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摘要 

 
容錯度的問題己經是個相當廣泛討論的主題。在這篇論文當中，我們在幾個連結

網路上研究了一些條件式容錯度的特性。首先，我們討論在n維度的超立方體網

路中，當每個節點都必需要兩個好的節點與其相連時，任何 2n-5 個的邊壞掉的

情形下，對任意一個邊都可以找到長度從 6 到 2n的迴圈通過這個邊。並且証明出

此結果為最佳結果。 
接著我們在類超立方體網路中對 Menger 定理做了研究。我們証明在 n 維度的類

超立方體網路中，在壞掉 n-2 個節點之後，對任意一對點 u 跟 v 皆可以找到

min{deg(u), deg(v)}條 vertex-disjoint 的路徑連結這兩個點。若給予每個節點都必

需要兩個好的節點與其相連的條件下，則容錯度可以上升到 2n-5。 
最後我們定義了一對一及一對多兩種最大區域連通度的特性。我們証明了在 k+1
正規 MCNs 網路中，在壞掉容錯於小於 k-1 的情形下，都具有一對一及一對多的

最大區域連通度的特性。進一步的我們也討論在 k+1 正規 MCNs 網路中，任意

拔除 f 個點，對於任意獨立兩個大小為 t 的點集合中，可以找到 t 條 vertex-disjoint
的路徑連結這兩個點集合，其中 f 和 t 存在著 f+t≦2k 的情形。我們也針對由

transposition tree 生成的 Cayley graph 做相關的研究。在 n-1 正規式 transposition 
tree 生成的 Cayley 網路中，容錯度在 n-3 的情形下皆有一對一及一對多的區域性

連通度的特性。 

 

關鍵字：連結網路；條件式容錯；容錯；泛迴圈；連通度；Menger 定理；區域

性連通度；MCNs 網路；超立方體網路；類超立方體網路；星狀網路；泡泡性網

路；Cayley 網路 
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Abstract 
 
The problem of fault-tolerance has been discussed widely. In this thesis, we study 
several properties with conditional fault on some interconnection networks. First of all, 
we show that for any set of faulty edges F of an n-dimensional hypercube Qn with F 

≦2n-5, each edge of the faulty hypercube Qn -F lies on a cycle of every even length 
from 6 to 2n with each vertex having at least two healthy edges adjacent to it, for n≧3. 
Moreover, this result is optimal in the sense that there is a set F of 2n-4 conditional 
faulty edges in Qn such that Qn -F contains no Hamiltonian cycle.  
Second, we study the Menger property on a class of hypercube-like networks. We 
show that in all n-dimensional hypercube-like networks with n-2 vertices removed, 
every pair of unremoved vertices u and v are connected by min{deg(u),deg(v)} 
vertex-disjoint paths, where deg(u) and deg(v) are the remaining degree of vertices u 
and v, respectively. Furthermore, under the restricted condition that each vertex has at 
least two fault-free adjacent vertices, all hypercube-like networks still have the strong 
Menger property, even if there are up to 2n-5 vertex faults.  
The local connectivity of two vertices is defined as the maximum number of 
internally vertex-disjoint paths between them. Finally, we define two vertices to be 
maximally local-connected, if the maximum number of internally vertex-disjoint 
paths between them equals the minimum degree of these two vertices. We prove that a 
(k+1)-regular Matching Composition Network is maximally local-connected, even if 
there are at most (k-1) faulty vertices in it. Moreover, we introduce the one-to-many 
and many-to-many versions of connectivity, and prove that a (k+1)-regular Matching 
Composition Network is not only (k-1)-fault-tolerant one-to-many maximally 
local-connected but also f-fault-tolerant many-to-many t-connected (which will be 



defined subsequently) if f+t=2k. In the same issue, we show that an (n-1)-regular 
Cayley graph generated by transposition tree is maximally local-connected, even if 
there are at most (n-3) faulty vertices in it, and prove that it is also (n-1)-fault-tolerant 
one-to-many maximally local-connected. 
 
Keywords: Interconnection networks; Fault-tolerant; Pancyclic; Conditional faults; 
Connectivity; Strong Menger connectivity; Local connectivity; 
Matching Composition network; Hypercube; Hypercube-like networks; 
Cayley graphs; Star graph; Bubble-sort graph;  
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Chapter 1

Introductions and Motivations

The research about interconnection networks is important for parallel and distributed

computer system. Many interconnection network topologies have been proposed in lit-

erature for the purpose of connecting a large number of processing elements and the

designing of a parallel computing system. There are several requirements in designing a

good topology for an interconnection network, such as connectivity and ring embedding.

Many related works can be referred in recent research.

In practice, the processors or links in a network may be failure. Since failures are

inevitable, fault tolerance is an important issue in multiprocessor systems. The connec-

tivity is also related to the reliability and fault tolerance of a network. Many measures on

fault tolerance of networks are related to the maximal size of the connected components

of networks with faulty vertices/edges. In this dissertation, we consider some measures

of conditional faults by restricting that every vertex has at least two fault-free neighbor-

ing vertices on some interconnection networks. Under this condition, the fault-tolerant

capability is increased.
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1.1 Basic Terms and Notations

The architecture of a multiprocessor system is usually modeled as an undirected graph.

For the graph definitions and notations we follow [3]. Let G = (V,E) be a graph, we

use V (G) and E(G) to denote the vertex set V and the edge set E, respectively. The

connectivity of a graph G, written κ(G), is the minimum size of a vertex set S such that

G−S is disconnected or has only one vertex. A graph G is k-connected if its connectivity

is at least k. In addition, a graph has connectivity k if it is k-connected but not (k + 1)-

connected. The degree of a vertex x is the number of edges incident with it. We use

degG(x), or simply deg(x) if there is no ambiguity, to denote the degree of vertex x in

G; and use δ(G) to denote the minimum degree of all the vertices in G. We say that G

is maximally connected if κ(G) = δ(G). Let u and v be two distinct vertices, a path P

between them is a sequence of adjacent vertices, < u,w1, w2, ..., wk, v >, where w1, w2, ...,

wk are distinct ones. The local connectivity between two distinct vertices u and v is the

maximum number of internally disjoint u − v paths.

Let G be a graph, and F be a subset of vertices, F ⊂ V (G), the induced subgraph

obtained by deleting the vertices of F from G is denoted by G − F . Let u be a vertex,

we use NG(u), or simply N(G) if there is no ambiguity, to denote the set of vertices

adjacent to u in G. Let V ′ be a set of vertices, the neighborhood of V ′ is defined as the

set NG(V ′) = {
⋃

v∈V ′

NG(v)}−V ′. A graph G is k-regular if the degree of every vertex in G

is k, and graph G is triangle-free if there is no cycle of length three. A Hamiltonian cycle

is a cycle which includes every vertex of G. A path P is a sequence of adjacent vertices,

written as 〈v0, v1, ..., vm〉. The length of a path P , denoted by l(P ), is the number of edges

in P .
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1.2 Organization of the Thesis

In the follows, we describe the organization of this thesis. In Chapter 2, we discuss about

the edge-bipancyclicity problem with conditional faults on hypercubes. We show that,

for up to |F | = 2n − 5 faulty edges, each edge of the faulty hypercube Qn − F lies on a

cycle of every even length from 6 to 2n with each vertex having at least two healthy edges

adjacent to it, for n ≥ 3.

In Chapter 3, we study the Menger property on a class of hypercube-like networks. We

show that in all n-dimensional hypercube-like networks with n−2 vertices removed, every

pair of unremoved vertices u and v are connected by min{deg(u), deg(v)} vertex-disjoint

paths, where deg(u) and deg(v) are the remaining degree of vertices u and v, respectively.

Furthermore, under the restricted condition that each vertex has at least two fault-free

adjacent vertices, all hypercube-like networks still have the strong Menger property, even

if there are up to 2n − 5 vertex faults.

In Chapter 4, we focus on local connectivity problem. we define two vertices to be

maximally local-connected, if the maximum number of internally vertex-disjoint paths

between them equals the minimum degree of these two vertices. We prove that a (k + 1)-

regular Matching Composition Network is maximally local-connected, even if there are

at most (k − 1) faulty vertices in it. Moreover, we introduce the one-to-many and many-

to-many versions of connectivity, and prove that a (k + 1)-regular Matching Composition

Network is not only (k − 1)-fault-tolerant one-to-many maximally local-connected but

also f -fault-tolerant many-to-many t-connected (which will be defined subsequently) if

f + t = 2k. Furthermore, we introduce the Cayley graphs generated by transposition

tree, and show that an (n − 1)-regular Cayley graph generated by transposition tree is

3



maximally local-connected, even if there are at most (n−3) faulty vertices in it, and prove

that it is also (n − 1)-fault-tolerant one-to-many maximally local-connected. At last, we

present our conclusion in Chapter 5.

4



Chapter 2

Edge-bipancyclicity

2.1 The Edge-bipancyclic property

The ring embedding problem, which deals with all the possible lengths of the cycles in a

given graph, is investigated in a lot of interconnection networks. A graph G is pancyclic

if it contains a cycle of length l for each l satisfying 3 ≤ l ≤ |V (G)|. The concept of

pancyclic graphs is proposed by Bondy [3]. Bipancyclicity is essentially a restriction of

the concept of pancyclicity to cycles of even lengths. A bipartite graph is edge-bipancyclic

if every edge lies on a cycle of every even length from 4 to |V (G)|. There are some studies

concerning ring embedding problem of some interconnection networks [9, 13, 14].

A bipartite graph is k-edge-fault-tolerant edge-bipancyclic if G − F remains edge-

bipancyclic for any set of faulty edges F ⊂ E(G) with |F | ≤ k. In this chapter, we

discuss that for |F | = 2n−5 conditional faulty edges, each edges of Qn−F lies on a cycle

of every even length from 6 to 2n, n ≥ 4, provided not all edges in F are incident with

the same vertex.

5



2.2 The Hypercube Networks

An n-dimensional hypercube is denoted by Qn with the vertex set V (Qn) and the edge

set E(Qn). Each vertex u of Qn can be distinctly labeled by a n-bit binary strings,

u = un−1un−2...u1u0. There is an edge between two vertices if and only if their binary

labels differ in exactly one bit position. In addition, we call e a healthy edge when e is

fault-free in a graph. Let u and v be two adjacent vertices. If the binary labels of u and

v differ in ith position, then the edge between them is said to be in ith dimension and

the edge (u, v) is called an ith dimension edge. Let i be a fixed position, we use Q0
n−1

to denote the subgraph of Qn induced by {u ∈ V (Qn)|ui = 0} and Q1
n−1 to denote the

subgraph of Qn induced by {u ∈ V (Qn)|ui = 1}. We say that Qn is decomposed into

Q0
n−1 and Q1

n−1 by dimension i, and Q0
n−1 and Q1

n−1 are (n − 1)-dimensional subcube of

Qn induced by the vertices with the ith bit position being 0 and 1 respectively. Q0
n−1

and Q1
n−1 are all isomorphic to Qn−1. For each vertex u ∈ V (Q0

n−1), there is exactly

one vertex in Q1
n−1, denoted by u(1), such that (u, u(1)) ∈ E(Qn). Conversely, for each

u ∈ V (Q1
n−1), there is one vertex in Q0

n−1, denoted by u(0), such that (u, u(0)) ∈ E(Qn).

Let Di be the set of all edges with one end in Q0
n−1 and the other in Q1

n−1. These edges

are called crossing edges in the ith dimension between Q0
n−1 and Q1

n−1. We also call Di

the set of all ith dimension edges. Consequently, |Di| = 2n−1 for all 0 ≤ i ≤ n − 1.

There are some properties on Qn as follows.

Lemma 1 [16] Qn is edge-bipancyclic, and is (n-2)-edge-fault-tolerant edge-bipancyclic,

for n ≥ 3.

Lemma 2 [29] Each edge of Q4−F lies on a cycle of every even length from 6 to 2n = 16

6



for any F ⊂ E(Q4) with |F | = 3, provided not all the faulty edges in F are incident with

the same vertex.

Lemma 3 [29] Any two edges in Qn are included in a Hamiltonian cycle, for n ≥ 2 .

The above lemma can be improved; In addition, we have the following lemmas to

simplify our proof.

Lemma 4 Let C0 = 〈u, P0, v, u〉 be a cycle in Q0
n−1 with its even length from l0 to 2n−1,

and C1 = 〈u(1), P1, v
(1), u(1)〉 be a cycle in Q1

n−1 with its even length from l1 to 2n−1. Then

C = 〈u, P0, v, v(1), P1, u
(1), u〉 is a cycle in Qn with its even length from l0 + l1 to 2n.

Proof. The proof of this lemma is omitted. �

Lemma 5 Let Qn be an n-dimensional hypercube, n ≥ 2, and let e1 and e2 be two edges in

the same dimension i. Then there exists another dimension j �= i such that decomposing

Qn into Q0
n−1 and Q1

n−1 by dimension j, we have (1) neither e1 nor e2 is a crossing edge,

(2) not e1 and e2 are in the same subcube.

