], a 

framework which adopted an architecture-level power modeling technique was proposed and 

integrated into the SimpleScalar simulator. Wattch modeled the power consumption of the 

primary units in modern embedded processors, e.g. functional units and caches, and 

monitored the number of accesses to these units during simulations to estimate the energy 

consumption of embedded processors [5]. In [6] an instruction-level power modeling 

technique was firstly presented. The concept is to build a base energy cost for each instruction 

in the instruction set, and the energy consumption of a program is estimated by cumulating 

the base energy cost of all executed instructions. Variations of instruction-level power analysis 

were exploited in [7] and [8][9]. They divided the instruction set into a number of classes 

according to the average power consumption of instructions, and the energy consumption of a 

program was estimated by cumulating the number of executed instructions in classes instead 

of individual instructions. In [10][11], an instruction-level energy simulator, EMSIM, was 

exploited. It enables simulation of an embedded Linux OS, and provides per-task 

function-level energy estimation based on the instruction-level power modeling technique 
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proposed in [7]. By using architecture-level or instruction-level power modeling techniques, 

energy estimation tools may need to spend a lot of time to produce accurate results, especially 

when inter-instruction effects are also taken into consideration.  

To faster the energy estimation process, several high-level power modeling techniques 

were proposed. A basic-block-level power analysis was introduced in [6] which built a base 

energy cost for each basic-block in the target program. The energy consumption of the 

program was evaluated by cumulating the number of times that each basic-block was 

executed multiplied by its base energy cost. Another basic-block-level power analysis was 

proposed in [12]. In this work, the target program was divided into many fixed number of 

consecutive basic-blocks, and the energy weights of basic-block groups were derived based 

on regression analysis. Beyond basic-block-level analysis, a function-level power analysis 

was first presented in [13]. A “power data bank” was constructed for storing the average 

power and execution time of build-in library functions and basic instructions, and the energy 

consumption of a program was calculated by cumulating the number of times that each 

function was invoked multiplied by its average power and execution time recorded in the 

“power data bank.” Another tool which adopted function-level power analysis was proposed 

in [14]. It is a software energy estimation tool for heterogeneous dual-core processor. In their 

function-level power model applied to the digital signal processor (DSP) core, the average 

power consumption of different DSP algorithms was pre-measured and stored in an energy 

library. The energy consumption of DSP algorithms was calculated by multiplying the 

execution time of each DSP algorithm with its average power recorded in the energy library.  

Although many high-level, e.g. basic-block-level and function-level, energy estimation 

tools have been exploited to provide efficient software energy estimation, most of them do not 

consider that the power levels of embedded processors may be changed dynamically. If the 

power management features of embedded processors, such as the mechanisms proposed in 

[1][2][18], are enabled, but the energy consumption of embedded software is still estimated 
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using cumulated values, e.g. the number of times that each function has been invoked, then 

the accuracy of the estimated energy consumption could be significantly degraded. Although 

the proposed software energy profiling tool, SEProf, also adopts high-level power modeling 

techniques to estimate the energy consumption of embedded software, unlike previous works, 

SEProf is aware of the changes in the power levels of embedded processors at runtime which 

makes SEProf more suitable for energy estimation on larger systems with power management 

enabled. Besides, the proposed software design which allows users to build power libraries 

for embedded software at various granularity levels also improves the flexibility of SEProf. 
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3. Design and Implementation of SEProf 

The proposed high-level software energy profiling tool, SEProf, is consisted of two 

software components, (1) power table registrations and (2) a kernel patch. As depicted in 

Figure 1, before using SEProf, the power consumption of the processor executing the 

embedded software has to be analyzed by using measurement-based or lower level 

modeling-based energy estimation tools which have been discussed in Section 2. After 

building high-level power libraries for embedded software through power analysis, these 

power libraries have to be inserted into embedded software, and registered through system 

calls provided by SEProf for energy estimation at runtime. In SEProf, the energy consumption 

of embedded software is calculated and maintained in kernel space, therefore the OS kernel, 

namely the Linux kernel, has to be patched to support SEProf. After the patched kernel and 

user-level programs are compiled, SEProf estimates the energy consumption of each thread at 

runtime, and stores the estimated results in kernel space. Users can access the estimation 

results through system calls provided by SEProf. The two software components are described 

in more detail in the following sections. 

