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Abstract

In order to handle the growingicomplexity. of embedded system while minimizing its
energy consumption, energy-efficiency of embedded software recently has become one of the
most important issues in the design of ‘'embedded systems. To examine the energy-efficiency
of embedded software, estimation of the energy consumption of embedded software is very
critical. Although a number of software energy estimation tools have been proposed, most of
them are not able to efficiently estimate the energy consumption of embedded processors with
power management features, e.g. dynamic voltage and frequency scaling (DVFS). Therefore,
this paper presents a high-level software energy profiling tool, called SEProf, targeted toward
energy estimation of embedded processors on operating system (OS)-based embedded
systems with power management functions enabled. We implemented the proposed SEProf in
Linux kernel 2.6.19 and conducted a number of experiments on an ARM11 MPCore processor.
The experimental results demonstrate that the average error of the power estimation using
SEProf is within 2%, and the standard deviation of the power estimation error is under 6% in

most cases.
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1. Introduction

Recently, energy-efficiency has become an important focus in the design of embedded
systems in order to handle the growing complexity of embedded software while minimizing
the energy consumption of embedded systems. In energy-efficiency research, energy
estimation of embedded software is very critical in examining the effectiveness of
energy-efficiency strategies and in analyzing the effects of power management, e.g. DVFS
[1][2], on the execution time and energy consumption of embedded software. Prior works on
energy estimation of embedded software could be classified into two categories,
measurement-based and modeling-based, according to the way that they estimate the power
consumption of embedded processors. In measurement-based approaches, such as [3], the
power consumption of embedded processors.is directly measured from a hardware device, e.g.
an oscilloscope or a digital multimeter. Using:measurement-based approaches could precisely
measures the energy consumption of embedded software without knowing the implementation
of embedded processors, but the“difficulty. of synchronization between the measured energy
consumption and system activities fimits: its' usefulness in analyzing software energy
consumption in detail. The other way to estimate the energy consumption of embedded
software is based on power modeling techniques. Some modeling-based approaches model
the power consumption of embedded processors at lower level, such as architecture-level
[4][5] and instruction-level [6][7][8][9][10][11], based on power measurement or low-level,
e.g. circuit-level and gate-level, power estimation. Although most of them are able to produce
accurate energy estimation results by performing detailed analysis on hardware events and
software behaviors, they usually need to spend a lot of time to perform detailed energy
analysis of larger systems. Since most embedded software remains the same in the design
phase of energy-efficiency strategies, a detailed energy analysis for all embedded software

may not be necessary every time the strategies are slightly modified. Therefore, estimating the



energy consumption of embedded software at higher level may be an attractive option.

In high-level modeling-based approaches, the power consumption of embedded
processors is modeled at software level, such as basic-block-level [6][12] and function-level
[13][14], based on measurement-based approaches or lower level modeling-based approaches.
They are usually coupled with performance analysis tools which are executed on the target
system to collect execution information. With proper design of power models, high-level
modeling-based tools could estimate the energy consumption of embedded software more
quickly while maintaining reasonable accuracy. Unfortunately, most of the existing high-level
modeling-based tools do not consider that the operating voltage and frequency of embedded
processors which support power management features may be dynamically changed. Without
noticing the power levels of embedded processors, the accuracy of software energy estimation
results could be significantly degraded.

In this paper, a high-level -modeling-based” software energy profiling tool, SEProf, is
presented. It is aware of the changes.in the operating voltage and frequency of embedded
processors at runtime, and supports: software ‘energy estimation on OS-based embedded
systems. Besides, an extensible software design is proposed and adopted in SEProf to meet
different requirements of accuracy and efficiency. SEProf was implemented in Linux kernel
2.6.19, and a number of experiments were conducted to examine the accuracy and efficiency
of SEProf executing on an ARM11 MPCore processor [15]. The experimental results show
that the average power estimation error of using SEProf is less then 2%, and the standard
deviation of the power estimation error is within 6%. The observed performance overhead
introduced by SEProf is less than 1%.

The remainder of this paper is organized as follows. Related work is discussed in Section
2. Design and implementation of the proposed tool, SEProf, is described in Section 3. A case
study on the ARM11 MPCore processor and experimental results are presented in Section 4.

Conclusions and future works are given in Section 5.



