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Ming-Fu Sun
Department of Computer Science
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Advisor: Terng-Yin Hsu

Abstract

In this study, a 4 x4 multi-inputfmulti-output (MIMO) orthogonal-frequency
division multiplexing (OEDM) ecommunication system and advanced receiving
techniques, including anti-I/Qg ‘mismateh- (IQ-M) auto frequency controller,
preamble-assisted 1Q-M estintator and compensator, adaptive channel estimator, and
digital beamforming are explored.

In order to estimate the carrier frequency offset (CFO) value under the conditions
of IQ-M for direct-conversion structures, a pseudo-CFO (P-CFO) algorithm is
developed. The proposed P-CFO algorithm rotates three training symbols by adding
extra frequency offset into the received sequence to improve CFO estimation.
Simulation results indicate that the estimation error of the proposed method is about
0.3 ppm, which is lower than those of two-repeat preamble-based methods. The
proposed scheme is implemented as part of an OFDM wireless receiver fabricated in a
0.13-pm CMOS process with 3.3x0.4 mm® core area and 10 mW power
consumption.

In direct-conversion receivers, the impact of frequency-dependent 1Q-M with CFO



must be considered. A preamble-assisted estimation is developed to circumvent the
frequency-dependent 1Q-M with CFO. The frequency-dependent 1Q-M with CFO can
be estimated by taking advantage of the relationship between desired sub-carriers and
image sub-carriers. Both simulation and experiment results indicate that the proposed
method can meet system requirements by preventing frequency-dependent 1Q-M from
significantly degrading the performance. Moreover, the proposed scheme is compatible
with current wireless local area network standards.

Recently, the request for wireless communication under mobile conditions is
increased. The ability of fast channel tracking is therefore needed to achieve high
performance receivers. For successful transmissions, obtaining accurate channel state
information as soon as possible is extremely important. An adaptive frequency-domain
channel estimator (FD-CE) for equalization of 4x4 MIMO-OFDM system in
time-varying frequency-selective fading-is developed. The proposed adaptive FD-CE
ensures the channel estimation accuracy in each set of four MIMO-OFDM symbols. To
decrease complexity, the rich feature of-Alamouti-like matrix is exploited to derive an
efficient VLSI solution. Finally, this adaptive FD-CE using an in-house 0.13-pm CMOS
library occupies an area of 3x 3.1 mm?®, and the 4x4 MIMO-OFDM modem consumes
about 62.8 mW at 1.2V supply voltage.

In addition, digital beamforming for MIMO-OFDM communications is also studied.
Digital beamforming is a method of spatial filtering, which can eliminate unwanted
interferences and receive desired signal accurately. Consequently, digital beamforming
can be used to increase system capacity and transmission range.

In this study, the transceiver design and circuit implementation are presented. A
software-defined radio is also constructed for rapid verification and fast prototyping.
Based on the overall system performance index, the implementation trade-offs can be

balanced.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there is an increasing application:for higher spectrum efficient, higher
data rate, better quality of service, and higher system capacity. The data rate and
mobility of some wireless communication standards are shown in Figure 1-1. There is a
trend that multi-input multi-output (MIMO) transmission has emerged as a potential
technology in the future standards. Specifically, MIMO techniques have been integrated
into third-generation (3G) cellular systems [1], wireless local area networks (IEEE
802.11n) [2], and broadband wireless access networks (IEEE 802.16e) also known as
WiIiMAX [3]. MIMO communication systems are defined by considering that multiple
antennas are used at the transmit part as well as at the receive part. By using the
spatial and polarization properties of the multipath channels, MIMO communication
systems offer new dimensions that can be used to enhance the quality of

communication.
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Figure 1-1. Data rate versus mobility.of wireless communication standards.

Due to the use of antenna arrays, spatial diversity ¢an be obtained. The concept of
spatial diversity is that the signal-to-noisé ratio is significantly improved by combining
the signal transmitted from different antennas. In order to approach the capacity of
MIMO channels, the space-time processing is employed. Space-time processing is a tool
for improving the overall economy and efficiency of a MIMO communication system.
Space-time processing can improve the signal-to-interference ratio through co-channel
interference cancellation, mitigate fading through receive diversity, offer higher
signal-to-noise ratio through array gain, and reduce inter-symbol interference through
spatial equalization.