  
Figure 1. Overview of SEProf 
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3.1. Power Table Registration 

By using high-level power modeling techniques, users of SEProf have to build power 

libraries for embedded software as a reference of the average power consumption of the 

executing embedded software. A power library is consisted of one or more power tables, and 

each power table records a number of average power consumptions that an embedded 

processor executes a specific sequence of instructions, e.g. a basic-block, a function, or a 

program. The number of average power consumptions recorded in a power table is 

determined by the number of configurable power levels supported by the embedded processor. 

For example, a power table may record five different average power consumptions of a 

specific function executed by an embedded processor which supports up to five different 

power levels.  

After building power libraries, users have to register and unregister power tables in 

embedded software through system calls provided by SEProf. This procedure is called “power 

table registration” as shown in Figure 1. A power table registering operation has to be coupled 

with an unregistering operation. If a power table is registered to SEProf, it will be used by 

SEProf as the source of the average power consumption of the executing software. On the 

contrary, if a power table is unregistered to SEProf, then the power table will no longer be 

used to estimate the power consumption. An example of using power tables is depicted in 

Figure 2. It is an execution flow of an example program. We assume that the embedded 

processor which executes this example program supports up to five different power levels. 

Therefore, each power table records five average power consumptions of the embedded 

processor operating at different power levels. In this example, three power tables are built by 

users, and the features of the three power tables are described as follows. The power table 1 

records the average power of all programs on the system. It is registered when a thread is 

created, and unregistered when a thread is terminated. The power table 2 records the average  
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Figure 2. An example of using power tables 

 

power of the example program. It is registered at the beginning of the main function in the 

example program, and unregistered at the end of it. The power table 3 records the average 

power of all system calls. It is registered at the beginning of the system call handler in OS 

kernel, and unregistered at the end of it. As shown in Figure 2, when a thread which executes 

the example program is created, SEProf registers the power table 1 for it in OS kernel. If there 

is no other power table registered afterwards, the power table 1 will be used as the source of 

the average power consumption throughout the execution of the thread until the power table 1 

is unregistered. However, in this example, the thread registers the power table 2 after entering 

the main function of the example program. Therefore, the power table 2 becomes the source 

of the average power consumption of the thread after registration. To further improve the 

accuracy of power estimation, users in this example also build a power table for system calls, 

i.e. the power table 3. Hence, every time the thread invokes a system call, the power table 3 is 

used to estimate the power consumption of the thread, and the power table 2 is used again 

only when the thread returns from the system call. 

3.2. Energy Estimation 

When the OS kernel and user-level programs with power table registered are executing, 

Power Table 1 
PL Avg. Power(uW)
1 236,264
2 319,704
3 419,068
4 536,584
5 668,093 Entering the main function

The power table 2 is 
registered by the thread

Thread Creation
The power table 1 is 
registered by SEProf

Thread Exit
The power table 1 is 

unregistered by SEProf

Leaving the main function
The power table 2 is 

unregistered by the thread

Invoking a system call
The power table 3 is 
registered by SEProf

Leaving the system call
The power table 3 is 

unregistered by SEProf

using PT1 using PT1

using PT2

using PT3

using PT2

Power Table 2 
PL Avg. Power(uW)
1 257,860
2 349,031
3 457,676
4 586,146
5 731,460

Power Table 3
PL Avg. Power(uW)
1 235,219
2 318,705
3 416,343
4 529,410
5 662,030

PT: Power Table
PL: Power Level



9 

SEProf calculates the energy consumption of each thread by the following formula 

∑
=

×=
N

i
iiithread CIDPLPTTE

1
)]([  (1) 

where Ethread is the energy consumption of a thread, N is the number of runtime periods of a 

thread, Ti is the execution time of the thread in the ith runtime period, CIDi is the 

identification (ID) of the embedded processor core executing the thread in the ith runtime 

period, PL(CIDi) is the power level of the processor core whose ID is CIDi, PTi is the power 

table used in the ith runtime period, and PTi[PL(CIDi)] is the average power in the ith runtime 

period. A runtime period used in formula (1) is a period of time in the execution time of a 

thread. In SEProf, a runtime period of a thread is divided and used to estimate the energy 

consumption of the thread when one of the following four events occurs. 