2. Related Work

With the increasing attention to energy consumption issues in embedded systems,
extensive energy estimation tools have been investigated. According to the way that they
estimate the power consumption of embedded processors, the existing energy estimation tools
could be classified into measurement-based and modeling-based tools. In [3], a
measurement-based energy profiling tool, PowerScope, was presented. It measured the power
consumption of the target system through a digital multimeter, and a System Monitor was
implemented and executed on the target system to perform statistical sampling of system
activities. By using PowerScope, the granularity of software energy estimation is primarily
restricted by the sampling rate of the System Monitor. Another way to estimate the energy
consumption of embedded software is based on power modeling techniques. In Wattch [4], a
framework which adopted an architecture=level:power modeling technique was proposed and
integrated into the SimpleScalar simulator. Wattch modeled the power consumption of the
primary units in modern embedded processors,’ €.g. functional units and caches, and
monitored the number of accesses to ‘these units during simulations to estimate the energy
consumption of embedded processors [5]. In [6] an instruction-level power modeling
technique was firstly presented. The concept is to build a base energy cost for each instruction
in the instruction set, and the energy consumption of a program is estimated by cumulating
the base energy cost of all executed instructions. Variations of instruction-level power analysis
were exploited in [7] and [8][9]. They divided the instruction set into a number of classes
according to the average power consumption of instructions, and the energy consumption of a
program was estimated by cumulating the number of executed instructions in classes instead
of individual instructions. In [10][11], an instruction-level energy simulator, EMSIM, was
exploited. It enables simulation of an embedded Linux OS, and provides per-task

function-level energy estimation based on the instruction-level power modeling technique



proposed in [7]. By using architecture-level or instruction-level power modeling techniques,
energy estimation tools may need to spend a lot of time to produce accurate results, especially
when inter-instruction effects are also taken into consideration.

To faster the energy estimation process, several high-level power modeling techniques
were proposed. A basic-block-level power analysis was introduced in [6] which built a base
energy cost for each basic-block in the target program. The energy consumption of the
program was evaluated by cumulating the number of times that each basic-block was
executed multiplied by its base energy cost. Another basic-block-level power analysis was
proposed in [12]. In this work, the target program was divided into many fixed number of
consecutive basic-blocks, and the energy weights of basic-block groups were derived based
on regression analysis. Beyond basic-block-level analysis, a function-level power analysis
was first presented in [13]. A “power data bank”.was constructed for storing the average
power and execution time of build-in library functions and basic instructions, and the energy
consumption of a program was- calculated._by_cumulating the number of times that each
function was invoked multiplied by: its.average power and execution time recorded in the
“power data bank.” Another tool which adopted function-level power analysis was proposed
in [14]. It is a software energy estimation tool for heterogeneous dual-core processor. In their
function-level power model applied to the digital signal processor (DSP) core, the average
power consumption of different DSP algorithms was pre-measured and stored in an energy
library. The energy consumption of DSP algorithms was calculated by multiplying the
execution time of each DSP algorithm with its average power recorded in the energy library.

Although many high-level, e.g. basic-block-level and function-level, energy estimation
tools have been exploited to provide efficient software energy estimation, most of them do not
consider that the power levels of embedded processors may be changed dynamically. If the
power management features of embedded processors, such as the mechanisms proposed in

[1][2][18], are enabled, but the energy consumption of embedded software is still estimated



using cumulated values, e.g. the number of times that each function has been invoked, then
the accuracy of the estimated energy consumption could be significantly degraded. Although
the proposed software energy profiling tool, SEProf, also adopts high-level power modeling
techniques to estimate the energy consumption of embedded software, unlike previous works,
SEProf is aware of the changes in the power levels of embedded processors at runtime which
makes SEProf more suitable for energy estimation on larger systems with power management
enabled. Besides, the proposed software design which allows users to build power libraries

for embedded software at various granularity levels also improves the flexibility of SEProf.



3. Design and Implementation of SEProf

The proposed high-level software energy profiling tool, SEProf, is consisted of two
software components, (1) power table registrations and (2) a kernel patch. As depicted in
Figure 1, before using SEProf, the power consumption of the processor executing the
embedded software has to be analyzed by using measurement-based or lower level
modeling-based energy estimation tools which have been discussed in Section 2. After
building high-level power libraries for embedded software through power analysis, these
power libraries have to be inserted into embedded software, and registered through system
calls provided by SEProf for energy estimation at runtime. In SEProf, the energy consumption
of embedded software is calculated and maintained in kernel space, therefore the OS kernel,
namely the Linux kernel, has to be patched.to support SEProf. After the patched kernel and
user-level programs are compiled,'SEProfrestimates the energy consumption of each thread at
runtime, and stores the estimated results in kernel space. Users can access the estimation
results through system calls provided by. SEProf. The two software components are described

in more detail in the following sections.

1
1
The Source Code of Power The Source Code of
User-Level Programs Analysis 0S Kermnel
or Libraries

SEProf
Kernel Patch
4> v
Power Table Power Power Table
Registration Libraries Registration
i
Compiling and Compiling and
Linking Linking
v v
| Binary Files | T {  Kernellmage |

| Execution |

Software Energy
Estimation Results

Figure 1. Overview of SEProf



3.1. Power Table Registration

By using high-level power modeling techniques, users of SEProf have to build power
libraries for embedded software as a reference of the average power consumption of the
executing embedded software. A power library is consisted of one or more power tables, and
each power table records a number of average power consumptions that an embedded
processor executes a specific sequence of instructions, e.g. a basic-block, a function, or a
program. The number of average power consumptions recorded in a power table is
determined by the number of configurable power levels supported by the embedded processor.
For example, a power table may record five different average power consumptions of a
specific function executed by an embedded processor which supports up to five different
power levels.

