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with Conditional Faults on Interconnection Networks

Student: Lun-Min Shih Advisor: Dr. Jimmy J.M. Tan

Department of Computer Science
College of Computer Science
National Chiao Tung University

Abstract

The problem of fault-tolerance has been discussed widely. In this thesis, we study
several properties with conditional fault on'some interconnection networks. First of all,
we show that for any set of faulty:edges.F.of .an n-dimensional hypercube Q, with F
=2n-5, each edge of the faulty-hypercube Q, -F.lies on a cycle of every even length
from 6 to 2" with each vertex having at least two healthy edges adjacent to it, for 7= 3.
Moreover, this result is optimal-in the sense-that there is a set F of 2n-4 conditional
faulty edges in Q, such that Q, -F tontains no Hamiltonian cycle.

Second, we study the Menger property 'on a class of hypercube-like networks. We
show that in all n-dimensional hypercube-like networks with n-2 vertices removed,
every pair of unremoved vertices u and v are connected by min{deg(u),deg(v)}
vertex-disjoint paths, where deg(u) and deg(v) are the remaining degree of vertices u
and v, respectively. Furthermore, under the restricted condition that each vertex has at
least two fault-free adjacent vertices, all hypercube-like networks still have the strong
Menger property, even if there are up to 2n-5 vertex faults.

The local connectivity of two vertices is defined as the maximum number of
internally vertex-disjoint paths between them. Finally, we define two vertices to be
maximally local-connected, if the maximum number of internally vertex-disjoint
paths between them equals the minimum degree of these two vertices. We prove that a
(k+1)-regular Matching Composition Network is maximally local-connected, even if
there are at most (k-1) faulty vertices in it. Moreover, we introduce the one-to-many
and many-to-many versions of connectivity, and prove that a (k+1)-regular Matching
Composition Network is not only (k-1)-fault-tolerant one-to-many maximally
local-connected but also f-fault-tolerant many-to-many t-connected (which will be



defined subsequently) if f+t=2k. In the same issue, we show that an (n-1)-regular
Cayley graph generated by transposition tree is maximally local-connected, even if
there are at most (n-3) faulty vertices in it, and prove that it is also (n-1)-fault-tolerant
one-to-many maximally local-connected.

Keywords: Interconnection networks; Fault-tolerant; Pancyclic; Conditional faults;
Connectivity; Strong Menger connectivity; Local connectivity;

Matching Composition network; Hypercube; Hypercube-like networks;

Cayley graphs; Star graph; Bubble-sort graph;
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Chapter 1

Introductions and Motivations

The research about interconnection networks is important for parallel and distributed
computer system. Many interconnection network topologies have been proposed in lit-
erature for the purpose of connectinga large number of processing elements and the
designing of a parallel computing system. Thete are several requirements in designing a
good topology for an interconnection network;such as connectivity and ring embedding.

Many related works can be referred in recent research.

In practice, the processors or links in a network may be failure. Since failures are
inevitable, fault tolerance is an important issue in multiprocessor systems. The connec-
tivity is also related to the reliability and fault tolerance of a network. Many measures on
fault tolerance of networks are related to the maximal size of the connected components
of networks with faulty vertices/edges. In this dissertation, we consider some measures
of conditional faults by restricting that every vertex has at least two fault-free neighbor-
ing vertices on some interconnection networks. Under this condition, the fault-tolerant

capability is increased.



1.1 Basic Terms and Notations

The architecture of a multiprocessor system is usually modeled as an undirected graph.
For the graph definitions and notations we follow [3]. Let G = (V| E) be a graph, we
use V(G) and E(G) to denote the vertex set V' and the edge set E, respectively. The
connectivity of a graph G, written x(G), is the minimum size of a vertex set .S such that
G — S is disconnected or has only one vertex. A graph G is k-connected if its connectivity
is at least k. In addition, a graph has connectivity k if it is k-connected but not (k + 1)-
connected. The degree of a vertex x is the number of edges incident with it. We use
dege(zx), or simply deg(x) if there is no ambiguity, to denote the degree of vertex x in
G; and use 6(G) to denote the minimum degree of all the vertices in G. We say that G
is mazimally connected if k(G) = 6(G)s Let v andw be two distinct vertices, a path P
between them is a sequence of adjacént vertices, < i, wiyws, ..., wg,v >, where wy, wo, ...,
wy, are distinct ones. The local conmectivity between two distinct vertices v and v is the

maximum number of internally disjoint u = v paths.

Let G be a graph, and F be a subset of vertices, F' C V(G), the induced subgraph
obtained by deleting the vertices of F' from G is denoted by G — F. Let u be a vertex,
we use Ng(u), or simply N(G) if there is no ambiguity, to denote the set of vertices
adjacent to u in G. Let V' be a set of vertices, the neighborhood of V' is defined as the
set Ne(V')={ U / Ng(v)}—V'. A graph G is k-regular if the degree of every vertex in G
is k, and graphvgvis triangle-free if there is no cycle of length three. A Hamiltonian cycle
is a cycle which includes every vertex of G. A path P is a sequence of adjacent vertices,

written as (v, v1, ..., U, ). The length of a path P, denoted by [(P), is the number of edges

in P.



1.2 Organization of the Thesis

In the follows, we describe the organization of this thesis. In Chapter 2, we discuss about
the edge-bipancyclicity problem with conditional faults on hypercubes. We show that,
for up to |F| = 2n — 5 faulty edges, each edge of the faulty hypercube @, — F' lies on a
cycle of every even length from 6 to 2" with each vertex having at least two healthy edges

adjacent to it, for n > 3.

In Chapter 3, we study the Menger property on a class of hypercube-like networks. We
show that in all n-dimensional hypercube-like networks with n — 2 vertices removed, every
pair of unremoved vertices u and v are connected by min{deg(u),deg(v)} vertex-disjoint
paths, where deg(u) and deg(v) are the remaining degree of vertices u and v, respectively.
Furthermore, under the restricted condition_that_.each, vertex has at least two fault-free
adjacent vertices, all hypercube-like-networks still have the strong Menger property, even

if there are up to 2n — 5 vertex faults.

In Chapter 4, we focus on local conneetivity problem. we define two vertices to be
maximally local-connected, if the maximum number of internally vertex-disjoint paths
between them equals the minimum degree of these two vertices. We prove that a (k+ 1)-
regular Matching Composition Network is maximally local-connected, even if there are
at most (k — 1) faulty vertices in it. Moreover, we introduce the one-to-many and many-
to-many versions of connectivity, and prove that a (k + 1)-regular Matching Composition
Network is not only (k — 1)-fault-tolerant one-to-many maximally local-connected but
also f-fault-tolerant many-to-many ¢-connected (which will be defined subsequently) if
f +t = 2k. Furthermore, we introduce the Cayley graphs generated by transposition

tree, and show that an (n — 1)-regular Cayley graph generated by transposition tree is



maximally local-connected, even if there are at most (n—3) faulty vertices in it, and prove
that it is also (n — 1)-fault-tolerant one-to-many maximally local-connected. At last, we

present our conclusion in Chapter 5.




Chapter 2

Edge-bipancyclicity

2.1 The Edge-bipancyclic property

The ring embedding problem, which dealsswith @all the possible lengths of the cycles in a
given graph, is investigated in a lot eof interconnéction networks. A graph G is pancyclic
if it contains a cycle of length [ for each [ satisfying 3°< [ < |V(G)|. The concept of
pancyclic graphs is proposed by Bondy (3] Bipancyclicity is essentially a restriction of
the concept of pancyclicity to cycles of évenrlengths: A bipartite graph is edge-bipancyclic
if every edge lies on a cycle of every even length from 4 to |V (G)|. There are some studies

concerning ring embedding problem of some interconnection networks [9, 13, 14].

A bipartite graph is k-edge-fault-tolerant edge-bipancyclic if G — F remains edge-
bipancyclic for any set of faulty edges F' C E(G) with |F| < k. In this chapter, we
discuss that for |F'| = 2n — 5 conditional faulty edges, each edges of ), — F' lies on a cycle
of every even length from 6 to 2", n > 4, provided not all edges in F' are incident with

the same vertex.



2.2 The Hypercube Networks

An n-dimensional hypercube is denoted by @, with the vertex set V(Q,,) and the edge
set £(Q,). Each vertex u of @, can be distinctly labeled by a n-bit binary strings,
U = Up_1Up_o...u1Ug. There is an edge between two vertices if and only if their binary
labels differ in exactly one bit position. In addition, we call e a healthy edge when e is
fault-free in a graph. Let u and v be two adjacent vertices. If the binary labels of u and
v differ in ith position, then the edge between them is said to be in ith dimension and
the edge (u,v) is called an ith dimension edge. Let i be a fixed position, we use Q°_,
to denote the subgraph of @, induced by {u € V(Q,)|u; = 0} and Q},_; to denote the
subgraph of @,, induced by {u € V(Q,)|u; = 1}. We say that @, is decomposed into

0 and Q! ; by dimension i, and Q%% and QL are (n — 1)-dimensional subcube of
Q,, induced by the vertices with thie :th bit-position being 0 and 1 respectively. Q°
and Q! | are all isomorphic to Qp.;. For.each vertexu € V(QY ), there is exactly
one vertex in QL ,, denoted by uMyguch’that (u,u™) € E(Q,). Conversely, for each
u € V(QL_,), there is one vertex in QY ;) denoted by u¥), such that (u,u®) € E(Q,).
Let D; be the set of all edges with one end in Q°_; and the other in Q. ;. These edges

are called crossing edges in the ith dimension between Q° | and Q;,_;. We also call D,

the set of all ith dimension edges. Consequently, |D;| =2""! for all 0 <i <n — 1.

There are some properties on (), as follows.

Lemma 1 [16] Q, is edge-bipancyclic, and is (n-2)-edge-fault-tolerant edge-bipancyclic,

forn > 3.

Lemma 2 [29] Each edge of Q4— F lies on a cycle of every even length from 6 to 2" = 16



for any F C E(Q4) with |F| = 3, provided not all the faulty edges in F are incident with

the same vertex.

Lemma 3 [29] Any two edges in Q,, are included in a Hamiltonian cycle, for n > 2 .

The above lemma can be improved; In addition, we have the following lemmas to

simplify our proof.

Lemma 4 Let Cy = (u, Py,v,u) be a cycle in Q°_, with its even length from ly to 2",
and C; = (uM | P, oM uM) be a cycle in QL with its even length from Iy to 2"~*. Then

C = {(u, Py,v, oM, Pi,uM u) is a cycle in Q, with its even length from lo + 11 to 2.

Proof. The proof of this lemma is omitted. O

Lemma 5 Let (), be an n-dimensional hypercube, w>="2, and let e; and ey be two edges in
the same dimension ©. Then there exists another dimension j # i such that decomposing
Q,, into Q°_, and QL | by dimension j, we have (1) neither e; nor ey is a crossing edge,

(2) not ey and ey are in the same subcube.

Proof. Let e; = (a,b) and es = (s,t) be two edges in the same dimension i. Let
a = ay...q;...a; and s = s,...8;...51. Then b = a,...a;...a; and t = s,...5;...51. Since e; # es
and n > 2, there exists another dimension j # 7, such that a; # s;. We decompose @,
into Q° |, and Q! | by dimension j. Then, e; and e, are not crossing edges and are in

the different subcubes. O



Lemma 6 Consider an n-dimensional hypercube Q,, forn > 4. Let ey, e; and ey be any
three edges in Q,, there is a cycle C' containing e; and es in Q, — {eo} with the length

I(C)=2",2"—2 and 2" — 4.

Proof. To prove this lemma, we consider the following two cases:

Case 1: Both ey and ey are in the same dimension, say dimension i. By Lemma 5,
we can choose a dimension j such that e; and ey are in different subcubes. Without loss

of generality, we assume that e; is in Q¥_; and ey is in QL _;. We then consider two cases:

1.1: eg is not a crossing edge. We assume without loss of generality that eq is in QY_;.
By Lemma 1, in Q% , —{eo}, there exists a cycle Cy of every even length 4 < [(Cp) < 271
going through e;. Since n > 4, we canichoose an edge (u,v) on cycle Cy such that
(u,v) # e1, and (uV, vM) # e,. By Lemma 3, in @ ;4 there exists a cycle Oy of length

271 going through e, and (u)), v(), “Thus, the conclusion follows according to Lemma

4.