(1) A thread registers or unregisters a power table. 

When a thread registers or unregisters a power table, it means that the average power 

consumption of the embedded processor is changed. Therefore, the average power 

consumption stored in the previous power table is used to estimate the energy 

consumption during the former runtime period, and the new power table is applied to the 

latter periods. 

(2) The power level of the embedded processor which executes a thread is changed. 

When the power level of an embedded processor is changed, the power consumption of 

the processor which executes the thread is also changed. Hence, the previous power level 

is used to estimate the energy consumption during the former runtime period, and the new 

power level is applied to the following periods. 

(3) The total energy consumption of a thread is retrieved while the thread is running. 

Before returning the total energy consumption of the thread to users, SEProf adds the 

energy consumption of the thread since it was last calculated to the total energy 

consumption of the thread. 
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(4) A thread is dead. 

When a thread is dead, the energy consumption of the thread since it was last calculated is 

added to the total energy consumption of the thread. 

An example of the energy estimation in SEProf using formula (1) is given in Figure 3. We 

assume that a thread, “Thread A,” executes the same example program as described in Figure 

2, and the thread is executed on a single-core embedded processor which supports up to five 

different power levels. At the beginning of this example, the power level of the embedded 

processor is set to 5, and the power table 1 is registered for the newly created thread. In Figure 

3 the energy consumption of the thread is calculated four times due to three of the above 

mentioned events. At the end of the runtime period T1 the thread resisters the power table 2 as 

the source of the average power consumption. Therefore, the power table 1 is used to 

calculate the energy consumption during the runtime period T1, and the power table 2 is used 

in the following runtime periods. At the beginning of the runtime period T3, SEProf notices 

that the power level of the processor has been changed since the thread is scheduled out at the 

end of the runtime period T2. Hence, it calculates the energy consumption of the thread during  

 

  
Figure 3. An example of the energy estimation in SEProf 

Power Table 1 
PL Avg. Power
1 AP1,1
2 AP1,2
3 AP1,3
4 AP1,4
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Time
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T4

The power level of the 
processor is changed 
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thread is retrieved.
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Power Table 2 
PL Avg. Power
1 AP2,1
2 AP2,2
3 AP2,3
4 AP2,4
5 AP2,5

The power level of 
the processor is 

changed from 5 to 4.
EA= EA+T2×AP2,5

APm,n:  The average power consumption of the 
processor operating at the nth power level 
records in the power table m.

4
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the runtime period T2 using the recorded power level, and updates the recorded power level to 

the new one. A similar situation happens at the end of the runtime period T3, but this time the 

power level of the processor is changed by “Thread A” itself. In this example, the total energy 

consumption of “Thread A” retrieved at the end of the runtime period T4 is EA=(T1×AP1,5)+ 

(T2×AP2,5)+ (T3×AP2,4)+ (T4×AP2,3). 

3.3. Data Structures 

To support thread-based energy estimation, SEProf maintains three kinds of data 

structures as depicted in Figure 4. They are described as follows: 

(1) A per-program/per-library data structure in user space. 

It contains a user-level power library which is built from the power analysis of a user-level 

program/library and stored in the program/library. A user-level power library is consisted 

of one or more user-level power tables which are used by all threads running the same 

program/library. 

(2) A global data structure in kernel space. 

It contains a kernel-level power library, and variables used to record the power levels of 

all embedded processor cores on the system. The kernel-level power library is built from 

the power analysis of OS kernel, and stored in the kernel image. A kernel-level power 

library is consisted of one or more kernel-level power tables which are shared among all 

threads on the system. 

(3) A per-thread data structure in kernel space. 