After building power libraries, usersyhave to register and unregister power tables in
embedded software through system calls provided by SEProf. This procedure is called “power
table registration” as shown in Figure 1..A power table registering operation has to be coupled
with an unregistering operation. If a power table is registered to SEProf, it will be used by
SEProf as the source of the average power consumption of the executing software. On the
contrary, if a power table is unregistered to SEProf, then the power table will no longer be
used to estimate the power consumption. An example of using power tables is depicted in
Figure 2. It is an execution flow of an example program. We assume that the embedded
processor which executes this example program supports up to five different power levels.
Therefore, each power table records five average power consumptions of the embedded
processor operating at different power levels. In this example, three power tables are built by
users, and the features of the three power tables are described as follows. The power table 1
records the average power of all programs on the system. It is registered when a thread is

created, and unregistered when a thread is terminated. The power table 2 records the average



Thread Creation Thread Exit
The power table 1 is PT:Power Table The power table 1 is
PL | Avg Power(uw) registered by SEProf PL:Power Level unregistered by SEProf
o .
3 419,068 using PT1 1 - - - - - - i using PT1
et i Enteringthemain function Leavingthemain function |:
! The power table 2 is The power table2 is
PL | Avg.PowerW) | ! registered by the thread unregistered by the thread
o i
3 457,676 using PT2: 1 using PT2
T ' Invokingasystem call Leavingthesystemcall |
'] Thepowertable3is Thepowertable3is [
T ° pweuw) i\ registered by SEProf unregistered by SEProf
1 235,219 +
2 318,705
3 416,343 using PT3
4 529,410
5 662,030

Figure 2. An example of using power tables

power of the example program. It is registered at the beginning of the main function in the
example program, and unregistered at the end of it. The power table 3 records the average
power of all system calls. It is registered at the beginning of the system call handler in OS
kernel, and unregistered at the end of 'it. Asl'shown.in Figure 2, when a thread which executes
the example program is created, SEProf registers.the power table 1 for it in OS kernel. If there
is no other power table registered afterwards, the power table 1 will be used as the source of
the average power consumption throughout the execution of the thread until the power table 1
is unregistered. However, in this example, the thread registers the power table 2 after entering
the main function of the example program. Therefore, the power table 2 becomes the source
of the average power consumption of the thread after registration. To further improve the
accuracy of power estimation, users in this example also build a power table for system calls,
i.e. the power table 3. Hence, every time the thread invokes a system call, the power table 3 is
used to estimate the power consumption of the thread, and the power table 2 is used again

only when the thread returns from the system call.

3.2. Energy Estimation

When the OS kernel and user-level programs with power table registered are executing,



SEProf calculates the energy consumption of each thread by the following formula

Eps = 3 T, % PT.[PL(CID,)] )

i=1

where Einread 1S the energy consumption of a thread, N is the number of runtime periods of a
thread, T; is the execution time of the thread in the ith runtime period, CID; is the
identification (ID) of the embedded processor core executing the thread in the ith runtime
period, PL(CID;) is the power level of the processor core whose ID is CID;, PT; is the power
table used in the ith runtime period, and PT;[PL(CID;)] is the average power in the ith runtime
period. A runtime period used in formula (1) is a period of time in the execution time of a
thread. In SEProf, a runtime period of a thread is divided and used to estimate the energy
consumption of the thread when one of the following four events occurs.
(1) Athread registers or unregisters a power table.
When a thread registers or unregistersa power. table, it means that the average power
consumption of the embedded processor Is changed. Therefore, the average power
consumption stored in the*-previous. power ‘table is used to estimate the energy
consumption during the former runtime period, and the new power table is applied to the
latter periods.
(2) The power level of the embedded processor which executes a thread is changed.
When the power level of an embedded processor is changed, the power consumption of
the processor which executes the thread is also changed. Hence, the previous power level
is used to estimate the energy consumption during the former runtime period, and the new
power level is applied to the following periods.
(3) The total energy consumption of a thread is retrieved while the thread is running.
Before returning the total energy consumption of the thread to users, SEProf adds the
energy consumption of the thread since it was last calculated to the total energy

consumption of the thread.



(4) Athread is dead.
When a thread is dead, the energy consumption of the thread since it was last calculated is

added to the total energy consumption of the thread.

