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Abstract (in Chinese) 

 

以複雜網路的型態來呈現複雜系統中的互動關係是一種方便且行之有年的研究

方法，包括在生物學、生態學、社會學等等的領域上，除了讓研究者有不同於以

往該領域傳統議題的新觀點外，許多新的方法也因此被提出來以解決在各種不同

複雜系統上的問題。其中，最重要也最具挑戰性的一個問題就是，如何將複雜網

路做分群(在社會學領域被稱之為共同體(community)或是群組(group)，在生物學

上被稱為基塊(motif)或是模組(module))。如何(1)找出模組，(2)階層性的組織，

及(3)這兩者對應到真實世界的關係，一直是研究者的焦點所在。儘管已經有一

些成功的研究，但是至今仍沒有一個標準的衡量方法可以來找出模組或是階層性

組織。以階層式組織來說，大多數的研究專注於其模組在不同階層上垂直面向的

關係之探討-其可用來表示"包含(inclusion)"，"因果(causality)"和"調控(regulation)"

關係;但往往忽略了其在同一階層上水平面向的關係之研究-其可用來提供給研

究者在某一階層上的網路的縮影(abstraction)或是骨架(backbone)。在本論文研究

中，我提出了一雙向式尋找模組及建構階層組織的方法，其同時考慮了各個模組

間垂直和水平的關係來建構出該複雜系統的金字塔階層(pyramid hierarchies)， 

此方法除了被人工網路驗證外，也被應用在生物及社會網路上，其結果顯示該方

法在擷取複雜系統之資訊上卓越的效能。 
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Abstract (in English) 

The use of nodes and links to assemble networks is convenient for representing 

interactions in complex systems. This benefits researchers in biology, ecology, 

sociology and other biological and social sciences. In addition to supporting 

alternative views of complex domains, network research is also supporting new 

methods for solving problems in a range of domains. One particularly important and 

challenging problem is partitioning networks into clusters (called communities or 

groups in social science research and motifs or modules in biology). Research in these 

areas has focused on identifying modules and hierarchical organizations that 

correspond to real-world meanings (e.g., biological functions or economic and 

political constraints). Despite a number of successful examples, no uniform measure 

of modularity or standard hierarchical structure exists. Most current descriptions of 

hierarchical organizations are limited to vertical relationships between modules at 

different hierarchical levels, thus overlooking horizontal relationships that express 

associations among modules at the same level. Vertical relationships can be used to 

represent inclusion hierarchies and to describe causality/regulation. Horizontal 

relationships complement these by providing abstractions of original networks of 

interest at various levels in a hierarchy (Fig. 1).  
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In this dissertation I describe a proposal for a two-way simultaneous module-finding 

and hierarchy-building strategy. I take both vertical and horizontal relationships 

between modules into consideration when building pyramid hierarchies in which each 

layer represents an abstraction of lower-level networks. This dissertation also contains 

descriptions of tests for this proposed approach, using networks consisting of 

anywhere from tens to hundreds of nodes and links, and in domains that include 

artificial random networks, social networks, and biological networks. The results 

demonstrate its performance for information mining from complex systems. 
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Chapter 1 Introduction 

Complex networks consist of sets of items called vertices or nodes and connections 

between them called edges. There are many examples of systems in the form of 

networks (also called ―graphs‖ in mathematics): the World Wide Web, the Internet, 

social networks (acquaintances or other connections), distribution networks (e.g., 

blood vessels, postal delivery routes), organizations and business relations, neural 

networks, metabolic networks, food webs, and research paper citations, among many 

others.  

The network concept is proving to be a very useful tool for studying complex systems 

[1-3]. While no general theory of complexity exists [2, 4, 5], there is a growing 

collection of related theories, paradigms, and tools, many of them associated with 

physics and mathematics [5, 6]. They support explanations of complex phenomena 

such as collective behavior observed in ferromagnetic phase transitions, herding 

behavior, disease epidemics, and opinion formation—all examples of local 

interactions that create global order [5, 7]. We also know that even very simple 

systems such as discrete logistic growth models (logistic maps) can display rich and 

complex dynamics. To a certain extent, self-organized criticality explains how some 
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systems manage to operate near criticality in the absence of fine-tuning [5, 8]. Fractal 

geometry helps explain how and why certain forms and structures in nature arise—for 

instance, vascular systems. As a new tool for studying complex phenomena, network 

theory uses a mix of statistical mechanics, graph theory, and dynamical systems 

theory [9-11]. 

The majority of network-related problems can be placed in one of two categories: for 

static networks, relationships between network structure and function, and for 

dynamic networks, global rules tied to network evolution [12-15]. In the following 

section I will introduce fundamental findings associated with these two categories. 
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Fig. 1. A pyramid of the complex network with vertical and horizontal 

relationships.  

1.1 Complex Network Topology 

Many systems in nature and technology consist of large numbers of highly 

interconnected dynamical units [2, 16]. Examples include coupled biological and 

chemical systems, neural networks, social interaction, and the Internet. An initial 

approach to capturing the global properties of such systems is to model them as 

graphs whose nodes represent dynamical units (e.g., neurons in the brain or 

individuals in a social system) and whose links represent interactions between units. 

Of course, this is a very strong approximation that requires translating interactions 
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between dynamical units (generally dependent on temporal, spatial, and many other 

details) into simple binary numbers designating the existence or lack of links between 

two corresponding nodes. Such approximations provide simple yet informative 

representations of whole systems. The development of powerful and reliable data 

analysis tools represent better mechanisms for exploring the topological properties of 

multiple networked systems, thus supporting topological analyses of interactions in a 

diverse range of systems (e.g., communication, social, and biological). These efforts 

reveal that despite inherent differences, most real networks have the same topological 

properties [1, 5]. The most significant are the small-world effect, degree scale-free 

distributions, correlations, and clustering. 

 

1.1.1 Randomness 

The first non-regular network model [17, 18] was introduced by Paul Erdös and 

Alfred Rényi in the late 1950s [19]. In this dissertation I will variously refer to this as 

the random model, the Erdös-Rényi model, or the ER model. The ER model of a 

random network starts with N nodes and connections between pairs of nodes at a p 

probability, resulting in graphs with approximately N(N–1)/2 randomly placed links 

(Fig. 2, part Aa). Node degrees follow a Poisson distribution (Fig. 2, part Ab), 
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indicating that most nodes have approximately the same number of links (close to the 

average degree <k>). The tail (high k region) of the P(k) degree distribution decreases 

exponentially, indicating the rarity of nodes that significantly deviate from the 

average. 

 

1.1.2 Small-world property 

This property was first investigated in the 1960s in a social context, as part of a series 

of experiments designed by Milgram [20, 21] to estimate the number of steps in 

acquaintance chains. In his first experiment, Milgram asked randomly selected people 

in Nebraska to send letters that would eventually arrive at the home of an individual 

living in Boston, identified only by his name, occupation, and city of residence. The 

step-by-step letters could only be sent to individuals that the current sender knew by 

first name, and who were presumably closer to the final recipient. Milgram kept track 

of the paths followed by the letters and of the demographic characteristics of their 

handlers. At the time of these experiments, the commonly held belief was that it 

would take hundreds of steps for letters to reach their final destination, but Milgram 

found that the number of links needed to reach the targeted individual was six. Dodds 

et al. [22] have recently replicated Milgram‘s experiment using e-mail, completing 
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enough connecting chains so as to allow for a thorough statistical characterization. 

The small-world property has been observed in a variety of real networks (including 

biological and technological [2, 4, 23]), and is now an accepted mathematical 

property in some network models (e.g., random graphs). 

In 1998, Watts and Strogatz [21] proposed a new model for explaining small path 

lengths and large clustering coefficients that are independent of network size—two 

properties shared by many real networks. According to their model, the first step is to 

construct a network with a one-dimensional ring lattice of N nodes (or d-dimensional 

regular lattice) in which each node is wired to its neighbors up to kth nearest neighbor. 

Such regular lattices have high average path lengths. Decreasing those lengths 

requires the rewiring of each link with a p probability to another randomly picked 

node—a process that establishes long-range connections. A small-world network 

displays characteristics of a regular lattice for very small p values and an ER network 

for very large p values, meaning that small-world networks lie somewhere between 

order and randomness. Average path length in a small-world network is expressed as  

 ),( pN ∝ )( pKNf
K

N
                                               (1.1)  

uu

u

uu
uf

4
tanh

4

4
)(

2

1

2 
     for u >> 1 or u << 1.                  (1.2) 

This function is a constant for u << 1, and behaves as ln(u)/u for u >> 1. Accordingly, 
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the clustering coefficient for small-world networks is CSW ∝ (1 − p)3. 

Small-world networks share some properties with a number of real networks. 

However, their degree distribution has a pronounced peak at <k> = K and 

exponentially decaying wings for large k, thereby distinguishing them from the power 

law degree distributions of networks such as the WWW, the Internet, and many social 

networks. 

 

1.1.3 Scale-free distributions 

Many scale-free networks are characterized by a power-law degree distribution [24] in 

which the probability that a node has k links follows P(k) ~ k–γ, where γ is the degree 

exponent. The probability that a node is highly connected is statistically more 

significant than in a random graph(see Fig. 2, part Ba), with network properties often 

determined by a relatively small number of highly connected nodes known as hubs. In 

the Barabási–Albert scale-free model network model [24], a node with M links is 

added to the network at each time point and connects to an already existing node I 

with probability JJII
kk   /

, where k is the degree of node I and J the index 

denoting the sum over network nodes. The network generated by this growth process 

has a power-law degree distribution characterized by the degree exponent γ = 3, a 
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distribution represented by a straight line on a log–log plot (see Fig. 2, part Bb). The 

network created using the Barabási–Albert model [24, 25] does not have an inherent 

modularity, meaning that C(k) is independent of k. Scale-free networks with degree 

exponents 2<γ<3(a range that is observed in most biological and non-biological 

networks) are ultra-small, with average path lengths that follow l ~ log log N. This is 

significantly shorter than log N, which is characteristic of  random small-world 

networks [21]. 

 

Fig. 2. The comparison between the random network and the scale-free network. 

1.2 Complex Network Structure 

1.2.1 Motifs 

A motif (M) is a pattern of interconnections occurring in either directed or undirected 
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graphs (G) at a number that is significantly higher than in randomized versions (i.e. in 

graphs with the same number of nodes, links and degree distribution as the original 

one, but where the links are randomly distributed) [16, 26]. As a pattern of 

interconnections, M is usually expressed as a connected (undirected or directed) 

n-node graph that is a subgraph of G. All the possible three-node connected directed 

graphs are illustrated in Fig. 3. 

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 

Motif 

             

Fig. 3. 13 possible of triad motifs defined by Alon. 

The concept of motifs was originally introduced by Alon et al.[16] who studied small 

n-node motifs in biological and other networks. Significant motif research in a G 

graph consists of matching algorithms – that is, counting the total number of 

occurrences of each n-node subgraph M in the original graph and in the randomized 

graphs. The statistical significance of M is then described in terms of Z-score, defined 

as  

rand

n

rand

MM
M

M

nn
Z






                                        (1.3) 

Where nM is the number of times subgraph M appears in G, and  rand

Mn  and 
rand

nM
  

are the mean and standard deviation for the number of appearances in the randomized 
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network ensemble. 
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1.2.2 Communities 

Community and the first network formalizations of the concept were proposed by 

social scientists. Given a graph G(N, L), a community (or cluster, or cohesive 

subgroup) can be expressed as subgraph G�(N‘, L‘), whose nodes are tightly 

connected, i.e. cohesive. Since the structural cohesion of the nodes of G� quantified in 

several different ways, there are different formal definitions of community 

structures(Fig. 4)[27-29].  

 

Fig. 4. Communities can be defined as groups of nodes such that there is a higher 

density of edges within groups than between them.  

 

1.2.3 Hierarchical modularity 

To account for the coexistence of modularity, local clustering and scale-free topology 
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in many real systems, one must assume that clusters combine in an iterative manner to 

generate hierarchical networks (Fig. 5, part A). The starting point for such 

construction is a small cluster of four densely linked nodes (e.g., the four central 

nodes in Fig. 5, part A). Next, three module replicas are generated and three external 

nodes of the replicated clusters are connected to the central node of the old cluster, 

thereby producing a large 16-node module. After generating three replicas of this 

16-node module, the 16 peripheral nodes are also connected to the central node of the 

old module, producing a new 64-node module. The hierarchical network model 

seamlessly integrates a scale-free topology with an inherent modular structure by 

generating a network that has a power-law degree distribution with degree exponent γ 

= 1 + n4/n3 = 2.26(see Fig.5, part B) and a large, system-size independent average 

clustering coefficient <C> ~ 0.6. A hierarchical architecture implies that sparsely 

connected nodes are part of highly clustered areas, with communication between the 

different highly clustered neighborhoods being maintained by a few hubs (see Fig. 5, 

part A)[30]. 
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Fig. 5. The hierarchical network and its degree distribution. 

 

1.3 Network Dynamics 

Since actual complex networks are not necessarily static, simulating and/or studying 

the dynamics of the complex networks is a difficult task. The following methods can 

be used to address this problem in different domains. 

  

1.3.1 Cellular automata 

Cellular Automata (CA) [31]are simple examples of discrete dynamical systems. A 

cellular automaton consists of a regular cell grid consisting a finite number of states. 

Each ell state during time step t+1 is determined by states of cells in time step t. In the 

example shown in Table 1, a one-dimensional, two-state cellular automaton (i.e., a 
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bit-string CA) can be defined using the update rule defined in Table 1. In this example, 

the state of a cell is determined by its own state and the states of its nearest neighbors. 

This type of automaton can easily be schematized as a directed network in which each 

cell takes inputs from two neighboring cells. 

The time evolution of the cell states occur in discrete time steps with synchronous 

update. Cellular automata are used to model several phenomena (e.g. pattern 

formation) and to study various complexity theory concepts. Many types of cellular 

automaton have been proposed, including random Boolean network and random 

threshold networks.  

 

Three-cell 

block (t)  

000 001 010 011 100 101 110 111 

Center-cell 

(t+1) 

0 1 0 0 1 1 1 0 

Table. 1. An update rule for a one-dimensional, two-state cellular automaton. 

 

1.3.2 Preferential attachment 

Preferential attachment [24] describes the preference of new nodes to link with more 
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connected nodes. Hubs are generated via ‗a rich-gets-richer‘ mechanism consisting of 

growth and preferential attachment: the more connected a node is, the more likely 

new nodes will link to it, meaning that highly connected nodes acquire new links 

faster than their less connected peers. This mechanism ensures simultaneous the 

scale-free and hub properties. 
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Chapter 2  Static Networks and Dynamic 

Process Characterization and analysis  

No network in nature or technology is totally random—in other words, other 

non-random mechanisms shape their evolution. The universality of various 

topological characteristics, from degree distributions [25] to degree correlations [5, 

22], motifs [16], and communities [2, 32], can be used as a springboard for studying 

diverse phenomena and making predictions. Network theory has therefore 

fundamentally reshaped our understanding of complexity. Even though researchers 

still lack a universally accepted definition of complexity[32], the role of networks in 

this area is obvious: all complex systems, from cells to the Internet and from social to 

economic, consist of an extra-ordinarily large number of components that interact via 

complex networks. We have long been aware of these networks, but only recently 

have we acquired the data and tools to probe their topologies, thus giving us a clear 

understanding of the strong impact of underlying connectivity on a system‘s behavior. 