It contains the profiled time and energy of a thread, and a power table list for tracking all 

registered power tables of the thread. It also records the ID and the power level of the 

processor core which executes the thread previously for detecting changes of the average 

power consumption which has been discussed in Section 3.2. 

The way that SEProf maintains the power table list is illustrated in Figure 4, when a thread 
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registers a kernel-level power table to SEProf, a new element which points to the registered 

power table is inserted into the power table list of the thread. When a user-level power table is 

registered, the content of the registered power table is copied from user space to kernel space 

first, and a new element which points to the power table in kernel space is inserted into the 

power table list of the thread. The latest inserted element in the power table list is the one used 

to estimate the power consumption of the executing thread. In contrast to register a power 

table, if a power table of a thread is unregistered, the latest registered element will be removed 

from the power table list of the thread, and the previous registered power table will be used to 

estimate the power consumption of the executing thread. 

 

 
Figure 4. Data structures maintained by SEProf 
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4. Case Study: ARM11 MPCore Processor 

To demonstrate the feasibility of SEPorf, SEProf was adopted to estimate the energy 

consumption of embedded software executing on an ARM11 MPCore processor [15]. 

Experimental environment and results are described in Section 4.1 and Section 4.2 

respectively. 

4.1. Experimental Environment 

The experimental platform is a Core Tile, CT11MPCore [16], which has an ARM11 

MPCore test chip that implements the ARM11 MPCore processor stacked on the top of a 

RealView Emulation Baseboard [17]. As shown in Figure 5, the ARM11 MPCore processor is 

a multi-core processor which supports up to four MP11 central processing units (CPUs). Each 

MP11 CPU has 16KB-64KB independent data cache and instruction cache. The coherence 

among data caches of MP11 CPUs is maintained by a snoop control unit (SCU) in the 

processor. A unified 1 MB L2 cache and the ARM11 MPCore processor are implemented on 

the ARM11 MPCore test chip. On this platform, all MP11 CPUs on the ARM11 MPCore 

processor has the same power supply and clock source. The voltage level of the ARM11  

 
Figure 5. Overview of the ARM11 MPCore Processor 
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MPCore processor could be changed by writing values to a digital to analog converter (DAC) 

on the CT11MPCore, and the voltage and current values of the processor are able to be 

obtained from an analog to digital converter (ADC). By default, the voltage supplied to the 

ARM11 MPCore processor is 1.2 V which has an adjustment range of ±0.25V. The clock rate 

of the processor could also be changed by configuring the phase-locked loop (PLL) on the 

CT11MPCore. In the experiments, the DAC and PLL were used to scale the voltage and the 

frequency of the ARM11 MPCore processor respectively, and the ADC was used to measure 

the power consumption of the processor. For time measurement, a 24 MHz clock on the 

Emulation Baseboard was used. The time resolution is around 41.7 ns. 

In the experiments, SEProf was integrated into Linux kernel 2.6.19, and a patched 

OProfile [19] was adopted to build power libraries and verify the accuracy of the power 

estimation results. OProfile is a system-wide profiler for Linux systems using statistical 

sampling. It could be used to profile Linux kernel, shared libraries, and applications. 

Originally, OProfile samples the context and program counter (PC) value of the running task 

on each sampling interrupt, but we extended it to sample the power consumption of the 

processor as well. We set the sampling rate of OProfile to 1 kHz, and assumed that a power 

sample could represent the average power consumption of the sampling period.  

There are four testing programs used throughout the experiments. Three of them are CG, 

FT, and IS applications from the OpenMP Implementation of NAS Parallel Benchmarks 

(NPB) (Version 3.3) [20]. CG computes an approximation to the smallest eigenvalue of a 

matrix using a conjugate gradient method, FT performs the time integration of a 

three-dimensional partial differential equation using the Fast Fourier Transform, and IS sorts 

integers using the bucket sort. The last one testing program, FileRW, is an I/O intensive 

application which is written by us. It is a simple application which writes and reads a 

30,000,000 bytes file on the file system mounted via network file system (NFS). 