An example of the energy estimation in SEProf using formula (1) is given in Figure 3. We
assume that a thread, “Thread A,” executes the same example program as described in Figure
2, and the thread is executed on a single-core embedded processor which supports up to five
different power levels. At the beginning of this example, the power level of the embedded
processor is set to 5, and the power table 1 is registered for the newly created thread. In Figure
3 the energy consumption of the thread is calculated four times due to three of the above
mentioned events. At the end of the runtime period T, the thread resisters the power table 2 as
the source of the average power consumption. Therefore, the power table 1 is used to
calculate the energy consumption.during, the-runtime.period T;, and the power table 2 is used
in the following runtime periods. At the beginning of the runtime period T3, SEProf notices
that the power level of the processor has been-changed since the thread is scheduled out at the

end of the runtime period T,. Hence, it'calculates the energy consumption of the thread during

Power Table 1 Power Table 2 AP, The average power consumption of the

PL | Avg. Power PL | Avg.Power processor operating at the nth power level
1 AP14 1 APz records in the power table m.

2 APy, 2 AP,

3 AP, 5 3 AP, 4 The power level of the

4 AP 4 4 AP, 4 processor is changed

5 APy 5 5 AP, 5 from4to 3.

Theenergy
consumption ofthe
thread is retrieved.
Ep=EAtTxAP, 3

E = EatTaxAP,,

Thepower table
2 is registered.
Ex=TxAP, 5

The power table
lis registered.

The power level of
theprocessoris
changed from5to 4.
Ea= EatToxAP, 5

Thread A

Other threads

Power level 5 | 4 | 3
Time

v

Figure 3. An example of the energy estimation in SEProf
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the runtime period T, using the recorded power level, and updates the recorded power level to
the new one. A similar situation happens at the end of the runtime period T3, but this time the
power level of the processor is changed by “Thread A” itself. In this example, the total energy
consumption of “Thread A” retrieved at the end of the runtime period T4 iS EA=(T1xAP15)+

(TzXAP2'5)+ (T3XAP2,4)+ (T4XAP2,3).
3.3. Data Structures

To support thread-based energy estimation, SEProf maintains three kinds of data

structures as depicted in Figure 4. They are described as follows:

(1) A per-program/per-library data structure in user space.
It contains a user-level power library which is built from the power analysis of a user-level
program/library and stored in the program/library. A user-level power library is consisted
of one or more user-level power tablespwhich are used by all threads running the same
program/library.

(2) A global data structure in kernel space.
It contains a kernel-level power library, and variables used to record the power levels of
all embedded processor cores on the system. The kernel-level power library is built from
the power analysis of OS kernel, and stored in the kernel image. A kernel-level power
library is consisted of one or more kernel-level power tables which are shared among all
threads on the system.

(3) A per-thread data structure in kernel space.
It contains the profiled time and energy of a thread, and a power table list for tracking all
registered power tables of the thread. It also records the ID and the power level of the
processor core which executes the thread previously for detecting changes of the average

power consumption which has been discussed in Section 3.2.

The way that SEProf maintains the power table list is illustrated in Figure 4, when a thread

11



registers a kernel-level power table to SEProf, a new element which points to the registered
power table is inserted into the power table list of the thread. When a user-level power table is
registered, the content of the registered power table is copied from user space to kernel space
first, and a new element which points to the power table in kernel space is inserted into the
power table list of the thread. The latest inserted element in the power table list is the one used
to estimate the power consumption of the executing thread. In contrast to register a power
table, if a power table of a thread is unregistered, the latest registered element will be removed
from the power table list of the thread, and the previous registered power table will be used to

estimate the power consumption of the executing thread.

SEProf

Per-Program or

Per-Lib?ary User-Level Power | Power Power
User Data Structure Power Library Table \Table « = | Table
Space » .
Kernel Task SEProf Per-Thread copy fromi=-.. ..
Space Structure Data Structure userspace | po\var

" Profiled Time Table

‘ Profiled Energy ‘ \

Head of PTL <«— PTL «— PTL «— """ «— PTL

PTL: Power Table List
SEProf Global Data Structure

Power Levels of Kernel-Level Power | Power Power
Processor Cores Power Library Table | Table ==« s Table

Figure 4. Data structures maintained by SEProf
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4. Case Study: ARM11 MPCore Processor

To demonstrate the feasibility of SEPorf, SEProf was adopted to estimate the energy
consumption of embedded software executing on an ARM11 MPCore processor [15].
Experimental environment and results are described in Section 4.1 and Section 4.2

respectively.
4.1. Experimental Environment

The experimental platform is a Core Tile, CT11MPCore [16], which has an ARM11
MPCore test chip that implements the ARM11 MPCore processor stacked on the top of a
RealView Emulation Baseboard [17]. As shown in Figure 5, the ARM11 MPCore processor is
a multi-core processor which supports up to four MP11 central processing units (CPUs). Each
MP11 CPU has 16KB-64KB independent ‘datarcache and instruction cache. The coherence
among data caches of MP11 CPUs is matntained by a snoop control unit (SCU) in the
processor. A unified 1 MB L2 cache and the ARM11 -MPCore processor are implemented on
the ARM11 MPCore test chip. On this platform, all MP11 CPUs on the ARM11 MPCore

processor has the same power supply and clock source. The voltage level of the ARM11