As a result, no single approach to complex systems can succeed unless it exploits 

network topology. 

The requirements of any new theory of complexity require an understanding of the 
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behavior of systems that we perceive as being complex. We must be capable of 

predicting how the Internet will respond to attacks and traffic jams, and how cells 

react to environment changes. Progress in this direction demands an understanding the 

dynamics of processes, a task made more difficult by the large number of dynamical 

phenomena-almost as many as complex systems. Examples include the biological 

study of reaction kinetics using metabolic networks, monitoring the flow of 

information on computer networks; and exploring the spread of viruses and ideas via 

social networks.  

A major challenge is determining common characteristics among these diverse 

dynamical processes. In this dissertation I will describe two approaches for 

responding to this challenge: 

For static networks, find relationships between network structure and function. I will 

describe such relationships for two types of motifs in Chapter 3, and for network 

hierarchy in Chapter 6 

For dynamic networks, find global rules during network evolution. I will discuss 

friendship evolution using three-rule model in Chapter 4 and epidemic dynamics with 

limited resources in Chapter 5. 

 



 

18 

 

2.1 Network Motif Detection 

Commonalties have been found by complex network researchers in fields ranging 

from biology to social and computer sciences. Three global features in complex 

networks have been identified and investigated: highly clustered connections [1, 5], 

small-world properties [1, 21], and the scale-free phenomenon [5, 7]. Approaches 

based on quantitative and qualitative analyses of the topological properties of 

complex networks are serving as the basis for studying how the global features of 

network topological structures affect the dynamic behavior of networks [16, 33, 34]. 

This is currently considered one of the field‘s most important and challenging 

research topics [35, 36]. 

Some local structural motifs (also referred to as building blocks) reveal unique and 

statistically significant patterns when compared with random [16], biological [1], and 

food web [16, 26] motifs; all are perceived as containing important information. 

However, the simple motifs of complex networks that are statistically significant but 

functionally unimportant are inadequate for investigating network functions and 

dynamic behaviors [16, 26]. In this dissertation, I will describe an algorithm that 

simultaneously (a) detects global features and local structures in complex networks, 
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and (b) identifies functionally and statistically significant network building blocks 

from complex networks [37]. 

When considering the global features and local structural motifs of biological 

networks, it is worth noting that link properties (weights) exert strong impacts on 

network functions and dynamic behaviors [38-42]. Examples include the role of weak 

links associated with the six degrees of separation (i.e., small-world) effect of 

interpersonal networks [40, 41], and the strength of predator-prey interactions that 

determine the stability of ecological communities [38]. Network researchers have 

reported that weighted values representing interaction strength can be assigned to all 

links (edges) in a real network [39, 43, 44]. I therefore considered network motif link 

strength in terms of bridge motifs (consisting of weak links only or a minimum of one 

weak link) and brick motifs (consisting of strong links only) (Fig. 6). Network motifs 

can be separated into two categories: bridge and brick. Using the three-point 

feed-forward motif as an example, it can be divided into two categories: a three-point 

feed-forward brick motif (left box) composed of three strong (red) links, and a 

three-point feed-forward bridge motif (right box) composed of at least one weak (blue) 

link and a maximum of two strong (red) links as Fig. 6 shows. Bridge motifs connect 

clusters and reduce the average degree of separation, while brick motifs exhibit the 
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phenomenon of local clustering in biological networks. 

 

Fig. 6. Network motifs example.  
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2.1.1 General: Bridge and Brick Network Motif-Detecting 

Algorithm 

As shown in Figure 7, a link-weighted value that is dependent on the number of all 

possible paths between two linked nodes equals the summation of the reciprocal 

values of all possible path lengths except for the link itself. This is expressed as  


i i bapathlength

baweight
)),((

1
),(                                    (2.1) 

where pathI(a, b) indicates the i th path from node a to node b; pathi(a, b) ≠ edge(a, b); 

and length(pathi (a, b)) ≤ average network diameter. The length of one path represents 

its total number of nodes.  

Average network diameter =

2

)1|(|||

),(
,






NN

bathShortestPa
baNba

             (2.2) 

ShortestPath(a, b) = Min(length(pathi (a, b))) 

 

 

Fig. 7. Link-weighted value calculating example. The link-weighted value weight 
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(a, b) of edge (a, b) is 0 while weight (b, c) 

This definition implies clustering, with any increase in the number of possible paths 

resulting in an increase in the clustering degree between two linked nodes. 

Furthermore, the concepts and algorithms discussed in this dissertation are 

generalizable to non-directed networks. To ensure that the proposed method can be 

applied to any complex network, the link-weighted values calculated by the network 

motif detection method are derived from the number of all possible paths between two 

linked nodes within all network topological and local connection structures (no preset 

link quantity). This definition is similar to that of betweenness [43, 45]—effects 

resulting from the removal of network links. Accordingly, the proposed link-weighted 

value calculation method is assumed to represent the importance of each link in a real 

network [46, 47]. 

Also considered were the interactive strengths of individual links in a quantitative real 

network. To validate the proposal for weighted links, they were compared with 

quantitative links. However, interactive quantitative links are defined by 

category-specific functions such as proteins, genes, species, and so on. It is difficult to 

specify the overall impacts of these links on protein-protein interaction networks [48] 

and food webs. For example, the number of links between tigers and wild oxen does 
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not reflect the significance of their connection within an overall food web. 

Furthermore, each complex network type has its own measure for interactive strength. 

A switching algorithm (i.e., AB, CD becomes AD, CB if AD and CB 

do not exist) was used to create random networks according to any given degree 

sequence [16, 26]. Results from previous studies indicate that these random networks 

have the same number of nodes and edges, as well as node in-degrees (incoming 

edges) and out-degrees (outgoing edges) that are identical to those of real networks. 

Furthermore, randomized networks preserve the same number of appearances of all 

(n-1) node subgraphs as in real (original) networks [16]. The threshold that 

determines the strength of an edge (link) is the mean weighted value of all edges in a 

random network ensemble. Accordingly, 1,000 random networks were generated to 

serve as a control. Edges were labeled ―weak‖ when their weighted values in these or 

real networks were smaller than the threshold minus a double standard deviation (p = 

0.01); all other edges were labeled ―strong.‖ Researchers can define criteria for strong 

and weak links according to their own needs. Finally, all possible motifs were located, 

and their distributions in real and random networks were compared. 

Milo et al.‘s method [16] for identifying bridge and brick motifs in complex networks 

was expanded to include the following steps: 



 

24 

 

1. Calculate the weighted value of each link in a network of interest and an ensemble 

of random networks to calculate the significance of n-node subgraphs. The goal is to 

maintain the same number of appearances for all (n – 1) node subgraphs as in the 

original network. 

2. Label all weighted links in the network of interest and random network ensemble as 

―strong‖ or ―weak‖ according to a benchmark of two standard deviations from the 

mean weighted value of all links in the ensemble. Links with weighted values below 

the benchmark are considered weak. 

3. Identify all n-node bridge/brick subgraph types in the network of interest and 

random network ensemble. 

4. Mark all n-node bridge/brick subgraph types by calculating their numbers in the 

network of interest and random network ensemble. Each n-node bridge/brick 

subgraph type is selected as a representative motif only if its frequency in the network 

of interest far exceeds its frequency in the ensemble. 

These steps can assist research efforts to understand the functions and roles of 

identified motifs in a real network and to analyze the dynamic behaviors of complex 

networks. Regarding method robustness, the proposed approach emphasizes the 

global and local topological properties of each real network rather than the specific 
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functions of different network types. 

Motif frequency can be used to measure levels of similarity between two networks of 

interest. In addition, it is possible to calculate the Z-scores for all bridge/brick motifs 

and significance profiles (SPs) in a network by expanding Milo et al.‘s [26, 49, 50] 

methods. As shown in the following formula, ZScore(Bridgei) represents the statistical 

significance of the i
th

 kind of bridge motif in a network: 

( ) ( )
( )

( ( ))

real i random i

Score i

random i

N Bridge N Bridge
Z Bridge

STD N Bridge

  


    (2.3) 

where Nreal(Bridgei) represents the time of appearance of the i
th

 type of bridge motif in 

a network, and <Nrandom(Bridgei)> and STD(Nrandom(Bridgei)) respectively represent 

the mean and standard deviation of the time of appearance of the i
th

 type of bridge 

motif in a randomized network ensemble. In the next equation, SP(Bridgei) is the 

vector of ZScore(Bridgei) normalized to a length of 1. This normalization emphasizes 

the relative significance of the i
th

 type of bridge motif rather than the absolute 

significance. ZScore(Bricki) and SP(Bricki) can be derived in the same manner: 
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2.1.2 Specific: Bridge and Brick Network Motif-Detecting 

Algorithm 

The previous method we proposed has solved some problems in different domains 

successfully. However, since the concept of ―neighborhood‖ is very useful for 

identifying the motifs or modules in biology. Another version of bridge and brick 

network motifs is proposed for this specific domain. To ensure that the concepts and 

methods described in this paper can be applied to any complex biological network, the 

link-weighted value Link(v, w) for any edge between nodes v and w is expressed as its 

hypergeometric coefficient Cv,w [51]. This value, which is frequently used to measure 

cluster enrichment and co-occurrence significance, is expressed as: 

min( ( ) , ( ) )
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where |N(x)| is the neighborhood size of node x and T the total number of nodes in the 

biological network of interest. The summation in the hypergeometric coefficient Cv,w 
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can be represented as the probability of obtaining a number of mutual neighbors 

between nodes v and w at or above the observed number when the neighborhoods are 

independent. The hypergeometric coefficient Cv,w is consequently defined as the 

negative log of this summation. Given the neighborhood sizes of the v and w nodes 

and the T total number of nodes in the biological network, the higher the value of Cv,w, 

the higher the number of overlapping neighbors between v and w—an indication that 

Link(v, w) has a higher clustering coefficient. Otherwise, it does not belong to any 

specific cluster (Fig. 8). Different link definition differs between the general algorithm 

and the specific algorithm for detecting bridge and brick motifs, other parts are all the 

same.  

 

Fig. 8.  The small-world model. Black signifies strong links and red weak links. 

 

2.2 Social Network Simulation 

Davidsen et al. [52] have proposed a two-rule acquaintance network evolution model. 
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The first rule addresses how people make new friends (via introductions or 

meetings-by-chance), and the second rule addresses how friendships are broken when 

one party dies. The model entails a fixed number of N nodes and undirected links 

between pairs of nodes representing individuals who know each other [53]. To reflect 

friendship weakening and strengthening, I added a ―friend remembering‖ rule (Fig. 9). 

The model repeats the following three rules until the acquaintance network in 

question reaches a statistically stationary state:  

Rule 1 (friend making). Randomly chosen individuals introduce two friends to each 

other. If this is their first meeting, a new link is formed between them. Randomly 

chosen persons with less than two friends introduce themselves to one other person at 

random. Note that the term ―introduce‖ is used to describe meetings by chance as well 

as meetings via a common friend.  

Rule 2 (leaving and arriving). At a p probability, a randomly chosen individual and all 

associated links are removed from a network and replaced by another person. 

Accordingly, acquaintances can be viewed as circles of friends whose members can 

leave for reasons other than death and enter the circle for reasons other than birth.  

Rule 3 (friend remembering). A certain number of friendships are updated, with the 

number depending on an update proportion b. This proportion and updating will be 
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explained in detail in the following two sections. 

 

Fig. 9. Three-rule model flow diagram. 

 

2.3 Epidemic Dynamics Analysis 

The state transfer concept of SIS models adopted by Pastor-Satorras [54, 55] was 

applied as the core simulation model architecture. Parameters were incorporated to 

simulate behavioral and transformative results arising from agent interactions [56-60]. 

Each agent (node) in a complex network owns a set of properties and behavioral rules 

that are used to demonstrate the features and statuses of persons in social networks or 

computers connected to the Internet. A link between two nodes means that the 

connected agents have a close relationship or share a specific 
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interaction/communication channel. An infectious disease or computer virus can be 

transmitted via this link. At each discrete time step, the epidemiological state of each 

node is determined by its behavioral rules, original epidemiological state, neighbors‘ 

epidemiological states, infection rate, and recovery rate. As stated above, ρ(t) is 

defined as the density of infected nodes present during time step t. When time step t 

becomes infinitely large, ρ can be represented as a steady density of infected nodes. A 

computational flowchart for the proposed simulation model is shown in Figure 10. A 

complex network G(N, M) with N nodes and M links was constructed using the 

algorithm described previously prior to setting relevant parameters and attributes for 

the nodes involved in the simulation; discrete time t was set at 0. During simulations, 

nodes take turns interacting with neighboring agents for specified time intervals. Note 

that individual agent interactions do not result in immediate influences, and that 

simultaneous state changes only occur when all agents in a complex network 

complete their interactions. Accordingly, interaction sequences do not influence 

interaction processes or results. 

At the beginning of each discrete time step, the usable economic resources of each 

agent vi are reset to R(vi), meaning that all agents renew and/or receive supplemental 

resources. For example, the energy levels of most individuals are revived after a night 
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of sleep. In our later experiments, the statistical distribution of individual economic 

resources could be delta (rConstant), uniform, normal, or power-law, as long as the mean 

value <r> satisfied: 
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At each discrete time step, each vj agent interacts with one agent selected from all of 

its Neighbors(vi). After the interaction process is completed, agents vi and vj must 

have transmission costs c(vi) and c(vj) (0 ≤ c(vi) ≤ R(vi) and 0 ≤ c(vj) ≤ R(vj)) deducted 

from their respective economic resources, regardless of the interaction result. If R(vi) 

< c(vi) after the interaction, agent vi cannot interact with other neighbors because all 

of its resources have been used up. Otherwise, it repeats the interaction process by 

choosing another neighboring agent until its resources are exhausted.  

Assume that infected and contagious agent vi is adjacent to susceptible and 

infection-prone agent vj. When the two agents come into contact, a combination of 

infection rate RateInfect, agent vj‘s resistance level, and a random number r 

determines whether or not vj is infected by vi. If the random number r is lower than 

the infection rate RateInfect, agent vj‘s epidemiological state becomes I (Infected). 

Simultaneously, infected agents are cured and become susceptible at a RateReset 
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recovery rate. Without a lack of generality, recovery rate RateReset can be assigned as 

1, meaning if agent vj is infected by other agents at discrete time step t – 1, it will 

recover and once again become susceptible at discrete time step t, since it only takes 

affect according to the definition of the infection disease propagation time scale. At 

the beginning of an infectious disease simulation, only ten individuals were given I 

status; all others were given S(Susceptible). During each time step, agents randomly 

interacted with several neighbors. All epidemic experiments discussed in this paper 

represent average values for 30 runs. 
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Fig. 10 Flowchart for a SIS epidemiological simulation model. 

 

2.4 Abstraction Hierarchy 

The proposed two-way method is considered novel because it emerges from top-down 

and bottom-up clustering algorithm synergy [61, 62]. Not only does it identify 

modules in a top-down fashion and construct a hierarchy implied in a complex 

network from the bottom up, it also produces network abstraction to different degrees 
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at different levels in the hierarchy. The method consists of three steps: (i) computing 

between-node proximity, (ii) extracting the backbone(represented by a spanning tree) 

from the network and using it to partition the network [28, 63], and (iii) generating an 

abstract network. Iteratively applying the same steps to a newly generated abstract 

network supports the discovery of an abstraction hierarchy within a complex network 

[2, 64]. 