Proof. Let e1 = (a, b) and e2 = (s, t) be two edges in the same dimension i. Let

a = an...ai...a1 and s = sn...si...s1. Then b = an...ai...a1 and t = sn...si...s1. Since e1 �= e2

and n ≥ 2, there exists another dimension j �= i, such that aj �= sj. We decompose Qn

into Q0
n−1 and Q1

n−1 by dimension j. Then, e1 and e2 are not crossing edges and are in

the different subcubes. �

7



Lemma 6 Consider an n-dimensional hypercube Qn, for n ≥ 4. Let e0, e1 and e2 be any

three edges in Qn, there is a cycle C containing e1 and e2 in Qn − {e0} with the length

l(C) = 2n, 2n − 2 and 2n − 4.

Proof. To prove this lemma, we consider the following two cases:

Case 1: Both e1 and e2 are in the same dimension, say dimension i. By Lemma 5,

we can choose a dimension j such that e1 and e2 are in different subcubes. Without loss

of generality, we assume that e1 is in Q0
n−1 and e2 is in Q1

n−1. We then consider two cases:

1.1: e0 is not a crossing edge. We assume without loss of generality that e0 is in Q0
n−1.

By Lemma 1, in Q0
n−1−{e0}, there exists a cycle C0 of every even length 4 ≤ l(C0) ≤ 2n−1

going through e1. Since n ≥ 4, we can choose an edge (u, v) on cycle C0 such that

(u, v) �= e1, and (u(1), v(1)) �= e2. By Lemma 3, in Q1
n−1, there exists a cycle C1 of length

2n−1 going through e2 and (u(1), v(1)). Thus, the conclusion follows according to Lemma

4.

1.2: e0 is a crossing edge. By Lemma 1, there exists a C0 of every even length

4 ≤ l(C0) ≤ 2n−1 going through e1 in Q0
n−1. We can choose an edge (u, v) on cycle C0

such that (u, v) is not adjacent to e0 and (u, v) �= e1 and (u(1), v(1)) �= e2, since n ≥ 4.

By definition, (u(1), v(1)) is an edge in Q1
n−1. By Lemma 3, there exists a Hamiltonian

cycle C1 going through e2 and (u(1), v(1)) in Q1
n−1. So the conclusion follows according to

Lemma 4.

Case 2: e1 and e2 are in different dimensions. Suppose that e0 is in the ith dimension.

We decompose Qn into Q0
n−1 and Q1

n−1 by dimension i. Then, e0 is a crossing edge. Next,

we consider two further cases:

8



2.1: Either e1 or e2 is a crossing edge. Without loss of generality, we assume that

e1 is a crossing edge, and e2 is in Q0
n−1. Let e1 = (u, u(1)), where u ∈ V (Q0

n−1) and

u(1) ∈ V (Q1
n−1). Since n ≥ 4, there is a neighbor of u, say v, such that (u, v) �= e2

and (u, v) is not adjacent to e0. By Lemma 3, there exists a Hamiltonian cycle C0 going

through (u, v) and e2 in Q0
n−1. By Lemma 1, in Q1

n−1, there exists a cycle C1 of every even

length 4 ≤ l(C1) ≤ 2n−1 going through (u(1), v(1)). By Lemma 4, the conclusion follows.

2.2: Both e1 and e2 are not crossing edge. If e1 and e2 are in different subcubes, this

subcase is similar to case 1.2, and the proof is omitted. Otherwise, both e1 and e2 are

in the same subcube. We assume without loss of generality that e1 and e2 are in Q0
n−1.

By Lemma 3, there exists a Hamiltonian cycle C0 going through e1 and e2 in Q0
n−1, and

l(C0) = 2n−1. Since n ≥ 4, there is a third edge (u, v) other than e1 and e2 on cycle C0,

and (u, v) is not adjacent to e0. By Lemma 1, there exists a cycle C1 of every even length

4 ≤ l(C1) ≤ 2n−1 going through (u(1), v(1)) in Q1
n−1. By Lemma 4, the conclusion follows.

�

2.3 The Conditional Fault-tolerance of Hypercube

Networks

Chan and Lee [5] considered an injured n-dimensional hypercube where each vertex is

incident with at least two healthy edges, and proved that it still contains a Hamiltonian

cycle even it has (2n − 5) edge faults. Tsai [26] proved that such an injured hypercube

Qn contains a cycle of every even length from 4 to 2n, even if it has up to (2n − 5) edge

faults. Recently, Xu et al. [29] showed that for any set of faulty edges F of Qn with

|F | ≤ n− 1, each edge of Qn −F lies on a cycle of every even length from 6 to 2n, n ≥ 4,

9



provided not all faulty edges are incident with the same vertex. We observe that not all

faulty edges are incident with the same vertex is equivalent to stating that each vertex

has at least two healthy edges adjacent to it, if |F | ≤ n−1. In this chapter, we consider a

set of faulty edges satisfying the condition that each vertex of Qn − F is incident with at

least two healthy edges. Such a set of faulty edges F is called a set of conditional faulty

edges.

To prove our result, we need some preliminary lemmas.

Lemma 7 Consider an n-dimensional hypercube Qn, for n ≥ 4. Let F be a set of condi-

tional faulty edges with |F | = 2n− 5. There are at most two vertices in Qn incident with

(n-2) faulty edges.

Proof. If there are three vertices in Qn incident with (n − 2) faulty edges, the number

of faulty edge F is at least 3n − 8. However, (3n − 8) > (2n − 5) for all n ≥ 4 which is a

contradiction. �

Let F be a set of faulty edges of Qn. Suppose that we decompose Qn into Q0
n−1 and

Q1
n−1 by dimension j, and let FL = F ∩ E(Q0

n−1), FR = F ∩ E(Q1
n−1). Suppose that

F is a set of conditional faulty edges of Qn. If we arbitrarily decompose Qn into Q0
n−1

and Q1
n−1 by a dimension, FL and FR may not be conditional faulty edges in Q0

n−1 and

Q1
n−1 respectively. However, we will show that it is always possible to find some suitable

dimension such that decomposing by this dimension, both FL and FR are conditional

faulty sets in Q0
n−1 and Q1

n−1 respectively.

Lemma 8 Consider an n-dimensional hypercube Qn, n ≥ 4. Let F be a set of conditional

faulty edges with |F | = 2n − 5. If there are two vertices x and y both incident with n-2

10



faulty edges, then x and y are adjacent in Qn and the edge (x,y) is a faulty edge. Suppose

that (x,y) is in dimension j. Then decomposing Qn into Q0
n−1 and Q1

n−1 by dimension

j, both FL and FR are sets of conditional faulty edges in Q0
n−1 and Q1

n−1 respectively.

Moreover, |FL| ≤ 2n − 6 and |FR| ≤ 2n − 6.

Proof. If there are two vertices x and y in Qn incident with (n−2) faulty edges, then these

two vertices are connected by a faulty edge. Otherwise, |F | = 2(n− 2) = 2n− 4 > 2n− 5

which is a contradiction. Suppose the edge (x, y) is in dimension j, we decompose Qn

into two subcubes. It is clearly that each vertex in Q0
n−1 and Q1

n−1 is still incident with

at least two healthy edges, and both FL and FR are conditional faulty edges in Q0
n−1 and

Q1
n−1 respectively. Then, |FL| = |FR| = n − 3 ≤ 2n − 6, for n ≥ 4. �

Lemma 9 Consider an n-dimensional hypercube Qn, for n ≥ 4. Let F be a set of con-

ditional faulty edges with |F | = 2n − 5. Suppose that there exists exactly one vertex x

having (n-2) faulty edges incident with it. Since n − 2 ≥ 2, let e1 and e2 be two faulty

edges incident with x, and let e1 and e2 be jth and kth dimension edges respectively. Then

decomposing Qn into Q0
n−1 and Q1

n−1 by either one of these two dimensions j and k, FL

and FR are still sets of conditional faulty edges in Q0
n−1 and Q1

n−1 respectively. Moreover,

|FL| ≤ 2n − 6 and |FR| ≤ 2n − 6.

Proof. If there exists only one vertex x having (n−2) faulty edges incident with it, there

are at least two faulty edges e1 and e2 incident with it, since n ≥ 4. Obviously, these

two faulty edges are in different dimensions. Without loss of generality, we may assume

that e1 is in dimension j and e2 is in dimension k, for j �= k. We can decompose Qn into

Q0
n−1 and Q1

n−1 by either jth or kth dimension, and either e1 or e2 is a crossing edge.

11



Therefore, each vertex in these two subcubes is incident with at least two healthy edges

and |FL| ≤ 2n − 6 and |FR| ≤ 2n − 6. �

Lemma 10 Let Qn be an n-dimensional hypercube, F be a set of faulty edges with |F | ≥ 2,

and e be a healthy edge, n ≥ 2. Then there exists a dimension j, decomposing Qn into

Q0
n−1 and Q1

n−1 by this dimension, such that e is not a crossing edge and not all the faulty

edges are in the same subcube.

Proof. Suppose that e = (u, v) is in dimension i. If there is a faulty edge f not in

dimension i, say in dimension j. We decompose Qn into Q0
n−1 and Q1

n−1 by dimension

j. Then f is a crossing edge but e is not, and all the faulty edges are not in the same

subcube. Otherwise, all the faulty edges are in the same dimension i as e is in. We now

choose any two faulty edges f1 and f2 in F . By Lemma 5, Qn can be decomposed into

Q0
n−1 and Q1

n−1 by some dimension j �= i such that edges f1 and f2 are not in the same

subcube, and e is not a crossing edge. �

2.4 Edge-bipancyclicity of conditional faulty hyper-

cube

In this section, we consider a set of faulty edges satisfying the condition that each vertex

of Qn−F is incident with at least two healthy edges. Such a set of faulty edges F is called

a set of conditional faulty edges and Qn −F is called a conditional faulty hypercube. We

find that under this condition, the number of faulty edges can be much greater and the

same result still holds. We show that, for up to |F | = 2n − 5 conditional faulty edges,

each edge of a faulty hypercube Qn − F lies on a cycle of every even length from 6 to 2n,

for n ≥ 3. We observe that, if |F | < 2n − 5, we may arbitrarily delete some more edges

12



to make a faulty edge set F ′ ⊇ F and |F ′| = 2n − 5. If our result holds for F ′, it holds

for F . From now on, we shall assume |F | = 2n − 5.

The above result is optimal in the sense that the result can not be guaranteed, if there

are 2n − 4 conditional faulty edges. For example, take a cycle of length four in Qn, let

〈u1, u2, u3, u4〉 be the consecutive vertices on this cycle. Suppose that all the (n−2) edges

incident with vertex u1 (respectively vertex u3) are faulty except those two edges on the

four cycle are healthy. There are 2(n − 2) conditional faulty edges. Then there does not

exist a Hamiltonian cycle in this faulty Qn, for n ≥ 3.

We now prove our main result.

Theorem 1 Let Qn be an n-dimensional hypercube, and F be a set of conditional faulty

edges with |F | ≤ 2n − 5. Then each edge of the conditional faulty hypercube Qn − F lies

on a cycle of every even length from 6 to 2n, for n ≥ 3.

Proof. We prove this theorem by induction on n. For n = 3, since 2n − 5 = n − 2, by

Lemma 1, the result is true. For n = 4, 2n − 5 = n − 1, by Lemma 2, the result holds.

Assume the theorem holds for n − 1, for some n ≥ 5, we shall show that it is true for n.

As we mentioned before, we may assume |F | = 2n − 5. Let e = (u, v) be an edge in

Qn − F . We shall find a cycle of every even length from 6 to 2n passing through e in

Qn − F . Assume that e is an ith dimension edge, e ∈ Di, for some i ∈ {1, 2, ..., n}. The

proof is divided into three major cases:

Case 1: There are two vertices x and y in Qn incident with (n − 2) faulty edges. By

Lemma 8, (x, y) is an edge in Qn and is a faulty edge. We denote this edge by ef . Suppose

13
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Figure 2.1: An illustration for Theorem 1.

that ef is a jth dimension edge. We decompose Qn into Q0
n−1 and Q1

n−1 by dimension j.

We then consider two further cases:

1.1 ef = (x, y) and e = (u, v) are in the same dimension. Thus, j = i and ef ∈ Di.

(Fig. 2.1-(a)) In this case, e is an edge crossing Q0
n−1 and Q1

n−1. Without loss of generality,

assume that u ∈ V (Q0
n−1) and v ∈ V (Q1

n−1). Since n ≥ 5, u has a neighboring vertex w ∈

V (Q0
n−1), by the definition of hypercube, w(1) is a neighbor of v such that the edge (w,w(1))

is a healthy edge and (w,w(1)) is a crossing edge between Q0
n−1 and Q1

n−1. By lemma 1,

there exists a cycle C0 in Q0
n−1−FL passing through (u,w) of every even length 4 ≤ l(C0) ≤

2n−1 and a cycle C1 in Q1
n−1−FR going through (v, w(1)) of every even length 4 ≤ l(C1) ≤

2n−1. We write C0 as 〈u, P0, w, u〉, and C1 as 〈v, P1, w
(1), v〉. Thus, 〈u, P0, w, w(1), v, u〉 is

a cycle of length 6 with l(P0) = 3. By Lemma 4, 〈u, P0, w, w(1), P1, v, u〉 can form a cycle

of every even length from 8 to 2n through e in Qn − F .

