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Abstract

Theis equation is a non-equilibrium equation»which can be used to predict the
drawdown distribution during pumping or analyze dtawdown data in determining the
aquifer parameters. Physically, the ‘aquifer drawdown changes with time at the early
stage of pumping and approaches a constant value after a long period of pumping.
However, the Theis equation can not reduce to Thiem equation mathematically when
time approaches infinity. Also, the Thiem equation is not valid if the well radius
approaches zero or the outer boundary goes to infinity. The main objectives of this
dissertation are to derive the steady-state drawdown solution from the transient
solutions of the constant-head and the constant-flux tests and to explain the use of
mass balance concept in obtaining the steady-state solution. The result indicates that

a flow system of a finite domain and a well of finite diameter are the necessary

il



conditions for obtaining the Thiem equation from the transient solutions. While

Thiem equation is employed, it implies that the problem has to be addressed within a

region instead of zero well radius and/or infinite outer boundary. In addition, the

dimensionless times criterion required to approximate the solutions of finite domain

by the infinite-domain solution and the Thiem equation are also presented. An

approximate solution is useful for practical applications if the corresponding

analytical solution is complicated and difficult to accurately evaluate. The second

objective of this dissertation is to examine the algorithm for obtaining a large-time

solution by using the Laplace transforms and the well-known “small p — large ¢’

relationship. In the past, the-relationship was commonly applied to the Laplace

domain solution in developing: a large-time solution in the groundwater area.

However, Chen and Stone [1993] pointed out that the use of this relationship might

fail to obtain a correct solution of the wellbore flux for the constant-head test problem.

This dissertation also shows that the relationship of small p versus large ¢ is

appropriate for obtaining a large-time solution of the transient constant-head test

through the detailed mathematical development.

Keywords. Ground water; Steady state models; Large-time solution; Laplace

transforms; Well hydraulics.
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Notation

The following symbols are used in this dissertation:

I, = modified Bessel function of the first kind of order zero;
J, = Bessel function of the first kind of order zero;

J, = Bessel function of the first kind of order one;

K, = modified Bessel function of the second kind of order zero;
K, = modified Bessel function of the second kind of order one;
p = Laplace dummy variable;

g = pS/T;

QO = wellbore flux for constant-head test or pumping rate for constant-flux test;
é =  Laplace domain wellbore flux or pumping rate;

r = radial coordinate;

r, = well radius;

R = radius of influence;

s = drawdown;

s = Laplace domain drawdown;

s, = drawdown in pumping well;

S = storativity of confined aquifer;

t = time;



An

transmissivity of confined aquifer;

r’S/(4Tt);

R*S/(4Tt);

well function;

Bessel function of the second kind of order zero;
Bessel function of the second kind of order one;
roots of J,(r,a)Y,(Ra)-Y,(r,a)J,(Ra)=0;
roots of  J,(r,, £)Y,(RB) =Y (r,, /), (RB) =0
4T/(c2er) which ¢ = exp(y);

At

0.57722... is the Eulet’s constant;

roots of Bessel function J,(y)=0; and

coefficient used in Chen [1984].
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Chapter 1 Introduction
1.1 Statement of the problem

The spatial and temporal distributions of drawdown in an aquifer may change in
response to a head change or pumping rate applied at the test well. The former holds
a fixed drawdown in the test well and is referred to the constant-head test. The latter
keeps a constant pumping rate in the test well and is referred to the constant-rate test.
A given drawdown solution can be used to predict the drawdown distribution at any
location and time if the aquifer parameters are known. It can also be used to
determine the aquifer parameters if.coupled an optimization approach in analyzing the
observed drawdown data.

Theis and Thiem equations‘are the famous transient and steady-state drawdown
solutions, respectively, of a constant-rate test conducted in confined aquifer. Both
equations are easily used to predict the aquifer drawdown distribution in practical
application. Theis equation is derived under the conditions of having an infinite
extent confined aquifer and neglecting the effect of well radius. It, therefore, is not
valid if the aquifer has a finite boundary. In addition, the Theis equation will give an
infinite drawdown solution if the time approaches infinity or the radius approaches
zero. Chen [1984] proposed a modified Theis equation for drawdown distribution in

a finite confined aquifer and gave a time criterion when applying the Theis solution.



Thiem equation, the steady-state solution, can be derived either from the

continuity equation coupled with Darcy’s law [e.g., Todd and Mays, 2005] or the

radial steady-state flow equation [e.g., Charbeneau, 2000]. Many researches have

discussed the problem of steady-state flow and gave a warning of erroneous result

when employing Thiem equation to problems of an infinite aquifer [e.g., Bear, 1979].

Zaadnoordijk [1998] proposed a superposition algorithm, includes Thiem equation

and Theis equation, to simulate the transition between two given steady-state

groundwater fields. His study indicates that the steady-state condition is directly

related to the effects of well radius and finite boundary. However, the issue of

deriving the Thiem equation directly from the transient drawdown solutions has never

been addressed before.