15 

4.2. Experimental Results 

Since we did not successfully scale the frequency of the ARM11 MPCore processor 

without resetting it, the experiments were separated into two parts. The first one was voltage 

and frequency scaling (VFS) experiment, and the second one was dynamic voltage scaling 

(DVS) experiment. In VFS experiment, both of the voltage and the frequency of the ARM11 

MPCore processor were scaled at the beginning of the experiment and remained the same 

throughout the experiment. In DVS experiment, only the voltage of the ARM11 MPCore 

processor was scaled dynamically and periodically.  

4.2.1. VFS Experiment 

In VFS experiment, we selected five power levels for the ARM11 MPCore processor, and 

assumed that the processor only operated at one of the five power levels during the 

experiment. As shown in Table 1, each power level represents a combination of the voltage 

and the frequency levels of the processor. In the power analysis stage, only one MP11 CPU 

was active during the experiment in order to map the measured power consumption back to 

the embedded software. The remaining three CPUs were not initialized. After analyzing the 

power consumption of the embedded software using the patched OProfile, we built seven 

power libraries which are shown in Table 2 for six applications and the Linux kernel, since 

they took almost all CPU time during the experiment. Each power library only contains one 

power table, and each power table is consisted of five average power consumptions. The 

user-level power tables of the six applications are registered to SEProf at the beginning of the 

applications, and unregistered at the end of it. A kernel-level power table for the Linux kernel, 

“vmlinux,” is registered to SEProf when a thread is created, and unregistered when the thread 

is dead. It is also registered when a thread calls a system call, and unregistered when the 

thread returns from the system call. After building and registering power tables, the 

applications and the Linux kernel have to be re-compiled. While they are in execution, SEProf 
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uses the registered power tables to estimate their energy consumption. 

The energy estimation results of the testing programs generated by SEProf are depicted 

in Table 3. The energy and time spent on executing application itself and calling system calls 

are separated for better examining the accuracy of the power estimation results. In Table 3, it 

can be observed that in many cases the average power consumption which belongs to the 

application itself is slightly lower than the average power consumption recorded in Table 2. 

This is because the power table “vmlinux” which has lower average power consumption than 

 

Table 1. Power levels of the ARM11 MPCore processor used in VFS experiment 
Power Level Voltage (V) Frequency (MHz)

1 0.95 140 
2 1.01 168 
3 1.08 196 
4 1.14 224 
5 1.2 252 

 

Table 2. Pre-built power tables used in VFS experiment 
Power 
Level 

Average Power (uW) 
busybox cg.W ft.W is.W FileRW oprofiled vmlinux 

1 259,910 248,793 257,860 245,596 245,596 263,693 236,264
2 351,942 335,212 349,031 333,724 329,615 359,267 319,704
3 460,445 438,194 457,676 437,932 430,954 469,998 419,068
4 589,110 558,713 586,146 560,148 565,448 602,413 536,584
5 737,875 696,401 731,460 700,672 692,258 753,294 668,093

 

Table 3. Energy estimation results of the testing programs generated by SEProf 

Power 
Level 

Application 
Name Runtime (ns) Energy (nJ) 

Average 
Power 
(uW)

Runtime and Energy Decomposition 
Application System Call 

Runtime (ns) Energy (nJ) Average 
Power (uW) Runtime (ns) Energy (nJ) Average 

Power (uW)

1 

cg.W 215,142,229,738 53,523,025,310 248,779 215,107,109,231 53,514,727,172 248,781 35,120,507 8,298,138 236,276
ft.W 67,037,203,942 17,284,005,878 257,827 66,997,729,564 17,274,678,200 257,839 39,474,378 9,327,678 236,297
is.W 36,419,198,335 8,943,845,256 245,580 36,392,245,455 8,937,476,635 245,587 26,952,880 6,368,620 236,287
FileRW 16,041,195,497 3,790,019,199 236,267 54,617,998 12,966,173 237,397 15,986,577,499 3,777,053,025 236,264