CT11MPCore
DAC »  Power Supply Unit ADC
| VDDCORE
Y
PLL ARM11 MPCore Processor
MP11 MP11 MP11 MP11
CLK CPU CPU CPU CPU
| |D I |D | |D I |D
i i i i
Snoop Control Unit (SCU)
CLK

L2 Cache Controller
ARM11 MPCore Test Chip

Figure 5. Overview of the ARM11 MPCore Processor

13



MPCore processor could be changed by writing values to a digital to analog converter (DAC)
on the CT11MPCore, and the voltage and current values of the processor are able to be
obtained from an analog to digital converter (ADC). By default, the voltage supplied to the
ARM11 MPCore processor is 1.2 V which has an adjustment range of +0.25V. The clock rate
of the processor could also be changed by configuring the phase-locked loop (PLL) on the
CT11MPCore. In the experiments, the DAC and PLL were used to scale the voltage and the
frequency of the ARM11 MPCore processor respectively, and the ADC was used to measure
the power consumption of the processor. For time measurement, a 24 MHz clock on the
Emulation Baseboard was used. The time resolution is around 41.7 ns.

In the experiments, SEProf was integrated into Linux kernel 2.6.19, and a patched
OProfile [19] was adopted to build power libraries and verify the accuracy of the power
estimation results. OProfile is a system-wide ‘profiler for Linux systems using statistical
sampling. It could be used to- profile Linux kernel, shared libraries, and applications.
Originally, OProfile samples the.context and.program counter (PC) value of the running task
on each sampling interrupt, but we extendeditto sample the power consumption of the
processor as well. We set the sampling rate of OProfile to 1 kHz, and assumed that a power
sample could represent the average power consumption of the sampling period.

There are four testing programs used throughout the experiments. Three of them are CG,
FT, and IS applications from the OpenMP Implementation of NAS Parallel Benchmarks
(NPB) (Version 3.3) [20]. CG computes an approximation to the smallest eigenvalue of a
matrix using a conjugate gradient method, FT performs the time integration of a
three-dimensional partial differential equation using the Fast Fourier Transform, and IS sorts
integers using the bucket sort. The last one testing program, FileRW, is an 1/O intensive
application which is written by us. It is a simple application which writes and reads a

30,000,000 bytes file on the file system mounted via network file system (NFS).

14



4.2. Experimental Results

Since we did not successfully scale the frequency of the ARM11 MPCore processor
without resetting it, the experiments were separated into two parts. The first one was voltage
and frequency scaling (VFS) experiment, and the second one was dynamic voltage scaling
(DVS) experiment. In VFS experiment, both of the voltage and the frequency of the ARM11
MPCore processor were scaled at the beginning of the experiment and remained the same
throughout the experiment. In DVS experiment, only the voltage of the ARM11 MPCore

processor was scaled dynamically and periodically.
4.2.1. VFS Experiment

In VFS experiment, we selected five power levels for the ARM11 MPCore processor, and
assumed that the processor only operated: at.one of the five power levels during the
experiment. As shown in Table 1, each power level represents a combination of the voltage
and the frequency levels of the processor.In the power analysis stage, only one MP11 CPU
was active during the experiment-in.order to map the measured power consumption back to
the embedded software. The remaining three CPUs were not initialized. After analyzing the
power consumption of the embedded software using the patched OProfile, we built seven
power libraries which are shown in Table 2 for six applications and the Linux kernel, since
they took almost all CPU time during the experiment. Each power library only contains one
power table, and each power table is consisted of five average power consumptions. The
user-level power tables of the six applications are registered to SEProf at the beginning of the
applications, and unregistered at the end of it. A kernel-level power table for the Linux kernel,
“vmlinux,” is registered to SEProf when a thread is created, and unregistered when the thread
is dead. It is also registered when a thread calls a system call, and unregistered when the
thread returns from the system call. After building and registering power tables, the

applications and the Linux kernel have to be re-compiled. While they are in execution, SEProf
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uses the registered power tables to estimate their energy consumption.

The energy estimation results of the testing programs generated by SEProf are depicted

in Table 3. The energy and time spent on executing application itself and calling system calls

are separated for better examining the accuracy of the power estimation results. In Table 3, it

can be observed that in many cases the average power consumption which belongs to the

application itself is slightly lower than the average power consumption recorded in Table 2.