In addition, orthogonal-frequency division multiplexing (OFDM) is a popular
technique which operates with specific orthogonality constraints between sub-carriers.

Because of these constraints, OFDM modulation is a spectrally efficient signaling



method for communication over frequency-selective fading channels. OFDM
modulation has been utilized by many standards, including IEEE 802.11a/g/n-based
WLAN systems [2], [4], [5], digital audio broadcasting (DAB) [6], and digital video
broadcasting terrestrial TV (DVB-T) [7]. Therefore, MIMO-OFDM arrangements have
been suggested for frequency-selective fading channels, where space-time coding or
space-frequency coding is used across the different antennas in conjunction with OFDM
8].

In this study, a 4x4 MIMO-OFDM communication system and advanced
receiving techniques are explored. The transceiver design and implementation are also
presented. In order to realize the 4 x4 MIMO-OFDM communication system, some
impairments are taken into account. For instance, synchronization tasks, such as timing
synchronization and frequency synchronization, are essential in the practical
implementation. Other impairments which ‘can degrade the system performance are
channel effects and non-ideal front-ends. To support reliable reception of the
transmitted data, robust algerithms.must be-developed.

A software-defined radio is lalso-constructed for rapid verification and fast
prototyping. This experimental platform comprises of MATLAB model, field
programmable gate array (FPGA) board, and radio frequency (RF) front-end. The
proposed design is directly mapped onto the FPGA chips with on-board 14-bit
digital-to-analog converters (DACs) to transform the digital data into analog signals.
The signals are then transmitted by RF front-ends. After down-converting RF signals to
baseband at receiver part, the analog signals are fed into 14-bit analog-to-digital
converters (ADCs).

Another important issue is the implementation cost. In order to achieve low
hardware cost and low power consumption, low complexity algorithms and efficient

very-large-scale integration (VLSI) architectures are preferable. For instance, the



proposed algorithms are evaluated using additional factors, such as numerical precision,
relative VLSI architecture, and memory requirements. Based on the overall system

performance index, the implementation trade-offs can be balanced.

1.2 Dissertation Overview

The system considerations and channel models are introduced in Chapter 2. A brief
introduction of the MIMO-OFDM system is given. The fundamental understanding of
MIMO technology and space-time processing is presented. In addition, the impact of
impairments on the system performanceqisialso,discussed. In order to maintain the
system performance, some essentialalgorithms-are developed.

In Chapter 3, an anti-I/Q mismatch (IQ-N) auto frequency controller (AFC) is
developed. Frequency synchronization, is-a‘eritical problem for the MIMO-OFDM
system. Various frequency offset estimation algorithms have been developed in the open
literature. However, it is shown that some methods are not suitable for current wireless
systems since the packet format is not compatible with current standards. The proposed
carrier frequency offset (CFO) estimation method, based on pseudo CFO (P-CFO)
technology, can estimate the CFO value under the conditions of IQ-M. Additionally, the
proposed P-CFO algorithm is also compatible with the conventional method.

In Chapter 4, preamble-assisted estimation methods are developed to circumvent
the effect of IQ-M. Because IQ-M can degrade the accuracy of CFO estimation and
introduce image interference, the compensation for IQ-M is necessary. Many 1Q-M
estimation methods are published in the open literature. However, most methods focus
on the constant IQ-M only. Because of the impairment in the analog components, the

low-pass filters of I and QQ channels are not identical, resulting in frequency-dependent



IQ-M. The proposed methods can estimate not only constant IQ-M but also
frequency-dependent 1Q-M.

In Chapter 5, an adaptive channel estimator in STBC MIMO-OFDM modems is
developed. In order to realize the gains obtained from MIMO cannels, obtaining
accurate channel state information in time-varying environments is extremely
important. In order to reduce the hardware cost, the proposed adaptive channel
estimator utilizes the property of the Alamouti-like matrix to decrease the cost of
complex operators.