2 

cg.W 192,657,588,749 64,578,063,332 335,196 192,626,048,827 64,567,979,372 335,198 31,539,922 10,083,959 319,720
ft.W 58,020,422,787 20,248,231,131 348,984 57,984,961,957 20,236,892,646 349,002 35,460,830 11,338,484 319,746
is.W 31,221,337,324 10,418,549,363 333,699 31,197,161,869 10,410,819,618 333,710 24,175,455 7,729,744 319,735
FileRW 14,964,401,703 4,784,238,970 319,708 46,646,752 14,972,723 320,981 14,917,754,951 4,769,266,246 319,704

3 

cg.W 177,891,300,125 77,947,215,468 438,173 177,862,250,090 77,935,040,952 438,176 29,050,035 12,174,516 419,087
ft.W 51,440,617,083 23,540,124,655 457,617 51,412,324,577 23,528,266,180 457,638 28,292,506 11,858,475 419,138
is.W 27,743,537,787 12,148,880,938 437,899 27,723,505,236 12,140,484,751 437,913 20,032,551 8,396,187 419,127
FileRW 13,993,317,938 5,864,222,276 419,073 42,791,501 18,002,775 420,709 13,950,526,437 5,846,219,501 419,068

4 

cg.W 166,260,715,792 92,887,963,243 558,688 166,234,336,831 92,873,808,086 558,692 26,378,961 14,155,157 536,607
ft.W 46,265,451,835 27,114,674,140 586,067 46,238,800,791 27,100,371,441 586,095 26,651,044 14,302,698 536,665
is.W 25,135,261,407 14,078,419,514 560,106 25,116,535,316 14,068,370,226 560,123 18,726,091 10,049,288 536,646
FileRW 13,216,644,021 7,091,992,367 536,595 39,083,500 21,123,619 540,474 13,177,560,521 7,070,868,747 536,584

5 

cg.W 157,416,999,118 109,622,239,504 696,381 157,391,890,741 109,605,463,977 696,385 25,108,377 16,775,527 668,124
ft.W 41,120,090,135 30,073,199,551 731,350 41,092,735,893 30,054,921,810 731,392 27,354,242 18,277,741 668,186
is.W 23,082,564,077 16,171,958,348 700,613 23,065,058,623 16,160,261,328 700,638 17,505,454 11,697,019 668,192
FileRW 12,694,372,003 8,481,148,996 668,103 36,990,751 24,840,629 671,536 12,657,381,252 8,456,308,366 668,093
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other power tables is used to estimate the power consumption of an application when its own 

power tables is not registered. Another observation in Table 3 is that the average power 

consumption of a thread calling system calls is slightly higher than the average power 

recorded in the power table “vmlinux.” The reason is that the power table “vmlinux” is used 

for all system calls except the one for registering/unregistering a power table to avoid 

removing the newly registered power table when a thread returns from the system call. 

Therefore, the average power consumption of a thread calling system calls is slightly 

increased every time the system call for registering/unregistering a power table is called 

during the experiment. 

The accuracy of the power estimation results shown in Table 3 is verified in Table 4. We 

patched OProfile to sample the measured power and the estimated power on each sampling 

interrupt, and compared their values to calculate the power estimation error. As shown in 

Table 4, we examined the power estimation error of the four testing programs, and we also 

examined the power estimation error of an overall period which began when the init 

process executed the programs in the appropriate rc directory and ended when the last testing 

program was finished. The power estimation error of the overall period could represent that of 

partial Linux kernel and many applications executed during the period. Based on the results 

shown in Table 4, it can be seen that the power estimation error using SEProf is quite low. In 

most cases, the average estimation error is less than 2% and the standard deviation of the 

estimation error is less than 3%. 
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Table 4. Power estimation error in VFS experiment 

Power Level Application Name 
/ Overall 

Number of 
Samples 

(1ms/sample) 

Average 
Estimation Error 

Standard 
Deviation 

1 

cg.W 227,437 -0.04% 1.23%
ft.W 70,929 -0.02% 1.84%
is.W 34,767 -0.13% 1.10%
FileRW 16,935 1.02% 2.18%
Overall 392,000 -0.02% 1.64%