 

2.4.1 Proximity Measure 

Proximity between two nodes can be defined in many ways; since it affects resulting 

module formation, selecting an appropriate proximity function is very important. 

Commonly used measures include Euclidean distance, correlation coefficient and 

cosine similarity [65, 66]. Module analysis is problem-dependent as stated earlier, in 

this dissertation I investigate clustering based on network topology. Conventional 

proximity measures are not applicable to clustering problems if network topology 

represents the only available information-that is, Euclidean distance cannot be 

calculated without node coordinates. Other proximity measures( e.g. edge 

betweenness [45] and topological overlap[65, 67, 68]) have recently been proposed 

and examined in studies of social, metabolism, protein-protein, and gene networks. 
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While some successful applications have been reported, they have at least two 

limitations: (a) edge betweenness of node pairs reflects the global characteristics in a 

network, but they suffer from high computational costs [64] and are affected by the 

network incompleteness and noise [32, 64]; and (b) sine topological overlap is a local 

measure, it poses a challenge to identifying any module beyond a locally dense 

connectivity pattern [69]. 

Most proximity measures in current use do not take link direction or weight into 

account. Therefore, any directed weighted network is processed as an undirected 

unweighted one. To expand its applicability, I propose using a new proximity function 

for dealing with directions and weights. For the sake of simplicity, I will describe a 

directed weighted network of n nodes by an nn adjacency matrix A, in which each 

element Aij is the weight of the link from node i to j. A zero-valued weight (Aij=0) 

indicates the absence of a link between those nodes. The proximity function prox(i,j) 

from node i to j, i  j is defined as: 
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where Wi
out

 is the total of the weight of all outgoing node i links. The proximity 
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function considers not only the effects of common neighbors (i.e. node k), but also 

link direction and weight. It treats the direct link from node i to j differently than 

indirect paths between the same nodes through a common neighbor k. The weight of 

the direct link contributes to prox(i, j), as indicated by the first term in the above 

equation. To calculate i-to-j proximity based on an indirect path from i to j by way of 

k, I divided the path into two sub-paths, from i to k and from k to j. Assuming on an 

indirect path one node does not always affect all its neighbors, but instead acts 

probabilistically. Thus, the probability that one node affects another(e.g. i affects k) is 

defined as the ratio of the link weight between them to the sum of the weights of all 

outgoing links from node i, not including the direct link from i to j. The probability of 

an indirect path from i to j by way of k is therefore the product of the probability of 

paths from i to k and the path from k to j. The proximity between i and j contributed 

by the indirect path ikj is assigned to the probability times the minimum of Aik and 

Akj. In cases where there is more than one common neighbor of i and j, the sum of the 

proximity of each indirect path is used. 

The examples shown in Fig. 11 illustrate our proximity function and compare it with a 

related measure, topological overlap [67, 68, 70]; both take common neighbors into 

consideration. The topological overlap measure Tij between node i and node j (i  j) is 
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defined as follows: 



Tij 
lij  aij

min( di,d j )1 aij ,                                           (2.10) 

where lij is the number of common neighbors shared by node i and j, di is the degree 

of node i, and aij=1 if a direct link exists between i and j (otherwise, aij=0). The 1- aij  

quantity in the denominator prevents the denominator from becoming zero in case 

where min(di,dj)=0. The inclusion of aij in the numerator is to make Tij explicitly 

dependent on the direct link between i and j. 

Given the network in Fig. 11A, Tac=0.5 and prox(a,c)=1. To evaluate the effects of 

direct links, one direct link was added between nodes a and c (Fig. 11B). If we 

compare the network to a gene regulation model, a can be interpreted as a regulator, b 

as an intermediate gene, and c as a target. Since gene a can regulate gene c either 

directly, or through the intermediate gene b, the proximity between a and c in Fig. 

11B should be higher than that in Fig. 11A. Increase in proximity were found in both 

measures-that is, Tac=1 and prox(a,c)=2 vs. Tac=0.5 and prox(a,c)=1. The network 

shown in Fig. 11C is different from the one in Fig. 11A in that node a and b both have 

more neighbors. Considering the network as a model of gene regulation, it means that 

gene a and gene b in Fig. 11C have more possible targets. Consequently, the influence 
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of gene a on gene c may be diminished. For node a and node c in Fig. 11C, prox(a,c) 

decreases to 1/12, which corresponds reasonably to the gene network model. In 

contrast, according to the topological overlap measure, the proximity between nodes a 

and c is 0.5, which is the same as that in Fig. 11A. Topological overlap measure fails 

to distinguish between Fig. 11A and 11C. To complete the illustration, we added one 

direct link between a and c, and created the network shown in Fig. 11D. An increase 

in proximity results from either measure. 

Even though the proposed proximity function is a local measure(similar to topological 

overlap), it shows better discrimination in network topology and requires less in 

computational costs than global measures such as edge betweenness. Incorporating 

the proximity function into a two-way module-finding and hierarchy-building strategy, 

it is possible to gather global characteristics and to detect the hierarchical structure of 

a network. We validated our approach using hierarchically nested random networks as 

in (11); a detailed description of the results will be given in later sections.  
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Fig 11. Four simple networks to illustrate proximity measures.  

 

Extracting Network Backbone and Partitioning Network 

An optimal solution for network partitioning (based on a criterion function) emerges 

after enumerating all possibilities, but it is computationally prohibitive for large 

networks. In response to this problem, a graph-theoretic approach to partitioning was 

adopted [71]. After computing the proximity between all node pairs, it is possible to 

build a maximum spanning tree that includes all network nodes, which are all 

connected with the maximum link proximity sums. Since links with less significant 
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proximities are discarded, the maximum spanning tree acts as the network backbone. 

To reduce computational costs, partitioning is performed based on the maximum 

spanning tree instead of the original network.  

Two subtrees can be obtained by removing one link from a tree, with each subtree 

representing one module. One tree can be partitioned into many subtrees (i.e. 

modules/clusters) by repeating the same process on each subtree. Given the maximum 

spanning tree, resulting modules can be examined by removing one link from a 

(sub)tree. A link is selected for removal if the M={M1,M2,M3,…,Mn} set of modules 

meets the following criteria after removal: 



Ma,Mb  M, a  b     Sint ra

Ma  Sint er

Ma,Mb

 and 



Sint ra

Mb  Sint er

Ma,Mb

            (2.11)               

Where 



Sint ra

M k

=



Ai, j
i, jCk


is the sum of the proximity of each intralink within Mk, and 



Sint er

Ma,Mb

=



Ai, j
iCa, jCb


is the sum of the proximity of each interlink between Ma and Mb. 

These criteria for modules are similar to those described in [64] and [72], except that 

link weight (i.e., proximity) is considered instead of node degree. The simple example 

network shown in Fig. 12 demonstrates the advantage of using the link weight criteria. 

Without taking the weight into account, intuitively the most appropriate partition of 

the network is to cut the link between node C and node F, and obtain two modules. 

According to some previous module definitions [67, 72] that consider the degrees of 
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nodes only, the simple network will be partitioned in the way above. However, in 

practice, if the weight represents the significance of connectedness, the network 

should be considered as a whole. Our criteria for modules take weights into account; 

therefore, the network cannot be divided based on our criteria. In the case of an 

unweighted network, by treating each link as one with a constant weight, e.g. one, this 

simple network will be partitioned into two modules as expected according to our 

criteria. Without losing generality, this simple network demonstrates that our criteria 

for modules are more realistic, and can subsume the previous definitions of modules 

[72]. Note that the proximity sum is calculated for the network rather than the tree, 

thus preventing information loss. In the proposed model, the tree is only used for 

evaluating which nodes may form clusters, thus reducing the search space of the 

original network. 

 

 

Fig 12.  A simple undirected weighted network.  
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Pseudocode for the partitioning procedure is shown below, starting with a single 

module represented by a maximum spanning tree. The input includes the network Net 

in question; M1 is its maximum spanning tree. The output consists of partitioning 

result in clusters. 

 

Procedure Network_Partition (Net, M1)   

M={M1}     //M keeps the modules for further analysis 

Repeat 

{ 

Select a cluster Mi  M, and remove Mi from M. 

Put Mi into D.   //D stores the final clusters 

Put all the links of Mi in Li. 

While (Li is not empty) 

{ 

Set the link in Li with min proximity as lmin. 

Remove lmin from Li. 

Generate two modules (i.e. subtrees) Ma and Mb by removing lmin from Mi. 
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Add Ma and Mb to M. 

If M does not satisfy criteria [4] 

{ 

Remove Ma and Mb from M.  

Restore lmin to Mi. //put the link lmin back to the tree Mi 

} 

Else  

{ 

Remove Mi from D. // because Mi is legally split into Ma and Mb 

Break;   //break out of While loop 

} 

} until M is empty. 

Output D. 

2.4.2 Network Abstraction 

After the partition of the network, each module is treated as a supernode [7, 73] and a 

network of the supernodes is viewed as an abstraction of the original network. An 

abstract network reveals the general framework of the original network without any 

loss of principal characteristics. The proximity between a pair of supernodes (e.g. 
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module Ma and Ma) is defined as 







ba

ba
MnMm

MMbaer nmproxMMprox
,

1
sup ),(),(

  (2.12)

     

where |Ma| is the number of nodes in module Ma. Proximity between all possible 

supernode pairs are computed and normalized to a z-score. Links that have z-scores 

below a pre-set threshold are considered insignificant and therefore discarded. The 

resulting supernode network (an abstraction of the original network) is placed one 

level higher than the original network in the hierarchy. By repeating the same process 

with other networks in the hierarchy, it is possible to generate additional abstract 

networks and to consistently and systematically build a pyramid of abstraction from 

the bottom up(Fig. 1). 
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Chapter 3 Network motif Experiments 

Researchers are making progress toward defining organizing principles that govern 

the formation and evolution of complex biological networks. Considered a major 

challenge in computational system biology, predicting network behaviors [74] and 

functions requires the identification of functionally and statistically important motifs. 

To understand their structural organizing principles and evolutionary mechanisms, 

bridge motifs can be defined as consisting of weak links only or at least one weak link 

and multiple strong links; brick motifs can be defined as consisting of strong links 

only. Next, an algorithm is proposed for performing two simultaneous tasks: detecting 

global statistical features and local connection structures in biological networks, and 

locating functionally and statistically significant network motifs. 

 

3.1 General: Bridge and Brick Network 

Motif-Detecting Algorithms 

Commonalties have emerged from studies of complex networks in fields ranging from 

biology to social and computer sciences. Three global features in complex networks 

have been identified and investigated, including highly clustered connections [21, 39, 
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75], small-world properties [21, 75-78], and the scale-free phenomenon [1, 24, 39, 79]. 

Approaches based on quantitative and qualitative analyses of the topological 

properties of complex networks are being utilized to study how the global features of 

network topological structures affect the dynamic behavior of networks [1, 39, 80-84] 

39-40]. This is currently considered one of the field‘s most important and challenging 

research topics [1, 39]. 

Some local structural motifs (building blocks) reveal unique and statistically 

significant patterns when compared with random [16, 80, 85-90], biological [16, 87], 

and food web [16, 38] motifs; all are thought to contain important information. 

However, simple motifs of complex networks that are statistically significant but 

functionally unimportant are clearly inadequate for investigating network functions 

and dynamic behaviors [16, 82, 88, 90-93]. An algorithm is therefore proposed to 

perform two tasks: simultaneously detect global features and local structures in 

complex networks, and identify functionally and statistically significant network 

building blocks from complex networks. 

When considering the global features and local structural motifs of biological 

networks, it is worth noting that link properties (weights) exert strong impacts on 

network functions and dynamic behaviors [38-40]. Examples include the role of weak 
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links in the six degrees of separation (i.e., small-world) effect of interpersonal 

networks [40, 41] and the strength of predator-prey interactions that determine the 

stability of ecological communities [38]. Network researchers have reported that a 

weighted value representing interaction strength can be assigned to each link (edge) in 

a real network [43, 44]. I therefore took into consideration network motif link strength 

in terms of two categories: bridge motifs (consisting of weak links only or a minimum 

of one weak link) and brick motifs (consisting of strong links only) (Figs. 3 and 6). 

Bridge motifs connect clusters and reduce average degree of separation, while brick 

motifs exhibit local clustering in biological networks. 

Validation experiments were performed to confirm weighted link and network motif 

definitions. Due to the links‘ non-directional characteristic, only two kinds of motifs 

were identified for the three-node scenarios: ID = 8 and ID = 13 (Fig. 3). Four 

well-known types of theoretical complex networks with specific topological 

properties were examined to validate the proposed algorithm: regular, scale-free, 

random, and Watts and Strogatz‘s small-world (Table 2) [21]. Due to their 

small-world properties, more bridge than brick motifs were found in scale-free and 

random networks. Regular networks with a Moore neighborhood structure only 

contain brick motifs, due to that structure‘s high clustering property (minus any 
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shortcuts). Watts and Strogatz‘s small-world networks are formed by rewiring 1% of 

the links of regular networks containing only a few bridge motifs; when more than 5% 

are rewired, bridge motifs outnumber brick motifs (Fig. 13). It is therefore suggested 

that bridge motifs indicate the presence of small-world properties and brick motifs the 

presence of local clustering properties as follows: 

1. Regular. The Moore neighborhood concept was applied to a two-dimensional 

lattice, with each node linked to its eight adjacent cells [94]. For this type of network 

only brick motifs were found. To maintain the same in- and out-degree distributions in 

random and regular networks, individual nodes in random networks can link with any 

other cell except their eight adjacent cells. As clustering in a random network 

decreases, the threshold of the weighted value of its links also decreases. Therefore, 

all links in regular networks are strong (exclusively brick motifs). 

2. Scale-free. Here the degree of distribution (i.e., the number of edges per node) 

obeys a long-tailed power-law distribution, in which the majority of nodes have only a 

few links, but a small number of nodes have many links. Scale-free networks were 

found to be composed of many bridge motifs and a small number of brick motifs 

consisting of nodes with high degrees of separation.  

3. Random. As predicted, a dominant motif did not emerge from a comparison of 
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1,000 random networks. Accordingly, random networks served as a successful null 

hypothesis for the proposed algorithm. 

4. Small-world. Links were rewired in two-dimensional regular networks with Moore 

neighborhood structures; 0.01, 0.05, 0.1 and 0.5 percent of all links were rewired. In 

the 0.01 trial, some of the brick motifs became bridge motifs. As the rewiring 

percentage increased, the number of bridge motifs increased and number of brick 

motifs decreased. At a rewiring ratio of 1, small-world networks change into random 

networks. Brick motifs appear to play an important role in reducing the degree of 

separation, as well as in increasing the degree of clustering in scale-free networks. 