This is because the power table “vmlinux” which has lower average power consumption than

Table 1. Power levels of the ARM11 MPCore processor used in VFS experiment

Power Level Voltage (V) |Frequency (MHz)
1 0.95 140
2 1.01 168
3 1.08 196
4 1.14 224
5 1.2 252

Table 2. Pre-built power tables used in VFS experiment

Power Average Power' (uW)
Level busybox cg.W ft\W is.W FileRW oprofiled vmlinux
1 259,910 248,793 257,860 245,596 245,596 263,693 236,264
2 351,942 335,212 349,031 333,724 329,615 359,267 319,704
3 460,445 438,194 457,676 437,932 430,954 469,998 419,068
4 589,110 558,713 586,146 560,148 565,448 602,413 536,584
5 737,875 696,401 731,460 700,672 692,258 753,294 668,093
Table 3. Energy estimation results of the testing programs generated by SEProf
Runtime and Energy Decomposition
Power | Application . Average Application System Call
Runtime (ns) | Energy (nJ) | Power
Level Name (UW) | Runtime (ns) | Energy (nJ) Average Runtime (ns)| Energy (nJ) Average
W Power (uW) W Power (UW)
cg.W 215,142,229,738| 53,523,025,310 248,779] 215,107,109,231| 53,514,727,172 248,781 35,120,507 8,298,138 236,276
1 ftw 67,037,203,942| 17,284,005,878| 257,827| 66,997,729,564| 17,274,678,200 257,839 39,474,378 9,327,678 236,297
is.W 36,419,198,335|  8,943,845256| 245580 36,392,245,455| 8,937,476,635 245,587 26,952,880 6,368,620 236,287
FileRW 16,041,195,497|  3,790,019,199| 236,267 54,617,998 12,966,173 237,397| 15,986,577,499| 3,777,053,025 236,264
cg.W 192,657,588,749| 64,578,063,332| 335,196| 192,626,048,827| 64,567,979,372 335,198 31,539,922 10,083,959 319,720
) ftLwW 58,020,422,787| 20,248,231,131| 348,984| 57,984,961,957| 20,236,892,646 349,002 35,460,830 11,338,484 319,746
is.W 31,221,337,324| 10,418,549,363| 333,699| 31,197,161,869| 10,410,819,618 333,710 24,175,455 7,729,744 319,735
FileRW 14,964,401,703]  4,784,238,970| 319,708 46,646,752 14,972,723 320,981 14,917,754,951| 4,769,266,246 319,704
cg.W 177,891,300,125| 77,947,215,468| 438,173| 177,862,250,090| 77,935,040,952 438,176 29,050,035 12,174,516 419,087
ftLw 51,440,617,083| 23,540,124,655| 457,617| 51,412,324,577| 23,528,266,180 457,638 28,292,506 11,858,475 419,138
3 is.W 27,743,537,787| 12,148,880,938| 437,899| 27,723505,236 12,140,484,751 437,913 20,032,551 8,396,187 419,127
FileRW 13,993,317,938|  5,864,222,276| 419,073 42,791,501 18,002,775 420,709| 13,950,526,437| 5,846,219,501 419,068
cg.W 166,260,715,792| 92,887,963,243| 558,688| 166,234,336,831| 92,873,808,086 558,692 26,378,961 14,155,157 536,607
4 ft.W 46,265,451,835| 27,114,674,140] 586,067 46,238,800,791 27,100,371,441 586,095 26,651,044 14,302,698 536,665
is.W 25,135,261,407| 14,078,419,514| 560,106| 25116,535,316| 14,068,370,226 560,123 18,726,091 10,049,288 536,646
FileRW 13,216,644,021]  7,091,992,367| 536,595 39,083,500 21,123,619 540,474] 13,177,560,521| 7,070,868,747 536,584
cg.W 157,416,999,118] 109,622,239,504| 696,381| 157,391,890,741| 109,605,463,977 696,385 25,108,377 16,775,527 668,124
ftLw 41,120,090,135| 30,073,199,551| 731,350 41,092,735,893| 30,054,921,810 731,392 27,354,242 18,277,741 668,186
5 is.W 23,082,564,077| 16,171,958,348| 700,613| 23,065,058,623| 16,160,261,328 700,638 17,505,454 11,697,019 668,192
FileRW 12,604,372,003|  8,481,148,996| 668,103 36,990,751 24,840,629 671,536 12,657,381,252| 8,456,308,366 668,093
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other power tables is used to estimate the power consumption of an application when its own
power tables is not registered. Another observation in Table 3 is that the average power
consumption of a thread calling system calls is slightly higher than the average power
recorded in the power table “vmlinux.” The reason is that the power table “vmlinux” is used
for all system calls except the one for registering/unregistering a power table to avoid
removing the newly registered power table when a thread returns from the system call.
Therefore, the average power consumption of a thread calling system calls is slightly
increased every time the system call for registering/unregistering a power table is called
during the experiment.