1.2 ef and e are in different dimensions. Thus, j �= i and ef /∈ Di. (Fig 2.1-(b)) In this

case, e is in Q0
n−1 or Q1

n−1. Without loss of generality, we may assume that e ∈ E(Q0
n−1).

14



By Lemma 1, there exists a cycle C in Q0
n−1 −FL going through the edge e of every even

length l, 6 ≤ l ≤ 2n−1. Let C0 be a cycle of length 2n−1 − 2 or 2n−1 passing through e

in Q0
n−1 − FL. Since n ≥ 5, there exists an edge (s, t) on C0 such that neither s nor t is

adjacent to ef and (s, t) �= e. By definition, (s(1), t(1)) is an edge in Q1
n−1, and (s, s(1)),

(t, t(1)) are healthy edges. By Lemma 1, there exists a cycle C1 in Q1
n−1 − FR through

(s(1), t(1)) of every even length 4 ≤ l(C1) ≤ 2n−1. Thus, the conclusion follows according

to Lemma 4.

Case 2: There is exactly one vertex in Qn incident with (n − 2) faulty edges. Let x

be the vertex having (n − 2) faulty edges incident with it. Let f1 and f2 be two faulty

edges incident with x, so f1 and f2 are in different dimensions j and k. By Lemma

9, decomposing Qn into Q0
n−1 and Q1

n−1 by either jth or kth dimension, both FL =

F ∩ E(Q0
n−1) and FR = F ∩ E(Q1

n−1) are sets of conditional faulty edges in Q0
n−1 and

Q1
n−1 respectively. Between dimension j and k, we choose one to decompose Qn into

Q0
n−1 and Q1

n−1, say dimension j, such that the required edge e is not a crossing edge.

Therefore, there is an faulty edge crossing Q0
n−1 and Q1

n−1, we denote this edge by ef ,

and ef ∈ F ∩ Dj is incident with x. Without loss of generality, we may assume that

x ∈ V (Q0
n−1).

2.1: Suppose |FL| ≤ 2n−7 and |FR| ≤ 2n−7. (Fig. 2.1-(c)) Without loss of generality,

we further assume that e ∈ E(Q0
n−1). By induction hypothesis, there exists a cycle C in

Q0
n−1 − FL of every even length 6 ≤ l(C) ≤ 2n−1 passing through e. Let C0 be a cycle of

length 2n−1 − 4 ≤ l(C0) ≤ 2n−1 through e in Q0
n−1 − FL. Since |C0 − e| ≥ 2n−1 − 4 − 1 >

2(2n − 5) ≥ 2|F ∩ Dj|, for all n ≥ 5. There exists an edge (s, t) on C0 such that (s, t)

is not e, and both (s, s(1)) and (t, t(1)) are healthy edges. By induction hypothesis, there

exists a cycle C1 in Q1
n−1 − FR of every even length 6 ≤ l(C1) ≤ 2n−1 passing through
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(s(1), t(1)). By Lemma 4, the conclusion follows.

2.2: |FL| = 2n − 6. In this case, |F ∩ Dj| = 1 and |F ∩ E(Q1
n−1)| = |FR| = 0.

2.2.1: e is in subcube Q0
n−1. To find a cycle of length 6 passing through e = (u, v), we

discuss the case that whether e is incident with x or not. If e is incident with x, without

loss of generality, we assume that u = x. (Fig. 2.1-(d)) Thus, (v, v(1)) is a healthy edge.

Since FL is a set of conditional faulty edges in Q0
n−1, vertex u = x has two healthy edges

incident with it. Let w be a neighbor of u in Q0
n−1 such that (w, u) and (w,w(1)) are

healthy edges and w �= v. Thus, 〈u, v, v(1), u(1), w(1), w, u〉 is a cycle of length 6 in Qn −F .

Otherwise, e is not incident with x, then (u, u(1)) and (v, v(1)) are healthy edges. (Fig.

2.1-(e)) By Lemma 1, there exists a cycle C1 = 〈u(1), P1, v
(1), u(1)〉 of length four in Q1

n−1

through the edge (u(1), v(1)). Thus, 〈u, u(1), P1, v
(1), v, u〉 is a cycle of length 6 in Qn − F ,

where l(P1) = 3.

Let e1 be a faulty edge in Q0
n−1 that is not adjacent to ef . Though e1 is a faulty

edge, we treat it as a healthy edge temporarily, then the total number of faulty edge in

Q0
n−1 is 2n − 7. By induction hypothesis, there exists a cycle C0 of every even length

6 ≤ l(C0) ≤ 2n−1 going through e in Q0
n−1 − {FL − {e1}}. If C0 passes e1, we choose e1 ,

or else, we choose any one edge other then e on C0 which is not adjacent to ef . Let the

chosen edge be denoted by (s, t). We write cycle C0 as 〈s, P0, t, s〉. Since |F ∩Dj| = 1 and

|FR| = 0, (s, s(1)), (t, t(1)) and (s(1), t(1)) are all healthy edges. Thus, 〈s, P0, t, t
(1), s(1), s〉

is a cycle of length 8 in Qn − F if l(P0) = 5. Suppose that 10 ≤ l ≤ 2n and l is even. By

Lemma 1, in Q1
n−1, there exists a cycle C3 of length 4 ≤ l(C3) ≤ 2n−1 passing through

(s(1), t(1)). We write C3 as 〈s(1), P3, t
(1), s(1)〉. By Lemma 4, 〈s, P0, t, t

(1), P3, s
(1), s, t〉 is a

cycle of length l through e in Qn − F .
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2.2.2: e is in subcube Q1
n−1. (Fig. 2.1-(f)) By Lemma 1, there exists a cycle C of every

even length 4 ≤ l ≤ 2n−1 passing through e in Q1
n−1. Suppose that 2n−1 + 2 ≤ l ≤ 2n and

l is even. Since FL is a set of conditional faulty edges, there are at most (n − 3) faulty

edges adjacent to ef in Q0
n−1. For n ≥ 5, n−3 ≥ 2, we can choose a faulty edge e2 = (s, t)

in Q0
n−1 such that e2 is not adjacent to ef and (s(1), t(1)) is not e. Treating the edge e2 as a

healthy edge, by induction hypothesis, there exists a cycle C0 of length 6 ≤ l(C0) ≤ 2n−1

going through e2 in Q0
n−1 −{FL −{e2}}. We observe that (s, s(1)) and (t, t(1)) are healthy

edges. By Lemma 6, there exists a cycle C1 of every length 2n−1 − 4, 2n−1 − 2, or 2n−1

through (s(1), t(1)) and e in Q1
n−1. By Lemma 4, the conclusion follows.

Case 3: Every vertex in Qn is incident with at most (n−3) faulty edges. In this case,

suppose that e = (u, v) is in dimension i. By Lemma 10, Qn can be decomposed into

Q0
n−1 and Q1

n−1 by a dimension j different from i such that e is not a crossing edge and

not all the faulty edges are in the same subcube. Then |FL| ≤ 2n− 6 and |FR| ≤ 2n− 6.

Next, we consider two further cases:

3.1: At least one faulty edge is a jth dimension edge. Thus, |F ∩ Dj| �= 0.

We then consider two cases: (a)|FL| ≤ 2n−7 and |FR| ≤ 2n−7, and (b)|FL| = 2n−6

or |FR| = 2n − 6. The proof of this subcase is exactly the same as that of case 2.

3.2: None of the faulty edges is a jth dimension edge. Thus, |F ∩ Dj| = 0.

3.2.1: |FL| ≤ 2n − 7 and |FR| ≤ 2n − 7. Without loss of generality, we may assume

that e ∈ E(Q0
n−1). By induction hypothesis, there exists a cycle C of every even length

6 ≤ l(C) ≤ 2n−1 in Q0
n−1 − FL passing through e. Let C0 be a cycle of every even length

2n−1 − 4 ≤ l(C0) ≤ 2n−1 going through e in Q0
n−1 − FL. There exists an edge (s, t)

other than e in C0. Since |F ∩ Dj| = 0, (s, s(1)) and (t, t(1)) are healthy edges. We write
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C0 as 〈s, P0, t, s〉. By induction hypothesis, there exists a cycle C1 of every even length

6 ≤ l(C1) ≤ 2n−1 in Q1
n−1 − {FR − (s(1), t(1))} through (s(1), t(1)). Thus, the conclusion

follows according to Lemma 4.

3.2.2: Suppose |FL| = 2n − 6 or |FR| = 2n − 6, say the former case. In this case,

|FR| = 1. We then consider two cases: (a) e is in subcube Q0
n−1, and (b) e is in subcube

Q1
n−1.

(a) e = (u, v) is in subcube Q0
n−1. Since |F ∩ Dj| = 0, both (u, u(1)) and (v, v(1))

are healthy edges. Let l be an even number with 6 ≤ l ≤ 2n−1. By Lemma 1, there

exists a cycle C1 of every even length from 4 to 2n−1 passing through (u(1), v(1)) in Q1
n−1−

{FR − (u(1), v(1))}. We write C1 as 〈u(1), P1, v
(1), u(1)〉. No matter (u(1), v(1)) is healthy or

not, 〈u, u(1), P1, v
(1), v, u〉 forms a cycle of length l through e in Qn − F . Suppose that

2n−1 + 2 ≤ l ≤ 2n. Let e1 be a faulty edge in Q0
n−1. We may treat e1 as a healthy edges

temporarily. By induction hypothesis, there exists a cycle C0 of length 6 ≤ l(C0) ≤ 2n−1

going through e in Q0
n−1 − {FL − {e1}}. If C0 passes the edge e1, we choose e1 to be

deleted. Otherwise, we choose another edge other than e on cycle C0. Let the chosen

edge be denoted by (s, t). We write the cycle C0 as 〈s, P0, t, s〉. Treating (s(1), t(1)) as a

healthy edge, by Lemma 1, there exists a cycle C3 of every even length from 4 to 2n−1

passing through (s(1), t(1)) in Q1
n−1 − {FR − (s(1), t(1))}. By Lemma 4, the conclusion

follows.

(b): e is in subcube Q1
n−1. Let e1 be the only faulty edge in Q1

n−1. By Lemma 1, there

exists a cycle C of every even length from 6 to 2n−1 through e in Q1
n−1 − {e1}. Suppose

that 2n−1 + 2 ≤ l ≤ 2n, and l is even. Let e0 = (s, t) be a faulty edge in Q0
n−1 such that

(s(1), t(1)) �= e and (s(1), t(1)) �= e1. By induction hypothesis, there exists a cycle C0 of
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length 6 ≤ l(C0) ≤ 2n−1 in Q0
n−1 − {FL − {e0}} going through e0. If (s(1), t(1)) = e1, treat

e1 as a healthy edge temporarily, by Lemma 6, there exists a cycle C1 of length 2n−1 − 4,

2n−1 − 2, or 2n−1 respectively going through both (s(1), t(1)) and e in Q1
n−1. By Lemma 4,

the conclusion follows. Otherwise, if (s(1), t(1)) �= e1, by Lemma 6, there exists a cycle C3

of length 2n−1, 2n−1 − 2, or 2n−1 − 4, respectively, going through both e and (s(1), t(1)) in

Q1
n−1 − {e1}. Thus, the conclusion follows according to Lemma 4. �
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Chapter 3

Strong Menger-connectivity

The architecture of an interconnection network is usually denoted as an undirected graph

G. Among all fundamental properties for interconnection networks, the (vertex) connec-

tivity is a major parameter widely discussed for the connection status of networks. A

basic definition of the connectivity of a graph G is defined as the minimum number of

vertices whose removal from G produces a disconnected graph. In contrast to this con-

cept, Menger [17] provided a local point of view, and define the connectivity of any two

vertices as the minimum number of internally vertex-disjoint paths between them.

In this chapter, we study the Menger property on a class of hypercube-like networks

[27], which is a variation of the classical hypercube network by twisting some pairs of

links in it. We show that in all n-dimensional hypercube-like networks with some vertices

removed, every pair of unremoved vertices u and v are connected by min{deg(u), deg(v)}

vertex-disjoint paths, where deg(u) and deg(v) are the remaining degree of vertices u and

v, respectively. This concept is firstly applied on hypercubes and stars by Oh and Chen

[18, 19, 20]. Furthermore, if we restrict a condition such that each vertex has at least

two fault-free adjacent vertices, all hypercube-like networks still have this strong Menger
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property, even if there are up to 2n − 5 vertex faults. The bound of 2n − 5 is sharp.