1.2: ey is a crossing edge. By Lemma 1) there exists a Cy of every even length
4 < 1(Cy) < 2" going through e; in QY ;. We can choose an edge (u,v) on cycle Cy
such that (u,v) is not adjacent to ey and (u,v) # e; and (uM),v(M)) #£ e,, since n > 4.
By definition, (u),v™") is an edge in Q} ,. By Lemma 3, there exists a Hamiltonian
cycle Oy going through e, and (v, vW) in Q! ;. So the conclusion follows according to

Lemma 4.

Case 2: ey and ey are in different dimensions. Suppose that eq is in the 7th dimension.
We decompose @,, into Q¥ _; and Q} _; by dimension i. Then, eq is a crossing edge. Next,

we consider two further cases:



2.1: FEither e; or es is a crossing edge. Without loss of generality, we assume that
ey is a crossing edge, and ey is in Q°_,. Let e; = (u,u")), where v € V(Q°_,) and
uV € V(QL_,). Since n > 4, there is a neighbor of u, say v, such that (u,v) # ey
and (u,v) is not adjacent to ey. By Lemma 3, there exists a Hamiltonian cycle Cy going

1

through (u,v) and ez in Q°_,. By Lemma 1, in Q;,_;, there exists a cycle C of every even

length 4 < I(C}) < 2"! going through (u(!), v). By Lemma 4, the conclusion follows.

2.2: Both ey and ey are not crossing edge. If e; and ey are in different subcubes, this
subcase is similar to case 1.2, and the proof is omitted. Otherwise, both e; and ey are

in the same subcube. We assume without loss of generality that e; and ey are in Q%_;.

0

n—19

By Lemma 3, there exists a Hamiltonian cycle Cy going through e; and ey in ) and
[(Co) = 2", Since n > 4, there is a third edge (u,v) other than e; and ey on cycle Cy,
and (u,v) is not adjacent to ey. By Lemma Iyjthere exists a cycle C of every even length

4 <1(Cy) < 277! going through (u®, D) in QL. By Eemma 4, the conclusion follows.

a

2.3 The Conditional Fault-tolerance of Hypercube
Networks

Chan and Lee [5] considered an injured n-dimensional hypercube where each vertex is
incident with at least two healthy edges, and proved that it still contains a Hamiltonian
cycle even it has (2n — 5) edge faults. Tsai [26] proved that such an injured hypercube
Q. contains a cycle of every even length from 4 to 2", even if it has up to (2n — 5) edge
faults. Recently, Xu et al. [29] showed that for any set of faulty edges F' of @, with

|F| <n—1, each edge of @, — F lies on a cycle of every even length from 6 to 2", n > 4,

9



provided not all faulty edges are incident with the same vertex. We observe that not all
faulty edges are incident with the same vertex is equivalent to stating that each vertex
has at least two healthy edges adjacent to it, if || < n— 1. In this chapter, we consider a
set of faulty edges satisfying the condition that each vertex of ), — F' is incident with at
least two healthy edges. Such a set of faulty edges F' is called a set of conditional faulty

edges.

To prove our result, we need some preliminary lemmas.

Lemma 7 Consider an n-dimensional hypercube Q,,, forn > 4. Let F be a set of condi-
tional faulty edges with |F| = 2n — 5. There are at most two vertices in Q,, incident with

(n-2) faulty edges.

Proof. If there are three vertices il @), inecident with (n — 2) faulty edges, the number
of faulty edge F' is at least 3n — 8. However,{3n — 8) >(2n — 5) for all n > 4 which is a

contradiction. O

Let F be a set of faulty edges of Q,. Suppose that we decompose @,, into Q¥ ; and
L | by dimension j, and let F, = FNE(Q%_,), Fr = FN E(QL_;). Suppose that

F is a set of conditional faulty edges of Q,. If we arbitrarily decompose @, into Q°_,

and Q! | by a dimension, F}, and Fr may not be conditional faulty edges in Q% ; and

1
n—1

respectively. However, we will show that it is always possible to find some suitable
dimension such that decomposing by this dimension, both F; and Fjr are conditional

faulty sets in Q°_; and Q} _, respectively.

Lemma 8 Consider an n-dimensional hypercube Q,, n > 4. Let F be a set of conditional

faulty edges with |F| = 2n — 5. If there are two vertices x and y both incident with n-2

10



faulty edges, then © and y are adjacent in Q,, and the edge (z,y) is a faulty edge. Suppose
that (z,y) is in dimension j. Then decomposing @, into Q°_, and Q. , by dimension
7, both Fr and Fgp are sets of conditional faulty edges in Q°_, and Q. _, respectively.

Moreover, |Fr| < 2n —6 and |Fgr| < 2n — 6.

Proof. If there are two vertices x and y in @, incident with (n—2) faulty edges, then these
two vertices are connected by a faulty edge. Otherwise, |F| =2(n—2) =2n—4 > 2n—5

which is a contradiction. Suppose the edge (z,y) is in dimension j, we decompose @,

into two subcubes. It is clearly that each vertex in Q% _; and Q. _, is still incident with
at least two healthy edges, and both Fj, and Fy are conditional faulty edges in Q°_; and

QL _, respectively. Then, |F| = |Fr| =n—3 <2n — 6, for n > 4. O

Lemma 9 Consider an n-dimensional hypercube €., for n > 4. Let F be a set of con-
ditional faulty edges with |F| = 2 — 5. Suppose that there exists exactly one vertex x
having (n-2) faulty edges incident with it"Since'n —2 > 2, let e; and ey be two faulty
edges incident with x, and let e; and ey be jth and kth dimension edges respectively. Then
decomposing @Q,, into Q°_, and Q! | by either one of these two dimensions j and k, Fp,
and Fg are still sets of conditional faulty edges in Q°_, and QL | respectively. Moreover,

|FL| <2n—6 and |Fg| < 2n —6.

Proof. If there exists only one vertex = having (n — 2) faulty edges incident with it, there
are at least two faulty edges e; and e, incident with it, since n > 4. Obviously, these
two faulty edges are in different dimensions. Without loss of generality, we may assume
that e; is in dimension j and e, is in dimension k, for j # k. We can decompose @,, into

Q% | and Q! | by either jth or kth dimension, and either e; or e, is a crossing edge.

11



Therefore, each vertex in these two subcubes is incident with at least two healthy edges

and |Fr| < 2n — 6 and |Fg| < 2n — 6. O

Lemma 10 Let Q,, be an n-dimensional hypercube, F be a set of faulty edges with |F| > 2,
and e be a healthy edge, n > 2. Then there exists a dimension j, decomposing QQ, into
0 and QL _, by this dimension, such that e is not a crossing edge and not all the faulty

edges are in the same subcube.

Proof. Suppose that e = (u,v) is in dimension i. If there is a faulty edge f not in
dimension 4, say in dimension j. We decompose @, into Q° ; and Q! , by dimension
jJ. Then f is a crossing edge but e is not, and all the faulty edges are not in the same
subcube. Otherwise, all the faulty edges arein the same dimension i as e is in. We now
choose any two faulty edges f; and f9 in FmaBy-emma 5, (), can be decomposed into
Q° , and Q! | by some dimension-j % i such that edges f; and f5 are not in the same

subcube, and e is not a crossing edge. a

2.4 Edge-bipancyclicity of conditional faulty hyper-
cube

In this section, we consider a set of faulty edges satisfying the condition that each vertex
of @), — F is incident with at least two healthy edges. Such a set of faulty edges F' is called
a set of conditional faulty edges and @), — F' is called a conditional faulty hypercube. We
find that under this condition, the number of faulty edges can be much greater and the
same result still holds. We show that, for up to |F| = 2n — 5 conditional faulty edges,
each edge of a faulty hypercube @),, — F' lies on a cycle of every even length from 6 to 2",

for n > 3. We observe that, if |F| < 2n — 5, we may arbitrarily delete some more edges

12



to make a faulty edge set F' O F and |F’| = 2n — 5. If our result holds for F’, it holds

for F. From now on, we shall assume |F| = 2n — 5.

The above result is optimal in the sense that the result can not be guaranteed, if there
are 2n — 4 conditional faulty edges. For example, take a cycle of length four in @, let
(uq,ug, us, us) be the consecutive vertices on this cycle. Suppose that all the (n —2) edges
incident with vertex u; (respectively vertex us) are faulty except those two edges on the
four cycle are healthy. There are 2(n — 2) conditional faulty edges. Then there does not

exist a Hamiltonian cycle in this faulty @,, for n > 3.

We now prove our main result.

Theorem 1 Let @), be an n-dimensional,hypereube, and F be a set of conditional faulty
edges with |F| < 2n — 5. Then each=edge of the ¢onditional faulty hypercube Q, — F lies

on a cycle of every even length from G-to 2", forn > 3.

Proof. We prove this theorem by induetion on s For n = 3, since 2n — 5 =n — 2, by
Lemma 1, the result is true. For n =4, 2n —5 = n — 1, by Lemma 2, the result holds.

Assume the theorem holds for n — 1, for some n > 5, we shall show that it is true for n.

As we mentioned before, we may assume |F| = 2n — 5. Let e = (u,v) be an edge in
@, — F. We shall find a cycle of every even length from 6 to 2" passing through e in
Q. — F. Assume that e is an ith dimension edge, e € D;, for some i € {1,2,...,n}. The

proof is divided into three major cases:

Case 1: There are two vertices x and y in @, incident with (n — 2) faulty edges. By

Lemma 8, (z,y) is an edge in @), and is a faulty edge. We denote this edge by e;. Suppose
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Figure 2.1: An illustration for Theorem 1.

that ey is a jth dimension edge. We decompose @, into Q°_; and Q},_; by dimension j.

We then consider two further cases:

1.1 ey = (z,y) and e = (u,v) are in the same dimension. Thus, j =i and ef € D;.
(Fig. 2.1-(a)) In this case, e is an edge crossing @2, and )} ;. Without loss of generality,
assume that u € V(Q%_,) and v € V(@L_,). Since n.='5, u has a neighboring vertex w €
V(Q°_,), by the definition of hypercube, w"is a neighbor of v such that the edge (w, w™)
is a healthy edge and (w, w(l)) is a crossing edge between Q° | and Q! ;. By lemma 1,
there exists a cycle Cp in Q°_, — Fy, passing through (u, w) of every even length 4 < [(Cy) <
2"~! and a cycle C} in Q! |, — F going through (v, w")) of every even length 4 < [(C}) <
271 We write Cy as (u, Py, w,u), and Cy as (v, Py, w™", v). Thus, (u, Py, w,w™, v, u) is
a cycle of length 6 with I(Py) = 3. By Lemma 4, (u, Py, w,w™, P, v, u) can form a cycle

of every even length from 8 to 2" through e in @, — F'.

1.2 e and e are in different dimensions. Thus, j # i and ey ¢ D;. (Fig 2.1-(b)) In this

case, e is in Q% _, or QL _,. Without loss of generality, we may assume that e € E(QY_,).
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By Lemma 1, there exists a cycle C'in Q°_, — F, going through the edge e of every even
length I, 6 <1 < 2" Let Cy be a cycle of length 2"~! — 2 or 27! passing through e
in Q°_, — Fy. Since n > 5, there exists an edge (s,t) on Cj such that neither s nor ¢ is
adjacent to e; and (s,t) # e. By definition, (s(V,¢)) is an edge in Q}_;, and (s, sV),
(t,t™)) are healthy edges. By Lemma 1, there exists a cycle C; in Q} , — Fg through

(s +M) of every even length 4 < [(C) < 2"~'. Thus, the conclusion follows according

to Lemma 4.