The accuracy of the power estimation results shown in Table 3 is verified in Table 4. We
patched OProfile to sample the measured power and the estimated power on each sampling
interrupt, and compared their values to calculate:the power estimation error. As shown in
Table 4, we examined the power estimation error of the four testing programs, and we also
examined the power estimation: error-of an _overall period which began when the Init
process executed the programs in the appropriate rc directory and ended when the last testing
program was finished. The power estimation error of the overall period could represent that of
partial Linux kernel and many applications executed during the period. Based on the results
shown in Table 4, it can be seen that the power estimation error using SEProf is quite low. In
most cases, the average estimation error is less than 2% and the standard deviation of the

estimation error is less than 3%.
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Table 4. Power estimation error in VFS experiment

Power Level Application Name Ng;?nb;L:f _ Avgrage Star_lde_\rd
/ Overall Estimation Error Deviation
(1ms/sample)
cg.W 227,437 -0.04% 1.23%
ft. W 70,929 -0.02% 1.84%
1 is.W 34,767 -0.13% 1.10%
FileRW 16,935 1.02% 2.18%
Overall 392,000 -0.02% 1.64%
cg.W 203,952 -0.28% 1.21%
ft. W 61,413 -0.12% 2.00%
2 is.W 30,003 -0.21% 1.01%
FileRW 15,836 1.02% 2.14%
Overall 346,787 -0.17% 1.69%
cg.W 188,774 -0.33% 1.17%
ft. W 54,521 -0.15% 2.24%
3 is.W 26,756 -0.35% 0.95%
FileRW 14,838 0.99% 1.91%
Overall 315,333 -0.26% 1.73%
cg.W 176,394 -0.17% 1.15%
ft.W 49,043 0.21% 2.44%
4 is.W 24,308 -0.26% 0.96%
FileRW 14,004 1.08% 1.67%
Overall 291,048 -0.07% 1.79%
cg.W 167,235 -0.11% 1.11%
ft. W 43,609 -0.10% 2.36%
5 is.W 22,380 -0.26% 0.99%
FileRW 18,467 0.73% 1.58%
Overall 272,056 -0.10% 1.77%

4.2.2. DVS Experiment

The primary difference between SEProf and the existing high-level modeling-based
software energy estimation tools is that SEProf is aware of the changes in the power levels of
embedded processors at runtime. This feature is examined in this section. As in VFS
experiment, we selected five power levels for the ARM11 MPCore processor, but in DVS
experiment the clock frequency of the processor operating at each power level is the same as
shown in Table 5, since we did not successfully scale the frequency of the processor without
resetting it. Nevertheless, it does not prevent us from examining that SEProf supports the
above mentioned feature, because the power consumption of the processor is also dynamically
changed by scaling the voltage of the processor at runtime. In DVS experiment, as in VFS
experiment, only one MP11 CPU was active, and seven power tables were built for the six

applications and the Linux kernel as shown in Table 6.
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Table 5. Power levels of the ARM11 MPCore processor used in DVS experiment

Power Level Voltage (V) |Frequency (MHz)
1 0.95 140
2 1.01 140
3 1.08 140
4 1.14 140
5 1.2 140

Table 6. Pre-built power tables used in DVS experiment

Power Average Power (uw)

Level busybox cg.W ft W is.W FileRW oprofiled vmlinux
1 259,910 248,793 257,860 245,596 245,596 263,693 236,264
2 297,920 283,671 294,975 281,724 281,911 301,850 271,293
3 338,951 321,917 335,648 321,153 329,959 343,958 308,797
4 381,720 362,457 378,441 363,074 370,296 387,785 349,494
5 426,690 402,961 422,059 405,925 407,946 432,234 389,445

In DVS experiment, the voltage of the processor was periodically scaled at three
different time intervals, 100 ms, 1 s, and 10 s. At each time interval, the power level of the
processor was increased by one. If the power level of the processor reached to five, then it
was set to one at the next time interval.-An example of DVS experiment is depicted in Figure
6. In the figure, two lines show-the measured and the estimated power consumption of the
processor sampled by the patched“OProfile during the execution of the IS application. The
DVS interval was set to 100 ms in this example, therefore the power consumption of the
processor was varied every 100 ms. It can be seen in Figure 6 that the estimated power
consumption is very close to the measured one. However, sometimes the line of the estimated
power consumption is dropped but that of the measured one is not. This is because that the
thread which executed the 1S application was scheduled out during that period, and another
thread which used a different power table was scheduled in. If the newly scheduled thread had
lower average power consumption, then a drop will be displayed in the figure. On the other
hand, for the line of the measured power consumption, since the time interval that the power
consumption read from ADC is updated around every 5 ms, the power drop will not be shown
in Figure 6 if the newly scheduled thread is scheduled out immediately within the update