3.1 Menger-connectivity and

Strong Menger-connectivity

In this section, we discuss the strong Menger-connected property. A classical theorem

about connectivity was provided by Menger as follows.

Theorem 2 [17] Let x and y be two nonadjacent vertices of a graph G. The minimum

size of an x,y-cut equals the maximum number of pairwise internally disjoint x,y-paths.

Following this theorem, OH et al. [19] gave a definition to extend the Menger’s The-

orem.

Definition 1 [19] A k-regular graph G is strongly Menger-connected if for any subgraph

G−F of G with at most k−2 vertices removed, each pair of vertices u and v in G−F are

connected by min{degG−F (u), degG−F (v)} vertex-disjoint fault-free paths in G−F , where

degG−F (u) and degG−F (v) are the degree of u and v in G − F , respectively.

By Definition 1, OH et al. [18, 19, 20] showed that an n-dimensional star graph Sn

(respectively, an n-dimensional hypercube Qn)with at most n − 3 (respectively, n − 2)

vertices removed is strongly Menger-connected. In order to be consistent with Definition

1, we say that a graph G possess the strongly Menger-connected property with respect to

a vertex set F if, after deleting F from G, there are min{degG−F (u), degG−F (v)} vertex-

disjoint fault-free paths connecting u and v, for each pair of vertices u and v in G − F .

Throughout this paper, we shall call a graph “strongly Menger-connected”, and omit the

description of the remaining structure G − F of the graph, if there is no ambiguous.
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3.2 The Class of Hypercube-like Networks

Let G0 = (V0, E0) and G1 = (V1, E1) be two disjoint graphs with the same number of

vertices. A one-to-one connection between V (G0) and V (G1) is defined as an edge set

M = {(v, φ(v)) | v ∈ V0, φ(v) ∈ V1 and φ : V0 → V1 is a bijection}. We use G0 ⊕M G1

to denote the graph G = (V0 ∪ V1, E0 ∪ E1 ∪ M). Different bijection functions φ lead to

different operations ⊕M and generate different graphs.

The hypercube network is one of the popular topologies in interconnection networks.

Several variants of hypercubes are proposed by twisting some pairs of links in hypercubes,

including twisted cubes [1, 12], Möbius cubes [8], and crossed cubes [11], to name a few. To

make a unified study on these variants, Vaidya et al. [27] proposed a class of graphs, called

a class of hypercube-like networks. We now give a recursive definition of the n-dimensional

hypercube-like networks HLn as follows: (1)HL0 = K1, where K1 is a trivial graph in

the sense that it has only one vertex; and (2)G ∈ HLn if and only if G = G0 ⊕M G1

for some G0, G1 ∈ HLn−1. By the definitions above if G is a graph in HLn, then G is a

composition of G0 ⊕M G1 with both G0 and G1 in HLn−1, n ≥ 1. Each vertex in G0 has

exactly one neighbor in G1.

It is known that the connectivity of an n-dimensional hypercube-like network HLn is

n [27]. To extend the connectivity result of HLn further, we study the strongly Menger-

connected property of HLn with at most n − 2 vertices deleted. Moreover, if we restrict

a condition such that each vertex has at least two fault-free adjacent vertices, HLn still

have the strong Menger property, even if there are up to 2n − 5 vertex faults.

22



3.3 Strong Menger Connectivity on the

Class of Hypercube-like Networks

There are some preliminaries on the class of Hypercube-like Networks.

Lemma 11 Let G ∈ HLn be an n-dimensional hypercube-like network, and S be a set of

vertices with |S| ≤ 2n − 3, for n ≥ 2. There exists a connected component C in G − S

such that |V (C)| ≥ 2n − |S| − 1.

Proof. We prove this statement by induction on n. For n = 2, HL2 is a cycle of length

four, the result is trivially true. Assume this lemma holds for n − 1, for some n ≥ 3, we

will prove that it is true for n.

Let G be an n-dimensional hypercube-like network, G = G0 ⊕M G1, and G0, G1 ∈

HLn−1. Let S be a set of vertices with |S| ≤ 2n − 3, for n ≥ 3, and let S0 and S1 be

subsets of set S in G0 and G1, respectively. Then |S0| + |S1| = |S| ≤ 2n − 3. Without

loss of generality, we assume |S0| ≤ |S1|. The proof is divided into two major cases:

Case 1: 0 ≤ |S0| ≤ 1.

Since G0 is (n − 1)-connected, G0 − S0 is connected, for n ≥ 3. All the vertices in

G0−S0 are connected and form a connected component C0 with |V (C0)| = 2n−1−S0. By

definition, all the vertices in G1 − S1 are adjacent to the vertices in G0 = C0 ∪ S0. Thus,

G−S contains a connected component C such that the number of vertices in C is greater

than |V (G0) − S0| + |V (G1) − S1| − |S0| = |V (G)| − |S| − |S0| ≥ 2n − |S| − 1. (See Fig.

3.1.)

Case 2: |S0| ≥ 2 and consequently |S1| ≤ 2n − 5.
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G0 G1

S0

S1

C0

Figure 3.1: The illustration of the proof of Case 1 in Lemma 11.

Since 2 ≤ |S0| ≤ |S1| ≤ 2n − 5, so |S0| ≤ n − 2 and n ≥ 4. By induction hypothesis,

there exists a connected component C1 in G1 − S1, and |V (C1)| ≥ 2n−1 − |S1| − 1. Since

the connectivity of G0 is n − 1 and |S0| ≤ n − 2, G0 − S0 is connected. Then G − S

contains a connected component C such that the number of vertices in C is greater than

|V (G0) − S0| + (|V (G1) − S1| − 1) = |V (G)| − |S| − 1 = 2n − |S| − 1. �

By Lemma 11, we have the following corollary.

Corollary 1 Let G be an n-dimensional hypercube-like network, n ≥ 2, and let V ′ be a

set of vertices in G with |V ′| = 2. Then |N(V ′)| ≥ 2n − 2.

In the following, we show that with up to n − 2 vertex faults, an n-dimensional

hypercube-like network has strongly Menger-connected property. Referring to the relative

study proposed by OH et al. [18], the strong Menger connectivity of regular hypercube

networks has been proved. Here we provide a significantly simpler proof for the general

hypercube-like networks.

We now prove our main result.

Theorem 3 Consider an n-dimensional hypercube-like network G ∈ HLn, for n ≥ 2.
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Let F be a set of faulty vertices with |F | ≤ n − 2. Then each pair of vertices u and v in

G−F are connected by min{degG−F (u), degG−F (v)} vertex-disjoint fault-free paths, where

degG−F (u) and degG−F (v) are the remaining degree of u and v in G − F , respectively.

Proof. Let G be an n-dimensional hypercube-like network, and u and v be two fault-free

vertices in G−F . We first assume without loss of generality that degG−F (u) ≤ degG−F (v),

so min{degG−F (u), degG−F (v)} = degG−F (u). We now show that u is connected to v if

the number of vertices deleted is smaller than degG−F (u) − 1 in G − F . By Theorem

2, this implies that each pair of vertices u and v in G − F are connected by degG−F (u)

vertex-disjoint fault-free paths, where |F | ≤ n − 2.

For the sake of contradiction, suppose that u and v are separated by deleting a set

of vertices Vf , where |Vf | ≤ degG−F (u) − 1. As a consequence, |Vf | ≤ n − 1 because of

degG−F (u) ≤ deg(u) ≤ n. Then, the summation of the cardinality of these two sets F

and Vf is |F | + |Vf | ≤ 2n − 3. Let S = F ∪ Vf . By Lemma 11, there exists a connected

component C in G − S such that |V (C)| ≥ 2n − |S| − 1. It means that (i) either G − S

is connected, or (ii) G − S has two components, one of which contains only one vertex.

If G − S is connected, it contradicts to the assumption that u and v are disconnected.

Otherwise, if G − S has two component and one of which contains only one vertex x.

Since we assume that u and v are separated, one of u and v is the vertex x, say u = x.

Thus, the set Vf must be the neighborhood of u and |Vf | = degG−F (u), which is also a

contradiction. Then, u is connected to v when the number of vertices deleted is smaller

than degG−F (u) − 1 in G − F .

The proof is completed. �
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3.4 Strong Menger Connectivity with Conditional

Faults on the Class of Hypercube-like Networks

As proved in the previous section, an n-dimensional hypercube-like network with at most

n− 2 faulty vertices is strongly Menger-connected. But the result can not be guaranteed,

if there are n − 1 faulty vertices and all these faulty vertices are adjacent to the same

vertex. In most circumstances, the possibility of all the neighbors of a vertex being faulty

simultaneously is very small. Motivated by the deficiency of traditional fault tolerance,

we consider a measure of conditional faults by restricting that every vertex has at least

two fault-free neighboring vertices.

Under this condition, we claim that for every n-dimensional hypercube-like network

with at most 2n − 5 faulty vertices and n ≥ 5, the resulting network is still strongly

Menger-connected. We have an example to show that this result does not hold for n = 4.

Consider a 4-dimensional HL4, this network may not be strongly Menger-connected, if

the number of conditional faults is 3. (See Fig. 3.2. The remaining degrees of nodes u and

v are both four, with three vertices deleted as indicated in the graph. But the number of

vertex-disjoint paths between u and v is three.) So we can only expect the result holds

for n ≥ 5.

u

X

X

X

v

Figure 3.2: An example showing that an HL4 is not strongly Menger-connected.

To prove this result, we need some preliminary lemma. In the following, we show
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that an n-dimensional hypercube-like network with at most 3n − 6 vertex faults S has a

connected component having at least 2n − |S| − 2 vertices.

The proof is by induction, and the case for n = 5 is proved in the following two

lemmas.

Lemma 12 Let V ′ be a set of vertices in a 4-dimensional hypercube-like network with

|V ′| = 3. Then, |N(V ′)| ≥ 7.

Proof. Let G be a 4-dimensional hypercube-like network. G is a composition of two 3-

dimensional hypercube-like networks G0 and G1, G = G0⊕M G1, for a matching operation

⊕M . Without loss of generality, let V ′ be a subset of V (G) containing three vertices

{x, y, z}. If x, y, z are all in G0, by Lemma 11, {x, y, z} has at least 4 neighboring vertices

in G0. Besides, {x, y, z} has 3 neighboring vertices in G1. Then, |N({x, y, z})| ≥ 4+3 = 7.

If x, y are in G0, and z is in G1, by Lemma 11, {x, y} has at least 4 neighboring vertices

in G0. In addition, {z} has 3 neighboring vertices in G1. Then, |N({x, y, z})| ≥ 4+3 = 7.

�

Lemma 13 Let G be a 5-dimensional hypercube-like network and S be a set of vertices

with |S| ≤ 9. (3n − 6 = 9, for n = 5.) There exists a connected component C in G − S

such that |V (C)| ≥ 25 − |S| − 2.

Proof. Let G be a 5-dimensional hypercube-like network, G0, G1 ∈ HL4, and G =

G0⊕M G1, for a matching operation ⊕M . Let S be a set of vertices with |S| ≤ 3n−6 = 9,

for n = 5, and let S0 and S1 be subsets of S in G0 and G1, respectively. Without loss

of generality, we assume |S0| ≤ |S1|. (Note that |S| ≤ 9, so |S0| ≤ 4.) We then consider

three cases:
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Case 1: 0 ≤ |S0| ≤ 2.

Since G0 is (n−1)-connected, G0−S0 is connected, for n = 4. So G0−S0 has only one

connected component C0 with |V (C0)| = 24 − S0. By definitions, all vertices in G1 − S1

are adjacent to the vertices of G0 = C ∪S0. Let C be the connected component of G−S

containing C0. Then the number of vertices in C is greater than |V (G0)−S0|+ |V (G1)−

S1| − |S0| = |V (G)| − |S| − |S0| ≥ 25 − |S| − 2.

Case 2: |S0| = 3 and therefore |S1| ≤ 6.

G0−S0 is connected by the fact that G0 is (n−1)-connected, for n ≥ 4. Thus, G0−S0

has only one connected component C0 with |V (C0)| = 24−S0. Then, all vertices in G1 are

connected to component C0, except for the three vertices in G1 adjacent to the vertices

in S0. Since |S1| ≤ 6 and by Lemma 12, at least one of these three vertices is connected

to component G1 − S1. So at least 24 − |S1| − 2 vertices are connected to component C0.

Let C be the connected component of G−S containing C0. Then, the number of vertices

in C is |V (C)| ≥ |V (G0) − S0| + |V (G1) − S1 − 2| = |V (G)| − |S| − 2 = 25 − |S| − 2.

Case 3: |S0| = 4 and consequently 4 ≤ |S1| ≤ 5.

Since 5 ≤ 2n − 3, for n ≥ 4. By Lemma 11, there exists a connected components C0

(respectively, C1) in G0 − S0 (respectively, G1 − S1) such that |V (C0)| ≥ 24 − |S0| − 1

(respectively, |V (C1)| ≥ 24 − |S1| − 1). Thus, there exists a connected component C in

G−S such that |V (C)| ≥ |V (G0)−S0−1|+|V (G1)−S1−1| = |V (G)|−|S|−2 = 25−|S|−2.