2 

cg.W 203,952 -0.28% 1.21%
ft.W 61,413 -0.12% 2.00%
is.W 30,003 -0.21% 1.01%
FileRW 15,836 1.02% 2.14%
Overall 346,787 -0.17% 1.69%

3 

cg.W 188,774 -0.33% 1.17%
ft.W 54,521 -0.15% 2.24%
is.W 26,756 -0.35% 0.95%
FileRW 14,838 0.99% 1.91%
Overall 315,333 -0.26% 1.73%

4 

cg.W 176,394 -0.17% 1.15%
ft.W 49,043 0.21% 2.44%
is.W 24,308 -0.26% 0.96%
FileRW 14,004 1.08% 1.67%
Overall 291,048 -0.07% 1.79%

5 

cg.W 167,235 -0.11% 1.11%
ft.W 43,609 -0.10% 2.36%
is.W 22,380 -0.26% 0.99%
FileRW 13,467 0.73% 1.58%
Overall 272,056 -0.10% 1.77%

 

4.2.2. DVS Experiment 

The primary difference between SEProf and the existing high-level modeling-based 

software energy estimation tools is that SEProf is aware of the changes in the power levels of 

embedded processors at runtime. This feature is examined in this section. As in VFS 

experiment, we selected five power levels for the ARM11 MPCore processor, but in DVS 

experiment the clock frequency of the processor operating at each power level is the same as 

shown in Table 5, since we did not successfully scale the frequency of the processor without 

resetting it. Nevertheless, it does not prevent us from examining that SEProf supports the 

above mentioned feature, because the power consumption of the processor is also dynamically 

changed by scaling the voltage of the processor at runtime. In DVS experiment, as in VFS 

experiment, only one MP11 CPU was active, and seven power tables were built for the six 

applications and the Linux kernel as shown in Table 6. 



19 

Table 5. Power levels of the ARM11 MPCore processor used in DVS experiment 
Power Level Voltage (V) Frequency (MHz)

1 0.95 140 
2 1.01 140 
3 1.08 140 
4 1.14 140 
5 1.2 140 

 
Table 6. Pre-built power tables used in DVS experiment 

Power 
Level 

Average Power (uW) 
busybox cg.W ft.W is.W FileRW oprofiled vmlinux 

1 259,910 248,793 257,860 245,596 245,596 263,693 236,264
2 297,920 283,671 294,975 281,724 281,911 301,850 271,293
3 338,951 321,917 335,648 321,153 329,959 343,958 308,797
4 381,720 362,457 378,441 363,074 370,296 387,785 349,494
5 426,690 402,961 422,059 405,925 407,946 432,234 389,445

 

In DVS experiment, the voltage of the processor was periodically scaled at three 

different time intervals, 100 ms, 1 s, and 10 s. At each time interval, the power level of the 

processor was increased by one. If the power level of the processor reached to five, then it 

was set to one at the next time interval. An example of DVS experiment is depicted in Figure 

6. In the figure, two lines show the measured and the estimated power consumption of the 

processor sampled by the patched OProfile during the execution of the IS application. The 

DVS interval was set to 100 ms in this example, therefore the power consumption of the 

processor was varied every 100 ms. It can be seen in Figure 6 that the estimated power 

consumption is very close to the measured one. However, sometimes the line of the estimated 

power consumption is dropped but that of the measured one is not. This is because that the 

thread which executed the IS application was scheduled out during that period, and another 

thread which used a different power table was scheduled in. If the newly scheduled thread had 

lower average power consumption, then a drop will be displayed in the figure. On the other 

hand, for the line of the measured power consumption, since the time interval that the power 

consumption read from ADC is updated around every 5 ms, the power drop will not be shown 

in Figure 6 if the newly scheduled thread is scheduled out immediately within the update 

period of the ADC. 
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Figure 6. The measured and the estimated power consumption during the execution of is.W 

 

The power estimation error in DVS experiment is shown in Table 7. It can be seen that 

the average estimation error is still within 2%. However, the standard deviation of the 

estimation error becomes larger with the decreasing DVS interval. It is because the power 

consumption of the processor is not changed immediately after a new value is written to the 