Case 2: There is exactly one vertex in Q,, incident with (n — 2) faulty edges. Let x
be the vertex having (n — 2) faulty edges incident with it. Let f; and fs be two faulty
edges incident with x, so f; and f; are in different dimensions j and k. By Lemma
9, decomposing Q,, into Q° , and Q! , hygeither jth or kth dimension, both F; =
FNE@Q_,) and Fr = F N E(Q!._4) are setsyof.conditional faulty edges in Q°_; and
QL | respectively. Between dimension j and k; we"choose one to decompose @,, into

0 and Q! ,, say dimension j, such that-the-requiréd edge e is not a crossing edge.

Therefore, there is an faulty edge crossing Q0 _-and Q! _,, we denote this edge by ey,

and ey € F'N D; is incident with x. Without loss of generality, we may assume that

reV(Q? ).

2.1: Suppose |Fr| < 2n—7 and |Fr| < 2n—7. (Fig. 2.1-(c)) Without loss of generality,
we further assume that e € E(Q°_,). By induction hypothesis, there exists a cycle C' in
Q% | — Fy, of every even length 6 < [(C) < 2" ! passing through e. Let Cy be a cycle of
length 2"~ — 4 < [(Cy) < 2"~ through e in Q°_; — Fy. Since |Cp —e| > 2"t —4 -1 >
2(2n —5) > 2|F N Dj|, for all n > 5. There exists an edge (s,t) on Cy such that (s,?)
is not e, and both (s,s™) and (¢,#")) are healthy edges. By induction hypothesis, there

exists a cycle Cy in Q) ; — Fg of every even length 6 < [(C;) < 2"! passing through
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(s, ¢+M), By Lemma 4, the conclusion follows.
2.2: |Fi| =2n — 6. In this case, |[F N D;| =1and |FNE(QL_,)| =|Fr| =0.

2.2.1: e is in subcube Q°_,. To find a cycle of length 6 passing through e = (u,v), we
discuss the case that whether e is incident with x or not. If e is incident with z, without

loss of generality, we assume that u = x. (Fig. 2.1-(d)) Thus, (v,v() is a healthy edge.

0
n—1»

Since F7, is a set of conditional faulty edges in () vertex u = x has two healthy edges
incident with it. Let w be a neighbor of u in Q% ; such that (w,u) and (w,w")) are
healthy edges and w # v. Thus, (u,v,v®, uM wM w, u) is a cycle of length 6 in Q,, — F.
Otherwise, e is not incident with x, then (u,u(")) and (v,v™") are healthy edges. (Fig.
2.1-(e)) By Lemma 1, there exists a cycle C; = (u(V), P, oM uM) of length four in Q}
through the edge (u,v™). Thus, (u, w8 P, oWy, u) is a cycle of length 6 in Q, — F,

where [(P}) = 3.

Let e; be a faulty edge in QY 5 that is“not adjacent to e;. Though e; is a faulty
edge, we treat it as a healthy edge temporarily, then the total number of faulty edge in
Q° | is 2n — 7. By induction hypothesis, there exists a cycle Cy of every even length
6 < 1(Cp) < 2" ! going through e in Q° | — {F; — {e;}}. If Cyy passes e, we choose e; ,
or else, we choose any one edge other then e on C; which is not adjacent to e;. Let the
chosen edge be denoted by (s,t). We write cycle Cy as (s, Py, t,s). Since |[F'ND;| =1 and
|Fr| =0, (5,5M), (¢,tM) and (s, ¢ are all healthy edges. Thus, (s, Py, ¢t sM) s)

is a cycle of length 8 in Q,, — F if [(Fy) = 5. Suppose that 10 < < 2" and [ is even. By

Lemma 1, in Q) _,, there exists a cycle C3 of length 4 < [(C3) < 277! passing through
(s M), We write C5 as (s, P, t(M) s, By Lemma 4, (s, Py, t,t(", Py, s 5.t is a

cycle of length [ through e in @, — F'.
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2.2.2: e is in subcube Q}_,. (Fig. 2.1-(f)) By Lemma 1, there exists a cycle C' of every
even length 4 <[ < 2"~! passing through e in Q}%l. Suppose that 2771 +2 < < 2" and
[ is even. Since F7, is a set of conditional faulty edges, there are at most (n — 3) faulty
edges adjacent to e; in QY _,. For n > 5, n—3 > 2, we can choose a faulty edge e; = (s,1)
in Q°_, such that e, is not adjacent to e and (s, ¢) is not e. Treating the edge e, as a
healthy edge, by induction hypothesis, there exists a cycle Cy of length 6 < (Cp) < 271
going through e, in Q°_, — {Fy, — {e>}}. We observe that (s, s")) and (¢,t)) are healthy
edges. By Lemma 6, there exists a cycle C; of every length 27! — 4, 27=! — 92 or 27!

through (s, +M) and e in Q! ,. By Lemma 4, the conclusion follows.

Case 3: Every vertez in @, is incident with at most (n—3) faulty edges. In this case,
suppose that e = (u,v) is in dimension i.,By Lemma 10, @),, can be decomposed into
QY _, and Q}_, by a dimension j different frommissuch that e is not a crossing edge and
not all the faulty edges are in the same subcube: Then [F| < 2n — 6 and |Fgr| < 2n — 6.

Next, we consider two further cases;
3.1: At least one faulty edge is a jth dimension edge. Thus, |F N D;| # 0.

We then consider two cases: (a)|Fp| < 2n—7and |Fg| <2n—7, and (b)|FL| =2n—6

or |Fr| = 2n — 6. The proof of this subcase is exactly the same as that of case 2.
3.2: None of the faulty edges is a jth dimension edge. Thus, |F N D;| = 0.

3.2.1: |FL| <2n—T7 and |Fg| < 2n — 7. Without loss of generality, we may assume
that e € F(Q°_,). By induction hypothesis, there exists a cycle C' of every even length
6 <I(C)<2"1in Q° |, — Fy, passing through e. Let Cy be a cycle of every even length
2nl — 4 < [(Cy) < 2771 going through e in Q° | — Fy. There exists an edge (s,t)

other than e in Cp. Since |F'N D;| =0, (s,51) and (¢,t(V)) are healthy edges. We write
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Cy as (s, Py, t,s). By induction hypothesis, there exists a cycle C of every even length
6 <I1(Cy) <2 Vin QF | — {Fr — (s, tM)} through (s, +M). Thus, the conclusion

follows according to Lemma 4.

3.2.2: Suppose |Fp| = 2n — 6 or |Fg| = 2n — 6, say the former case. In this case,

|Fr| = 1. We then consider two cases: (a) e is in subcube Q°_,, and (b) e is in subcube

1
n—1-

(a) e = (u,v) is in subcube Q°_,. Since |F N D;| = 0, both (u,u®) and (v,vW)
are healthy edges. Let [ be an even number with 6 < [ < 2"7!. By Lemma 1, there
exists a cycle O of every even length from 4 to 2"~! passing through (u™®,v®) in QL |, —
{Fr — (uM, M)}, We write C; as (uV), P, o™ uM). No matter (u)),v() is healthy or
not, (u,u™, P;,v™ v u) forms a cycle,of length' f+through e in @Q, — F. Suppose that
2771 42 <[ < 2" Let e be a faulty edge in QY% We may treat e; as a healthy edges
temporarily. By induction hypothegis, there exists a cycle Cy of length 6 < [(Cp) < 2n~1
going through e in Q% _, — {Fy, — {es} - If Cy-passés the edge e;, we choose e; to be
deleted. Otherwise, we choose another edge other than e on cycle Cy. Let the chosen
edge be denoted by (s,t). We write the cycle Cy as (s, Py, t,s). Treating (s, t()) as a
healthy edge, by Lemma 1, there exists a cycle Cs of every even length from 4 to 27!
passing through (s, tM) in Q! | — {Fr — (s, ¢M)}. By Lemma 4, the conclusion

follows.

(b): e is in subcube Q. _,. Let e; be the only faulty edge in Q. _,. By Lemma 1, there
exists a cycle C' of every even length from 6 to 2"~ through e in Q. _;, — {e;}. Suppose
that 2"~! +2 <[ < 2" and [ is even. Let ey = (s,t) be a faulty edge in Q°_, such that

(st £ e and (s, t()) # e;. By induction hypothesis, there exists a cycle Cy of
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length 6 < 1(Cy) <27 1in Q°_, — {F;, — {eo}} going through eq. If (sM),t1)) = ¢, treat
e; as a healthy edge temporarily, by Lemma 6, there exists a cycle C; of length 2"~1 — 4,
2"=1 — 2 or 2"~ respectively going through both (s, ¢")) and e in Q! ,. By Lemma 4,
the conclusion follows. Otherwise, if (s(l), t(l)) # e1, by Lemma 6, there exists a cycle C3
of length 271, 2"t — 2 or 2"~! — 4, respectively, going through both e and (s, ¢")) in

QL _, —{e1}. Thus, the conclusion follows according to Lemma 4. a
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Chapter 3

Strong Menger-connectivity

The architecture of an interconnection network is usually denoted as an undirected graph
G. Among all fundamental properties for interconnection networks, the (vertex) connec-
tivity is a major parameter widely diseussed for the connection status of networks. A
basic definition of the connectivityof a graph -G is.defined as the minimum number of
vertices whose removal from G produces a disconnecteds graph. In contrast to this con-
cept, Menger [17] provided a local point of view, and define the connectivity of any two

vertices as the minimum number of internally'vertex-disjoint paths between them.

In this chapter, we study the Menger property on a class of hypercube-like networks
[27], which is a variation of the classical hypercube network by twisting some pairs of
links in it. We show that in all n-dimensional hypercube-like networks with some vertices
removed, every pair of unremoved vertices u and v are connected by min{deg(u), deg(v)}
vertex-disjoint paths, where deg(u) and deg(v) are the remaining degree of vertices u and
v, respectively. This concept is firstly applied on hypercubes and stars by Oh and Chen
[18, 19, 20]. Furthermore, if we restrict a condition such that each vertex has at least

two fault-free adjacent vertices, all hypercube-like networks still have this strong Menger
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property, even if there are up to 2n — 5 vertex faults. The bound of 2n — 5 is sharp.

3.1 Menger-connectivity and
Strong Menger-connectivity

In this section, we discuss the strong Menger-connected property. A classical theorem

about connectivity was provided by Menger as follows.

Theorem 2 [17] Let x and y be two nonadjacent vertices of a graph G. The minimum

size of an x,y-cut equals the maximum number of pairwise internally disjoint x,y-paths.

Following this theorem, OH et al. [19] gave a definition to extend the Menger’s The-

orern.

Definition 1 [19] A k-regular graph G is strongly Menger-connected if for any subgraph
G —F of G with at most k — 2 vertices removed;each paw of vertices u and v in G—F are
connected by min{degg_r(u), degs_r(0)} wertex-disjoint fault-free paths in G — F', where

dege_r(u) and degg_p(v) are the degree of uw and v in G — F, respectively.

By Definition 1, OH et al. [18, 19, 20] showed that an n-dimensional star graph S,
(respectively, an n-dimensional hypercube @, )with at most n — 3 (respectively, n — 2)
vertices removed is strongly Menger-connected. In order to be consistent with Definition
1, we say that a graph G possess the strongly Menger-connected property with respect to
a vertex set [ if, after deleting F' from G, there are min{dege_r(u), degg—p(v)} vertex-
disjoint fault-free paths connecting v and v, for each pair of vertices v and v in G — F.
Throughout this paper, we shall call a graph “strongly Menger-connected”, and omit the

description of the remaining structure G — F' of the graph, if there is no ambiguous.
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3.2 The Class of Hypercube-like Networks

Let Gy = (Vo, Ep) and Gy = (V4, E4) be two disjoint graphs with the same number of
vertices. A one-to-one connection between V(Gy) and V(G;) is defined as an edge set
M = {(v,0(v)) | v € Vy,0(v) € V] and ¢ : Vj — Vj is a bijection}. We use Gy &y Gy
to denote the graph G = (Vy U V3, Ey U Ey U M). Different bijection functions ¢ lead to

different operations @,; and generate different graphs.