�

Based on Lemma 13, the general case for n ≥ 5 is stated as follows.

Lemma 14 Let G be an n-dimensional hypercube-like network, and S be a set of vertices
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with |S| ≤ 3n − 6, for n ≥ 5. There exists a connected component C in G − S such that

|V (C)| ≥ 2n − |S| − 2.

Proof. We prove this statement by induction on n. By Lemma 13, the result holds for

n = 5. Assume the lemma holds for n − 1, for some n ≥ 6. We now show that it is true

for n.

Let G be an n-dimensional hypercube-like network, G0, G1 ∈ HLn−1, and G = G0 ⊕M

G1, for some matching operation ⊕M . Let S be a set of vertices with |S| ≤ 3n − 6,

for n ≥ 6, and let S0 and S1 be subsets of S in G0 and G1, respectively. Therefore,

|S0| + |S1| = |S| ≤ 3n − 6. Without loss of generality, we assume |S0| ≤ |S1|. The proof

is divided into two major cases:

Case 1: 0 ≤ |S0| ≤ 2.

Since G0 is (n−1)-connected, G0−S0 is connected, for n ≥ 6. Let C0 = G0−S0, C0 is

a connected component with |V (C0)| ≥ 2n−1 − S0. By definitions, all vertices in G1 − S1

are adjacent to the vertices in G0 = C0 ∪S0. Let C be the connected component of G−S

containing C0. The number of vertices in C is greater than |V (G0)−S0|+ |V (G1)−S1|−

|S0| = |V (G)| − |S| − |S0| ≥ 2n − |S| − 2.

Case 2: |S0| ≥ 3 and consequently |S1| ≤ 3n − 9.

By induction hypothesis, there are two connected components C0 and C1 in G0−S0 and

G1−S1, and |V (C0)| ≥ 2n−1−|S0|−2 and |V (C1)| ≥ 2n−1−|S1|−2, respectively. Without

loss of generality, we assume that |V (C0)| ≥ |V (C1)|. Now we focus on the number of

vertices in the component C1, and discuss two situations. First, suppose |V (C1)| =

2n−1 −|S1|− 2. By Corollary 1, |S1| ≥ 2(n− 1)− 2 = 2n− 4. So |S0| = |S|− |S1| ≤ n− 2.
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Since G0 is (n − 1)-connected, G0 − S0 is connected. G0 − S0 has only one connected

component C0 and |V (C0)| = 2n−1 − |S0|. Let C be the connected component containing

C0. Then |V (C)| = |V (C0)|+|V (C1)| ≥ 2n−1−|S0|+2n−1−|S1|−2 ≥ 2n−|S|−2. Second,

suppose that |V (C1)| ≥ 2n−1 − |S1| − 1. Since |V (C0)| ≥ |V (C1)| ≥ 2n−1 − |S1| − 1, there

exists a connected component C containing C0 such that |V (C)| = |V (C0)| + |V (C1)| ≥

2n−1 − |S0| − 1 + 2n−1 − |S1| − 1 ≥ 2n − |S| − 2. �

Corollary 2 Let G be an n-dimensional hypercube-like network, n ≥ 5, and let V ′ be a

set of vertices in G with |V ′| = 3. Then |N(V ′)| ≥ 3n − 5.

For the next theorem, we define a set of vertices Fc in graph G to be a conditional

faulty vertex set if, in the induced subgraph G−Fc, every vertex has at least two fault-free

neighboring vertices. We also call the subgraph G − Fc a conditional faulty graph.

Theorem 4 Consider an n-dimensional hypercube-like network G ∈ HLn, for n ≥ 5. Let

Fc be a set of conditional faulty vertices with |Fc| ≤ 2n − 5. Then each pair of vertices u

and v in G − Fc are connected by min{degG−Fc
(u), degG−Fc

(v)} vertex-disjoint fault-free

paths, where degG−Fc
(u) and degG−Fc

(v) are the degree of u and v in G−Fc, respectively.

Proof. Without loss of generality, we assume degG−Fc
(u) ≤ degG−Fc

(v), and therefore

min{degG−Fc
(u) , degG−Fc

(v)} = degG−Fc
(u). We want to prove that each pair of vertices

u and v in G−Fc are connected by degG−Fc
(u) vertex-disjoint fault-free paths, for |Fc| ≤

2n − 5. We are going to show that u is connected to v if the number of vertices deleted

is smaller than degG−Fc
(u) − 1 in G − Fc, where |Fc| ≤ 2n − 5.

Suppose on the contrary that u and v are separated by deleting a set of vertices Vfc
,

where |Vfc
| ≤ degG−Fc

(u) − 1. By degG−Fc
(u) ≤ deg(u) ≤ n, we have |Vfc

| ≤ n − 1. We
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sum up the cardinality of these two sets Fc and Vfc
. Since |Fc| ≤ 2n−5 and |Vfc

| ≤ n−1,

then |Fc| + |Vfc
| ≤ 3n − 6. Let S = Fc ∪ Vfc

. By Lemma 14, there exits a connected

component C in G − S such that |V (C)| ≥ 2n − |S| − 2 and |S| ≤ 3n − 6. It means that

there are at most two vertices in G−S not belonging to C. We then consider three cases:

Case 1: |V (C)| = 2n − |S|. It means that all vertices in G − S are connected, which

contradicts to the assumption that u and v are disconnected.

Case 2: |V (C)| = 2n − |S| − 1. Only one vertex is disconnected to G − S. Since

|Vfc
| ≤ degG−Fc

(u)−1 ≤ degG−Fc
(v)−1, neither u nor v can be the only one disconnected

vertex, a contradiction.

Case 3: |V (C)| = 2n−|S|−2. Let a and b be the two vertices in G−S not belonging

to C. We consider two situations. (i) Suppose first that u ∈ C. If v ∈ C, then u and v are

connected, a contradiction. If v ∈ {a, b}, since |Vfc
| ≤ degG−Fc

(v) − 1, v is connected to

at least one vertex in component C, a contradiction. (ii) Suppose u ∈ {a, b}. We without

loss of generality let u = a, and consider the adjacency between a and b.

Subcase 1: Suppose that a is not adjacent to b. By the assumption that u and v

are separated by deleting a set of vertices Vfc
with |Vfc

| = degG−Fc
(u) − 1. Let Vfc

be a

subset of the neighborhood of u, that is, Vfc
⊂ N(u). Since |Vfc

| < |N(u)|, vertex u and

component C are connected, which is a contradiction.

Subcase 2: Suppose that a is adjacent to b. Let Vfc
= N(u) − {b}. Since G − Fc is

a conditional faulty graph, one of the neighbors of b is in C. Then, b is connected to C,

which is a contradiction.

Therefore, vertex u and v are still connected with up to degG−Fc
(u) − 1 vertex faults.
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By Theorem 2, this implies that each pair of vertices u and v in G−Fc are connected by

min{degG−Fc
(u), degG−Fc

(v)} vertex-disjoint fault-free paths, where |Fc| ≤ 2n − 5. The

proof is complete. �

32



Chapter 4

Maximal Local-connectivity

One of the central issue in various interconnection networks is studying the value of

connectivity. A basic definition of the connectivity of a graph is defined as the minimum

number of vertices whose removal results in a disconnected or trivial graph. In contrast to

this concept, Menger [17] provided a local point of view, and define the connectivity of any

two vertices as the minimum number of vertex-disjoint paths between them. Following

this concept, Volkman [28] discussed some issues on it, Oh et al. [19][20] and Shih et al.

[23][24] investigated some related properties on the star graph and the class of hypercube-

like networks, respectively.

In this chapter, we define two vertices to be maximally local-connected, if the maxi-

mum number of internally vertex-disjoint paths between them equals the minimum degree

of these two vertices. Moreover, we introduce the one-to-many and many-to-many versions

of connectivity.
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4.1 Local-connectivity and Maximal Local-connectivity

The local connectivity of two vertices is defined as the maximum number of internally

vertex-disjoint paths between them. A pair of vertices x and y is maximally local-connected

if the local connectivity of x and y equals min{deg(x),deg(y)}, and a graph G is maximally

local-connected if every pair of vertices in G are maximally local-connected.

Now we give the definition of a graph to be f -fault-tolerant maximally local-connected.

Definition 2 A graph G is f-fault-tolerant maximally local-connected, abbreviated as f-

maximally local-connected, if for a set of faulty vertices F , |F | ≤ f , each pair of vertices

x, y of G−F are connected by min{degG−F (x), degG−F (y)} vertex-disjoint fault-free paths,

where degG−F (x) and degG−F (y) are the degrees of x and y in G − F , respectively.

In the previous definition, we discuss the maximal local-connectivity, indicating that

for every pair of vertices in a graph with a reasonable number of faulty vertices, there

is an amount of vertex-disjoint paths between them, where the amount depends on the

minimum remaining degree of the two vertices. Now we shall extend this concept to a

“one-to-many” version. In this approach, we consider a vertex (as a source) and a set

of vertices (as destinations). Under some constraints we prove that there exists a set of

disjoint paths between the source and the destinations.

A classical theorem about the one-to-many connectivity was provided by Dirac[10] as

follows.

Definition 3 [10] Given a vertex x and a set U of vertices, an x, U-fan of size k is a set

of k-paths from x to U such that any two of them share only one vertex x.
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We note that the cardinality of U is necessarily greater than k, |U | ≥ k.

Theorem 5 [10] A graph is k-connected if and only if it has at least k + 1 vertices and,

for every choice of x, U with |U | ≥ k, it has an x, U-fan of size k.

We then give the definition of a graph to be one-to-many f-fault-tolerant maximally

local-connected.

Let G be a graph and F be a set of faulty vertices. In graph G−F , pick an arbitrary

vertex x (as a source) and a set U of vertices (as destinations) with |U | = t, x /∈ U . We

want to find a set of t paths from x to U such that each pair of them share only the vertex

x. In order to do so, the set U must satisfy some necessary conditions: (i) the cardinality

of U is not greater than the remaining degree of x, that is, |U | ≤ degG−F (x), and (ii)

the set U cannot contain any vertex and all its neighbors, that is, {v} ∪ NG−F (v) is not

contained in U for each v ∈ U .

We call a set of vertices U in G− F satisfying the above two conditions a conditional

terminal set with respect to x and F , abbreviated as a conditional terminal set if there is

no ambiguity. As a short remark, we note that U ⊆ V (G − F ), x /∈ U , |U | ≤ degG−F (x),

and U �⊇ {v} ∪ NG−F (v) for each v ∈ U .

Definition 4 A graph G is one-to-many f-fault-tolerant maximally local-connected, ab-

breviated as one-to-many f -maximally local-connected, if given any set of faulty vertices

F with |F | ≤ f and x ∈ G − F , let t ≤ degG−F (x), there is a set of t paths from x to U

such that each pair of them share only the vertex x, for each conditional terminal set U

with |U | = t.
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For a vertex x and a vertex set U , x /∈ U , a separator of x and U is defined to be a

set of vertices S, x /∈ S, whose removal results in the disconnection between x and U −S.

The separator S is trivial if either S = U or S = N(x).

In the previous two definitions, we discussed the local connectivity in two directions:

a “one-to-one” version and a “one-to-many” version. Now we shall study the concept of

a “many-to-many” version. Given any two vertex set U1 and U2 with |U1| = |U2| = t in

a graph G such that U1 ∩ U2 = φ, we are concerned about many-to-many disjoint paths

P1, P2, ..., Pt connecting U1 and U2 in G, such that V (Pi) ∩ V (Pj) = φ for all i �= j. We

call such a set of t disjoint paths to be many-to-many vertex-disjoint paths between U1

and U2. Park et al. [21] discussed some related properties on the class of hypercube-

like networks. In the discussion of the connectivity, a classical theorem has made some

extension to prove the existence of a number of disjoint paths between two sets of vertices:

in a graph of connectivity k, there are k vertex-disjoint paths between every two disjoint

sets of vertices both with k vertices. In the following, we shall strengthen this idea. If

there are some constraints on the two sets such that each set cannot contain any vertex

and all its neighbors, the number of vertex-disjoint paths can be increased to almost

double the size of k. We need some terminologies to describe such constraint. Let U

be a set of vertices in a graph G, the set U is defined to be a conditional selected set if

{v} ∪ NG(v) is not contained in U for every v ∈ U . With this condition, our goal is to

show the following result: in a graph of connectivity k with some good properties, for

every pair of conditional selected vertex sets Ui with |Ui| = t, for i = 1, 2, there is a set

of t vertex-disjoint paths between them, where t ≤ 2k − 2.

Before showing this result, we first explain why the number 2k−2 is the best possibility.

Let (u, v) be an edge in a k-connected k-regular graph G. Let U1 be the set of NG(u) ∪
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u

v

U
1

Figure 4.1: An example showing that in a k-connected k-regular graph, there are at most
2k − 2 vertex-disjoint paths between two conditional selected vertex sets.