         

 

3.1.1 Validation 

We performed validation experiments to confirm the definitions of weighted links and 

network motifs. Due to the links‘ non-directional characteristic, only two kinds of 

motifs were identified for the three-node scenarios: ID = 8 and ID = 13 (Fig. 3). We 

looked at four well-known types of theoretical complex networks with specific 

topological properties to validate our algorithm: regular, scale-free, random, and Watts 

and Strogatz‘s small-world (Table 2) [21]. Due to their small-world properties, we 
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found more bridge than brick motifs in scale-free and random networks. Regular 

networks with a Moore neighborhood structure only contain brick motifs due to the 

structure‘s high clustering property (minus any shortcuts). Watts and Strogatz‘s 

small-world networks are formed by rewiring 1% of the links of regular networks 

containing only a few bridge motifs; when more than 5% of the links are rewired, 

bridge motifs outnumber brick motifs (Fig. 13). We therefore suggest that bridge 

motifs indicate the presence of small-world properties and brick motifs the presence 

of local clustering properties as follows: 

Regular. We applied the Moore neighborhood concept to a two-dimensional lattice, 

with each node linked to its eight adjacent cells [94]. For this type of network we 

found brick motifs only. To maintain the same in- and out-degree distributions in 

random and regular networks, individual nodes in random networks can link with any 

other cell except its eight adjacent cells. As clustering in a random network decreases, 

the threshold of the weighted value of its links also decreases. Therefore, all links in 

regular networks turn out to be strong (exclusively brick motifs). 

Scale-free. Here the degree of distribution (i.e., the number of edges per node) obeys 

a long-tailed power-law distribution in which the majority of nodes have only a few 

links, but a small number of nodes have many links. We found that scale-free 
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networks are composed of many bridge motifs and very few brick motifs consisting of 

nodes with high degrees of separation.  

Random. As predicted, we failed to find a dominant motif during our comparison of 

1,000 random networks. Accordingly, random networks served as a successful null 

hypothesis for our algorithm. 

Small-world. We rewired links in two-dimensional regular networks with Moore 

neighborhood structure using rewiring percentages of 0.01, 0.05, 0.1 and 0.5 of all 

links. In the 0.01 trial we found that some of the brick motifs became bridge motifs. 

As the rewiring percentage increased, the number of bridge motifs increased and 

number of brick motifs decreased. At a rewiring ratio of 1, small-world networks 

change into random networks. Brick motifs appear to play an important role in 

reducing the degree of separation and increasing the degree of clustering in scale-free 

networks. 

Table 2. Bridge and brick subgraph frequencies in four complex network 

categories (for validation purposes). 

Category Nodes Edges Subgraph Type ID NReal NRandomSTD ZScore 

Regular 
900 7200 

Bridge 8 0 24983.2-39.0 -640.61 

Brick 8 14400 40.817.4 824.81 

Bridge 13 0 0.0 0.0 0.00 

Brick 13 3600 58.6 8.2 430.13 

Scale-Free 
900 1800 

Bridge 8 4355 4099.753.7 4.75 

Brick 8 45 258.947.1 -4.54 

Bridge 13 2 7.0 2.6 -1.95 

Brick 13 0 8.8 3.5 -2.54 
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Random 
900 1800 

Bridge 8 1229 1226.127.9 0.11 

Brick 8 537 536.927.8 0.01 

Bridge 13 0 0.40.7 -0.64 

Brick 13 0 0.60.7 -0.81 

WS Small-World #1 

(rewiring % = 0.01) 
900 7200 

Bridge 8 2399 25029.738.0 -595.92 

Brick 8 12573 58.318.6 674.60 

Bridge 13 320 7.62.8 113.47 

Brick 13 3111 51.57.1 430.65 

WS Small-World #2 

(rewiring % = 0.05) 
900 7200 

Bridge 8 9434 24713.273.5 -207.80 

Brick 8 8100 656.364.5 115.49 

Bridge 13 991 25.1 5.3 182.65 

Brick 13 1681 35.06.1 268.59 

WS Small-World #3 

(rewiring % = 0.10) 
900 7200 

Bridge 8 13386 24047.0111.4 -95.69 

Brick 8 6089 1519.099.9 45.73 

Bridge 13 1063 30.94.9 209.23 

Brick 13 1029 30.75.6 179.17 

WS Small-World #4 

(rewiring % = 0.50) 
900 7200 

Bridge 8 22649 22935.4148.5 -1.93 

Brick 8 3973 4244.9153.7 -1.77 

Bridge 13 213   56.28.9 17.64 

Brick 13 47    17.74.1 7.11 

 

Fig. 13. Percentages of bridge and brick motifs in small-world networks 

according to different rewiring ratios. 

 

3.1.2 Experiments 

The proposed method was applied to several biochemistry (transcriptional gene 

regulation) and ecology (food web) networks to identify bridge and brick network 
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motifs. Networks and sources are listed in Table 3. All data and programs (including 

source code) are available online at ftp://www.csie.cgu.edu.tw/bbm/. 

Several engineering (electronic circuit) and social networks (Table 3) were used to 

demonstrate that the proposed motif detection method is both general-purpose and 

robust. It was also compared with Milo et al.‘s [26] original method for complex 

network analysis. In electronic circuits consisting of digital fractional multipliers (data 

from an ISCA89 benchmark) [26], nodes represent logic gates and flip-flops and 

edges represent directed electronic transmission paths. Experimental results indicate 

that the s208, s420, and s838 electronic circuit networks contain significant numbers 

of bridge motifs. Here the low degree of clustering is considered trivial because 

designers often try to simplify connection structures and numbers of electronic 

components [77]. The identified feedback bridge motif (consisting of weak-tie links 

only) fulfills this requirement as described by Kundu et al. [95] (ID = 9) (Figs. 14, 

Table 3). As its name implies, the feedback bridge motif indicates the existence of a 

feedback structure without redundancy in the three above-named electronic 

circuits—again proven by Kundu et al. [95], who also reported that redundant circuits 

seldom appear in simple electronic circuits such as s208, s420, and s838. However, 

they also note that redundant wires and components are frequently added to more 

ftp://www.csie.cgu.edu.tw/bbm/
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complex electronic circuits (e.g., s15850, s35932, s38417 and s38584) to prevent 

accidental system failures. The over-simplification of electronic circuits can result in 

large numbers of errors [77] or complete system breakdowns when one component 

fails. Accordingly, it is necessary to add an appropriate level of redundancy as a 

means of bypassing failed components or substituting for the original path [77, 95]. 

Strong-tie links represent alternative paths and weak-tie links represent simplified 

electronic circuits. Combined, simplification and duplication help prevent unexpected 

system breakdowns. 

 

Fig. 14. Bridge motif ratio profiles for three electrical circuits (s208, s420 and 

s838). 

 

In the two social networks that were analyzed, nodes represent individuals in a group 

and edges represent positive sentiments directed from one group member to another 

based on responses to questionnaire items. Similar characteristics were found between 
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two networks, one consisting of prison inmates (N = 67 nodes, E = 110 edges) and the 

other of college students in a leadership course (N = 32, E = 96). The inmates 

responded to the question, ―Who are your closest friends in your cellblock?‖ The 

students were asked to name three classmates they would invite to serve on a 

committee (correlation coefficient c = 0.92 to 0.96 [96, 97]). According to Milo et 

al.‘s [16] methods, both social networks belong to the same superfamily. Strong 

similarities between the two networks were also identified according to the triad 

significance profile (TSP) of bridge motifs (c = 0.92) (Fig. 15, Table 3), but not 

according to the TSP of brick motifs (c = 0.6) (Fig. 16, Table 3). Also found was a 

significantly higher number of bridge motifs (i.e., more ―nodding acquaintances‖) in 

the prisoner network. The significantly larger number of brick motifs in the leadership 

class network indicates that small, strong groups are easily formed. The bridge and 

brick motifs can be used to further analyze network topological structures, functions, 

and differences. 
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Fig. 15. Bridge motif ratio profiles for two social networks. 

 

Fig. 16. Brick motif ratio profiles for two social networks. 

 

In gene regulation networks for one bacteria (Escherichia coli) and one eukaryote (the 

yeast Saccharomyces cerevisiae) [26], each node represents a gene or operon that 

encodes a transcription factor (TF); edges denote the TFs themselves. Many TFs are 

encoded within operons, therefore directed links represent direct transcriptional 

modulation from a TF to an operon or from a TF-contained operon to another operon 

[26]. More bridge than brick subgraphs were found in both networks (they are not 

called motifs until they reach statistical significance). Furthermore, the two 

transcription networks had the same feed-forward bridge motif (ID = 5), indicating 

that the transcription networks have, at minimum, non-replaceable interactions 

without intermediate interactions with other genes (Fig. 17 and Table 3). This 

suggests that the weak-tie link that provides a unique path for controlling the signal 
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exerts a significant impact on the signal processing function of transcription networks 

[26, 80]. When analyzing the relationship between coherent (incoherent) FFLs and 

brick (bridge) FFLs, I identified E. coli‘s 34 coherent and 8 incoherent FFLs (Table 3) 

[34, 98, 99]. Accordingly, differences in coherent (incoherent) FFL frequencies cannot 

be explained simply in terms of the relative abundances of bridge and brick motifs in 

a network. 

 

Fig. 17. Brick-bridge motif ratio profiles for two regulation networks (one 

bacteria and one eukaryote). 

In the seven analyzed food webs [100], nodes represent groups of species and edges 

connect predator and prey nodes. Two studies have shown that strong interactions 

(similar to the definition of weak-tie links used here) between two consecutive levels 

of a trophic chain have a significant effect on food web stability and dynamics [38, 

101]. A strong interaction indicates a strong predator preference for one prey species 

and a low potential for intermediate species—a phenomenon that supports the 
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proposal that weak-tie links exert certain impacts on food webs. Also in the seven 

food webs, the numbers of bridge motifs were significantly higher than the numbers 

of brick motifs, especially feedback (ID = 5) and three-point chains (ID = 2) (Fig. 18, 

Table 3). This confirms Jordi‘s [38] claim that these two motifs exert significant 

impacts on ecosystem food webs. The reason why ecosystems containing these two 

types of bridge motifs easily become unbalanced is likely because they have many 

weak links—in other words, it is difficult to find substitute nodes or links for the 

purpose of preserving ecosystem stability. 

 

 

 

 

 

Fig. 18. Bridge motif ratio profiles for seven food webs. 
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Table 3. Brick and bridge motifs in fourteen real world networks, including edge 

and node definitions, network sizes, and references. 

Category Common Feature 

Directed 

Network 

Nodes Links 

Motif 

Type 

ID 
NReal NRandomSTD ZScore 

Gene 

Regulation 
(transcription) 

[16, 102] 

Directed graph in which 

nodes represent genes and 

edges are directed from 
one gene to another, 

regulated by the 

transcription factor. 

E.coli 424 519 Bridge 5 42 7.53.1 11.14 

Yeast 688 1079 Bridge 5 67 13.83.8 14.04 

Social 
[96, 97] 

Directed graph in which 
nodes represent people 

and edges indicate 

friendships between two 
persons. 

Leader 32 96 
Brick 7 38 22.19.5 1.67 

Brick 11 5 1.51.3 2.59 

Prisoner 67 182 
Bridge 6 11 2.01.4 6.42 

Brick 12 5 0.50.7 6.26 

Food Webs 

[100] 

Seven different 

ecosystems. 

 
Directed graph in which 

nodes represent groups of 

species and edges connect 
predator and prey nodes. 

LittleRock 92 984 Bridge 11 93 41.36.2 8.33 

Ythan 83 391 Bridge 2 1182 850.186.0 3.86 

St. Martin 42 205 Bridge 5 244 180.420.0 3.18 

Chesapeake 31 67 Bridge 5 21 11.24.0 2.42 

Coachella 29 243 

Bridge 2 275 192.514.8 5.57 

Bridge 4 252 110.315.1 9.38 

Bridge 6 110 68.15.3 7.84 

Bridge 13 10 6.21.4 2.83 

Skipwith 25 189 
Bridge 2 181 140.111.3 3.63 

Bridge 4 234 115.233.4 3.56 

B.Brook 25 104 
Bridge 1 266 123.531.2 4.57 

Bridge 2 181 103.123.1 3.37 

Electrical 

Circuits [77] 

ISCAS89 benchmark set 

of sequential logic 

electronic circuits. 
 

Directed graph in which 

nodes represent logic 

gates and flip-flops. 

s208 122 189 Bridge 9 10 0.901.0 9.23 

s420 252 399 Bridge 9 20 0.90.9 20.13 

s838 512 819 Bridge 9 40 0.91.3 30.2 

 

3.1.3 Conclusion 

According to the definitions of weighted links and network motifs used in this study 

and the results of the validation experiments using theoretical complex networks, the 

presence of bridge and brick motifs in a network is closely associated with network 

topological structures (especially local connections), but not with network size (i.e., 

number of nodes). In summary, three experimental predictions were tested to verify 
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the importance and function of bridge and brick network motifs: (a) whether regular 

networks with Moore neighborhood structures only contain brick motifs due to the 

structure‘s strong clustering property; (b) whether the number of bridge motifs 

increases and the number of brick motifs decreases as rewiring percentages increase 

in regular networks, with the rewiring process contributing to the formation of 

networks that exhibit small-world and clustering properties; and (c) whether the 

combination of more bridge motifs and fewer brick motifs means that a network is 

less prone to cluster formation. 

The proposed method combines two measures, each with its own merits—that is, 

determining the topological properties of links in real networks and identifying 

statistically significant motifs in real networks. The combined measures can be used 

to explore the functions and roles of real network motifs. To locate statistically 

significant network motifs, Milo et al. [16] propose comparing the real network in 

question with suitably randomized networks, then selecting patterns (subgraphs) that 

appear at significantly higher frequencies in the real network. Compared to Milo et 

al.‘s approach, the method described in this chapter simultaneously detects global 

features and local structures in complex networks and locates functionally and 

statistically significant network motifs. It is suggested that the combination of these 
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two methods can (a) assist in locating motifs; (b) help researchers find clusters 

between bridge motifs and within the brick motifs of complex networks for the 

purpose of identifying real network functions, behaviors, and similarities; and (c) 

provide global and local views of the real network in question. Most network motif 

functions can be identified via network topological structures. Combining a motif 

structure with its function can help identify complex network properties. Motifs with 

special topological structures reveal the global features of real networks and 

significant local structural patterns. This information can help researchers working 

with design principles and network evolution. 
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3.2 Specific: Bridge and Brick Network 

Motif-Detecting Algorithms 

The above-described method successfully addresses some problems in specific 

domains. However, in biology, the concept of ―neighborhood‖ is especially useful for 

identifying motifs or modules. Accordingly, in this section, I will propose another 

version of bridge and brick network motifs in the context biology. 

 

3.2.1 Validation 

To validate the respective roles of weak and strong links, equal percentages of each 

(as well as random links) were removed. For E. coli and S. cerevisiae [16, 26], the 

greater the number of strong links removed, the lower the clustering coefficient 

relative to the randomly removed links. In contrast, the greater the number of weak 

links removed, the higher the clustering coefficient relative to the randomly removed 

links (Figs. 19 and 20). Note that the average clustering coefficient increases when 

weak links are removed—that is, when the clustering coefficient of a weak link‘s end 

node is calculated, its neighbors do not include the same link‘s other end node. The 

average coefficient increases after the weak links are removed because the two end 

nodes do not share a large number of common neighbors. The average degree of 
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separation in the network after removing links was not computed, since a network 

might become broken and disconnected after a link is removed, and the definition of 

average degree of separation is based on a connected network. Note that the proposed 

approach is insensitive to data errors: significant network motif sets in the two gene 

regulation networks do not change a great deal, even when 40% of their edges are 

removed (Figs. 21 and 22). All altered results (red curves) shown in Figures 21 and 22 

represent average values for 30 runs. The sensitivity analysis results confirmed 

significant similarities between the original and altered networks after randomly 

removing 40% of their links. According to the triad significance profile (TSP) [26] of 

brick motifs, the original and altered networks belong to the same superfamily. 