The hypercube network is one of the popular topologies in interconnection networks.
Several variants of hypercubes are proposed by twisting some pairs of links in hypercubes,
including twisted cubes [1, 12], M&bius cubes [8], and crossed cubes [11], to name a few. To
make a unified study on these variants, Vaidya et al. [27] proposed a class of graphs, called
a class of hypercube-like networks. Wemow give a recursive definition of the n-dimensional
hypercube-like networks H L,, as follows: (1)H Lg = K, where K; is a trivial graph in
the sense that it has only one vertex; and™(2)G € HL, if and only if G = Gy &y Gy
for some Gy,G, € HL,_,. By the definitions above if G is a graph in HL,,, then G is a
composition of Gy @); G with both Gy and G in HL,,_1, n > 1. Each vertex in GGy has

exactly one neighbor in Gy.

It is known that the connectivity of an n-dimensional hypercube-like network H L, is
n [27]. To extend the connectivity result of HL,, further, we study the strongly Menger-
connected property of HL, with at most n — 2 vertices deleted. Moreover, if we restrict
a condition such that each vertex has at least two fault-free adjacent vertices, HL,, still

have the strong Menger property, even if there are up to 2n — 5 vertex faults.
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3.3 Strong Menger Connectivity on the
Class of Hypercube-like Networks

There are some preliminaries on the class of Hypercube-like Networks.

Lemma 11 Let G € HL,, be an n-dimensional hypercube-like network, and S be a set of
vertices with |S| < 2n — 3, for n > 2. There exists a connected component C' in G — S

such that |V (C)| > 2" — |S| — 1.

Proof. We prove this statement by induction on n. For n = 2, HL, is a cycle of length
four, the result is trivially true. Assume this lemma holds for n — 1, for some n > 3, we

will prove that it is true for n.

Let G be an n-dimensional hypercube-like network; G = Go @y G, and Go, Gy €
HL, 1. Let S be a set of verticesswith |S| < 2n — 3, for n > 3, and let Sy and S; be
subsets of set S in Gy and Gy, respectively. Then |Spf + |S1| = [S] < 2n — 3. Without

loss of generality, we assume [Sy| < |S;|. The proof is divided into two major cases:
Case 1: 0 < |Sy| < 1.

Since Gq is (n — 1)-connected, Gy — Sy is connected, for n > 3. All the vertices in
Gy — Sp are connected and form a connected component Cy with |V (Cp)| = 2"~ — S;. By
definition, all the vertices in GG; — S are adjacent to the vertices in Gy = Cy U Sy. Thus,
G — S contains a connected component C' such that the number of vertices in C' is greater
than |V (Go) — So| + |V (G1) — Si| = |So| = [V(G)| — | S| — |So| = 2" — | S| — 1. (See Fig.

3.1.)
Case 2: |Sy| > 2 and consequently [S;]| < 2n — 5.
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Figure 3.1: The illustration of the proof of Case 1 in Lemma 11.

Since 2 < |Sp| < 51| < 2n —5, so [So] < n —2 and n > 4. By induction hypothesis,
there exists a connected component Cy in Gy — Sy, and |V(Cy)| > 2"~1 — |S;| — 1. Since
the connectivity of Gg is n — 1 and |Sy| < n — 2, Gy — Sy is connected. Then G — S
contains a connected component C' such that the number of vertices in C' is greater than

[V(Go) = Sol + (IV(G1) = Si| = 1) =4V(G) =Sy 1= 2" — [S| - L. O

By Lemma 11, we have the following corollary.

Corollary 1 Let G be an n-dimensional-hypercube-like network, n > 2, and let V' be a

set of vertices in G with |V'| =2. Then |[N(V')| > 2n — 2.

In the following, we show that with up to n — 2 vertex faults, an n-dimensional
hypercube-like network has strongly Menger-connected property. Referring to the relative
study proposed by OH et al. [18], the strong Menger connectivity of regular hypercube
networks has been proved. Here we provide a significantly simpler proof for the general

hypercube-like networks.

We now prove our main result.

Theorem 3 Consider an n-dimensional hypercube-like network G € HL,, forn > 2.
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Let F be a set of faulty vertices with |F| < n — 2. Then each pair of vertices u and v in
G —F are connected by min{degc_r(u), dege—_r(v)} vertex-disjoint fault-free paths, where

degg_r(u) and dege_p(v) are the remaining degree of u and v in G — F, respectively.

Proof. Let G be an n-dimensional hypercube-like network, and v and v be two fault-free
vertices in G — F. We first assume without loss of generality that dege_r(u) < degg_r(v),
so min{degg_r(u),degg_r(v)} = degg_p(u). We now show that u is connected to v if
the number of vertices deleted is smaller than degg_p(u) — 1 in G — F. By Theorem
2, this implies that each pair of vertices u and v in G — F' are connected by degg_r(u)

vertex-disjoint fault-free paths, where |F| < n — 2.

For the sake of contradiction, suppose that u and v are separated by deleting a set
of vertices Vy, where |Vy| < dege_p (@) — 1..As, a conisequence, |Vy| < n — 1 because of
degg-r(u) < deg(u) < n. Then, the summation of the, cardinality of these two sets F
and Vi is |F| 4 |V¢| < 2n — 3. Let'S = FJV;. By Lemma 11, there exists a connected
component C' in G — S such that |V (€)}:> 2" — [S|.= 1. It means that (i) either G — S
is connected, or (ii) G — S has two components, one of which contains only one vertex.
If G — S is connected, it contradicts to the assumption that u and v are disconnected.
Otherwise, if G — S has two component and one of which contains only one vertex .
Since we assume that u and v are separated, one of v and v is the vertex z, say u = .
Thus, the set V; must be the neighborhood of u and |Vy| = dege_p(u), which is also a
contradiction. Then, u is connected to v when the number of vertices deleted is smaller

than degg_p(u) —11in G — F.

The proof is completed. O
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3.4 Strong Menger Connectivity with Conditional
Faults on the Class of Hypercube-like Networks

As proved in the previous section, an n-dimensional hypercube-like network with at most
n — 2 faulty vertices is strongly Menger-connected. But the result can not be guaranteed,
if there are n — 1 faulty vertices and all these faulty vertices are adjacent to the same
vertex. In most circumstances, the possibility of all the neighbors of a vertex being faulty
simultaneously is very small. Motivated by the deficiency of traditional fault tolerance,
we consider a measure of conditional faults by restricting that every vertex has at least

two fault-free neighboring vertices.

Under this condition, we claim that for every n-dimensional hypercube-like network
with at most 2n — 5 faulty vertices and n > 5, thé.resulting network is still strongly
Menger-connected. We have an example to show that this result does not hold for n = 4.
Consider a 4-dimensional HL,, this network‘may.not be strongly Menger-connected, if
the number of conditional faults is 3. (See Fig. 3.2. The remaining degrees of nodes u and
v are both four, with three vertices deleted as indicated in the graph. But the number of
vertex-disjoint paths between u and v is three.) So we can only expect the result holds

for n > 5.

Figure 3.2: An example showing that an H L, is not strongly Menger-connected.

To prove this result, we need some preliminary lemma. In the following, we show
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that an n-dimensional hypercube-like network with at most 3n — 6 vertex faults S has a

connected component having at least 2" — |S| — 2 vertices.

The proof is by induction, and the case for n = 5 is proved in the following two

lemmas.

Lemma 12 Let V' be a set of vertices in a 4-dimensional hypercube-like network with

V| =3. Then, IN(V')| > 7.

Proof. Let G be a 4-dimensional hypercube-like network. G is a composition of two 3-
dimensional hypercube-like networks Gy and G, G = Gy@,; G, for a matching operation
®yr. Without loss of generality, let V' be a subset of V(G) containing three vertices
{z,y,z}. If x,y, z are all in G, by Lemma 11, {&/g; 2} has at least 4 neighboring vertices
in Gy. Besides, {z,y, z} has 3 neighboring vértices in Gy« Then, |[N({z,y, z})| > 4+3 =T.
If z, y are in Gy, and z is in Gy, by:Lemma 11; {x, y} has at least 4 neighboring vertices
in Gy. In addition, {2z} has 3 neighboring-vertices'in Gy» Then, |[N({z,y,2})| > 4+3 =T.

O

Lemma 13 Let G be a 5-dimensional hypercube-like network and S be a set of vertices
with |S] < 9. 3n—6 =29, for n =5.) There ezists a connected component C in G — S

such that |V (C)| > 2° — |S| — 2.

Proof. Let G be a 5-dimensional hypercube-like network, Go,G; € HL4, and G =
Go @y G, for a matching operation @,;. Let S be a set of vertices with |S| < 3n—6 =19,
for n = 5, and let Sy and S; be subsets of S in Gy and G, respectively. Without loss
of generality, we assume |Sy| < |Si]. (Note that |S]| <9, so |Sy| < 4.) We then consider

three cases:
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Case 1: 0 < |Sy| < 2.

Since G is (n— 1)-connected, Gy — Sy is connected, for n = 4. So Gy — Sy has only one
connected component Cy with |V (Cp)| = 2* — Sp. By definitions, all vertices in G; — S
are adjacent to the vertices of Gy = C'USy. Let C be the connected component of G — S
containing Cy. Then the number of vertices in C' is greater than |V (Go) — So| + |V (G1) —

Sil = 1So| = [V(G)| = S| = [So| = 2° = |5] - 2.
Case 2: |Sy| = 3 and therefore |S;| < 6.

Go— Sp is connected by the fact that Gy is (n — 1)-connected, for n > 4. Thus, Gy — .Sy
has only one connected component Cyy with |V (Cp)| = 22— Sy. Then, all vertices in G; are
connected to component Cy, except for the three vertices in G; adjacent to the vertices
in Sp. Since |S1] < 6 and by Lemma 12, at least one'of these three vertices is connected
to component G; — S;. So at least 24 — |S1| = 2'vertices-are connected to component Cj.

Let C be the connected component-of G — S“eontaining €. Then, the number of vertices

in Cis |[V(C)| > [V(Go) — Sol + [V(Gy) = S1 — 2| =V (G)| - |S| —2=2°—|5]| — 2.
Case 3: |Sy| =4 and consequently 4 < |S;| < 5.

Since 5 < 2n — 3, for n > 4. By Lemma 11, there exists a connected components C
(respectively, C) in Gy — Sy (respectively, G; — S;) such that [V(Cp)| > 2* — [So| — 1
(respectively, |V (Cy)| > 2% — |Sy| — 1). Thus, there exists a connected component C' in
G—S such that |[V(C)| > |[V(Go)—So—1|+|V(G1) =S, —1| = |[V(G)|—|S]|—-2 = 2°—|5|-2.

g

Based on Lemma 13, the general case for n > 5 is stated as follows.

Lemma 14 Let G be an n-dimensional hypercube-like network, and S be a set of vertices
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with |S| < 3n — 6, for n > 5. There exists a connected component C in G — S such that

V(C) > 20— |5| - 2.

Proof. We prove this statement by induction on n. By Lemma 13, the result holds for
n = 5. Assume the lemma holds for n — 1, for some n > 6. We now show that it is true

for n.

Let G be an n-dimensional hypercube-like network, Gy, Gy € HL,,_1, and G = Gy ® s
G, for some matching operation @,;. Let S be a set of vertices with [S| < 3n — 6,
for n > 6, and let Sy and S; be subsets of S in Gy and (G, respectively. Therefore,
1So] + |S1] = |S] < 3n — 6. Without loss of generality, we assume |Sy| < |S1|. The proof

is divided into two major cases:
Case 1: 0 < |Sy| < 2.

Since G is (n— 1)-connected, Gy — Sy is eonnected, for n > 6. Let Cy = G — .Sy, Cj is
a connected component with |V (Cy)[=. 2" — S;. By definitions, all vertices in Gy — S
are adjacent to the vertices in Gy = CyU.Sy. Tiet"C be the connected component of G — S
containing Cy. The number of vertices in C' is greater than |V (Gg) — So| + |V (G1) — S1| —

[Sol = [V(G)] = [S] = [So| = 2" — |5 = 2.
Case 2: |Sy| > 3 and consequently |S;| < 3n —9.