NG(v)\{u}. Clearly, the size of U1 is 2k−1, and U1 is a conditional selected set. Arbitrarily

choosing another conditional selected set U2 of size 2k − 1, then it is not hard to see that

there do not exist 2k − 1 vertex disjoint paths connecting U1 and U2. As a consequence,

the size 2k − 2 is the upper bound for our result. (See Fig. 4.1.)

In the following, we formulate the above concept as a “many-to-many” version of

connectivity. Furthermore, even in a graph with some faulty vertices, such concept can

also be applied on the graph. Below is the generalized definition of the fault-tolerant

many-to-many connectivity.

Definition 5 A graph G is f fault-tolerant many-to-many t-connected, abbreviated as

many-to-many t/f-connected, if given any set of faulty vertices F with |F | ≤ f , for each

pair of conditional selected vertex set U1 and U2 with |U1| = |U2| = t in G− F , there is a

set of vertex-disjoint t paths from U1 to U2.

For two vertex sets U1 and U2, a separator of U1 and U2 is defined to be a set of vertices

S whose removal results in the disconnection between U1 − S and U2 − S. The separator

S is trivial if either S = U1 or S = U2.
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4.2 The Matching Composition Networks

The Matching Composition Network (MCN) [6][15], a recursively constructed topology, is

a family of interconnection networks. The construction of an MCN is to join two graphs

G0 and G1 of the same number of vertices by adding a perfect matching between the

vertices of G0 and G1. Many well-known interconnection networks are special cases of

the MCN family, such as the Hypercube, [22] the Crossed cubes [11], the Twisted cubes

[1][12], and the Möbius cubes [8].

Let G0 and G1 be two graphs with the same number of vertices, and M be an arbi-

trary perfect matching between V (G0) and V (G1). We use G(G0, G1; M) to denote the

Matching Composition Network composed of G0 and G1 by M , which has the vertex set

V (G) = V (G0)
⋃

V (G1) and the edge set E(G) = E(G0)
⋃

E(G1)
⋃

M .

Lemma 15 Let G = (V,E) be a k-regular and triangle-free graph, and every two vertices

in G have at most two common neighboring vertices. For every subset V ′ of V with

|V ′| = 2, the number of neighbors of V ′ is at least 2k − 2. That is, |NG(V ′)| ≥ 2k − 2.

Proof. Let V ′ = {v1, v2}. If v1 and v2 are adjacent, the number of neighboring vertices

of {v1, v2} is 2(k−1) because graph G is triangle-free. Otherwise, since every two vertices

have at most two common neighbors, the number of neighbors of V ′ is at least 2(k−2)+2.

So the result holds. �

Lemma 16 Let G be a k-regular and triangle-free graph with n vertices. Then n ≥ 2k.

Proof. Let e = (u, v) be an edge of E(G) and V ′ = {u, v}. Since G is triangle-

free and the degrees of u and v are both k, the number of vertices of G is at least
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|NG(V ′) ∪ {u, v}| = 2k. �

Below is a lemma stating the structural properties of a matching composition network.

It shows that an MCN constructed by two k-regular subgraphs is quite fault resistant,

that is, even with up to 2k−1 vertex faults present and the resulting graph disconnected,

it will have a large connected component and exactly one small component, which is an

isolated vertex.

Lemma 17 Let G0 and G1 be two k-regular, maximally connected and triangle-free graphs

with the same number of vertices, and let M be an arbitrary perfect matching between G0

and G1. Let G = G(G0, G1; M) be a Matching Composition Network composed of G0 and

G1, and let T be a set of vertices in G with |T | ≤ 2k − 1. Assume that every two vertices

in Gi, i = 0, 1, have at most two common neighboring vertices, for all k ≥ 1. Then G−T

satisfies that either (1) G − T is connected or (2) G − T has two connected components,

one of which is a trivial component.

Proof. Let T0 = T ∩ V (G0) and T1 = T ∩ V (G1), respectively. By assumption,

T0 ∩ T1 = φ and |T0| + |T1| = |T | ≤ 2k − 1. Without loss of generality, we suppose that

|T0| ≥ |T1|. Then |T1| ≤ k − 1. Since G1 is k-connected, G1 − T1 is connected. We then

consider two cases:

Case I: G0−T0 is connected. By Lemma 16, the number of vertex in G0 is at least 2k.

Since |V (G0)| ≥ 2k and |T | ≤ 2k − 1, there is at least one vertex in G0 − T0 connecting

to G1 − T1. Thus, G − T is connected.

Case II: G0−T0 is disconnected. Suppose that G0−T0 is divided into m disjoint con-

nected components, say C1, ..., Cm, where m ≥ 2. In the following subcases, we consider
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the number of vertices of Ci for each i ∈ 1, 2, ...,m.

Subcase II.1: For those components Ci containing two or more vertices, |V (Ci)| ≥ 2.

Let (a, b) be an edge in Ci and V ′ = {a, b}. Since |NG0
(V ′)∪{a, b}| = 2k and |T | ≤ 2k−1,

there exists at least one edge with both ends fault-free remaining between Ci and G1−T1.

So every component containing two or more vertices is connected to G1 − T1.

Subcase II.2: For those components Ci containing only one vertex, |V (Ci)| = 1.

Suppose that there is only one trivial component in G0 − T0. If its adjacent vertex in G1

is fault-free, G−T is connected; otherwise, this trivial component in G0−T0 is isolated in

G−T . Suppose that there are at least two trivial components in G0 −T0. We arbitrarily

choose two of them, say u and v, to form a subset V ′. By Lemma 15, the number of

neighbors of V ′ is at least 2k − 2. So |T0| ≥ 2k − 2, |T1| ≤ 1, and at most one of {u, v} is

not connected to G1 − T1. Therefore, there is at most one trivial component in G − T .

This proves the lemma. �

In the above lemma, changing the condition of T slightly by replacing a faulty vertex

by a faulty edge, the connection status of an MCN remains the same.

Lemma 18 Let G0 and G1 be two k-regular, maximally connected and triangle-free graphs

with the same number of vertices, and let M be an arbitrary perfect matching between G0

and G1. Assume that every two vertices in Gi, i = 0, 1, have at most two common

neighboring vertices, for all k ≥ 1. Let G = G(G0, G1; M) be a Matching Composition

Network composed of G0 and G1, and ef be an edge in G and Tv be a set of vertices in

G with |Tv| ≤ 2k − 2. Then G − Tv − {ef} satisfies either that (1) G − Tv − {ef} is

connected or that (2) G − Tv − {ef} has two connected components, one of which is a

trivial component.
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Proof. By Lemma 17, under the constraint that |Tv| ≤ 2k−2, G−Tv is either connected

or with two components one of which is trivial. Now we classify the situations into two

cases.

Case I: G−Tv is connected. If G−Tv−{ef} is connected, we are done. Otherwise, let

C0, C1 be two connected components of G − Tv − {ef}, and ef = (v0, v1) where v0 ∈ C0,

v1 ∈ C1. Without loss of generality, assume that |V (C0)| ≤ |V (C1)|. If |V (C0)| = 1,

we are done. If |V (C0)| = 2, there is another vertex, say w, adjacent to v0 in C0.

Let V ′ = {v0, w}. Since G is a (k + 1)-regular graph, by Lemma 15, |NG(V ′)| ≥ 2k and

Tv ⊇ NG(V ′)−{v1}. So |Tv|+ |{ef}| ≥ |NG(V ′)−{v1}|+ |{ef}| ≥ 2k. It is a contradiction

to the assumption that |Tv| + |{ef}| ≤ 2k − 1. So |V (C0)| ≥ 3. Deleting the vertex v0

from G− Tv results in a subgraph with less number of edges than that of G− Tv − {ef}.

Since |Tv ∪{v0}| ≤ 2k−1, G−Tv −{v0} also contain one trivial graph and one connected

component. Consequently, G − Tv − {ef} does so. So this case holds.

Case II: G − Tv has two connected components, and one of which is a trivial graph.

Let u be the trivial graph and C the connected component. After deleting the edge ef

from G− Tv, if C is still connected, we are done. Otherwise, the component C is divided

into two components C0 and C1 and ef = (v0, v1) where v0 ∈ C0, v1 ∈ C1. We without

loss of generality assume that |V (C0)| ≤ |V (C1)|. If |V (C0)| = 1, let V ′ = {v0, u}.

Again, since |NG(V ′) − {v1}| + |{ef}| ≥ 2k, it is a contradiction to the assumption that

|Tv| + |{ef}| ≤ 2k − 1. Otherwise, the situations about |V (C0)| = 2 and |V (C0)| ≥ 3 are

similar to Case I and the proofs are similar.

This completes the proof. �

We make some remarks concerning the above lemmas. If both graphs G0 and G1 have
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the properties that (1) each one is triangle-free and (2) every pair of distinct vertices

in each graph share at most two common neighbors, then the constructed MCN G =

(G0, G1; M) also has properties (1) and (2). Therefore the result can be applied recursively.

We observe that many interconnection networks have these two properties. For example,

the hypercube-like graphs and the star graphs do.

4.3 Cayley Graphs Generated by Transposition Trees

Let Γ be a group, and let H ⊆ Γ be a set of group elements such that the identity element

I /∈ H. The Cayley graph associated with (Γ, H) is then defined as the directed graph

having one vertex associated with each group element and directed edge (u, v) whenever

uv−1 ∈ H. The Cayley graph may depend on the choice of a generating set, and is

connected if and only if H generates Γ. That is, the set H are group generators of Γ.

In this paper, we choose the finite group to be Γn, the symmetric group on {1, 2, ..., n},

and the generating set H to be a set of transpositions. The vertices of the corresponding

Cayley graph are permutations. Since H only contains transpositions, there is an arc

from vertex u to v if and only if there is an arc from v to u. So we can regard these

Cayley graphs as undirected graphs. A way to represent H is via a graph with vertex

set {1, 2, ..., n} where there is an edge between i and j if and only if the transposition

(ij) belongs to H. This graph is called the transposition generating graph of (Γn, H),

abbreviated as (transposition) generating graph if it is clear from the context.

We require the transposition generating graph to be connected, since an interconnec-

tion network need to be connected. In this paper, we restrict the graphs obtained from

transposition generating graph that are trees. For convenience, we call the corresponding
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Figure 4.2: The Star Graph: H = {(12), (13), (14)}.

transposition generating graph a transposition tree. So the Cayley graphs obtained by

these transposition trees are (n − 1)-regular and have n! vertices. This includes the star

graph whose generating tree is K1,n−1 and the bubble-sort graph whose generating tree is

a path. To avoid trivial cases, we assume that a generating tree has at least three vertices.

This class of graphs is a popular generalization of the star graphs and the bubble sort

graphs [2] studied in [25]. The star graph and the bubble-sort graph are illustrated in

Figs. 4.2 and 4.3 for case n = 4.

4.4 Maximal Local-Connectivity on the Matching Com-

position Networks

In this section, we investigate the property of local connectivity on the Matching Com-

position Network. Let G be a graph, x and y be two distinct vertices in G and k=

min{deg(x), deg(y)}. We say that x and y are maximally local-connected, if there exist

k vertex-disjoint paths connecting x and y. A graph G is maximally local-connected if

every pair of vertices in G are maximally local-connected. A regular MCN is actually
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Figure 4.3: The Bubble-sort Graph: H = {(12), (23), (34)}.

maximally local-connected. Moreover, even with a set of faulty vertices, we will propose

a strong fault-tolerant version of maximal local-connectivity, and prove that a (k + 1)-

regular MCN is (k − 1)-fault-tolerant maximally local-connected. So far the concept of

local connectivity can be referred as a one-to-one type of connectivity, since we only con-

sider the maximum number of vertex-disjoint paths between two vertices. In classical

theory, there is also a one-to-many version of connectivity. We extend this concept to

a fault-tolerant version, called one-to-many f-fault-tolerant maximally locally connected

property. At last, we discuss a fault-tolerant many-to-many version of connectivity. All

the definitions of these three types of connectivity are given in a strong fault-tolerant

version. We will prove that a (k + 1)-regular MCN is not only (k − 1)-fault-tolerant one-

to-many maximally local-connected, but also f -fault-tolerant many-to-many t-connected

(which will be defined subsequently) if f + t ≤ 2k.
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Figure 4.4: An example showing that a (k + 1)-regular MCN is not k-maximally local-
connected.

4.4.1 One-to-One Maximal Local-connectivity

In this section, we are going to prove that an MCN composed of two k-regular graphs with

some additional properties is (k−1)-maximally local-connected. Note that the MCN here

is (k +1)-regular. This result is optimal in the sense that the result cannot be guaranteed

if there are k faulty vertices. We give an example to show it (as illustrated in Fig. 4.4), let

(u, v) be an edge in the MCN. Suppose that all the k vertices adjacent to u except v are

faulty. Choose a vertex w different from u and v, and degG−F (v) = degG−F (w) = k + 1.