As shown in Figure 23, link weight distribution is extremely polarized (either 0 or >2), 

which matches the criterion for distinguishing between strong and weak links (i.e., 

mean weighted value LinkAVG = 0.9 and standard deviation LinkSTD = 0.04 for all 

links in 1,000 randomized networks). In most cases random networks have many 

more weak links than strong links. At least one researcher has suggested that high 

degree of clustering is a generic feature of biological networks [65]. 

The link property is a good indicator of cellular function robustness. The simplest 

strategy for protecting against the failure of a specific component is to provide 
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alternative ways to perform that component‘s function. At the molecular level, this 

backup strategy (or genetic buffering) [103, 104] can be carried out by duplicate 

genes with identical roles or by different genes that constitute an alternate but 

functionally overlapping path [83]. Researchers can use brick motifs to explore (a) 

identical genes that diverge functionally, (b) reasons why the biological networks of 

unreliable elements still perform reliably [1], and (c) the degeneracy phenomenon 

[65]. 
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Fig. 19.  Relationships between clustering coefficients and different removal 

ratios for three E. coli link types. Red, random; green, strong; blue, weak. 
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Fig. 20.  Relationships between clustering coefficients and different removal 

ratios for three S. cerevisiae (yeast) link types. Red, random; green, strong; blue, 

weak. 
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Fig. 21.  Comparison of original (blue curve) and altered (red curve) brick motif 

ratio profiles for E. coli after randomly removing 40% of its links. Altered results 

represent average values for 30 runs. 
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Fig. 22. Comparison between original brick motif ratio profiles and altered brick 

motif ratio profiles for S. cerevisiae (yeast) after randomly removing 40% of its 

links. 

 

Fig. 23. Distribution of link weights in E.coli. Average mean and standard 

deviation of link weights for randomized networks were calculated as 0.900.04. 

 

3.2.2 Experiments 

The proposed method was applied to E. coli (bacteria) and S. cerevisiae (yeast) 
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transcriptional gene regulation networks [26]. Network and source data are listed in 

Tables 4 and 5. In both networks, nodes represent operons (i.e., one or more genes 

transcribed on the same mRNA [26]) and directed links represent transcriptional 

regulatory relationships between operons that encode transcription factors (TFs) and 

operons regulated by TFs. Many v-out and feed-forward loop (FFL) brick motifs were 

observed in both E. coli and S. cerevisiae (ID = 1 and 5, respectively) (Table 5). The 

FFL (a three-gene subgraph) is composed of two input transcription factors, one 

regulating the other and both jointly regulating a target gene [80]. The observation 

that FFL bridge motifs do not exist in either network supports previous findings 

indicating that most motifs do not function in isolation, but overlap with known 

biological functions [24, 42, 100]. Specifically, one FFL motif cluster overlaps with 

the flagella motor module and another contains a significant number of elements 

responsible for regulating the E. coli aerobic/anaerobic switch [84]. Since most FFL 

motifs consist of strong links, it is suggested that many (if not all) FFL motif 

interactions can be used as parts of other motifs or modules (e.g., for flagella motor, 

osmoregulated porin gene, oxidative stress response, methionoine biosynthesis 

modules) in a manner that makes the most efficient use of each gene or operon 

archive [84]. Accordingly, FFL brick motifs are viewed as having an optimal design in 
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terms of convergent evolution in transcriptional gene regulation networks [105].  

The other motif type that is well represented in both networks is the four-gene bi-fan 

pattern associated with bridge motifs (Table 5). The bi-fan consists of two input 

transcription factors, one never regulating the other, but both jointly regulating two 

target genes. In E. coli, 208 of the 209 observed bi-fan motifs combined to create dual 

motif clusters in which most links are shared by at least two adjacent motifs in 

addition to multiple non-adjacent motifs [84]. No bi-fan brick motifs were found, but 

107 bi-fan bridge motifs that did not overlap with other motifs were noted, indicating 

that they function by themselves. These observations suggest a low co-regulation ratio 

for two operons in which one regulates the other. 

Using the bi-fan bridge motif consisting of aroL, mtr, TrpR, and TyrR as an example, 

the combination of the TyrR protein and TrpR repressor is responsible for regulating 

other aromatic amino acid transport genes [106]. The TyrR protein plus either 

phenylalanine or tyrosine is responsible for mtr gene activation, while a combination 

of the TrpR repressor plus tryptophan represses the mtr gene [107]. Both TyrR and 

TrpR regulate the expression of the aroL gene-encoding enzyme shikimate kinase II in 

E. coli [84]. Also found were 51 brick motifs (ID = 206) consisting of combinations 

of FFL and bi-fan motifs. As Dobrin [98] reports, these motifs form a heterologous 
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motif superstructure. The present results for S. cerevisiae are similar to those for E. 

coli. After comparing these with Milo et al.‘s [16], it was determined that v-out (ID = 

1) and FFL brick motifs (ID = 5) play important roles in both networks (Figs. 20 and 

21). Furthermore, the brick motif ratio profiles in the two gene regulation networks 

are very similar (correlation coefficient c = 0.96) (Fig. 26), even though they contain 

relatively few brick motifs [16]. 

An effort was made to learn more about the relationship between coherent (incoherent) 

FFLs [88] and brick (bridge) FFLs. Since each of the three FFL interactions can be 

either activating or repressing, FFLs have eight possible structural types [80, 84]. The 

four incoherent FFL types act as sign-sensitive accelerators that shorten the response 

time of target gene expression following stimuli in one direction (e.g., off to on), but 

not the other. The four coherent FFL types act as sign-sensitive delays. E. coli 

contains 34 coherent FFLs, 8 incoherent FFLs [84], 29 brick-coherent FFLs, and 6 

brick-incoherent FFLs. Accordingly, the difference in coherent (incoherent) FFL 

frequencies cannot be simply explained by the relative abundances of brick and bridge 

motifs in a network.  

 

Table 4. Descriptions of five gene regulation networks: edge and node definitions, 
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network sizes, and references. 

Network Type Common Feature 

Directed 

Network 

Nodes Edges Description 

Gene 

Regulation 

(transcription) 

Directed 

graph in 

which nodes 

represent 

genes and 

edges are 

directed 

between 

genes, 

regulated by 

transcription 

factor. 

E. coli 424 519 Eschericahia coli [88] 

S. 

cerevisiae 

(yeast) 

688 1079 Saccaromyces cerevisiae [108] 

Drosophila 110 307 
Drosophila melanogaster 

www.csa.ru/Inst/gorb_dep/inbios/genet/genet.htm 

Sea urchin 43 58 Sea urchin [108] 

C. elegans 280 2170 
C. elegans (all synaptic connections used; not 

restricted to those with  5 synapses) [26] 

 

 
     

 

 

 

http://www.csa.ru/Inst/gorb_dep/inbios/genet/genet.htm
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Table 5. Brick and bridge motifs in five gene regulation networks. 

Network Nodes Links Motif Type ID 
NReal 

NRandomSTD 
ZScore 

E. coli 424 519 

Brick 1 402 22.819.8 19.17 

Brick 5  35 6.92.5 11.30 

Bridge 

Bi-fan  

107 46.815.0 4.01 

S. cerevisia 
 

(yeast) 

688 1079 

Brick 1 416 17.613.9 28.74 

Brick 5 35 5.82.9 10.06 

Bridge 

Bi-fan  

1673 276.241.2 33.99 

Drosophila 110 307 

Brick 1 354 123.127.8 8.31 

Brick 2 264 10823.6 6.61 

Brick 5 109 297.7 10.45 

Brick 11 14 2.21.6 7.55 

Sea urchin 43 58 
Brick 1 42 24.411.2 1.57 

Brick 6 5 1.41.4 2.52 

C. elegans 280 2170 

Bridge 5 740 489.632.9 7.60 

Bridge 6 141 53.68.7 10.05 

Bridge 11 213 59.18.9 17.22 

Bridge 12 75 24.64.8 10.41 

Brick 1 2479 950.585.1 17.97 

Brick 5 297 46.57.4 33.76 

Brick 11 31 2.81.8 15.96 

Brick 12 11 0.50.7 15.63 

 

We will use the bi-fan bridge motif consisting of aroL, mtr, TrpR, and TyrR as an 

example. The combination of the TyrR protein and TrpR repressor are responsible for 

regulating other aromatic amino acid transport genes [57]. The TyrR protein plus 

either phenylalanine or tyrosine is responsible for mtr gene activation, while a 

combination of the TrpR repressor plus tryptophan represses the mtr gene [58]. Both 

TyrR and TrpR regulate the expression of the aroL gene-encoding enzyme shikimate 

kinase II in E. coli [42]. We also found 51 brick motifs (ID = 206) consisting of 

combinations of FFL and bi-fan motifs. As Dobrin [56] reports, these motifs form a 
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heterologous motif superstructure. Our results for S. cerevisiae are similar to those for 

E. coli. After comparing our results with Milo et al.‘s [28], we determined that v-out 

(ID = 1) and FFL brick motifs (ID = 5) play important roles in both networks (Figs. 

20 and 21). Furthermore, the brick motif ratio profiles in the two gene regulation 

networks are very similar (correlation coefficient c = 0.96) (Fig. 26), even though they 

contain relatively few brick motifs [28]. We made an effort to learn more about the 

relationship between coherent (incoherent) FFLs [12] and brick (bridge) FFLs. Since 

each of the three FFL interactions can be either activating or repressing, FFLs have 

eight possible structural types [13], [42]. The four incoherent FFL types act as 

sign-sensitive accelerators that shorten the response time of target gene expression 

following stimuli in one direction (e.g., off to on) but not the other. The four coherent 

FFL types act as sign-sensitive delays. E. coli contains 34 coherent FFLs, 8 incoherent 

FFLs [42], 29 brick-coherent FFLs, and 6 brick-incoherent FFLs. Accordingly, the 

difference in coherent (incoherent) FFL frequencies cannot be simply explained by 

the relative abundances of brick and bridge motifs in a network. 

Next, the proposed method was applied to transcription networks that guide 

development in Drosophila melanogaster and sea urchin, and synaptic wiring in 

Caenorhabditis elegans (Table 4). As in the two gene regulation networks, brick TSPs 
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were more significant than bridge TSPs in these three networks. However, it was also 

determined that four bridge motifs (ID = 5, 6, 11, and 12) in C. elegans are very 

significant (Table 5), indicating the greater presence of isolated motifs. This suggests 

that these bridge motifs constitute the main difference between the C. elegans network 

and the Drosophila and sea urchin networks (Fig. 27). Similarities (differences) in 

bridge and brick motifs imply similar (different) key circuit elements in each 

organism. 
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Fig. 24.  Comparisons of triad significance profiles (TSPs) for our bridge and 

brick motifs and Milo et al.’s [7], [28] E. coli motifs. 
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Fig. 25.  Comparisons of triad significance profiles (TSPs) for our bridge and 

brick motifs and Milo et al.’s [7], [28] S. cerevisiae (yeast) motifs. 
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Fig. 26.  Brick motif ratio profiles for two gene regulation networks: E. coli and 

S. cerevisiae (yeast). 
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Fig. 27.  Bridge motif ratio profiles for three gene regulation networks: C. 

elegans, sea urchin, and Drosophila. 
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3.2.3 Conclusion 

According to the above definitions of weighted links and network motifs and the 

results of validation experiments using two gene transcription regulation networks, 

the presence of bridge and brick motifs in a biological network is closely associated 

with network topological structures (especially local connections) but not with 

network size (i.e., number of nodes). Bridge motifs can assist in the identification of 

isolated motifs, and brick motifs can be used to locate motifs whose functions overlap. 

This combination of a statistically significant motif and strong or weak-link properties 

provides insight to the structural organizing principles and functions of networks. It 

can also serve as a method for analyzing biological system robustness. 



 

77 

 

Chapter 4 Social Network Simulation 

Experiments 

To better reflect actual human interactions in social network models, a bottom-up, 

agent-based modeling and network-oriented simulation approach was used to analyze 

acquaintance network evolution associated with local interaction rules [23, 109]. In 

addition to resources and remembering, this approach also considers common friends, 

meeting by chance, and leaving and arriving. Based on these factors, established 

friendships can be strengthened, weakened, or broken up [110]. Results from a series 

of computer simulations indicate that (a) network topology statistics (especially 

average degree of nodes) are irrelevant to parametric distributions because they rely 

on average values for initial parameters; (b) resources, remembering, and initial 

friendships all increase the average number of friends and decrease both degree of 

clustering and separation; and (c) widely used fieldwork sampling methods cannot 

capture the actual node degree distributions of social networks.               

 

4.1 Friendship Evolution and The Three-Rule Model 

Three selection methods for updating friendships were considered. In the first, person 
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selection, a researcher reviews b × N persons before picking a specific friend for each 

one and updating their friendships. Updating does not occur if the chosen person has 

no friends. In this method, b is a proportion factor for deciding how many persons are 

chosen, and N represents the number of persons in the network. In the second method, 

pair selection, updating is canceled if paired persons do not know each other—a 

frequent occurrence, since the network in question is sparse in comparison to a 

complete graph. In this method, b is a proportion factor for deciding how many pairs 

are chosen. In the third, edge selection, the individual has more direct choice in 

selecting b × M friendships for updating. Here b is a proportion factor for deciding 

how many friendships are chosen, and M is the number of friendships (or edges) at a 

specific moment.  

Without a lack of generality, the first two methods were rejected, since in both cases 

the number of chosen friendships is in proportion to N (the number of nodes or 

persons). Since N × (N  – 1) / 2 (the upper boundary for the number of friendships) is 

directly proportional to M (the number of edges or friendships), the edge selection 

method was adopted for choosing friendships in the experiments. 
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4.1.1 Friendship Selection Methods 

During friend remembering, the model uses the selection method just described to 

choose a specific number of friendships. If a selected friendship links person u with 

person v, their friendship is dependent upon three threshold factors: individual 

remembering, resources, and breakup, expressed as 

  (4.1) 

where f
new

u,v represents the new friendship between u and v, f
old

u,v the original 

friendship, q the old friend remembering, θ the breakup threshold, ru person u‘s 

friend-making resources, ku his or her number of friends, and rv and kv person v‘s 

resources and friend numbers, respectively. J is a joint function and D a distribution 

function. For convenience, the friend remembering q, resource r, and breakup 

threshold θ parameters are normalized between 0 and 1.  

Simplification without loss of generality is behind our decision to use D(x) = x as the 

distribution function and J(a, b) = (a + b) / 2 as the joint function. The updated 

equation is written as 
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     (4.2) 

The equation is divided into two parts by the breakup threshold, θ. The first part 

consists of the terms q (representing the effect of old friendships) and (1 – q) 

(representing the effect of limited resources). The newly updated friendship may be 

weakened or strengthened. It may also theoretically equal zero if the new friendship is 

below the breakup threshold, as shown in the second part of the equation. 

 

4.1.2 Friendship Update Equation 

Acting locally, (a) the friend-making rule adds links, thereby increasing the average 

number of friends; (b) the leaving and arriving and friend-remembering rules both 

remove links, thereby reducing the average number of friends; (c) increases in the 

average number of friends <k> leads to decreases in the average shortest path length L; 

and (d) the directions of the clustering coefficient C and average shortest path length 

L are reversed.  