In Chapter 6, digital beamforming for wireless communications is presented. In
order to improve the signal quality, digital beamforming is performed digitally to form
the desired output.

Finally, Chapter 7 describes the conclusions of this work and indicates some

promising directions for future researeh.






Chapter 2
Overview of MIMO-OFDM Systems

This chapter serves as a brief introduction to'multi-input multi-output (MIMO)
orthogonal frequency-divisien multiplexing (OFDM) wireless communication systems.

The impact of non-ideal front-ends on system performance is also discussed.

2.1 MIMO Wireless Communications

2.1.1 Antenna Configurations

Figure 2-1 shows different antenna configurations. Single-input single-output (SISO)
which uses one transmit antenna and one receive antenna is the well-known
configuration, single-input multiple-output (SIMO) uses one transmit antenna and
multiple receive antennas, multiple-input single-output (MISO) has multiple transmit

antennas and a single receive antenna, and, finally, MIMO has multiple transmit



antennas and multiple receive antennas.

With MIMO, the system can effectively provide the array gain [9]-[12]. Array gain
is the average increase in the signal-to-noise ratio (SNR) at the receiver that arises from
the coherent combining effect of multiple antennas at the receiver, transmitter or both.
If the channel is known to the multiple antenna transmitter, the transmitter can weight
the transmission with weights, depending on the channel state information, so that
there is coherent combining at the single antenna receiver. The array gain in this case is
called transmitter array gain. For the SIMO system with perfect knowledge of the
channel at the receiver part, the receiver can suitably weight the incoming signals so
that the signals are coherently added up at the output. This case is called receiver array

gain. In order to achieve the array gain, multiple antenna systems require perfect

channel knowledge at the transmitter; receiver or both.

SISO
Transmitter T > T— Receiver
SIMO
L
Transmitter T < T_ Receiver
MISO
B
Transmitter - / T— Receiver
MIMO .
i >< 1
Transmitter - T > T_ Receiver

Figure 2-1. Different antenna configurations.




2.1.2 Capacity Results

Based on Shannon’s theorem, capacity is a measure of the maximum transmission rate
for reliable communication on a given channel. Firstly, let us consider the SISO system
on the additive white Gaussian noise (AWGN) channel. The capacity of the channel is

expressed as

C =log,(1+ P) (bits/s/Hz) (2.1)

where P is the average signal-to-neiseiratio (SNR) at the receiver. The capacity, as
defined in (2.1), is also knownnas the speetral efficiency. If the transmission rate is less
than C bits/s/Hz, then an“appropriate coding seheme exists that could lead to reliable
and error-free communication. On the‘contrary, if the transmission rate is more than C
bits/s/Hz, then the received “signal, regardless’of the employed coding scheme, will
involve bit errors. MIMO communication"technology has received significant attention
due to the rapid development of high-speed wireless communication systems employing
multiple transmit and receive antennas. Theoretical results show that MIMO systems
can offer significant capacity gain over traditional SISO channels. This increase in
capacity is enabled by the fact that in rich scattering environments, the signals from
each transmitter appear highly uncorrelated at each of the receive antennas, i.e., the
signals corresponding to each of the individual transmit antennas have attained
different spatial signatures. The receiver exploits these differences in spatial signatures

to separate these signals.
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Figure 2-2. Block diagram of the MIMO system.

Figure 2-2 shows the block diagram of the MIMO system with M transmit
antennas and N receive antennas. The_input-output relationship of this system is

expressed as

Y = HX + W (2:2)
where X =[z;, =, .. ]  is the transmitted data vector, Y =1[y, 1 .. yy|
is the received data vector, and W =[w, w, .. wy]" is the noise vector. H

denotes the N x M channel matrix which is defined by

h’ll }742 h’I,M
hyy  hyy o gy

H=| . . . : (2.3)
hN,l hN,2 hN,M

where £,; is the complex gain from the jth transmit antenna to the ith receiver antenna.