DAC, and the changed power consumption of the processor is not able to be read from the 

ADC immediately. We explain this in Figure 7 which draws seven power samples taken from 

the ADC during the period that the voltage level of the processor is scaling. An arrow in 

Figure 7 indicates the time that the new voltage level is written to the DAC. SEProf updates 

the power level of the processor at this point. Nevertheless, the power consumption of the 

processor does not be changed immediately. Instead, it becomes stable and able to be read 

form ADC in the next 10 ms. Consequently, the power consumption difference between the 

measured and the estimated ones during this period enlarges the standard deviation of the 

estimation error. 
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Table 7. Power estimation error in DVS experiment 

DVS Interval Application 
Name / Overall

Number of 
Samples 

(1ms/sample) 

Average 
Estimation Error

Standard 
Deviation 

100 ms 

cg.W 227,888 1.33% 4.61%
ft.W 71,085 1.04% 4.94%
is.W 34,674 0.92% 4.87%
FileRW 16,743 1.87% 5.10%
Overall 394,869 1.25% 4.86%

1 s 

cg.W 228,028 0.16% 1.94%
ft.W 70,887 0.09% 2.28%
is.W 34,688 0.06% 1.79%
FileRW 17,027 0.82% 2.79%
Overall 393,616 0.17% 2.21%

10 s 

cg.W 228,118 -0.18% 1.35%
ft.W 70,943 -0.08% 1.85%
is.W 34,986 -0.26% 1.21%
FileRW 16,767 0.88% 1.81%
Overall 393,227 -0.13% 1.68%

 

 
Figure 7. Power samples during DVS 
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SEProf. These two time periods were normalized to the length of the time period that the 

testing programs ran under an unmodified Linux kernel. In Table 8, it can be seen that the 

overhead of using SEProf is less than 1% which is quite small even when the DVS interval is 

100 ms. 

 

Table 8. Performance overhead of using SEProf in DVS experiment 

DVS Interval Application 
Name / Overall

SEProf –  
Time Only SEProf 

100 ms 

cg.W 0.33% 0.22% 
ft.W -0.96% -0.15% 
is.W 0.15% 0.98% 
FileRW 0.68% 0.54% 
Overall 0.10% 0.26% 

1 s 

cg.W 0.09% 0.29% 
ft.W -0.11% 0.04% 
is.W -0.07% -0.04% 
FileRW -1.02% -1.26% 
Overall -0.05% 0.08% 

10 s 

cg.W -0.85% -1.01% 
ft.W 0.92% -0.14% 
is.W -2.34% -0.32% 
FileRW -0.35% -0.39% 
Overall -0.62% -0.71% 
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5. Conclusions and Future Works 

In this paper, a high-level modeling-based software energy profiling tool, SEProf, was 

proposed and implemented. SEProf estimates the energy consumption of each thread by 

maintaining a power table list for each thread and tracking the power levels of embedded 

processors at runtime which makes SEProf more suitable for energy estimation on larger 

systems with power management enabled. We implemented SEProf in Linux kernel 2.6.19, 

and conducted a number of experiments on an ARM11 MPCore processor. The experimental 

results in VFS experiment show that the average power estimation error using SEProf is 

within 2% and the standard deviation of the estimation error is within 3%. The results in DVS 

experiment indicate that the average power estimation error is within 2%, but the standard 

deviation of the estimation error becomes larger with the decreasing DVS interval. The 

performance overhead introduced by SEProf is quite less. The observed performance 

degradation in DVS experiment is less than 1%. Users of SEProf could control the trade-off 

between accuracy and efficiency by building power libraries for embedded software at 

various granularity levels. 

Currently, users of SEProf have to register/unregister power tables and insert probes to 

retrieve the estimated energy consumption of threads in the source code of embedded 

software manually and carefully. It is not very convenience for users and not applicable if the 

source code of embedded software is not available. We consider adopting dynamic 

instrumentation technique, such as techniques used in DTrace [21] or Pin [22], in the future to 

overcome this shortcoming. Furthermore, a systematic method to choose and build power 

tables would also be one of the future works. 
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