As opposed to the large number of factors associated with the friend-remembering 

rule, the leaving and arriving rule has a single parameter: probability p. Factor q 
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denotes a person‘s ability to remember friends, thus increasing that person‘s number 

of friends. The resource factor r determines an individual‘s resources for making 

friends, thereby setting an upper limit. The breakup threshold θ determines the 

difficulty of cutting off a friendship—a negative influence. The initial friendship 

factor f0 is a reflection of how much attention a person is paying when making a new 

acquaintance—a positive contribution to friend-making. It was expected that 

parameters q, r and f0 would exert positive (increasing) influences on <k>, and that 

parameters p and θ would exert negative influences on <k>. 

4.1.3 Fitting a Normal Distribution 

For sensitivity analyses of skewness and critical parameters affecting distribution, a 

feasible probability-distribution function (pdf) must be applied. In most situations a 

normal distribution is considered the best choice, but it did not fit the purposes of this 

study. Since critical parameters such as initial friendships, old friends remembering, 

resources, and breakup thresholds have ranges of 0 to 1, a beta distribution was 

selected—a two-parameter family of continuous probability distributions defined 

according to the interval [0, 1] with a probability density function of 

                                    (4.3) 
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where B is the beta function and α and β both must be > 0. I used a beta distribution 

subset called beta14, which satisfies α + β = 14, and has μ = α / (α + β) as its average. 

Figure 28 shows pdf curves for beta14 distributions with averages of 0.1, 0.5, and 0.9; 

Figure 29 shows pdf curves for comparing beta14 and normal distributions.  

Once a simulation reached a statistically stationary level, data for clustering 

coefficient C, average path length L, average degree of nodes <k>, average square 

degree of nodes <k2>, and node degree distribution statistics were collected. Degree 

distributions in the simulations involved some random rippling, especially for smaller 

populations. However, since large populations consume dramatically greater amounts 

of simulation time, Bruce‘s [111] ensemble average was applied as follows: 

                                         (4.4) 

where M is the number of curves to be averaged and p(k) a curve that 

represents. 
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Fig. 28. Beta14 pdf curves at different averages of 0.1, 0.5, and 0.9. 

 

Fig. 29. Comparison of beta and normal distributions. 

 

4.2 Experiment 

A simulation using the proposed model starts with parameter initialization and ends 

once the acquaintance network reaches a statistically stationary state. As shown in 

Table 6, initialized parameters included number of persons N, leaving and arriving 

probability p, updated friendship proportion b, old friend remembering q, breakup 

threshold θ, distribution of friend-making resources r, and distribution of initial 
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friendship f0.  

Table 6. Terms and abbreviations for initialized parameters 

 

Statistically stationary states were determined by observing average degree of nodes 

<k>, average square degree of nodes <k2>, clustering coefficient C, and average path 

length L (Table 7). Each of these four statistics eventually converged to values with 

slight ripples. Figure 30 presents a statistically stationary state of parameter 

initialization at N = 1,000, p = 0, b = 0.001, q = 0.9, θ = 0.1, r with a fixed value of 

0.5 and a beta14 f0 (μ = 0.9). Blue solid lines indicate the acquaintance network and 

green dashed lines in (c) and (d) show an ER random model with the same average 

degree of nodes as the acquaintance model. 
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Table 7. Terms and abbreviations for statistics 

 

 

 

Fig. 30. Example of a statistically stationary state using the proposed model. 

 

 

4.2.1 Effects of Leaving and Arriving 

For comparison purposes I reproduced Davidsen et al.‘s [112] simulations using their 

original parameters of N = 7,000 and p at 0.04, 0.01, or 0.0025, and then changed N to 
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1,000 and tested a broader p range. As noted above, the leaving and arriving 

probability p is the only rule 2 parameter. In addition to using various degree 

distribution diagrams, correlations among <k>, C, and L values were analyzed to 

determine the effects of changes in p on the acquaintance network.  

A P(k) degree distribution from the two-rule model is shown in Figure 28, and all <k>, 

C, and L values with parameter initializations for various probability p values are 

shown in Figure 32. The solid lines in Figure 32 reflect the application of Davidsen et 

al.‘s two-rule model, and the dashed lines reflect the application of the ER model with 

the same average node degree. Contrasts between the two lines in Figures 31b and c 

indicate that the acquaintance network has a small world characteristic. According to 

Figure 32a, the number of friends increases as the lifespan of an individual lengthens.  

Figure 32 also shows that the clustering coefficient closely follows average degree of 

nodes but not average path length. A larger p indicates a higher death rate and a lower 

p a longer life span—in other words, parameter p serves as an aging factor. Relative to 

other species, humans require more time to make friends, therefore Davidsen et al. 

only focused on the p << 0.1 regime. To satisfy the needs of integrity theory, I also 

explored the p >> 0.1 regime and found that average node degree <k> decreased for p 

values between 0 and 0.5. The decrease slowed once p exceeded 0.1. Note that in the 
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proposed model, a leaving and arriving probability of 0 means that rule 2 is inactive, 

and a friendship update proportion of 0 means that rule 3 is inactive. Once rule 3 

becomes inactive, the proposed three-rule model becomes the equivalent of Davidsen 

et al.‘s two-rule model. In all of the experiments described in the following sections, 

N was initialized at 1,000 and b at 0.001. 

 

Fig. 31. <k>, C and L varying in breakup threshold θ  with different leaving and 

arriving probability p. 
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Fig. 32. <k>, C and L varying in friend-remembering q value with different 

distributions of friend-making resources. 

 

4.2.2 Effects of Breakup Threshold 

To determine the effects of the breakup threshold on the acquaintance network, 

experiments were performed with parameters initialized at different levels of the 

friendship-breakup threshold θ. Other initialized parameters were q = 0.6 and the 

constants r = 0.5 and f0 = 0.5. The solid lines in Figure 30 represent <k>, C, and L 

statistics without rule 2 included (p = 0), and the dashed lines represent the same 

statistics with rule 2 added (p = 0.0025). The data indicate that rule 2—which acts as 

an aging factor on acquaintances in the network—reduced both average degree of 

nodes <k> and clustering coefficient C, and increased average path length L. 

According to the data presented in Figure 33, the breakup threshold θ lowered the 
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average node degree <k> and raised both the clustering coefficient C and average path 

length L. The threshold reflects the ease with which a friendship can be broken. As 

expected, a higher θ resulted in a smaller number of ―average friends‖ and greater 

separation between individuals. 

 

 

Fig. 33. <k>, C and L varying in friend-remembering q value with different 

distributions of initial friendship f0. 

 

4.2.3 Effects of Resources 

To determine the effects of resources and memory factors on acquaintance networks, I 

ran a series of experiments using parameters initialized with different friend-making 

resource r and friend-remembering q values. Initialized parameters also included p = 
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0, θ = 0.1, and a fixed f0 value of 1. The results indicate that a larger r raised the 

average node degree <k> but lowered both the clustering coefficient C and average 

path length L (Fig. 31). It remains unclear whether statistical characteristics were 

influenced by different resource distributions, but they were clearly influenced by 

different resource averages. In other words, <k>, C, and L are all affected by different 

resource averages, but not by different resource distributions. The Figure 34 data also 

show that an increase in q raised <k> and lowered both C and L. 

 

Fig. 34. Two-rule model degree distribution P(k). 

 

4.2.4 Effects of Initial Friendship 

Experiments were run using parameters initialized at different initial-friendship f0 and 

friend-remembering q values for the purpose of determining the effects of those 

factors on acquaintance networks. Other initialized parameters were p = 0, θ = 0.1, 
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and a fixed r value of 0.5. The results show that a larger f0 raised the average degree 

of nodes <k> but lowered both the clustering coefficient C and average path length L 

(Fig. 35). It was not obvious whether different distributions of initial friendship 

influenced statistical characteristics, but different averages of initial friendship clearly 

did. In other words, <k>, C, and L were affected by different initial friendship 

averages, but not by different initial friendship distributions. The Figure 35 data also 

show that the friend remembering q factor raised <k> and lowered both C and L. The 

effects of different parameters on the proposed model were analyzed by relationally 

cross-classifying all experiments; results are shown in Tables 8 and 9. The plus/minus 

signs in Table 8 denote positive/negative relations between parameters and statistics. 

In Table 9 the plus or minus signs denote the strength and direction of correlations. As 

Table 8 indicates, in addition to the effects of rule 1, positive correlations were found 

for q, r, and f0, with average degree of nodes <k> and p and θ having negative 

correlations with <k>. Furthermore, each average node degree had a negative 

relationship with its corresponding average path length. All of the rule 3 parameters 

affected the clustering coefficient C and average length L in a positive manner, while 

rules 1 and 2 affected C and L negatively. Note that friendships were initialized in rule 

1 and updated in rule 3. 
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Fig. 35. <k>, C and L varying in leaving and arriving probability p. 

 

Table 8. Effective directions of the parameters on <k>, C, L 

 

 

Table 9. Correlations between <k>, C, L from experiments 

 

 

4.2.5 Distribution of Co-Directors 

The three main properties of social networks are (a) the small-world phenomenon, (b) 
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high-clustering, and (c) skewed node degree distribution [39]. The focus here was on 

the third property. Interlocking board of director networks show a remarkable node 

degree distribution that is very different from either scale-free or ER random networks 

[24]. A clear example is the connections among the nearly 8,000 directors on the 

boards of Fortune 1000 companies in 1999; the corresponding degree distribution 

shows a strong peak and fast (approximately exponential) tail decay, much faster than 

a power-law distribution, but slower than a Poisson or normal distribution [113].  

A node degree distribution comparison between one of the proposed acquaintance 

networks at a statistically stationary state (blue solid curve) and co-directors for 

Davis‘ [112] boards-of-director data (green dashed curve) is presented in Figure 36. 

Selected acquaintance network parameters were initialized at N = 1,000, p = 0, b = 

0.001, q = 0.4, θ = 0.1, r = 0.5 (fixed) and f0 = 0.5 (fixed). Davis‘ data are for the 

8,000 directors described in the previous paragraph. Both curves exhibit similar peaks 

and long tails that do not decay smoothly. 
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Fig. 36. Model acquaintance network samples. 

 

4.2.6 Sampling 

Surveys, questionnaires, and sampling techniques stand at the center of traditional 

social science research and are considered cheaper and more practical than collecting 

large amounts of census data. However, the effectiveness of these methods for 

analyzing social networks has not been examined—the motivation for running an 

arbitrary simulation of the proposed model after reaching a statistically stationary 

state, and for collecting a sample of nodes. Initialized parameters were N = 1,000, p = 

0, b = 0.001, q = 0.4, and θ = 0.1; constants were r = 0.5 and f0 = 0.5.  
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Figure 11 presents degree distribution P(k) data after sampling at 100, 300, 500 and 

700 nodes. Figures 11a and 11b are log plots with log scaling on the x and y axes; 

these were used to determine if distributions were scale-free. Figures 11c and 11d are 

semi-log plots with log scaling on the x axis only; these were used to determine if 

distributions were exponential. Degrees in Figures 11b and 11d are post-normalization, 

as required for different numbers of sampled nodes. Each curve in Figure 11 

represents an ensemble average of 100 sampling repetitions. The solid lines in Figure 

11 reflect a lower sampling ratio of 0.1, considered common for traditional surveys 

and sampling techniques. The dotted lines reflect a higher sampling ratio of 0.7, 

considered common for a census. Turns in the direction of the y-axis were observed 

for high sampling but not for low. The degree distribution clearly lost its original 

shape after sampling. 

 

4.3 Conclusion 

Experimental simulations are a necessary aspect of social network research, not only 

due to expenses and other difficulties involved with fieldwork, but also because 

widely used sampling approaches cannot capture real social network distributions, 

since distributions for higher sampling rates differ from those for lower sampling rates. 
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Taking a bottom-up, agent-based modeling and network-oriented simulation approach 

to modeling reflects the evolution mechanism of real social networks. Building on 

insights from previous studies, I applied local and interactive rules to acquaintance 

network evolution. This approach produced new findings that can be used to explore 

human activity in specific social networks—for example, rumor propagation and 

disease outbreaks. 



 

97 

 

Chapter 5 Epidemic Dynamics 

Experiments 

Whether or not a critical threshold exists when epidemic diseases are spread in 

complex networks is an interesting problem in many disciplines. In 2001, 

Pastor-Satorras et al. [114] used a computational simulation to show that epidemic 

diseases which spread through scale-free social networks do not have positive critical 

thresholds. However, they ignored two key factors that have a large impact on 

epidemic dynamics: economic resource limitations and transmission costs. Every 

infection event entails tangible or intangible costs in terms of time, energy, or money 

to the carrier, recipient, or both. Here we apply an agent-based modeling and 

network-oriented simulation approach to analyze the influences of resource 

limitations and transmission costs on epidemic dynamics and critical thresholds in 

scale-free networks. Our results indicate that when resources and costs are taken into 

consideration, the epidemic dynamics of scale-free networks are very similar to those 

of homogeneous networks, including the presence of significant critical thresholds. 
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5.1 Epidemic Dynamics in Complex Networks 

In a standard epidemiological model, all individuals in a population can be roughly 

classified into a small number of states, including Susceptible (S), meaning that an 

individual is vulnerable to infection but has not yet been infected; Infected (I), 

meaning that an individual can infect others; and Removed (R), meaning that an 

individual has either recovered, died, or otherwise ceases to pose any further threat. 

Generally speaking, epidemiologists use combinations of these states to represent 

orders of transition between different phases, giving names such as SIR and SIS to 

their models. 

In complex networks, nodes are used to represent entities such as organisms in 

biological environments or computers on the Internet. Links indicate close 

relationships or interaction channels between two entities; those with direct 

connections are called neighbors [21, 39]. When simulating the transmission 

dynamics of epidemic diseases in complex networks, epidemiologists usually assume 

that nodes in complex networks randomly run through an SIS cycle (Susceptible → 

Infected → Susceptible). During each time step, all susceptible nodes connected to 

one or more infected nodes are subject to a probability v infection rate. Infected nodes 

recover at a probability ε recovery rate, and once again become susceptible. Based on 
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the infection ν and recovery ε rate definitions, effective spreading rate λ is defined as 

λ= ν / δ. Without a lack of generality, recovery rate ε can be assigned a value of 1, 

since it only affects individuals during a period of disease propagation.  

Pastor-Satorrasni [115] define ρ(t) as the density of infected nodes at time t. When 

time t becomes infinitely large, ρ can be represented as a steady density of infected 

nodes. Using these definitions, Pastor-Satorras [115] applied dynamic mean-field 

theory to the SIS model and proposed homogeneous mixing hypothesis according to 

the topological features of homogeneous networks for obtaining the stable density of 

infected nodes ρ during long time periods as well as the critical threshold λc, That 

hypothesis is expressed as  

.                                 (5.1) 

According these Equations, a positive and nonzero critical threshold λc exists in a 

homogeneous network based on the SIS model. If the value of the effective spreading 

rate exceeds the critical threshold (λ ≥ λc), the infection spreads and gains persistence. 

If the effective spreading rate is below the critical threshold (λ < λc), the infection dies 

at an exponential speed. In summary, the primary prediction of an SIS 
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epidemiological model in a homogeneous network is the presence of a positive critical 

threshold, proportional to the inverse of the <k> average number of neighbors of 

every node, below which epidemics die and epidemic states are impossible.  

Pastor-Satorras relaxed their homogeneity assumption for homogeneous networks and 

obtained the critical thresholdλc in a scale-free network as following Equation. The 

results indicate that in scale-free networks with a connectivity exponent of 2 < γ ≤ 3 

and for which <k2> → ∞ is the limit of a network of infinite size (N → ∞), the critical 

threshold λc is very close to 0 (λc → 0). 