If the channel matrix is known at the receiver, the capacity equation of the MIMO

10



channel is given by [13]

C = log, [det [I + %HHH]] (bits/s/Hz) (2.4)

where I denotes the identity matrix, the superscript H indicates the conjugate
transpose, and P is the per-receive antenna SNR. In order to gain insight on the

capacity, (2.4) can be expressed as [13]

min{N,M}

C = Z logz[l—k%)\i] (bits/s/Hz) (2.5)

i=1

where )\ denotes the eigenvalues-,of |the rectangular HH” matrix. Mainly, the
capacity is equal to the richness of the channel plus a term depending on the power

level.

2.1.3 Space-Time Processing

In order to improve the reliability for MIMO communication, space-time coding
techniques are developed. A pioneering work in the area of space-time coding for MIMO
channels has been carried out by Tarokh et al. in [14]-[15]. However, the coding scheme
n [14]-[15] requires high decoding complexity. Afterward, Alamouti developed the most
famous space-time block coding (STBC) scheme for two transmit and multiple receive
antennas [16]. The complexity of the maximum likelihood decoder for Alamouti’s code
is very low. Figure 2-3 shows the block diagram of the 2x2 MIMO system with

Alamouti’s code. The encoding rule of Alamouti’s scheme is

11
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where ¢;, ¢ =1,2 terms represent the transmitted complex symbols. In the first time
slot, antenna one transmits ¢, and antenna two‘transmits c,. In the next time slot,
antenna one transmits —c; and antenna two'transmits '¢ . The columns of the matrix
represent time slots and the rows denote transmit antennas. Since two time slots are
required to transmit two symbols, the code rate'for Alamouti’s scheme is equal to one.
Assuming that the channel coefficients are constant in both consecutive symbol periods,

the symbols received by antenna one over two consecutive time slots are given by

n Xy Wy
*

T

*

B
T n

Assuming that the receiver has knowledge of the channel coefficients, the decision

statistics are given by

12
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Adding all the decision statistics from all N receive antennas, the estimated symbols will
be a scale version. In order to estimate the symbols, we can scale the decision statistics.

This result presented above can be directly extended to other STBC codes.

—_ _]—_— — hl
=% | _[#u] \r —_— | Ty T,
: : IFFT FFT ||| : :

hy

= T, . e 15 64
Ty 64 1,64 1,64 2,64

SENMENS T T
: : IFFT FFT

* Z.
T 64 2,64
2nd 1st
symbol  symbol

Figure 2-4. Space-time block code in the MIMO-OFEDM system.

Figure 2-4 shows the STBC-scheme applied to a MIMO-OFDM system. In
MIMO-OFDM systems, STBC is used independently to each sub-carrier [17]. For the
convenience of explanation, two transmit antennas and one receive antenna are
considered. Let 7;, denote the kth received sub-carrier at the ith symbol duration. The

received data over two consecutive symbol periods at receiver one are expressed as

ny = h’lkxlk + h?,ka,k +w

. . (2.9)
Ty = —hy Ty + Iy p 0y + Wy

where h;,; is the channel frequency response for the kth sub-carrier from the ith
transmit antenna to the receiver and w; , is the noise term. The received data are then

rewritten in matrix form as

13



h’l,k h’2,k
hor  —hi

Wy k.

rlak; ka,

*

Tk

*

x2,k

(2.10)

where R, , X,, and W, are 2x1 vectors and H, is a 2x2 matrix. The received
symbols can be decoded by the STBC decoder with the estimated channel state

information (CSI). The data are then equalized by the following equation.

X, =H,'R, (2.11)

In contract with STBC scheme, $patial-division® multiplexing (SDM) technique is
used to achieve higher throughput [18]. With SDM;* multiple transmit antennas
transmit independent data streams, which can‘be individually recovered in the receiver.
An applicable method is required to ;separate-each fransmitted stream form other
transmitted streams (interference caneellation). Many approaches, such as zero-forcing
(ZF), minimum mean square error (MMSE), and maximum likelihood (ML) detectors,
are known for the detection of SDM signals. However, the computation complexity of
performing a full search for ML detection is too high to be suitable for practical
applications. In order to reduce the complexity, various MIMO detection methods, such
as sphere decoding technique [19] or K-best algorithm [20], have been proposed.
Different detection methods have different criteria, and therefore it is preferred to adopt

a reduced-complexity data detection scheme for MIMO systems.
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2.1.4 MIMO-OFDM Systems