By induction hypothesis, there are two connected components Cy and C in Gy—S5, and
G1—51, and |V(Cp)| > 2771 —|Sp|—2 and |V (C4)| > 271 —|S;|—2, respectively. Without
loss of generality, we assume that |V (Cy)| > |V(C})|. Now we focus on the number of
vertices in the component C7, and discuss two situations. First, suppose |V(Cy)| =

2=t — S| —2. By Corollary 1, |S;| > 2(n—1)—2 =2n—4. So |So| = |S|—|S1] < n—2.
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Since Gg is (n — 1)-connected, Gy — Sy is connected. Gy — Sy has only one connected
component Cy and |V (Cp)| = 2"~ — |Sy|. Let C be the connected component containing
Co. Then |V (C)| = |V(Co)|+|V(Cy)| > 2771 —|Sp|+2"1 —|S;| —2 > 2" — S| —2. Second,
suppose that |V(Cy)| > 2"~ — |S;| — 1. Since |V (Cy)| > |V(Cy)| > 271 — | S| — 1, there
exists a connected component C' containing Cj such that [V(C)| = [V(Co)| + |V (CY)| >

207t — S| — 142"t — |5 —1>2" —|S| - 2. O

Corollary 2 Let G be an n-dimensional hypercube-like network, n > 5, and let V' be a

set of vertices in G with |V'| = 3. Then |[N(V')| > 3n — 5.

For the next theorem, we define a set of vertices F. in graph G to be a conditional
faulty vertex set if, in the induced subgraph G —F.., every vertex has at least two fault-free

neighboring vertices. We also call the subgraph-G+— F; a conditional faulty graph.

Theorem 4 Consider an n-dimensional hypércube-like network G € HL,, forn > 5. Let
F, be a set of conditional faulty vertices. with |F,.| <2m'— 5. Then each pair of vertices u
and v in G — F, are connected by min{degg_r.(u),degg_r. (v)} vertex-disjoint fault-free

paths, where degg_r,(u) and degg—r,(v) are the degree of u and v in G — F,, respectively.

Proof. Without loss of generality, we assume degg_r.(u) < degg—r.(v), and therefore
min{degc_r,(u) , degg—r,(v)} = dege—p,(u). We want to prove that each pair of vertices
w and v in G — F, are connected by degg—_r,. (u) vertex-disjoint fault-free paths, for |F.| <
2n — 5. We are going to show that u is connected to v if the number of vertices deleted

is smaller than degg_p,(u) — 1 in G — F,, where |F.| < 2n — 5.

Suppose on the contrary that u and v are separated by deleting a set of vertices V7,

where |V} | < degg_r.(u) — 1. By degg_r.(u) < deg(u) < n, we have |V;,| <n—1. We
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sum up the cardinality of these two sets F, and V},. Since |F.| < 2n—5 and |V}, | <n—1,

then |F.| + |V},

<3n—6. Let S = F,UV;. By Lemma 14, there exits a connected
component C' in G — S such that [V(C)| > 2" — |S| — 2 and |S| < 3n — 6. It means that

there are at most two vertices in G — S not belonging to C. We then consider three cases:

Case 1: |V(C)| = 2" — |S|. It means that all vertices in G — S are connected, which

contradicts to the assumption that v and v are disconnected.

Case 2: |V(C)| = 2" — |S| — 1. Only one vertex is disconnected to G — S. Since
V1| < dege—r,(u)—1 < degg—r,(v) — 1, neither w nor v can be the only one disconnected

vertex, a contradiction.

Case 3: |V(C)| = 2" —|S|—2. Let a and b be the two vertices in G — S not belonging
to C'. We consider two situations. (i) Suppose first that u € C. If v € C, then u and v are
connected, a contradiction. If v € {a, b}, since’|Vp| <'degz_r,(v) — 1, v is connected to
at least one vertex in component C'ya contradietion. (ii)Suppose u € {a,b}. We without

loss of generality let u = a, and consider the adjacency between a and b.

Subcase 1: Suppose that a is not adjacent to b. By the assumption that u and v
are separated by deleting a set of vertices Vj, with |V},| = degg_p,(u) — 1. Let V}, be a
subset of the neighborhood of w, that is, V;, C N(u). Since |V},| < |N(u)|, vertex v and

component C are connected, which is a contradiction.

Subcase 2: Suppose that a is adjacent to b. Let Vy = N(u) — {b}. Since G — F, is
a conditional faulty graph, one of the neighbors of b is in C'. Then, b is connected to C,

which is a contradiction.

Therefore, vertex u and v are still connected with up to degg_p, (u) — 1 vertex faults.
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By Theorem 2, this implies that each pair of vertices v and v in G — F, are connected by
min{degg—r,(u), degg—r,(v)} vertex-disjoint fault-free paths, where |F,| < 2n — 5. The

proof is complete. a
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Chapter 4

Maximal Local-connectivity

One of the central issue in various interconnection networks is studying the value of
connectivity. A basic definition of the connectivity of a graph is defined as the minimum
number of vertices whose removal results’in a disconnected or trivial graph. In contrast to
this concept, Menger [17] provided aocal point of view, and define the connectivity of any
two vertices as the minimum number of yertéx-disjoint paths between them. Following
this concept, Volkman [28] discussed.:some*issues onit; Oh et al. [19][20] and Shih et al.
[23][24] investigated some related properties‘on the star graph and the class of hypercube-

like networks, respectively.

In this chapter, we define two vertices to be maximally local-connected, if the maxi-
mum number of internally vertex-disjoint paths between them equals the minimum degree
of these two vertices. Moreover, we introduce the one-to-many and many-to-many versions

of connectivity.

33



4.1 Local-connectivity and Maximal Local-connectivity

The local connectivity of two vertices is defined as the maximum number of internally
vertex-disjoint paths between them. A pair of vertices x and y is mazimally local-connected
if the local connectivity of x and y equals min{deg(z),deg(y)}, and a graph G is mazimally

local-connected if every pair of vertices in G are maximally local-connected.

Now we give the definition of a graph to be f-fault-tolerant maximally local-connected.

Definition 2 A graph G is f-fault-tolerant maximally local-connected, abbreviated as f-
mazximally local-connected, if for a set of faulty vertices F', |F| < f, each pair of vertices
x,y of G—F are connected by min{degs_r(x),dege_r(y)} vertez-disjoint fault-free paths,

where degg—r(x) and degg_r(y) are the degrees of ®rand y in G — F, respectively.

In the previous definition, we discuss the-maximal local-connectivity, indicating that
for every pair of vertices in a graph-with’a reasonable number of faulty vertices, there
is an amount of vertex-disjoint paths between ‘them, where the amount depends on the
minimum remaining degree of the two vertices. Now we shall extend this concept to a
“one-to-many” version. In this approach, we consider a vertex (as a source) and a set
of vertices (as destinations). Under some constraints we prove that there exists a set of

disjoint paths between the source and the destinations.

A classical theorem about the one-to-many connectivity was provided by Dirac[10] as

follows.

Definition 3 [10] Given a vertex x and a set U of vertices, an z,U-fan of size k is a set

of k-paths from x to U such that any two of them share only one vertex x.
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We note that the cardinality of U is necessarily greater than k, |U| > k.

Theorem 5 [10] A graph is k-connected if and only if it has at least k + 1 vertices and,

for every choice of x,U with |U| > k, it has an x,U-fan of size k.

We then give the definition of a graph to be one-to-many f-fault-tolerant maximally

local-connected.

Let G be a graph and F' be a set of faulty vertices. In graph G — F', pick an arbitrary
vertex z (as a source) and a set U of vertices (as destinations) with |U| =t¢, z ¢ U. We
want to find a set of ¢ paths from x to U such that each pair of them share only the vertex
x. In order to do so, the set U must satisfy some necessary conditions: (i) the cardinality
of U is not greater than the remaining degree of #,‘that is, |U| < degg_r(z), and (ii)
the set U cannot contain any vertex and all its neighbors, that is, {v} U Ng_r(v) is not

contained in U for each v € U.

We call a set of vertices U in G — F*satistying the above two conditions a conditional
terminal set with respect to z and F', abbreviated as a conditional terminal set if there is
no ambiguity. As a short remark, we note that U C V(G — F), x ¢ U, |U| < degg—_r(x),

and U 2 {v} U Ng_r(v) for each v € U.

Definition 4 A graph G is one-to-many f-fault-tolerant maximally local-connected, ab-
breviated as one-to-many f-maximally local-connected, if given any set of faulty vertices
F with |F| < f andx € G—F, let t < degg_r(x), there is a set of t paths from x to U
such that each pair of them share only the vertex x, for each conditional terminal set U

with |U| = t.
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For a vertex = and a vertex set U, x ¢ U, a separator of x and U is defined to be a
set of vertices S, x ¢ S, whose removal results in the disconnection between x and U — S.

The separator S is trivial if either S = U or § = N(z).

In the previous two definitions, we discussed the local connectivity in two directions:
a “one-to-one” version and a “one-to-many” version. Now we shall study the concept of
a “many-to-many” version. Given any two vertex set U; and U, with |U;| = |Us| = ¢ in
a graph G such that U; NU; = ¢, we are concerned about many-to-many disjoint paths
Py, P,, ..., P, connecting Uy and U, in G, such that V(P) NV (P;) = ¢ for all i # j. We
call such a set of ¢ disjoint paths to be many-to-many vertex-disjoint paths between Uy
and U,. Park et al. [21] discussed some related properties on the class of hypercube-
like networks. In the discussion of the connectivity, a classical theorem has made some
extension to prove the existence of a number of disjoint‘paths between two sets of vertices:
in a graph of connectivity k, there are k vertex-disjoint, paths between every two disjoint
sets of vertices both with k& vertices. In:the-following; we shall strengthen this idea. If
there are some constraints on the two ‘sets such that each set cannot contain any vertex
and all its neighbors, the number of vertex-disjoint paths can be increased to almost
double the size of k. We need some terminologies to describe such constraint. Let U
be a set of vertices in a graph G, the set U is defined to be a conditional selected set if
{v} U N¢(v) is not contained in U for every v € U. With this condition, our goal is to
show the following result: in a graph of connectivity k with some good properties, for
every pair of conditional selected vertex sets U; with |U;| = ¢, for i = 1,2, there is a set

of t vertex-disjoint paths between them, where t < 2k — 2.

Before showing this result, we first explain why the number 2k—2 is the best possibility.

Let (u,v) be an edge in a k-connected k-regular graph G. Let Uy be the set of Ng(u) U
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Figure 4.1: An example showing that in a k-connected k-regular graph, there are at most
2k — 2 vertex-disjoint paths between two conditional selected vertex sets.

Ne(v)\{u}. Clearly, the size of Uy is 2k—1, and Uy is a conditional selected set. Arbitrarily
choosing another conditional selected set U, of size 2k — 1, then it is not hard to see that
there do not exist 2k — 1 vertex disjoint paths connecting U; and U,. As a consequence,

the size 2k — 2 is the upper bound for qur¥esult.i(See Fig. 4.1.)

In the following, we formulate the above concept as a “many-to-many” version of
connectivity. Furthermore, even inta graph-with somel faulty vertices, such concept can
also be applied on the graph. Below is the generalized definition of the fault-tolerant

many-to-many connectivity.

Definition 5 A graph G is f fault-tolerant many-to-many t-connected, abbreviated as
many-to-many t/f-connected, if given any set of faulty vertices F' with |F| < f, for each
pair of conditional selected vertex set Uy and Uy with |Uy| = |Us| =t in G — F, there is a

set of vertex-disjoint t paths from Uy to Us.

For two vertex sets Uy and Us, a separator of U; and Us is defined to be a set of vertices
S whose removal results in the disconnection between U; — S and Us — S. The separator

S is trivial if either S = Uy or S = U,.

37



4.2 The Matching Composition Networks

The Matching Composition Network (MCN) [6][15], a recursively constructed topology, is
a family of interconnection networks. The construction of an MCN is to join two graphs
Gp and G; of the same number of vertices by adding a perfect matching between the
vertices of Gy and ;. Many well-known interconnection networks are special cases of
the MCN family, such as the Hypercube, [22] the Crossed cubes [11], the Twisted cubes

[1][12], and the M&bius cubes [8].