However, there are at most k vertex-disjoint paths between v and w. So the (k+1)-regular

MCN is not k-maximally local-connected. Before proving the main result, we make some

simple observations.

If an MCN G = G(G0, G1; M) is (k − 1)-maximally local-connected, the number of

vertices in each component Gi, i = 0, 1, has to be large enough. More precisely, each

component Gi has to contain at least 2k vertices.

Intuitively, if each component Gi contains only 2k − 1 or less vertices. Then there are

at most 2k − 1 “bridges” connecting G0 and G1 in the MCN G = (G0, G1; M). If there

are k−1 faulty vertices to destroy k−1 “bridges”, there are only k “bridges” left between

G0 and G1. Pick a vertex u in G0 and another vertex v in G1, each with degree k + 1.
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Then it is intuitively clear that there are no k + 1 vertex-disjoint paths connecting u and

v. A formal proof is given below.

Lemma 19 Let G = G(G0, G1; M) be a Matching Composition Network composed of two

k-regular graphs G0 and G1 both with the same number of vertices n, where k �= 2. If G

is (k − 1)-maximally local-connected, then n ≥ 2k.

Proof. Before proving this Lemma, we explain why the lemma does not hold if k = 2.

When k = 2, graphs G0 and G1 are cycles of the same length. It is straightforward

but tedious that the MCN generated here is 1-fault-tolerant maximally local-connected.

However, it is not necessarily that n ≥ 2k. For example n = 3, both G0 and G1 are

triangles, and the number n(= 3) is less than 2k(= 4).

When k = 1, graphs G0 and G1 are both one edge incident with two vertices. The

MCN is indeed 0-fault-tolerant maximally local-connected and it also holds that n ≥ 2k.

Now we consider the situation that k ≥ 3. Suppose on the contrary that n ≤ 2k − 1.

If one of the two subgraphs G0 and G1 is a complete graph, since each subgraph is k-

regular, the number of vertices in each subgraph is k + 1. Then both G0 and G1 are

complete graph. Hence, the cardinality of the perfect matching M between V (G0) and

V (G1) is k + 1. Let x be a vertex in G0, and y be the adjacent vertex of x in G1. We

choose a set of k − 1 vertices Vf = {f1, f2, ..., fk−1} not containing x and y, where f1 is

an arbitrary vertex in G0, and f2, f3, ..., fk−1 are other vertices in G1 not adjacent to f1.

In the induced subgraph of V (G) − Vf , the number of edges with one end in G0 and the

other end in G1 is two, and the remaining degrees of x and y are k and three, respectively.

There are only two fault-free edges between G0 and G1. Therefore, it is easy to see that
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there does not exist three vertex-disjoint paths between x and y, and the graph G is not

(k − 1)-fault-tolerant maximally local-connected.

Now, suppose that neither G0 nor G1 is a complete graph. Let x be a vertex in G0,

and y be the adjacent vertex of x in G1. We index the adjacent vertices of x in G0 as

u1, u2, ..., uk. The other ones left in G0 are indexed as uk+1, uk+2, ..., un−1, in any arbitrary

order. For each ui in G0, the corresponding (adjacent) vertex in G1 is named as vi, for

1 ≤ i ≤ k. Since G1 is not a complete graph and G1 is k-regular, there exist two vertices

vp, vq ∈ {v1, v2, ..., vk} ∪ {y}, such that (vp, vq) /∈ E(G1). Without loss of generality, let

vq �= y. Recall that n ≤ 2k − 1. Now we pick vertices {ui | k + 1 ≤ i ≤ n − 1} and vq to

form a vertex set Vf , which has cardinality at most k − 1. The cardinality of Vf can be

verified as [(n− 1)− k] + 1 ≤ [((2k− 1)− 1)− k] + 1 = k− 1. In the induced subgraph of

V (G) − Vf , the remaining degrees of x and vp are both k + 1. However, in this induced

subgraph, there are only k edges connecting the vertices in G0 − Vf and G1 − Vf , which

results in that there are no k + 1 vertex-disjoint paths between x and vp. So the graph G

is not (k − 1)-maximally local-connected.

The proof is complete. �

Therefore, to study the (k − 1)-fault-tolerant maximally local-connectivity of MCN,

we need a k-regular graph containing at least 2k vertices. Recall that Lemma 16 states

that every k-regular and triangle-free graph contains at least 2k vertices.

Now, we are ready to present our first main result.

Theorem 6 Let G0 and G1 be two k-regular, maximally connected and triangle-free

graphs with the same number of vertices, for k ≥ 1, and let M be an arbitrary perfect

matching between G0 and G1. Assume that any two vertices in Gi, i = 0, 1, have at most
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two common neighboring vertices. The Matching Composition Network G = (G0, G1; M)

is (k − 1)-maximally local-connected.

Proof. By Lemma 16, the number of vertices in Gi is greater than 2k, for i = 0, 1.

Let F be a set of faulty vertices with |F | ≤ k − 1, and let x and y be two fault-free

vertices in G− F . We assume without loss of generality that degG−F (x) ≤ degG−F (y), so

min{degG−F (x), degG−F (y)} = degG−F (x). We now show that after deleting degG−F (x)−1

arbitrary vertices in G − F , vertex x is still connected to y. By Theorem 2, this implies

that each pair of vertices x and y are connected by degG−F (x) vertex-disjoint fault-free

paths, where |F | ≤ k − 1. We now consider two cases:

Case I: x and y are not adjacent in G − F . We then show that x is connected

to y if the number of vertices deleted is smaller than degG−F (x) − 1. For the sake of

contradiction, suppose that x and y are separated by deleting a set of vertices Vf , where

|Vf | ≤ degG−F (x)−1. As a consequence, |Vf | ≤ k because of degG−F (x) ≤ deg(x) ≤ k+1.

Then, the summation of the cardinality of these two sets F and Vf is |F |+ |Vf | ≤ 2k− 1.

Let T = F ∪Vf . By Lemma 17, either G−T is connected, or G−T has two components,

one of which contains only one vertex. If G − T is connected, it contradicts to the

assumption that x and y are disconnected. Otherwise, if G− T has two components and

one of which contains only one vertex u. Since we assume that x and y are separated,

one of x and y is the vertex u, say x = u. Thus, the set Vf must be the neighborhood of

x and |Vf | = degG−F (x), which is also a contradiction. Then, x is connected to y when

the number of vertices deleted is smaller than degG−F (x) − 1 in G − F .

Case II: x and y are adjacent in G−F . We need to show that x is connected to y if

the number of vertices deleted is smaller than degG−F (x)−2 in G−F −{(x, y)}. Suppose
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on the contrary that in G−F −{(x, y)}, x and y are separated by deleting a set of vertices

Vf , where |Vf | ≤ degG−F (x)− 2. Since degG−F (x) ≤ k + 1, we get |Vf | ≤ k − 1. Then the

union set T of F and Vf has cardinality |T | = |F | + |Vf | ≤ 2k − 2. In this circumstance,

Lemma 18 implies either that G−T−{(x, y)} is connected or that G−T−{(x, y)} has two

components one of which is trivial. For the first situation, G− T − {(x, y)} is connected,

this contradicts to the assumption that x and y are separated in G−F −{(x, y)}. For the

second situation, the trivial graph must be x or y, and we without loss of generality let x

be such trivial graph. In G−F −{(x, y)}, in order to make x a trivial graph, the number

of vertices deleted must be greater or equal to degG−F (x)− 1 = k. However, |Vf | ≤ k− 1,

which is a contradiction. So x and y are connected when the number of vertices deleted

is smaller than degG−F (x) − 2 in G − F − {(x, y)}.

The proof is complete. �

4.4.2 One-to-Many Maximal Local-connectivity

As the one-to-one case, if a k + 1-regular Matching Composition Network is one-to-many

(k − 1)-maximally local-connected, each component has to contain large enough vertices.

The next lemma states this claim.

Lemma 20 Let G = G(G0, G1; M) be a Matching Composition Network composed of

two k-regular graphs G0 and G1 both with n vertices, where k �= 2. If G is one-to-many

(k − 1)-maximally local-connected, then n ≥ 2k.

Proof. Since one-to-many (k−1)-maximally local connected property implies one-to-one

(k − 1)-maximally local connected property, by Lemma 19, n ≥ 2k. �
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We need a result, which is essentially the classical Menger’s theory, to prove our next

theorem as following.

Lemma 21 Let G be a graph, x be a vertex and U be a vertex set with x /∈ |U |. The

minimum size of a separator of x and U equals the maximum number of pairwise internally

disjoint paths from x to U such that each pair of the paths share only the vertex x.

Proof. We construct G′ from G by adding a new vertex y adjacent to all vertices of U .

By Theorem 2, the minimum size of a separator of x and y equals the maximum number

of pairwise internally disjoint paths from x to y in G′. The result holds after deleting the

vertex y in G′. �

Now the one-to-many version of the maximally local-connectivity of an MCN is given

below.

Theorem 7 Let G0 and G1 be two k-regular, maximally connected and triangle-free

graphs with the same number of vertices, for k ≥ 1, and let M be an arbitrary perfect

matching between G0 and G1. Assuming that any two vertices in Gi, i = 0, 1, have at most

two common neighboring vertices, the Matching Composition Network G = (G0, G1; M)

is one-to-many (k − 1)-maximally local-connected.

Proof. Let x be a vertex and U be a conditional terminal set in G − F such that

t ≤ degG−F (x) and |U | = t. We want to show that x and U do not separate if the

number of vertices deleted is smaller than t − 1 in G − F , where |F | ≤ k − 1. It implies

that there are degG−F (x) vertex-disjoint fault-free paths from x to U such that each

pair of the paths share only the vertex x according to Lemma 21. Suppose not, let x

50



and U − Vf are separated by deleting a set of vertices Vf , where |Vf | ≤ t − 1. Since

t ≤ degG−F (x) ≤ deg(x) ≤ k + 1, so |Vf | ≤ t − 1 ≤ k. We now count the summation of

the cardinality of these two sets F and Vf , which is |F | + |Vf | ≤ k − 1 + k = 2k − 1. Let

T = F ∪ Vf , By Lemma 17, either G − T is connected, or G − T has two components,

one of which is only one vertex. If G − T is connected, it contradicts to the assumption

that x and U − Vf are disconnected. So we consider that G− T has two components and

one of which has only one vertex u. If x = u, the set Vf has to be the neighborhood of

x and |Vf | = degG−F (x), which contains a contradiction. Otherwise, u ∈ U . Since U is

a conditional terminal set, {u} ∪ NG−F (u) is not contained in U for each u ∈ U , either

there are at least two remaining vertices of U − Vf , or the only one vertex in U − Vf is

not trivial in G − T , which contains a contradiction. Thus, there is a set of t paths from

x to U such that any two of them share only the vertex x when the number of vertices

deleted is smaller than degG−F (x) − 1 in G − F .

This proof is complete. �

So far we know that an MCN constructed from two k-regular graphs is (k − 1)-

maximally local-connected, and we will prove that it is also “one-to-many” (k − 1)-

maximally local-connected. In fact, the “one-to-many” result is stronger than the fun-

damental “one-to-one” result. For example, let x and y be two distinct vertices, and

{x1, x2, ..., xm} and {y1, y2, ..., yn} be the neighbors of x and y, respectively. Assume that

m > n. In the “one-to-one” result, it only says that there exists n vertex-disjoint paths

joining x and y. In the “one-to-many” result, we can select any n vertices from the

neighbors {x1, x2, ..., xm} of x, and there are n vertex-disjoint paths from y to all these

n vertices. So the “one-to-many” version of fault-tolerant maximal local-connectivity

implies the “one-to-one” version.
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4.4.3 Many-to-Many Maximal Local-connectivity

In the following, we consider a (k + 1)-regular MCN composed of two k-regular graphs

both with connectivity k. Note that in this MCN, the connectivity is k +1, and there are

at most 2k vertex-disjoint paths between two given conditional selected vertex sets.

Moreover, our result provides a generalized fault-tolerant version of connectivity, in-

stead of being restricted in a fault-free graph. Notice that in the (k + 1)-regular MCN

with at most f faulty vertices, the value f should be limited to at most 2k−1. By Lemma

17, the resulting graph would be connected or be two components one of which is trivial.

We observe that the possible isolated vertex is not a conditional selected set.

We need the following lemma, essentially it is the classical Menger’s theory, to prove

our main theorem.

Lemma 22 Let G be a graph, and U1, U2 be two arbitrary vertex sets with |U1| = |U2|.

The minimum size of a separator of U1 and U2 equals the maximum number of pairwise

internally disjoint paths from U1 to U2.

Proof. We construct G′ from G by adding two new vertices x and y adjacent to all

vertices of U1 and U2, respectively. By Theorem 2, the minimum size of a separator of x

and y equals the maximum number of pairwise internally disjoint paths from x to y in

G′. The result follows after deleting the vertices x and y in G′. �

Now, we are ready to introduce the main theorem.