OFDM has been shown to be an effective technique to combat multipath fading in
wireless channels [21]-[23]. It has been used in various wireless communication systems
such as wireless local area network (WLAN) and wireless metropolitan area network
(WMAN). OFDM is a multi-carrier technique that operates with specific orthogonality
constraints between the sub-carrier. OFDM is attractive since it admits relatively easy
solutions to some difficult challenges that are encountered when using single-carrier
modulation schemes on wireless channels. Due to the demand for high speed wireless
applications and limited radio frequency (RF) signal bandwidth, OFDM is being
considered in the standard that considers, MIMO systems, where multiple antennas are
used for the purpose of spatialmultiplexing or to"provide increased spatial diversity.

Figure 2-5 displays the.block diagram of the '4.x 4 MIMO-OFDM system. In the
MIMO-OFDM system, the incoming bit stream is first encoded by the one-dimensional
encoder (FEC encoder), and ‘then the encoded bits are mapped onto three dimensions
(time, frequency, and space) by the space-time coding. The receiver uses the preambles
to complete the synchronization, and transforms the signal from time to frequency
domain. Spatial streams are then demodulated to bit-level streams, which are
de-interleaved and merged into a data stream. Finally, the data stream is decoded by
the forward error correction decoder.

Although OFDM is robust against the multi-path propagation, it is very sensitive
to the non-ideal front-end effects that destroy the orthogonality between sub-carriers.
For example, OFDM is vulnerable to non-linearity, timing offset and frequency offset
[21]. Hence, MIMO-OFDM systems also inherit these disadvantages of the OFDM

modulation. In the following section, the non-ideal front-end effects will be discussed.

15
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Figure 2-5. Block diagram of the 4 x4 MIMO-OFDM system.

2.2 Non-Ideal Front-End Effects

The receiver architecture adopted in this work is based on the direct-conversion
architecture. A block diagram of the direct-conversion receiver is shown in Figure 2-6.
The direct-conversion receiver converts the carrier of the desired channel to the zero
frequency immediately in the first mixers [24]-[26]. Hence, the direct-conversion is often
called also as a zero-intermediate frequency (IF) receiver. Since the direct-conversion
receiver has no IF, the evident benefit of the this architecture is low hardware cost.
However, the direct-conversion receivers are sensitive to several non-ideal effects caused
in the front-end. These non-idealities will be covered in the following subsections.

In this work, the MIMO-OFDM system shares the local oscillator (LO) and the
sampling clock. In this way, the synchronization error is common to all receive branches,

resulting in a simplified implementation.
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Figure 2-6. Direct-conversion receiver.
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2.2.1 Effects of Carrier Frequency Offset

Basically, the band-pass signal y,.(t) at carrier frequency f can be expressed as

yrr(t) = Re {T(t)‘f%ﬁ’t}

= Re{r(t)}cos(27f.t) — Im {r(t)} sin (27 f.¢) (2.12)
= %[T(t)e%'f“t + 7 (t)e_%fct]

where r(t) is the complex baseband signal and the initial phase of the carrier is
neglected. Re{r(t)} and Im{r(¢f)} denote the in-phase component and the
quadrature component of r(t), respectively. Based on the direct-conversion receiver,

the down-converted signal is expressed as

17



Ypp(t)- 2T = [r(t)e%fct +r (t)e_%ff’t]e_%fct
(2.13)

= r(t) +r*(t)e TR
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Figure 2-7. (a) I/Q demodulation. (b) Signal spectrum.
After passing through the low-pass filters (LPFs), the complex baseband signal r(t) is
regenerated. The process (I/Q demodulation) in the spectrum domain is shown in

Figure 2-7.
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In practice, OFDM is sensitive to carrier frequency offset (CFO) due to the
mismatch of LOs between the transmitter and the receiver. The presence of CFO
introduces inter-carrier interference (ICI), which can degrade the system performance

significantly. When the system suffers from CFO Af, the received signal after

baseband processing is given by [27]

y(t) = r()e”™ + w(t)
= cos(2mAft)Re{r(