Let Gy and G be two graphs with the same number of vertices, and M be an arbi-
trary perfect matching between V(Gy) and V(G;). We use G(Gy, G1; M) to denote the
Matching Composition Network composed of Gy and Gy by M, which has the vertex set
V(G) =V (Go) JV(G1) and the edgeset E(G) =.F(Go) | E(Gy) U M.

Lemma 15 Let G = (V, E) be a k=regular and triangle-free graph, and every two vertices
in G have at most two common neighboring vertices: For every subset V' of V' with

\V'| = 2, the number of neighbors of V' is at'least 2k — 2. That is, |[Na(V")| > 2k — 2.

Proof. Let V' = {v,v}. If v; and vy are adjacent, the number of neighboring vertices
of {vy,vs} is 2(k — 1) because graph G is triangle-free. Otherwise, since every two vertices
have at most two common neighbors, the number of neighbors of V' is at least 2(k—2)+2.

So the result holds. O
Lemma 16 Let G be a k-reqular and triangle-free graph with n vertices. Then n > 2k.

Proof. Let e = (u,v) be an edge of E(G) and V' = {u,v}. Since G is triangle-

free and the degrees of u and v are both k, the number of vertices of G is at least
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|INe(V") U{u,v}| = 2k. 0

Below is a lemma stating the structural properties of a matching composition network.
It shows that an MCN constructed by two k-regular subgraphs is quite fault resistant,
that is, even with up to 2k — 1 vertex faults present and the resulting graph disconnected,
it will have a large connected component and exactly one small component, which is an

isolated vertex.

Lemma 17 Let Gy and G be two k-regular, mazimally connected and triangle-free graphs
with the same number of vertices, and let M be an arbitrary perfect matching between G
and Gy. Let G = G(Gy, G1; M) be a Matching Composition Network composed of Go and
Gh, and let T be a set of vertices in G with |T| < 2k — 1. Assume that every two vertices
i G;, 1= 0,1, have at most two common neighboringwertices, for all k > 1. Then G —T
satisfies that either (1) G — T is connected or (2)-G =T has two connected components,

one of which is a trivial component.

Proof. Let Tp = TNV(Gy) and T} = T N V(Gy), respectively. By assumption,
ToNT, = ¢ and |Ty| + |T1| = |T'| < 2k — 1. Without loss of generality, we suppose that
|To| > |T1]. Then |T7| < k — 1. Since G is k-connected, G; — T is connected. We then

consider two cases:

Case I: Gy —Tj is connected. By Lemma 16, the number of vertex in GGy is at least 2k.
Since |V (Gy)| > 2k and |T'| < 2k — 1, there is at least one vertex in Gy — T connecting

to Gy — T7. Thus, G — T is connected.

Case II: Gy —Tj is disconnected. Suppose that Gy —Tj is divided into m disjoint con-

nected components, say C,...,C,,, where m > 2. In the following subcases, we consider
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the number of vertices of C; for each 7 € 1,2,...,m.

Subcase II.1: For those components C; containing two or more vertices, |V (C;)| > 2.
Let (a,b) be an edge in C; and V' = {a, b}. Since |[Ng,(V')U{a,b}| = 2k and |T| < 2k—1,
there exists at least one edge with both ends fault-free remaining between C; and G —T}.

So every component containing two or more vertices is connected to G; — Tj.

Subcase I1.2: For those components C; containing only one vertex, |V(C;)| = 1.
Suppose that there is only one trivial component in Gy — Ty. If its adjacent vertex in Gy
is fault-free, G — T is connected; otherwise, this trivial component in Gy — Tj is isolated in
G —T. Suppose that there are at least two trivial components in Gy — Ty. We arbitrarily
choose two of them, say v and v, to form a subset V'. By Lemma 15, the number of
neighbors of V' is at least 2k — 2. So |Tg} > 2k'=2y|7'| < 1, and at most one of {u,v} is

not connected to G; — T;. Therefore, there'is at most one trivial component in G — T'.
This proves the lemma. O

In the above lemma, changing the ¢ondition of T*slightly by replacing a faulty vertex

by a faulty edge, the connection status of an MCN remains the same.

Lemma 18 Let Gy and G be two k-reqular, maximally connected and triangle-free graphs
with the same number of vertices, and let M be an arbitrary perfect matching between G|
and G1. Assume that every two vertices in G;, 1 = 0,1, have at most two common
neighboring vertices, for all k > 1. Let G = G(Go, G1; M) be a Matching Composition
Network composed of Gy and G1, and ey be an edge in G and T, be a set of vertices in
G with |T,| < 2k —2. Then G — T, — {es} satisfies either that (1) G — T, — {es} is
connected or that (2) G — T, — {es} has two connected components, one of which is a

trivial component.
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Proof. By Lemma 17, under the constraint that |7,| < 2k—2, G—T, is either connected
or with two components one of which is trivial. Now we classify the situations into two

cases.

Case I: G—T, is connected. If G—T,—{e;} is connected, we are done. Otherwise, let
Co, C1 be two connected components of G — T, — {ey}, and ey = (v, v1) where vy € Cy,
vy € Cy. Without loss of generality, assume that |V (Cp)| < |V(Cy)|. If [V(Co)| = 1,
we are done. If |[V(Cy)| = 2, there is another vertex, say w, adjacent to vy in Cp.
Let V' = {vg, w}. Since G is a (k + 1)-regular graph, by Lemma 15, |Ng(V’)| > 2k and
T, O Na(V')—{uvi}. So |Ty|+{er}] > |[Na(V')—{vi }|+|{es}| > 2k. It is a contradiction
to the assumption that |T,| + [{ef}| < 2k — 1. So |V(Cy)| > 3. Deleting the vertex vy
from G — T, results in a subgraph with lessnumber of edges than that of G — T;, — {es}.
Since [T, U{vo}| < 2k—1, G —T, — {09} alsoweentain one trivial graph and one connected

component. Consequently, G — T, = {&y} does s6: So' this case holds.

Case II: G — T, has two connected eamponents, and one of which is a trivial graph.
Let u be the trivial graph and C' the connected component. After deleting the edge e
from G — T, if C is still connected, we are done. Otherwise, the component C' is divided
into two components Cy and C; and ey = (vg,v1) where vy € Cp, v1 € C;. We without
loss of generality assume that |V (Co)| < |V(Cy)|. If [V(Cy)| = 1, let V' = {vg,u}.
Again, since |Ng(V') — {v1}] + [{er}| > 2k, it is a contradiction to the assumption that
|T,| + [{ef}] < 2k — 1. Otherwise, the situations about |V (Cy)| = 2 and |V (Cp)| > 3 are

similar to Case I and the proofs are similar.
This completes the proof. O

We make some remarks concerning the above lemmas. If both graphs Gy and G; have
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the properties that (1) each one is triangle-free and (2) every pair of distinct vertices
in each graph share at most two common neighbors, then the constructed MCN G =
(Go, G1; M) also has properties (1) and (2). Therefore the result can be applied recursively.
We observe that many interconnection networks have these two properties. For example,

the hypercube-like graphs and the star graphs do.

4.3 Cayley Graphs Generated by Transposition Trees

Let I" be a group, and let H C I" be a set of group elements such that the identity element
I ¢ H. The Cayley graph associated with (I', H) is then defined as the directed graph
having one vertex associated with each group element and directed edge (u,v) whenever
wv™! € H. The Cayley graph may depend on the choice of a generating set, and is
connected if and only if H generates I'. That:is, the set H are group generators of I'.
In this paper, we choose the finite ‘group to be I',, the symmetric group on {1,2,...,n},
and the generating set H to be a set’of transpositions..The vertices of the corresponding
Cayley graph are permutations. Since " only'contains transpositions, there is an arc
from vertex w to v if and only if there is an arc from v to u. So we can regard these
Cayley graphs as undirected graphs. A way to represent H is via a graph with vertex
set {1,2,...,n} where there is an edge between ¢ and j if and only if the transposition

(ij) belongs to H. This graph is called the transposition generating graph of (I, H),

abbreviated as (transposition) generating graph if it is clear from the context.

We require the transposition generating graph to be connected, since an interconnec-
tion network need to be connected. In this paper, we restrict the graphs obtained from

transposition generating graph that are trees. For convenience, we call the corresponding
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Figure 4.2: The Star Graph: H = {(12), (13), (14)}.

transposition generating graph a transposition tree. So the Cayley graphs obtained by
these transposition trees are (n — 1)-regular and have n! vertices. This includes the star
graph whose generating tree is K ,,—; and the bubble-sort graph whose generating tree is
a path. To avoid trivial cases, we assume that-a-generating tree has at least three vertices.
This class of graphs is a popular generalization of the star graphs and the bubble sort
graphs [2] studied in [25]. The stargraph and-the bubble-sort graph are illustrated in

Figs. 4.2 and 4.3 for case n = 4.

4.4 Maximal Local-Connectivity on the Matching Com-
position Networks

In this section, we investigate the property of local connectivity on the Matching Com-
position Network. Let GG be a graph, x and y be two distinct vertices in G and k=
min{deg(x),deg(y)}. We say that x and y are maximally local-connected, if there exist
k vertex-disjoint paths connecting = and y. A graph G is maximally local-connected if

every pair of vertices in G are maximally local-connected. A regular MCN is actually
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Figure 4.3: The Bubble-sort Graph: H = {(12), (23), (34)}.

maximally local-connected. Moreover, even with a set of faulty vertices, we will propose
a strong fault-tolerant version of maximial local-connectivity, and prove that a (k + 1)-
regular MCN is (k — 1)-fault-tolerant maximally local-connected. So far the concept of
local connectivity can be referred as a one-to-ene type of. connectivity, since we only con-
sider the maximum number of vertex-disjoint“paths between two vertices. In classical
theory, there is also a one-to-many version of ‘connectivity. We extend this concept to
a fault-tolerant version, called one-to-many f-fault-tolerant maximally locally connected
property. At last, we discuss a fault-tolerant many-to-many version of connectivity. All
the definitions of these three types of connectivity are given in a strong fault-tolerant
version. We will prove that a (k + 1)-regular MCN is not only (k — 1)-fault-tolerant one-
to-many maximally local-connected, but also f-fault-tolerant many-to-many ¢-connected

(which will be defined subsequently) if f + ¢ < 2k.
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Figure 4.4: An example showing that a (k + 1)-regular MCN is not k-maximally local-
connected.

4.4.1 One-to-One Maximal Local-connectivity

In this section, we are going to prove that an MCN composed of two k-regular graphs with
some additional properties is (kK — 1)-maximally local-connected. Note that the MCN here
is (k+ 1)-regular. This result is optimal in the sense that the result cannot be guaranteed
if there are k faulty vertices. We give an example to show it (as illustrated in Fig. 4.4), let
(u,v) be an edge in the MCN. Suppose.that all the k. vertices adjacent to u except v are
faulty. Choose a vertex w differentfrom, u-énd v, -and dege_r(v) = degg_r(w) = k + 1.
However, there are at most k vertex-disjoint paths between v and w. So the (k+1)-regular
MCN is not k-maximally local-connected. Before proving the main result, we make some

simple observations.

If an MCN G = G(Gy,Gy; M) is (k — 1)-maximally local-connected, the number of
vertices in each component G;, i = 0,1, has to be large enough. More precisely, each

component G; has to contain at least 2k vertices.

Intuitively, if each component G; contains only 2k — 1 or less vertices. Then there are
at most 2k — 1 “bridges” connecting Gy and Gy in the MCN G = (Go, G1; M). If there
are k — 1 faulty vertices to destroy k—1 “bridges”, there are only k£ “bridges” left between

Gy and G;. Pick a vertex u in Gy and another vertex v in GGy, each with degree k + 1.
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Then it is intuitively clear that there are no k£ + 1 vertex-disjoint paths connecting v and

v. A formal proof is given below.

Lemma 19 Let G = G(Gy, G1; M) be a Matching Composition Network composed of two
k-reqular graphs Gy and Gy both with the same number of vertices n, where k # 2. If G

is (k — 1)-mazimally local-connected, then n > 2k.