λc = <k>/<k
2
>                                                (5.2) 

Pastor-Satorras [116] express the total prevalence ρ for the SIS epidemiological model 

in a BA scale-free network as a function of the effective spreading rate λ, and compare 

it to the theoretical prediction for a homogeneous network. As shown in Figure 37, 

dashed and solid lines represent BA scale-free and WS small-world networks, 

respectively. The total prevalence ρ of a BA scale-free network reaches 0 in a 

continuous and smooth manner when the effective spreading rate λ decreases; this 

indicates an absence of any critical threshold (λc = 0) in a BA scale-free network. As 

long as λ > 0, epidemic diseases can be stably transmitted in the network and 

eventually reach a steady state. This explains why scale-free networks are fragile in 
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epidemiological spreading situations. Since social networks and the Internet both have 

―the rich get richer‖ properties, computer viruses, biologically infectious diseases, and 

cultural trends can be stably transmitted even when initial infection cases occur in 

small, limited areas. 

For finite-size scale-free networks, Pastor-Satorras et al. [117] introduced the concept 

of maximum connectivity kc (dependent on N), which has the effect of restoring a 

connectivity fluctuation boundary and inducing an effective nonzero critical threshold. 

According to the definition of maximum connectivity kc, <k2> clearly has a finite 

value in finite-size scale-free networks. However, in this situation the critical 

threshold (which is not an intrinsic quantity as it is in homogeneous networks) 

vanishes as network size increases. 

 

Fig. 37 Prevalence ρ in steady state as a function of effective spreading rate λ.  
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In addition to the topological characteristics of complex networks, individual 

differences (e.g., supercarriers and individuals immune to certain infectious diseases) 

and environmental factors (e.g., mosquito breeding sites) exert considerable 

influences on transmission dynamics and epidemic disease diffusion. Huang et al. 

[118] used Watts and Strogatz‘s small-world networks to investigate the influence of 

individual differences (―local information‖) on epidemic simulations. Specifically, 

they used a sensitivity analysis to show that when an agent-based modeling and 

network-oriented simulation approach is applied to exploring epidemic transmission 

dynamics in small-world networks, researchers should focus not only on network 

topological features, but also on proportions of specific values of individual 

differences related to infection strength or resistance. Less emphasis should be placed 

on the details of the topological connection structures of small-world networks and 

the distribution patterns of individual difference values. 

 

5.2 Experiments 

The first simulation experiment focused on the universality and generality of the 

steady density curve and critical threshold when individual economic resources and 

transmission costs are taken into consideration. Usable economic resources R(vi) of 
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individual vi at time t was set at 16 units, and transmission cost c(vi) was set at one 

unit, thus accounting for 6.25% of the individual‘s total usable economic resources. 

The relationship between effective spreading rate λ and steady density ρ in the SIS 

epidemiological model was compared using three types of complex network platforms: 

small-world, scale-free without transmission costs, and scale-free with limited 

individual economic resources and transmission costs. As shown in Figure 38, the 

eight simulation experiment suites generated consistent results that did not become 

contradictory following changes in node and edge numbers. It is therefore suggested 

that the results can be applied to various scale-free networks used to simulate 

infectious diseases. 

The red curves in Figure 36 indicate that the steady density ρ of the SIS 

epidemiological model based on scale-free networks reached 0 in a continuous and 

smooth manner when the effective spreading rate λ was decreased, indicating the 

absence of a critical threshold (λc = 0) in scale-free networks without transmission 

costs. The blue curves show that infectious diseases do have critical thresholds in 

small-world networks (approximately 0.14). If the value of the effective spreading 

rate exceeds the critical threshold (i.e., λ ≥ λc), the infection will spread throughout the 

network and eventually reach a steady density ρ(λ). If λ < λc, the infection dies almost 
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immediately. The green curves represent the steady densities ρ(λ) of infectious 

diseases in scale-free networks when individual economic resources and transmission 

costs are taken into consideration. In addition to being very similar to the blue steady 

density curves in small-world networks, the green curves have critical thresholds 

(again approximately 0.14). One conclusion drawn from the results of the first 

simulation experiment is that individual economic resources, transmission costs, and 

average vertex degree exert significant influences on epidemic dynamics and critical 

thresholds in scale-free networks. The same conclusion can be applied to the second 

and third simulation experiments. 

 

Fig. 38. Relationship between effective spreading rate and steady density of the 

SIS epidemiological model on three types of complex network platforms. 

 

The second experiment focused on the relationship between the ratio of transmission 

costs to the total amount of economic resources (hereafter referred to as ―the ratio‖) 
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and critical threshold. To evaluate the influence of the ratio on epidemic dynamics and 

critical thresholds, I used ten economic resource quantities (4, 8, 12, 16, 20, 24, 28, 32, 

36 and 40 units) and assigned the transmission cost c(vi) of each interaction event as a 

single unit accounting for 25%, 12.5%, 8.33%, 6.25%, 5%, 4.17%, 3.57%, 3.13%, 

2.78% and 2.5% of an individual‘s economic resources, respectively. As shown in 

Figure 39, the critical threshold significantly increased as the ratio grew. For instance, 

when the R(vi) resources of individual vi at time t were designated as 8 units, the 

critical threshold was approximately 0.22 (pink curve)—significantly greater than that 

of a small-world network with the same number of nodes and edges (blue curve) and 

the same average number of vertex degrees (Fig. 38). The opposite was also true: 

when the R(vi) of individual vi at time t was designated as 40 units, the shape of the 

steady density curve (Fig. 39, red curve) was very close to that of the scale-free 

network without transmission costs (black curve), and the critical threshold was 

reduced to 0.09. As shown in Figure 40, a linear correlation exists between the critical 

threshold and the ratio. Another interesting observation was that the steady density 

curve grew at a slower rate as the ratio increased—that is, the ratio and steady density 

had a negative linear correlation. One conclusion drawn from the second simulation 

experiment is that when transmission costs increase or economic resources decrease, 
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the critical thresholds of spreading infectious diseases in scale-free networks grow, 

while steady density shrinks according to the diffusion rate.  

 

Fig. 39. How the amount of an individual’s economic resources affect steady 

density curves. 

 

 

Fig. 40. Relationship between ratio of transmission costs to an individual’s 

economic resources and critical threshold. 
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The third simulation experiment was designed to determine how different distribution 

types (delta, uniform, normal, power-law) of economic resources and their statistical 

distribution parameters (standard deviation in a normal distribution, number of values 

and range in a uniform distribution) affect the steady density curves and critical 

thresholds of infectious disease diffusion in scale-free networks marked by limited 

individual economic resources and transmission costs. The orange, green, and purple 

steady density curves in Figures 41 and 44 represent the delta (fixed value of 16), 

uniform, and normal distributions of individual economic resources, respectively; 

normal distributions are shown in Figures 42 and 45. All had the same critical 

threshold (≈ 0.14), and their steady density curves almost overlapped with each other 

when the average values of the economic resources were the same. However, as 

shown in Figures 43 and 46, if those same economic resources reflected a power-law 

distribution (i.e., the majority of individuals had extremely limited economic 

resources, and a small number had the most), and no correlation existed between the 

amount of an individual‘s economic resources and vertex degree, the resulting steady 

density curve (pink) grew more slowly than those of the other three distributions, even 

though they all had the same critical threshold. 
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The same results were produced as long as the average values of the individual 

economic resources were the same (Figs. 41 and 44). The steady density curves and 

critical thresholds were almost identical across different distribution types, regardless 

of whether the individuals‘ economic resources obeyed a uniform distribution with a 

range of 2 or 3 (Figs. 42 and 45, green bars) or a normal distribution with a standard 

deviation of 2 or 3 (Figs. 42 and 45, purple curves). From the two significantly 

different groups of steady density curves in Figures 41 and 44 (orange, green, and 

purple versus pink), it was concluded that as long as researchers ensure that economic 

resources do not obey a power-law distribution, they can simply assign each 

individual‘s R(vi) at time t as the average value <r> of the statistical distribution 

derived from the real-world scenario, and thereby facilitate the requirements of their 

experiments without affecting simulation results. 

 

Fig. 41. How different distribution types of individual economic resources (delta, 



 

109 

 

uniform, normal, power-law) affect steady density curves and critical thresholds 

of infectious disease diffusion in a scale-free network. 

 

 

Fig. 42. A uniform (n = 5, r = 2) and normal distribution (standard deviation = 2) 

of individual economic resources with average value <r> of 16. 

 

Fig. 43. Individual economic resources in a power-law distribution. 
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Fig. 44. How different types of individual economic resource distributions (delta, 

uniform, normal, and power-law) affect steady density curves and critical 

thresholds of infectious disease diffusion in a scale-free network. 

 

 

 

Fig. 45. A uniform (n = 5, r = 3) and normal distribution (standard deviation = 3) 

of individual economic resources with average value <r> of 16. 
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Fig. 46. Individual economic resources in a power-law distribution. 

 

5.3 Conclusion 

Agent-oriented modeling and complex networks were used to construct infectious 

disease simulation models for the purpose of investigating how economic resources 

and transmission costs influence epidemic dynamics and thresholds in scale-free 

networks. The results indicate that when economic resources and transmission costs 

are taken into consideration, a critical threshold does in fact exist when infectious 

diseases are spread within a scale-free network. These conclusions may help 

epidemiologists and public health professionals understand core questions of disease 

epidemics, predict epidemic dynamics and diffusion, and develop effective public 

health policies and immunization strategies. 



 

112 

 

Chapter 6 Abstraction Hierarchy 

Experiments 

Networks consisting of node and link assemblies are viewed as convenient 

representations of interactions in complex systems. Many complex networks in fields 

ranging from biology to sociology have been analyzed, and complex network research 

has cultivated alternative views of and advanced new methodologies for solving 

problems in complex domains. An important and challenging problem concerns 

partitioning individual networks into clusters—also called communities or groups in 

social networks [29, 45, 65] and motifs or modules in biology [16, 72, 119]. Research 

in this area has focused on identifying clusters and their hierarchical organizations in 

a manner that corresponds to such real-world meanings as biological functions [67, 98, 

119], economic laws, and political constraints [2, 29]. Despite a number of successful 

examples, no uniform measure of modularity or standard structure of hierarchy has 

been universally accepted [4, 32, 67, 69, 98]. The definition of community implied by 

modularity is not necessarily consistent with its optimization [32]; consequently, a 

perfect partition enforced by modularity optimization may not correspond to a 

network‘s actual community structure [32, 120]. Furthermore, a hierarchical 
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architecture can represent different relationships between hierarchical levels. They 

can be as general as inclusion/nesting relationships (e.g., those found in logic gates in 

D-flips, metabolic pathways [121, 122],or domestic airline flights [69]), or as specific 

as gene-target regulations observed in E. coli genetic regulatory networks (e.g., the 

manner in which IHF regulates OmpR and OmpR regulates FlhDC [34]). 

Most current forms of module hierarchical organization are limited to vertical 

relationships between modules at different hierarchical levels, thus overlooking 

horizontal relationships among modules at the same level. Vertical relationships 

support representations of inclusion hierarchies [67, 69] and causality/regulation [98]. 

To complement these, horizontal relationships can be used to provide abstractions of 

original networks of interest at various levels within a hierarchy. Domain experts can 

therefore focus on interconnections among modules at each hierarchy level [63].  

 

6.1 Background 

Advancements in complex network research have supported the identification of 

many significant network properties from various domains and disciplines—for 

example, small-world architectures [21], scale-free connectivity [24], and network 

motifs (modules) [16, 26]. Several researchers believe that hierarchical relations exist 
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in complex networks, and have demonstrated the potential application of the hierarchy 

concept to system-level analyses (e.g., cellular processes or domestic flights in the US) 

[43, 64]. 

One widely used method for finding hierarchical data organization is hierarchical 

clustering [61, 123, 124], in which data are grouped into sequences of nested clusters, 

ranging from singletons to clusters consisting of agglomerations of all individuals in a 

fashion or vice versa in a divisive style. Both techniques organize data into 

hierarchical structures that are usually depicted as dendrograms (e.g., Fig. 47). 

Compared to divisive clustering, agglomerative clustering has a computational 

advantage in that it only considers O(n
2
) merges of data given n data points, rather 

than O(2
n
) possible divisions of data into two nonempty groups. However, it also has 

a drawback in its tendency to find only cores of clusters (leaving out peripherals), 

since core nodes often have shorter distances between each other, and therefore merge 

earlier during the agglomerative process [1]. As shown in Figure 47, the root of the 

dendrogram represents the whole dataset, and each leaf singleton is regarded as a data 

point. The intermediate nodes contain data points proximal to each other, and the 

height in the dendrogram expresses the distance between nodes. Agglomerative 

clustering starts with n=5 single data points. Based on a distance metric, it calculates 
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the proximity matrix for the n singleton clusters. It selects two clusters with the 

minimum distance, and merges them into a new cluster. By repeating the same 

process, a series of merge operations is applied to force all data points into one cluster 

eventually. To obtain the final clustering results, we must cut the dendrogram at an 

appropriate level. We show two possible cut lines. Divisive clustering, on the contrary, 

starts with one cluster that holds all data points. It iteratively selects a cluster and 

splits it into two clusters based on a distance metric. The procedure repeats until each 

cluster contains a single instance. Like agglomerative clustering, we must draw a cut 

line at an appropriate level in the dendrogram to generate the final clusters. For either 

approach, the selection of a cut line is crucial to the final clusters. In this example, the 

red cut line, which leads to two clusters {a,b} and {c,d,e}, is apparently more 

reasonable than the blue one, which creates a singleton {c} incorrectly. In contrast, 

divisive clustering provides clearer insights into the main data structure because larger 

clusters are generated earlier; for this reason it is less likely to suffer from 

accumulations of erroneous decisions [125]. 

Both agglomerative and divisive clustering techniques produce hierarchical trees for 

visualizing internal hierarchical data structures, regardless of whether data are 

actually hierarchically organized. A height threshold in a dendrogram can arguably be 
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selected according to some metric, so that clusters and their hierarchical relations 

above the threshold can be regarded as genuine. However, the question remains 

whether post-clustering analyses that are independent of the clustering process can be 

effective. A variant of divisive clustering, called box clustering, has been proposed 

[32]. Based on a significance test that compares the original network and a null model, 

box clustering verifies that the network under analysis has an inclusion/nested 

hierarchy, and iteratively identifies (in an unsupervised fashion) modules at each level 

in the hierarchy [66] until no further hierarchical levels can be located via module 

division. This method visualizes the final clustering result in the form of a box-model 

clustering tree that shows only vertical relationships between different hierarchical 

levels. 

Complex network analysis was divided into two tasks: module identification and 

hierarchy construction. In addition to definitions of modules and hierarchies, the 

degree of difficulty of accomplishing these tasks depends on network type—for 

instance, whether it is weighted or directed determines problem complexity. Due to 

computational complexity, most current methods are limited to unweighted or 

undirected networks. Here I will propose a novel approach that is both general and 

efficient enough to be applied to networks in various domains, whether weighted or 
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unweighted and whether directed or undirected.  