period of the ADC.
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The power estimation error;'-__ih DVSexpenmentlb shown in Table 7. It can be seen that
the average estimation error is é':tili-.\./;/ithinl2%-."-'i;|owever, the standard deviation of the
estimation error becomes larger with the decreasing DVS interval. It is because the power
consumption of the processor is not changed immediately after a new value is written to the
DAC, and the changed power consumption of the processor is not able to be read from the
ADC immediately. We explain this in Figure 7 which draws seven power samples taken from
the ADC during the period that the voltage level of the processor is scaling. An arrow in
Figure 7 indicates the time that the new voltage level is written to the DAC. SEProf updates
the power level of the processor at this point. Nevertheless, the power consumption of the
processor does not be changed immediately. Instead, it becomes stable and able to be read
form ADC in the next 10 ms. Consequently, the power consumption difference between the
measured and the estimated ones during this period enlarges the standard deviation of the

estimation error.
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Table 7. Power estimation error in DVS experiment

DVS Interval Application N;z;?nb&re;)f _ Avgrage Star)dqrd
Name / Overall Estimation Error Deviation
(Ims/sample)
cg.W 227,888 1.33% 4.61%
ftw 71,085 1.04% 4.94%
100 ms is.W 34,674 0.92% 4.87%
FileRW 16,743 1.87% 5.10%
Overall 394,869 1.25% 4.86%
cg.W 228,028 0.16% 1.94%
ftw 70,887 0.09% 2.28%
ls is.W 34,688 0.06% 1.79%
FileRW 17,027 0.82% 2.79%
Overall 393,616 0.17% 2.21%
cg.W 228,118 -0.18% 1.35%
ftw 70,943 -0.08% 1.85%
10s is.W 34,986 -0.26% 1.21%
FileRW 16,767 0.88% 1.81%
Overall 393,227 -0.13% 1.68%
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Figure 7. Power samples during DVS

In the last experiment, we measured the performance overhead introduced by using
SEProf in DVS experiment. As shown in Table 8, two types of SEProf were implemented and
evaluated. The first type of SEProf is called “SEProf - Time Only”. It only profiled time
information of all threads at runtime, and was used to examine the performance overhead
caused by profiling time information. The second type of SEprof is called “SEProf” in Table 8.
It profiled both time and energy of all threads at runtime. Table 8 listed the length of the two

time periods that the testing programs ran under the Linux kernels patched by the two types of
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SEProf. These two time periods were normalized to the length of the time period that the
testing programs ran under an unmodified Linux kernel. In Table 8, it can be seen that the
overhead of using SEProf is less than 1% which is quite small even when the DVS interval is

100 ms.

Table 8. Performance overhead of using SEProf in DVS experiment

Application SEProf -
DVS Interval Narﬁgl Overall Time Only SEProf

cg.W 0.33% 0.22%

ft W -0.96% -0.15%

100 ms  |isW 0.15% 0.98%
FileRW 0.68% 0.54%

Overall 0.10% 0.26%

cg.W 0.09% 0.29%

ft W -0.11% 0.04%

1s is.\W -0.07% -0.04%
FileRW -1.02% -1.26%

Overall -0.05% 0.08%

cg.W -0.85% -1.01%

ft. W 0.92% -0.14%

10s is.W. -2.34% -0.32%
FileRW -0.35% -0.39%

Overall -0.62% -0.71%
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5. Conclusions and Future Works

In this paper, a high-level modeling-based software energy profiling tool, SEProf, was
proposed and implemented. SEProf estimates the energy consumption of each thread by
maintaining a power table list for each thread and tracking the power levels of embedded
processors at runtime which makes SEProf more suitable for energy estimation on larger
systems with power management enabled. We implemented SEProf in Linux kernel 2.6.19,
and conducted a number of experiments on an ARM11 MPCore processor. The experimental
results in VFS experiment show that the average power estimation error using SEProf is
within 2% and the standard deviation of the estimation error is within 3%. The results in DVS
experiment indicate that the average power estimation error is within 2%, but the standard
deviation of the estimation error becomes, larger with the decreasing DVS interval. The
performance overhead introduced by SEProf. is ‘quite less. The observed performance
degradation in DVS experiment:is' less than 1%. Users of SEProf could control the trade-off
between accuracy and efficiency by building power libraries for embedded software at
various granularity levels.

Currently, users of SEProf have to register/unregister power tables and insert probes to
retrieve the estimated energy consumption of threads in the source code of embedded
software manually and carefully. It is not very convenience for users and not applicable if the
source code of embedded software is not available. We consider adopting dynamic
instrumentation technique, such as techniques used in DTrace [21] or Pin [22], in the future to
overcome this shortcoming. Furthermore, a systematic method to choose and build power

tables would also be one of the future works.
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