Proof. Before proving this Lemma, we explain why the lemma does not hold if k = 2.
When k£ = 2, graphs G and G are cycles of the same length. It is straightforward
but tedious that the MCN generated here is 1-fault-tolerant maximally local-connected.
However, it is not necessarily that n > 2k. For example n = 3, both Gy and G; are

triangles, and the number n(= 3) is less than 2k(=4).

When k = 1, graphs Gy and Gy are both ene edge-incident with two vertices. The

MCN is indeed O-fault-tolerant maximally lécal-econnected and it also holds that n > 2k.

Now we consider the situation that & >.3..Suppose on the contrary that n < 2k — 1.
If one of the two subgraphs Gy and G; is a complete graph, since each subgraph is k-
regular, the number of vertices in each subgraph is k + 1. Then both Gy and G; are
complete graph. Hence, the cardinality of the perfect matching M between V(Gy) and
V(Gy) is k+ 1. Let x be a vertex in Gy, and y be the adjacent vertex of z in G;. We
choose a set of k — 1 vertices Vy = {f1, fo, ..., fe—1} not containing = and y, where f; is
an arbitrary vertex in Gy, and fs, fs, ..., fr—1 are other vertices in G; not adjacent to fi.
In the induced subgraph of V(G) — V¢, the number of edges with one end in G and the
other end in GG is two, and the remaining degrees of x and y are k and three, respectively.

There are only two fault-free edges between Gy and G;. Therefore, it is easy to see that
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there does not exist three vertex-disjoint paths between x and y, and the graph G is not

(k — 1)-fault-tolerant maximally local-connected.

Now, suppose that neither Gg nor G is a complete graph. Let = be a vertex in Gy,
and y be the adjacent vertex of z in G;. We index the adjacent vertices of z in Gy as
Uy, Usg, ..., ug. The other ones left in Gy are indexed as ugi1, g2, ..., Uy_1, in any arbitrary
order. For each w; in Gy, the corresponding (adjacent) vertex in Gy is named as v;, for
1 <14 < k. Since (G is not a complete graph and G, is k-regular, there exist two vertices
Up, Uy € {v1,09,...,0,} U {y}, such that (v,,v,) ¢ E(G1). Without loss of generality, let
vy # y. Recall that n < 2k — 1. Now we pick vertices {u; | k+1 <i<n—1} and v, to
form a vertex set V}, which has cardinality at most k — 1. The cardinality of V} can be
verified as [(n — 1) — k] + 1 < [((2k — 1) — L)k} + 1 = k — 1. In the induced subgraph of
V(G) — Vy, the remaining degrees of'@ and wyrave.both k& + 1. However, in this induced
subgraph, there are only %k edges connecting the vertices:in Gy — V; and G — Vy, which
results in that there are no k + 1 vettex-disjointrpaths between x and v,. So the graph G

is not (k — 1)-maximally local-connected:
The proof is complete. g

Therefore, to study the (k — 1)-fault-tolerant maximally local-connectivity of MCN,
we need a k-regular graph containing at least 2k vertices. Recall that Lemma 16 states

that every k-regular and triangle-free graph contains at least 2k vertices.

Now, we are ready to present our first main result.

Theorem 6 Let Gy and G be two k-regular, maximally connected and triangle-free
graphs with the same number of vertices, for k > 1, and let M be an arbitrary perfect

matching between Go and G1. Assume that any two vertices in G;, 1 = 0,1, have at most
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two common neighboring vertices. The Matching Composition Network G = (Gg, G1; M)

is (k — 1)-mazximally local-connected.

Proof. By Lemma 16, the number of vertices in G; is greater than 2k, for ¢ = 0, 1.
Let F be a set of faulty vertices with |F| < k — 1, and let  and y be two fault-free
vertices in G — F. We assume without loss of generality that dege_r(z) < degg_r(y), so
min{degg_r(z),dege—r(y)} = degg_r(x). We now show that after deleting degg_p(z)—1
arbitrary vertices in G — F, vertex x is still connected to y. By Theorem 2, this implies
that each pair of vertices x and y are connected by degg_r(z) vertex-disjoint fault-free

paths, where |F| < k — 1. We now consider two cases:

Case I: © and y are not adjacent in G. — F. We then show that z is connected
to y if the number of vertices deleted is smaller.than degs_r(x) — 1. For the sake of
contradiction, suppose that x and g are separated by-deleting a set of vertices V¢, where
\Vi| < dega—r(x)—1. As a consequence, | Vi< k because of dege_p(x) < deg(z) < k+1.
Then, the summation of the cardinalify of these two sets F' and Vy is |F| + |Vy| < 2k — 1.
Let T'= FUV;. By Lemma 17, either G —T' is connected, or G —T" has two components,
one of which contains only one vertex. If G — T is connected, it contradicts to the
assumption that x and y are disconnected. Otherwise, if G — T has two components and
one of which contains only one vertex u. Since we assume that z and y are separated,
one of x and y is the vertex u, say x = u. Thus, the set V; must be the neighborhood of
x and |Vy| = degg_r(x), which is also a contradiction. Then, = is connected to y when

the number of vertices deleted is smaller than degg_p(z) —1in G — F.

Case II: x and y are adjacent in G — F. We need to show that x is connected to y if

the number of vertices deleted is smaller than dege_p(z) —2 in G—F —{(z,y)}. Suppose
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on the contrary that in G— F —{(x,y)}, x and y are separated by deleting a set of vertices
Vi, where V| < degg_p(x) — 2. Since dege_r(x) < k+1, we get |V| < k— 1. Then the
union set 7" of I and V; has cardinality |T'| = |F| 4 |V}| < 2k — 2. In this circumstance,
Lemma 18 implies either that G—T —{(z,y)} is connected or that G—T —{(x, y)} has two
components one of which is trivial. For the first situation, G — T — {(z,y)} is connected,
this contradicts to the assumption that z and y are separated in G — F — {(x,y)}. For the
second situation, the trivial graph must be x or y, and we without loss of generality let
be such trivial graph. In G — F — {(z, y)}, in order to make x a trivial graph, the number
of vertices deleted must be greater or equal to dege_p(z) —1 = k. However, |V < k—1,
which is a contradiction. So x and y are connected when the number of vertices deleted

is smaller than degg_p(z) —2in G — F — {(z,y)}.

The proof is complete. O

4.4.2 One-to-Many Maximal 'Llocal-connectivity

As the one-to-one case, if a k + 1-regular Matching Composition Network is one-to-many
(k — 1)-maximally local-connected, each component has to contain large enough vertices.

The next lemma states this claim.

Lemma 20 Let G = G(Go,G1; M) be a Matching Composition Network composed of
two k-reqular graphs Gy and Gy both with n vertices, where k # 2. If G is one-to-many

(k — 1)-mazimally local-connected, then n > 2k.

Proof. Since one-to-many (k—1)-maximally local connected property implies one-to-one

(k — 1)-maximally local connected property, by Lemma 19, n > 2k. O
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We need a result, which is essentially the classical Menger’s theory, to prove our next

theorem as following.

Lemma 21 Let G be a graph, x be a vertex and U be a vertex set with x ¢ |U|. The
minimum size of a separator of x and U equals the maximum number of pairwise internally

disjoint paths from x to U such that each pair of the paths share only the vertex x.

Proof. We construct G’ from G by adding a new vertex y adjacent to all vertices of U.
By Theorem 2, the minimum size of a separator of x and y equals the maximum number
of pairwise internally disjoint paths from x to y in G’. The result holds after deleting the

vertex y in G'. O

Now the one-to-many version of thé maximally local-connectivity of an MCN is given

below.

Theorem 7 Let Gy and G be two.k-reqular, maximally connected and triangle-free
graphs with the same number of vertices, for'k > 1, and let M be an arbitrary perfect
matching between Gy and G1. Assuming that any two vertices in G;, 1 = 0,1, have at most
two common neighboring vertices, the Matching Composition Network G = (Gg, G1; M)

is one-to-many (k — 1)-mazximally local-connected.

Proof. Let = be a vertex and U be a conditional terminal set in G — F' such that
t < degg-r(x) and |U| = t. We want to show that x and U do not separate if the
number of vertices deleted is smaller than ¢ — 1 in G — F, where |F| < k — 1. It implies
that there are degg_p(x) vertex-disjoint fault-free paths from x to U such that each

pair of the paths share only the vertex x according to Lemma 21. Suppose not, let x
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and U — V; are separated by deleting a set of vertices Vy, where |Vy| < t — 1. Since
t <degg_r(z) < deg(x) < k+1,s0|Vy| <t—1<k. Wenow count the summation of
the cardinality of these two sets F' and Vy, which is |F| +|Vy| <k —1+k =2k — 1. Let
T = F UV, By Lemma 17, either G — T is connected, or G — T has two components,
one of which is only one vertex. If G — T is connected, it contradicts to the assumption
that  and U — V} are disconnected. So we consider that G — 7" has two components and
one of which has only one vertex u. If x = u, the set V; has to be the neighborhood of
x and |Vy| = dege—r(x), which contains a contradiction. Otherwise, u € U. Since U is
a conditional terminal set, {u} U Ng_p(u) is not contained in U for each u € U, either
there are at least two remaining vertices of U — V/, or the only one vertex in U — V; is
not trivial in G — T', which contains a contradiction. Thus, there is a set of ¢ paths from
x to U such that any two of them share only the wertex x when the number of vertices

deleted is smaller than degg_p(z) =1 in G = F!
This proof is complete. O

So far we know that an MCN constructed: from two k-regular graphs is (k — 1)-
maximally local-connected, and we will prove that it is also “one-to-many” (k — 1)-
maximally local-connected. In fact, the “one-to-many” result is stronger than the fun-
damental “one-to-one” result. For example, let x and y be two distinct vertices, and
{z1,29,...; T} and {y1,ys, ..., yn} be the neighbors of z and y, respectively. Assume that
m > n. In the “one-to-one” result, it only says that there exists n vertex-disjoint paths
joining z and y. In the “one-to-many” result, we can select any n vertices from the
neighbors {z1, xs, ..., x,,} of x, and there are n vertex-disjoint paths from y to all these
n vertices. So the “one-to-many” version of fault-tolerant maximal local-connectivity

implies the “one-to-one” version.
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4.4.3 Many-to-Many Maximal Local-connectivity

In the following, we consider a (k + 1)-regular MCN composed of two k-regular graphs
both with connectivity k. Note that in this MCN, the connectivity is £+ 1, and there are

at most 2k vertex-disjoint paths between two given conditional selected vertex sets.

Moreover, our result provides a generalized fault-tolerant version of connectivity, in-
stead of being restricted in a fault-free graph. Notice that in the (k + 1)-regular MCN
with at most f faulty vertices, the value f should be limited to at most 2k —1. By Lemma
17, the resulting graph would be connected or be two components one of which is trivial.

We observe that the possible isolated vertex is not a conditional selected set.

We need the following lemma, essentially;its is, the classical Menger’s theory, to prove

our main theorem.

Lemma 22 Let G be a graph, andU,, Us-be two-arbitrary vertex sets with |Uy| = |Us|.
The minimum size of a separator of Uyrand Us equals the mazimum number of pairwise

internally disjoint paths from Uy to Us.

Proof. We construct G’ from G by adding two new vertices = and y adjacent to all
vertices of U; and Us, respectively. By Theorem 2, the minimum size of a separator of x
and y equals the maximum number of pairwise internally disjoint paths from z to y in

G'. The result follows after deleting the vertices  and y in G'. O

Now, we are ready to introduce the main theorem.

Theorem 8 Let Gy and G be two k-regular, maximally connected and triangle-free

graphs with the same number of vertices, for k > 1, and let M be an arbitrary per-
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fect matching between Gy and G1. Assume that any two vertices in G;, for i = 1,2, have
at most two common neighboring vertices. Let F be a set of vertices with |F| = f, and
Uy, Uy be two arbitrary conditional selected sets with |Uy| = |Us| = t. The Matching

Composition Network G = (Go, G1; M) is many-to-many t/ f-connected if f +t < 2k.