Unlike conventional top-down or bottom-up hierarchical clustering approaches [126, 

127], this approach uses a two-way module-finding and hierarchy-building strategy. It 

initially partitions a network into disconnected modules (i.e., subgraphs) in a 

top-down fashion. Each module at the bottom level (containing multiple nodes) is 

then treated as a new node. Based on the network topology, links and their weights 

between new nodes can be derived to obtain a new and higher-level network. By 

repeating the same process it is possible to build a multi-level hierarchy from the 

bottom-up. Unlike most hierarchy studies that only focus on vertical relationships 

between modules at different levels, the proposed approach also provides explicit 

information for horizontal relationships via a network consisting of nodes at each 

hierarchical level.  
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Fig 47. Example of a dendrogram from conventional hierarchical clustering.  

 

6.2 Validation 

The capability of the proposed approach, named Pyramabs, was verified in order to 

uncover the inclusion hierarchy (based on an ensemble of random networks as 

proposed in [69]). Average results from tests using 30 randomly generated 640-node 

artificial networks are shown in Figure 48. Unlike previously established methods, 

Pyramabs is capable of describing explicit horizontal relationships between modules 

by means of abstract networks integrated within hierarchies. Figure 48 presents the 

abstract network at the second and third hierarchical levels for a random 640-node 

graph. Link color and thickness indicates the significance of connections between 

module pairs (red circles). Figure 48(A) shows the abstract network for the original 

640-node random network. Modules were easily divided into 16 groups according to 

observed link color and thickness, with each group consisting of four modules. 

Clustering corresponded to partitioning at the second level of the hierarchy (see also 

Fig. 49[A]). As shown in Figure 49(B), four clusters matching the theoretical 

partitioning at the top hierarchical level were found. According to these results, 

Pyramabs is capable of detecting the inclusion hierarchy in the 640-node random 
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network. Furthermore, from the original network it derived weighted connections 

among the modules at each hierarchical level as an abstract network, thus providing 

greater insight into the random network. 
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Fig 48. Validation of two-way module-finding-hierarchy-building strategy.  
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B. 

 

Fig 49. Abstract network corresponding to hierarchical level three and two.  

 

6.3 Experiments 

A series of experiments using the proposed approach was conducted using artificial 

and real-world datasets in various domains. Following the lead of Sales-Pardo et al. 

[69], the approach was first tested with nested random networks having a hierarchical 

structure. As stated above, it was possible to use artificial network data to validate the 

method‘s ability to identify inclusion hierarchies implied in networks. To evaluate its 

applicability to real-world problems, I tested it with three real-world datasets with 
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different characteristics: social networks, protein-protein interactions [12], and 

metabolic pathways. The results indicate that the proposed method is capable of (a) 

uncovering inherent hierarchies and significant modules in complex networks, and (b) 

providing abstractions of complex networks to different degrees. 

 

6.3.1 Club network analysis 

Two social networks with known module structures were selected to test Pyramabs. 

The first, Zachary‘s karate club network, consists of 34 nodes and 78 edges [126]. It 

represents friendship patterns among members of a karate club at an American 

university over a two-year period in the early 1970s. The club split into two groups 

(administrators and instructors), but a previously used method [1, 69] identified a 

partition that agreed with the actual split with one exception: a misclassified node 3. 

Pyramabs partitioned the club network into two modules that corresponded to the 

actual factions described in Zachary‘s study. As shown in Fig. 50, (A) The Zachary‘s 

karate club network consisting of 34 nodes and 78 edges. The nodes (i.e. club 

members) were categorized into two groups, administrators and instructors, colored in 

red circles and yellow squares respectively. (B) The proximity network of the 

Zachary‘s karate club. A thicker and darker link between nodes indicated a closer 
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proximity. (C) The backbone, represented by a spanning tree, extracted from the 

proximity network. Pyramabs identified the correct cut between node 3 and node 9. 

Based on the tree and the cut line, we identified two clusters as shown in (B) with two 

red circles connected by a thick red link. The abstract network of the two modules 

corresponded to the correct partition of the karate club. 

 

A. 
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B. 

 

C. 

 

Fig. 50. Clustering results of Zachary’s karate club network.  
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6.3.2 Football network analysis 

The next test of Pyramabs used the NCAA college football network of 115 nodes 

and 613 links [43], representing the schedule of games between American Division I 

college football teams during the 2000 season. The teams were organized into 

different conferences, and intra-conference games were scheduled more often than 

inter-conference games. An abstraction pyramid consisting of two hierarchical levels 

was detected, and the 12 communities identified at the bottom level mapped well to 

the 12 conferences (Fig. 51A). Nearly all teams correctly clustered with other 

members in the same conference, and the scattering of independent teams across 

several communities reflected their lack of membership in any conference. The results 

shown in Figure 51A are comparable to those reported in [43]. Figure 51B shows the 

abstract network of communities detected by the original football game network. 

Unlike most previous efforts based on a bottom-layer abstract network, Pyramabs also 

correctly identified two modules (Fig. 51C) that were separated geographically by the 

Mississippi River (Fig. 51D).  
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D. 

 

Fig. 51. The analysis of the football network 

 

6.3.3 PPI network analysis 

We tested Pyramabs on the yeast core protein interaction network downloaded from 

the DIP database [127]. We first applied two methods [48], the Expression Profile 
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Reliability Index and the Paralogous Verification Method, for reliability assessment to 

filter the high-throughput protein interaction data and to remove self-connecting links 

as previously reported [64, 72]. Then, the final interaction network was obtained, 

which consisted of 2440 proteins connected by 6241 links. We ran Pyramabs on this 

network and discovered a hierarchy of five abstraction levels. The numbers of 

modules at each level were 207, 72, 16, 3 and 1 from the fifth (bottom) to the first 

(top) level, respectively. 

We evaluated the biological significance of the identified modules based on the Gene 

Ontology biological process annotations using Gene Ontology Go Term Finder of 

SGD (http://www.yeastgenome.org/). Based on a binomial distribution, the GO term 

Finder calculates a p-value that reflects the probability of observing the co-occurrence 

of proteins with a given GO annotation in a certain module by chance. The smaller the 

p-value, the more consistent is the module with the GO annotations. Our results are 

shown in Table 10. We also included the results of Luo et al. [64] and Raddichi et al. 

[72] for reference, as neither of these  was capable of extracting a hierarchy from a 

complex network. For comparisons of hierarchy detection, we tested the same 

network using Sales-Pardo et al.‘s box clustering [69].  

From Table 10, the average p-value decreased as the level moved up, which suggested 

http://www.yeastgenome.org/
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that the vertical relationships in the hierarchy identified by Pyramabs corresponded to 

the GO hierarchy in the sense that the modules at lower levels were merged correctly 

into larger modules at higher levels. They also mapped well to the GO annotation 

categories. In addition, we conducted a series of Monte Carlo tests to obtain a baseline 

for the p-value using random modules; the background p-values (shown in 

parentheses) in Table 10 are for reference. 

We also analyzed the horizontal relationship in the abstract network at each level to 

ascertain if it could characterize biological meanings. The proximity between two 

(super)nodes in an abstract network, as defined in eq. [2] (see Methods), measures the 

significance of the relationship between the nodes. Given two pairs of nodes in the 

abstract network, (a, b) and (c, d), when the proximity between a and b is Pab and the 

proximity between c and d is Pcd, Pab  Pcd suggests that a and b have a closer 

relationship to each other than c and d.  

In our analysis of protein-protein interactions, we verified if a and b had a closer 

biological relationship than c and d when Pab  Pcd by evaluating the change in 

p-value before and after merging nodes (i.e. modules). We ran a sign test on the 

abstract network at each level in the hierarchy. There were a significant number of 

positive cases for which the ratio of the decrease in p-value after merging a and b was 
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larger than that after merging c and d when Pab  Pcd (at significance level 0.01). 

These results demonstrated the feasibility of applying the horizontal relationship for 

characterizing biological meanings. 

In Fig. 53, owing to the complexity, we showed the maximum spanning tree of the 

abstract network at levels 4 and 5 in the hierarchy instead of the abstract networks 

themselves. To further describe the vertical and the horizontal relationships, we 

selected two examples in Fig. 53 and elaborated on them in Fig. 54 and 55.
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Table 10. Summary of biological significance of modules based on GO biological 

process annotations 

 Total 

Clusters 

Average 

Cluster 

Size 

Average 

p-value 

Pyramabs 

(Level 2) 

3 

723.33 1.04E-69 

(1.67E-52)b 

Pyramabs 

(Level 3) 
16 

152.44 2.21E-25 

(1.46E-12)b 

Pyramabs 

(Level 4) 
72 

33.86 7.32E-18 

(5.67E-07)b 

Pyramabs 

(Level 5) 

207 
8.54 4.65E-10 

(3.66E-04)b 

Luo et al.a 86 19.20 2.99E-17 

Raddichi et al.a 155 12.82 3.82E-13 

Sales-Pardo  

et al. (Level 2)c 

76 26.41 

1.04E-16 

Sales-Pardo  

et al. (Level 3)c 

101 11.44 

4.36E-13 

Sales-Pardo  

et al. (Level 4)c 
88 7.76 

3.51E-08 

Sales-Pardo  

et al. (Level 5)c 
12 5.37 

3.51E-05 

 

Table 1. Footnotes 

a
Both Luo et al.‘s and Raddichi et al.‘s methods could only identify single-level 

modules.  

b
Numbers in parenthese are baseline p-values obtained by Monte Carlo tests. All 

baseline p-values are larger than the observed (e.g. 1.67E-52 vs. 1.04E-69), 

suggesting that observed p-values are not by chance. 

c
In Sales-Pardo et al.‘s method, a higher-level module will not necessarily be 

partitioned further into lower-level sub-modules. Thus, the number of modules does 
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not necessarily increase as the level goes down (e.g. 88 modules at level 4, but only 

12 modules at level 5). 

 

 

Fig. 52 The p-value of the corresponding nodes at different levels.  
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Fig. 53. The MST of PPI at level four and five, and have blue and red colors, 

respectively.  
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Fig. 54. The mapping between the modules we found and the real GO id. 

 

6.3.4 Metabolic network analysis 

Thousands of components in a living cell are dynamically interconnected as a 

complex network that determines the cell‘s functional properties [8, 36]. One of the 

primary examples is cellular metabolism that arises from sophisticated biochemical 

networks in which numerous metabolites are integrated through biochemical reactions. 

To facilitate the identification and characterization of system-level features in 

biological organizations, we can partition cellular functionality into a collection of 

modules and organize them in a hierarchy [67].  

We tested Pyramabs on the metabolic network of E. coli as used previously [69].This 

contained 507 nodes and 947 links, where each node represented a metabolic 

substrate and a link described a reaction. As Pyramabs is flexible enough to deal with 

undirected or directed networks, the reactions in the metabolic network were treated 

as undirected and directed, respectively, in different tests for hierarchy discovery.  

In KEGG [128], metabolic pathways are classified into 11 categories: Carbohydrate, 

Energy, Lipid, Nucleotide, Amino acid, Other amino acid, Glycan, PK/NRP, 

Cofactor/vitamin, Secondary metabolite and Xenobiotics. Each category consists of 
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several sub-categories ( e.g., nucleotide metabolism includes purine metabolism and 

pyrimidine metabolism). In addition to KEGG PATHWAY classifications, KEGG also 

provides pathway modules that are specifications of sub-networks corresponding to 

tighter functional units. We measured the within-module consistency of metabolic 

pathway classification according to KEGG by the p-value based on a hypergeometric 

distribution. These results are summarized in Table 11(a) and 11(b) after treating the 

links as undirected and directed, respectively. For a comparative study, we tested the 

same network using Sales-Pardo et al.‘s method of box clustering [69], which 

considered undirected networks only; these results are in Table 11(c).    

Figure 55 shows the abstraction pyramid extracted from the metabolic network. To 

enhance readability, we only show the maximum spanning tree of the abstract 

network at each level. An example of the vertical relationship between different 

hierarchical levels is marked by red circles for further analysis (Fig. 56). We have also 

highlighted by a red rectangle an example of the horizontal relationship at the second 

level, and compared it against the KEGG PATHWAY (Fig. 57). The vertical 

relationships disclosed by Pyramabs correctly characterized inclusion (or part of) 

relations (e.g. ―Pyrimidine metabolism‖ is included in ―Nucleotide metabolism.‖); the 

horizontal relationships showed that the modules with a larger proximity in between 
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belonged to the same pathway category. 
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Table 11. Summary of within-module consistency of metabolic pathway 

classification based on KEGG. 

A. 

 

Total 

Clusters 

Average 

Cluster 

Size 

PATHWA

Y Category 

Average 

p-value 

PATHWAY 

Sub-category 

Average 

p-value 

Pathway 

Module 

Average 

p-value 

Level 2 

6 84.5 4.91E-20 

(1.52E-02) 

3.35E-22 

(3.37E-05) 

4.88E-09 

(2.17E-03) 

Level 3 

26 19.5 2.78E-10 

(5.95E-03) 

6.68E-15 

(3.29E-03) 

4.24E-09 

(1.53E-02) 

Level 4 

104 4.9 2.16E-04 

(2.35E-02) 

1.13E-07 

(6.19E-03) 

1.74E-05 

(1.52E-02) 

B. 

 

Total 

Clusters 

Average 

Cluster 

Size 

PATHWA

Y 

Category 

Average 

p-value 

PATHWAY 

Sub-category 

Average 

p-value 

Pathway 

Module 

Average 

p-value 

Level 2 

5 101.4 3.78E-11 

(2.59E-06) 

5.27E-16 

(5.81E-05) 

9.41E-11 

(2.07E-03) 

Level 3 

27 18.8 5.05E-10 

(8.37E-03) 

7.10E-16 

(2.82E-03) 

1.57E-09 

(1.32E-02) 

Level 4 

117 4.3 4.98E-04 

(2.29E-02) 

4.75E-07 

(5.08E-03) 

4.59E-05 

(1.34E-02) 

C. 

 
 

Total 

Clusters 

Average 

Cluster 

Size 

PATHWA

Y Category 

Average 

p-value 

PATHWAY 

Sub-category 

Average 

p-value 

Pathway 

Module 

Average 

p-value 

Level 2 28 18.1 1.82E-08 3.17E-13 1.35E-08 

Level 3 111 3.2 1.49E-04 8.80E-08 1.75E-05 

Level 4 48 2.8 5.28E-03 6.41E-05 1.64E-03 

Level 5 50 2.7 6.51E-03 9.05E-05 1.65E-03 
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 Fig. 55. The pyramid of abstraction disclosed from a metabolic network. 

 

Fig. 56. Example of the vertical relationships in an abstraction pyramid disclosed 
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from a metabolic network. 

  

Fig. 57. Example of the horizontal relationship at the third level of an abstraction 

pyramid. 
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Chapter 7 Conclusion  

The emergence of large and reliable network maps has driven the development of 

network theory during the past decade. For example, cell biologists use networks to 

understand signal transduction cascades and metabolism, computer scientists use them 

to map the Internet and World Wide Web, and epidemiologists use them to study virus 

transmission networks. However, the question remains whether their efforts can be 

used to form a theory of complexity or to determine the common characteristics of 

dynamic processes. 

The shift from studying a small number of elements to studying the behavior of 

large-scale aggregates is equivalent to the shift from atomic and molecular physics to 

the physics of matter. Understanding how the same elements assembled in large 

numbers can give rise to different macroscopic and dynamical behaviors (according to 

the various forces and elements) opens potential paths to quantitative computational 

approaches and increased forecasting power. 

Although many findings and studies have been offered and rejected, it is increasingly 

clear that interconnectivity and topology are fundamental to the behavior of complex 

systems. In other words, complex networks are here to stay.  
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