Theorem 8 Let G0 and G1 be two k-regular, maximally connected and triangle-free

graphs with the same number of vertices, for k ≥ 1, and let M be an arbitrary per-
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fect matching between G0 and G1. Assume that any two vertices in Gi, for i = 1, 2, have

at most two common neighboring vertices. Let F be a set of vertices with |F | = f , and

U1, U2 be two arbitrary conditional selected sets with |U1| = |U2| = t. The Matching

Composition Network G = (G0, G1; M) is many-to-many t/f-connected if f + t ≤ 2k.

Proof. Let U1 and U2 be two conditional selected sets with |U1| = |U2| = t in G − F

where |F | = f . Suppose f + t ≤ 2k, we want to show that there are t vertex-disjoint

paths connecting U1 and U2. By Lemma 22, we prove this by showing that U1 and U2 do

not separate if the number of vertices deleted is at most t − 1. Suppose on the contrary

that U1 and U2 are separated by deleting a set of vertices Vf , where |Vf | ≤ t − 1. Let T

be the union set of F and Vf , T = F ∪ Vf , and we have |T | = |F | + |Vf | ≤ 2k − 1. By

Lemma 4.1, either G−T is connected, or G−T has two components one of which is only

one vertex. We only consider the second case because the first case is a contradiction to

the assumption that U1 − Vf and U2 − Vf are disconnected. Let u be the trivial graph in

G − T . Certainly, either u ∈ U1 − T or u ∈ U2 − T , and we without loss of generality

assume that u ∈ U1−T . We observe that G−T has only two components one of which is

the single vertex u, U1 − Vf and U2 − Vf are disconnected in G− T , and u ∈ U1 − Vf . So

U1−Vf contains only one vertex, namely u. Since |U1| = t, |Vf | ≤ t−1 and |U1−Vf | = 1,

we have Vf ⊆ U1. However, U1 is a conditional selected set in G−F , U1 does not contain

all the neighboring vertices of u. Thus vertex u cannot be isolated by deleting Vf from

G − F . This contradicts to the assumption that vertex u is an isolated vertex in G − T .

Therefore, by Lemma 22, there are t vertex-disjoint paths from U1 to U2 in G − F with

|F | = f if t + f ≤ 2k.

This proof is complete. �
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4.5 Maximal Local-Connectivity on Cayley graphs

generated by transposition trees

To prove our main result, we need the following lemmas. Cheng et al. studied some result

on Cayley graphs generated by Transposition Tree.

Theorem 9 [7] Let G be a Cayley graph generated by a transposition tree H on {1, 2, ..., n}

where n ≥ 3. If T is a set of vertices with |T | ≤ k(n − 1) − k(k+1)
2

, where 1 ≤ k ≤ n − 2,

then G − T has one large (connected) component, and the remaining small components

has at most k − 1 vertices in total.

We can rewrite this Theorem 9 with respect to the next lemma if the number k equals

2.

Lemma 23 Let G be a Cayley graph generated by a transposition tree H on {1, 2, ..., n},

and T be a set of vertices in G with |T | ≤ 2n − 5, where n ≥ 3. There exists a connected

component C in G − T such that |V (C)| ≥ n! − |T | − 1.

Proof. This Lemma follows from Theorem 9 when k = 2. �

There is a similar result by replacing a faulty vertex by a faulty edge as following.

Lemma 24 Let G be a Cayley graph generated by a transposition tree H on {1, 2, ..., n},

where n ≥ 3. Let ef be an edge in G and Tv be a set of vertices in G with |Tv| ≤ 2n − 6.

There exists a connected component C in G− Tv −{ef} such that |V (C)| ≥ n!− |Tv| − 1.

Proof. By Lemma 23, under the constraint that |Tv| ≤ 2n− 6, G− Tv has a connected

component C containing at least n!−|Tv|− 1 vertices. Now suppose on the contrary that
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each connected component of G− Tv − {ef} has at most n!− |Tv| − 2 vertices. Then the

maximum connected component C of G−Tv is divided into two components, denoted C0

and C1, and |V (Ci)| ≤ n!−|Tv|−2 for i = 1, 2. Let ef = (u, v). Without loss of generality,

we assume that u ∈ C0, v ∈ C1 and |V (C0)| ≥ |V (C1)|. Then choose T = Tv ∪ {u}. By

Lemma 23, there is a connected component with at least n!−|T |−1 vertices in G−T . It

means that either C0 has at least n!− |T | vertices or C1 has at least n!− |T | − 1 vertices,

contradicting to the fact that |V (C)| ≤ n! − |Tv| − 2, for i = 1, 2. So the result holds. �

4.5.1 One-to-One Maximal Local-connectivity

Let G be a Cayley graph obtained from a transposition tree H on {1, 2, ..., n} where

n ≥ 3. In this section, we are going to prove that G with some additional properties is

(n − 3)-fault-tolerant maximally local-connected. Note that G is (n − 1)-regular. This

result is optimal in the sense that the result cannot be guaranteed if there are n−2 faulty

vertices. We give an example to show this. Let (x,w) be an edge in G. Suppose that all

the n − 2 vertices adjacent to w except x are faulty. Choose a vertex y different from x

and w, and degG−F (x) = degG−F (y) = n−1. Then there are at most n−2 vertex-disjoint

paths between x and y. So G is not (n − 2)-maximally local-connected.

We now show our first main result.

Theorem 10 Let G be a Cayley graph obtained from a transposition tree H on {1, 2, ..., n}

where n ≥ 3. Then G is (n − 3)-fault-tolerant maximally local-connected.

Proof. Let F be a set of faulty vertices with |F | ≤ n−2, and let x and y be two fault-free

vertices in G−F . We assume, without loss of generality, that degG−F (x) ≤ degG−F (y), so
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min{degG−F (x), degG−F (y)} = degG−F (x). We then show that vertex x is still connected

to y after deleting degG−F (x) − 1 vertices in G − F . It implies that each pair of vertices

x and y are connected by degG−F (x) vertex-disjoint fault-free paths with |F | ≤ n − 3

according to Theorem 2. We now consider two cases:

Case I: x and y are not adjacent. We now show that x is still connected to y if the

number of vertices deleted is smaller than degG−F (x) − 1. Suppose on the contrary that

x and y are separated by deleting a set of vertices Vf , where |Vf | ≤ degG−F (x)− 1. Since

degG−F (x) ≤ deg(x) ≤ n − 1, we have |Vf | ≤ n − 2. Then, we sum up the cardinality of

these two sets F and Vf . Since |F | ≤ n − 3 and |Vf | ≤ n − 2, then |F | + |Vf | ≤ 2n − 5.

Let T = F ∪ Vf . By Lemma 23, there exists a connected component C in G − T such

that |V (C)| ≥ n! − |T | − 1 and |T | ≤ 2n − 5. In other words, either G − T is connected

or G − T has two components, one of which contains only one vertex. It contradicts to

the assumption that x and y are disconnected if G − T is connected. So we consider the

case that G−T has two components and one of which contains only one vertex. Since we

assume that x and y are separated, one of x and y is the trivial graph. We without loss

of generality let x be such trivial graph. Thus, the set Vf has to be the neighborhood of

x and |Vf | = degG−F (x), which is also a contradiction. Then, x is connected to y when

the number of vertices deleted is smaller than degG−F (x) − 1 in G − F .

Case II: x and y are adjacent. We need to show that x is connected to y if the number

of vertices deleted is smaller than degG−F (x) − 2 in G − F − {(x, y)}. For the sake of

contradiction, suppose that x and y are separated by deleting a set of vertices Vf , where

|Vf | ≤ degG−F (x) − 2 in G − F − {(x, y)}. We get |Vf | ≤ n − 3 since degG−F (x) ≤ n − 1.

Then the union set T of F and Vf has cardinality |Tv| = |F | + |Vf | ≤ 2n − 6. Lemma

24 implies that there exists a connected component C in G − Tv − {(x, y)} such that
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|V (C)| ≥ n! − |Tv| − 1 and |Tv| ≤ 2n − 5. It means that either G − Tv − {(x, y)} is

connected or that G − Tv − {(x, y)} has two components one of which is trivial. For the

first situation, G − Tv − {(x, y)} is connected, this contradicts to the assumption that x

and y are separated in G − F − {(x, y)}. For the second situation, let u be the trivial

graph in G − F − {(x, y)}. One of x and y is the vertex u, say x = u. So the number of

vertices deleted must be greater or equal to degG−F (x)−1 = n−2. However, |Vf | ≤ n−3,

which is a contradiction. So x and y are connected when the number of vertices deleted

is smaller than degG−F (x) − 2 in G − F − {(x, y)}.

The proof is complete. �

4.5.2 One-to-Many Maximal Local-connectivity

Now the one-to-many version of the maximally local-connectivity in Cayley graphs gen-

erated by transposition trees is given below.

Theorem 11 Let G be a Cayley graph obtained from a transposition tree H on {1, 2, ..., n}

where n ≥ 3. Then G is one-to-many (n − 3)-fault-tolerant maximally local-connected.

Proof. Let x be a vertex and U be a conditional terminal set in G − F such that

t ≤ degG−F (x) and |U | = t. We are going to show that x and U do not separate if the

number of vertices deleted is smaller than t−1 in G−F , where |F | ≤ n−3. Suppose not,

let x and U − Vf are separated by deleting a set of vertices Vf , where |Vf | ≤ t − 1. Since

t ≤ degG−F (x) ≤ deg(x) ≤ n− 1, so |Vf | ≤ t− 1 ≤ n− 2. We now sum up the cardinality

of these two sets F and Vf , which is |F |+ |Vf | ≤ 2n− 5. Let T = F ∪ Vf , By Lemma 23,

there exists a connected component C in G − T such that |V (C)| ≥ n! − |T | − 1. Thus,
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either G − T is connected, or G − T has two components, one of which is contains only

one vertex. If G−T is connected, it contradicts to the assumption that x and U −Vf are

disconnected. So we consider that G− T has two components and one of which has only

one vertex u. If x = u, the set Vf has to be the neighborhood of x and |Vf | = degG−F (x),

this contradicts to the assumption |VF | ≤ t− 1 ≤ degG−F (x)− 1. So u ∈ U −Vf . Since U

is a conditional terminal set, {v} ∪ NG−F (v) is not contained in U for each v ∈ U , either

there are at least two remaining vertices of U −Vf , or the only one vertex in U −Vf is not

trivial in G− T , which contains a contradiction. Therefore, there is a set of t paths from

x to U such that any two of them share only the vertex x when the number of vertices

deleted is smaller than degG−F (x) − 1 in G − F .

This completes the proof. �
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Chapter 5

Conclusion and Future Work

In this thesis, we study several properties with conditional fault on some interconnection

networks. Under the restricted condition that each vertex has at least two fault-free

adjacent vertices, we propose two optimal results. We first show that for any set of faulty

edges F of an n-dimensional hypercube Qn with |F | ≤ 2n − 5, each edge of the faulty

hypercube Qn − F lies on a cycle of every even length from 6 to 2n, for n ≥ 3. Then we

study the Menger property. We prove that in all n-dimensional hypercube-like networks

with 2n − 5 vertices removed, every pair of unremoved vertices u and v are connected

by min{deg(u), deg(v)} vertex-disjoint paths, where deg(u) and deg(v) are the remaining

degree of vertices u and v, respectively.

The local connectivity of two vertices is defined as the maximum number of internally

vertex-disjoint paths between them. The main concept of local connectivity can be re-

ferred as a one-to-one type of connectivity, since we only consider the maximum number of

vertex-disjoint paths between two vertices. In classical theory, there is also a one-to-many

version of connectivity. In this thesis, we extend this concept to a fault-tolerant version,

called one-to-many f-fault-tolerant maximally locally connected property. Moreover, we
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introduce the one-to-many and many-to-many versions of connectivity. In these issues,

we prove that a (k + 1)-regular Matching Composition Network is (k − 1)-maximally

local-connected, and (k − 1)-fault-tolerant one-to-many maximally local-connected. We

also show that a (k +1)-regular Matching Composition Network is f -fault-tolerant many-

to-many t-connected if f + t = 2k. Besides, we show the similar result on Cayley graphs

generated by transposition trees. We prove that an (n − 1)-regular Cayley graph gener-

ated by transposition tree is maximally local-connected, even if there are at most (n− 3)

faulty vertices in it, and prove that it is also (n−1)-fault-tolerant one-to-many maximally

local-connected.

We show our result on the hypercube, hypercube-like, Matching Composition Net-

work and the Cayley graphs generated by transposition trees. In addition to the graphs

introduced in this thesis, there are other interesting graphs with different construction.

In fact, many well-known systems may have some similar properties as defined in this

thesis. We would like to extend our results to other graphs and hopefully to find more

new properties.

Based on the generalized versions of edge-bipancyclicity and connectivity proposed in

this thesis, the fault-tolerant capability may be increased if we add some restrictions on

these networks. More precisely, if we add some conditions to the faulty vertices, the upper

bound of fault-tolerance may possibly be increased. These are issues worth studying.
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