Proof. Let U; and U, be two conditional selected sets with |Uy| = |Us| =t in G — F
where |F| = f. Suppose f +t < 2k, we want to show that there are ¢ vertex-disjoint
paths connecting U; and Us. By Lemma 22, we prove this by showing that U; and U, do
not separate if the number of vertices deleted is at most ¢t — 1. Suppose on the contrary
that U; and U, are separated by deleting a set of vertices Vy, where |Vy| <t —1. Let T'
be the union set of F' and Vy, T'= F UV}, and we have |T| = |F| + |Vy| <2k — 1. By
Lemma 4.1, either G —T' is connected,.0r'G — T hastwo components one of which is only
one vertex. We only consider the second-ease because the first case is a contradiction to
the assumption that U; — V; and Uz — Vyjare disconnected. Let u be the trivial graph in
G — T. Certainly, either u € Uy — F.or u € Uy, — T',;and we without loss of generality
assume that u € U; —T. We observe that G'="T "has only two components one of which is
the single vertex u, U; — Vy and Uy — V5 are disconnected in G —T', and u € U; — V. So
Uy — V; contains only one vertex, namely w. Since |Uy| =t¢, |Vy| <t—1and |U; = V)| =1,
we have Vy C U;. However, U, is a conditional selected set in G — F', U; does not contain
all the neighboring vertices of u. Thus vertex u cannot be isolated by deleting V; from
G — F'. This contradicts to the assumption that vertex u is an isolated vertex in G — T
Therefore, by Lemma 22, there are t vertex-disjoint paths from U; to Us in G — F with

|F| = fift+ f <2k

This proof is complete. g
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4.5 Maximal Local-Connectivity on Cayley graphs
generated by transposition trees

To prove our main result, we need the following lemmas. Cheng et al. studied some result

on Cayley graphs generated by Transposition Tree.

Theorem 9 [7] Let G be a Cayley graph generated by a transposition tree H on {1,2,...,n}

where n > 3. If T is a set of vertices with |T| < k(n — 1) — k(k;l), where 1 <k <n — 2,

then G — T has one large (connected) component, and the remaining small components

has at most k — 1 vertices in total.

We can rewrite this Theorem 9 with respect to the next lemma if the number k equals

Lemma 23 Let G be a Cayley graph generated by a transposition tree H on {1,2,...,n},
and T be a set of vertices in G with{T| < 2n'=5-whére n > 3. There exists a connected

component C' in G — T such that |V (C)| Znl=|T| — 1.

Proof. This Lemma follows from Theorem 9 when k& = 2. O

There is a similar result by replacing a faulty vertex by a faulty edge as following.

Lemma 24 Let G be a Cayley graph generated by a transposition tree H on {1,2,...,n},
where n > 3. Let ey be an edge in G and T, be a set of vertices in G with |T,| < 2n — 6.

There exists a connected component C' in G —T, —{es} such that |V (C)| > n! —|T,| — 1.

Proof. By Lemma 23, under the constraint that |T,| < 2n — 6, G — T, has a connected

component C' containing at least n! — |T,| — 1 vertices. Now suppose on the contrary that
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each connected component of G — T, — {es} has at most n! — |T,| — 2 vertices. Then the
maximum connected component C' of G — T, is divided into two components, denoted C)
and Cy, and |V(C;)| < n!—|T,|—2for i = 1,2. Let ey = (u,v). Without loss of generality,
we assume that u € Cp, v € Cy and |V(Cy)| > |[V(Cy)|. Then choose T' = T, U {u}. By
Lemma 23, there is a connected component with at least n! — |T'| — 1 vertices in G —T. It
means that either Cy has at least n! — |T'| vertices or C; has at least n! —|T'| — 1 vertices,

contradicting to the fact that |V (C)| < n! —|T,| — 2, for i = 1,2. So the result holds. O

4.5.1 One-to-One Maximal Local-connectivity

Let G be a Cayley graph obtained from a transposition tree H on {1,2,...,n} where
n > 3. In this section, we are going to preverthat G with some additional properties is
(n — 3)-fault-tolerant maximally local-conneeteds Note that G is (n — 1)-regular. This
result is optimal in the sense that the result caninot be guaranteed if there are n — 2 faulty
vertices. We give an example to show this-eti(zyw) be an edge in G. Suppose that all
the n — 2 vertices adjacent to w except #rare faulfy” Choose a vertex y different from z
and w, and degg_r(z) = degg_r(y) = n— 1. Then there are at most n — 2 vertex-disjoint

paths between z and y. So G is not (n — 2)-maximally local-connected.

We now show our first main result.

Theorem 10 Let G be a Cayley graph obtained from a transposition tree H on {1,2,...,n}

where n > 3. Then G is (n — 3)-fault-tolerant mazimally local-connected.

Proof. Let F be aset of faulty vertices with |F'| < n—2, and let = and y be two fault-free

vertices in G — F. We assume, without loss of generality, that degs_p(x) < dega_r(y), so
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min{degg_r(z),dege-r(y)} = dege—r(x). We then show that vertex x is still connected
to y after deleting degs_r(x) — 1 vertices in G — F. It implies that each pair of vertices
x and y are connected by degg_p(z) vertex-disjoint fault-free paths with |F| < n — 3

according to Theorem 2. We now consider two cases:

Case I: x and y are not adjacent. We now show that x is still connected to y if the
number of vertices deleted is smaller than degg_r(z) — 1. Suppose on the contrary that
x and y are separated by deleting a set of vertices Vy, where |V;| < dege_p(z) — 1. Since
degg—r(z) < deg(z) < n —1, we have |V;| < n —2. Then, we sum up the cardinality of
these two sets F' and V. Since |F| <n —3 and |V};| <n —2, then |F| + |Vy| <2n —5.
Let ' = F'U V;. By Lemma 23, there exists a connected component C' in G — T' such
that |V(C)| > n! —|T| — 1 and |T'| < 2n — Hupln other words, either G — 7' is connected
or G — T has two components, one of whichrgontainsonly one vertex. It contradicts to
the assumption that x and y are disconnected if'GG —"I" is connected. So we consider the
case that G — T has two components and:one-et;which contains only one vertex. Since we
assume that  and y are separated, orle of « and ¢ is the trivial graph. We without loss
of generality let x be such trivial graph. Thus, the set V; has to be the neighborhood of
x and |Vy| = degg—r(x), which is also a contradiction. Then, z is connected to y when

the number of vertices deleted is smaller than degg_p(z) — 1 in G — F.

Case II: x and y are adjacent. We need to show that x is connected to y if the number
of vertices deleted is smaller than degg_p(z) —2 in G — F — {(z,y)}. For the sake of
contradiction, suppose that  and y are separated by deleting a set of vertices V}, where
\Vi| < degg-r(x) —2in G — F — {(x,y)}. We get |V;| < n — 3 since dege_p(z) <n—1.
Then the union set T of F' and V; has cardinality |T,| = |F| + |V}| < 2n — 6. Lemma

24 implies that there exists a connected component C' in G — T, — {(x,y)} such that
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V(C)| > n! —|T,] — 1 and |T,,| < 2n — 5. It means that either G — T, — {(x,y)} is
connected or that G — T, — {(x,y)} has two components one of which is trivial. For the
first situation, G — T, — {(z,y)} is connected, this contradicts to the assumption that x
and y are separated in G — F' — {(z,y)}. For the second situation, let u be the trivial
graph in G — F — {(z,y)}. One of z and y is the vertex u, say x = u. So the number of
vertices deleted must be greater or equal to degg_p(x) —1 = n—2. However, |Vy| < n—3,
which is a contradiction. So x and y are connected when the number of vertices deleted

is smaller than degg_p(z) —2in G — F — {(z,9)}.

The proof is complete. O

4.5.2 One-to-Many Maximal Local-connectivity

Now the one-to-many version of the-maximally local-connectivity in Cayley graphs gen-

erated by transposition trees is givén below.

Theorem 11 Let G be a Cayley graph obtaimed from a transposition tree H on {1,2,...,n}

where n > 3. Then G is one-to-many (n — 3)-fault-tolerant mazimally local-connected.

Proof. Let x be a vertex and U be a conditional terminal set in G — F' such that
t < degg-rp(z) and |U| = t. We are going to show that x and U do not separate if the
number of vertices deleted is smaller than ¢ — 1 in G — F', where |F'| < n—3. Suppose not,
let z and U — V; are separated by deleting a set of vertices Vy, where |V| <t — 1. Since
t <dege_r(x) <deg(z) <n—1,s0|Vf| <t—1<n—2. Wenow sum up the cardinality
of these two sets F' and Vy, which is |F| + |[V¢| < 2n —5. Let T'= F UV}, By Lemma 23,

there exists a connected component C' in G — T such that |V(C)| > n! —|T| — 1. Thus,
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either G — T is connected, or G — T" has two components, one of which is contains only
one vertex. If G —T' is connected, it contradicts to the assumption that x and U — V; are
disconnected. So we consider that G — 7" has two components and one of which has only
one vertex u. If x = u, the set V; has to be the neighborhood of z and |Vy| = dege_rp(2),
this contradicts to the assumption |Vr| <t —1 < degg_p(x) — 1. Sou € U —V;. Since U
is a conditional terminal set, {v} U Ng_p(v) is not contained in U for each v € U, either
there are at least two remaining vertices of U — V4, or the only one vertex in U — V} is not
trivial in G — T', which contains a contradiction. Therefore, there is a set of ¢ paths from
x to U such that any two of them share only the vertex x when the number of vertices

deleted is smaller than degg_p(z) —1in G — F.

This completes the proof. O
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Chapter 5

Conclusion and Future Work

In this thesis, we study several properties with conditional fault on some interconnection
networks. Under the restricted condition that each vertex has at least two fault-free
adjacent vertices, we propose two optimal results.”We first show that for any set of faulty
edges F' of an n-dimensional hyperéube @, with |E| < 2n — 5, each edge of the faulty
hypercube ),, — F lies on a cycle of every even length from 6 to 2", for n > 3. Then we
study the Menger property. We prove that in all n-dimensional hypercube-like networks
with 2n — 5 vertices removed, every pair ‘of unremoved vertices u and v are connected
by min{deg(u), deg(v)} vertex-disjoint paths, where deg(u) and deg(v) are the remaining

degree of vertices u and v, respectively.

The local connectivity of two vertices is defined as the maximum number of internally
vertex-disjoint paths between them. The main concept of local connectivity can be re-
ferred as a one-to-one type of connectivity, since we only consider the maximum number of
vertex-disjoint paths between two vertices. In classical theory, there is also a one-to-many
version of connectivity. In this thesis, we extend this concept to a fault-tolerant version,

called one-to-many f-fault-tolerant maximally locally connected property. Moreover, we
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introduce the one-to-many and many-to-many versions of connectivity. In these issues,
we prove that a (k + 1)-regular Matching Composition Network is (k — 1)-maximally
local-connected, and (k — 1)-fault-tolerant one-to-many maximally local-connected. We
also show that a (k + 1)-regular Matching Composition Network is f-fault-tolerant many-
to-many t-connected if f + ¢t = 2k. Besides, we show the similar result on Cayley graphs
generated by transposition trees. We prove that an (n — 1)-regular Cayley graph gener-
ated by transposition tree is maximally local-connected, even if there are at most (n — 3)
faulty vertices in it, and prove that it is also (n — 1)-fault-tolerant one-to-many maximally

local-connected.

We show our result on the hypercube, hypercube-like, Matching Composition Net-
work and the Cayley graphs generated by transposition trees. In addition to the graphs
introduced in this thesis, there are gther interesting graphs with different construction.
In fact, many well-known systems-may have some simitar properties as defined in this
thesis. We would like to extend out resultssto-other graphs and hopefully to find more

new properties.

Based on the generalized versions of edge-bipancyclicity and connectivity proposed in
this thesis, the fault-tolerant capability may be increased if we add some restrictions on
these networks. More precisely, if we add some conditions to the faulty vertices, the upper

bound of fault-tolerance may possibly be increased. These are issues worth studying.
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