Contrary to the constant-flux test, the constant-head aquifer test is suitable in

determining the hydraulic parameters of low-permeability aquifer. This test

maintains a constant head on the pumping/injection well throughout the test period,

and the change of flow rate across the wellbore versus time is recorded [e.g., Batu,

1998]. The head distribution for constant-head test in a confined aquifer is

analogous to the heat distribution for constant temperature maintained at a bounded

circular cylinder; thus, the head solutions in both Laplace domain and time domain

can be obtained from Carslaw and Jaeger [1959]. The wellbore flux can then be



derived based on the solution of head distribution and Darcy’s law [e.g., Yang and
Yeh, 2002; Peng et al., 2002]. However, the time domain solution of the wellbore
flux is complex and difficult to accurately evaluate. Therefore, it was common to
derive the approximate solutions for small or large value of the time for the wellbore
flux [e.g., Carslaw and Jaeger, 1959, p.336].

One way for obtaining the small- or large-time solution is to apply the
relationship of large p versus small ¢ (hereinafter referred to as LPST) or small p
versus large ¢ (hereinafter referred to as SPLT) to the Laplace domain solution,
respectively. This concept is based on a symbolic relation between the derivative
operator of time, i.e., d/dt, in the time domain-and the dummy variable, p, in the
Laplace domain [van Everdingenr and ‘Hurst, 1949}, Then, one may obtain a small-
or large-time solution from taking the inverse Laplace transform on the reduced
Laplace domain solution for a large or a small dummy variable, respectively. Some
of the successful illustrations of applying this concept can be found in the
groundwater literature. van Everdingen and Hurst [1949] used the relationships of
LPST and SPLT to derive the pressure head of groundwater flow in a reservoir at
small and large time, respectively. Accounting for the aquitard storage for the flow
in a leaky aquifer system, Hantush [1960] obtained the small- and large-time

drawdown solutions by applying those two relationships. Neuman and Witherspoon



[1969] studied the problem for flow in a confined two-aquifer system by considering

the aquitard storage and drawdown in the unpumped aquifer. They used the LPST

relationship to obtain the small-time solution for their problem. Singh and Sagar

[1980] proposed approximate solutions of head to the linearized flow equation of

slightly compressible fluids by using the relationships of LPST and SPLT. Javandel

and Witherspoon [1983] and Butler and Liu [1993] provided a large-time solution for

pumping-induced drawdown in a vertical and horizontal nonuniform aquifer,

respectively, based on the SPLT relationship. Chakrabarty et al. [1993] provided a

nonlinear pressure distribution of compressible liquid and the corresponding small-

and large-time solutions obtained in a homogeneous formation using the relationships

of LPST and SPLT, respectively.  In"addition, .a number of approximate solutions

at small and/or large time were derived based on these relationships in areas such as

the solute transport problem [van Genuchten et al., 1984; Chen, 1985; 1986; Yates,

1990], dual-porosity media problem [Barker, 1985], and unsteady infiltration problem

[Philip, 1986].

However, Chen and Stone [1993] presented a calculation of the flow rate across

the wellbore for the constant-head test problem and concluded that the SPLT

relationship might fail to obtain a correct large-time solution in this case. Later,

Mathias and Zimmerman [2003] indicated that a poor result was obtained by Gerke



and van Genuchten [1993] when using the relationship of small p versus large ¢ to

derive the water transfer coefficient for the dual-porosity media problem. The

relationships of LPST and SPLT have been widely used in the groundwater literature

for more than 40 years. Previous researches indicated that the SPLT relationship

could successfully yield correct large-time solutions if applied to the related Laplace

domain solutions. The contrary results of Chen and Stone [1993] and Mathias and

Zimmerman [2003], therefore, may depress the further study on this issue.

1.2 Objectives

The drawdown distribution may change in response to the constant-head or the

constant-flux test. Mathematically, these two tests can be formulated as different

types of boundary value problem. With or without considering the effect of well

radius, many studies have been devoted to developing analytical solutions for those

problems under various boundary conditions. The goal of this dissertation is to

investigate the problems regarding to the drawdown solutions of constant-head and

constant-flux tests in a homogeneous confined aquifer. Toward this goal the

dissertation organization is as follows:

(1) To examine the drawdown solutions of constant-head and constant-flux tests in a

finite or infinite confined aquifer with or without the consideration of the effects of



well radius;

(2) To verity the drawdown solutions of these two tests in a finite domain converging

to the Thiem equation after a long period of pumping;

(3) To present dimensionless time criteria required to approximate the solutions of

finite domain by the infinite-domain solution or the Thiem equation;

(4) To resolve the dispute on the validity of the SPLT relationship raised by Chen and

Stones [1993] and Mathias and Zimmerman [2003] through the detailed mathematical

development; and

(5) To derive a correct large-time solution of the wellbore flux rate for the

constant-head test based on the Laplace domain solution and the SPLT relationship.



Chapter 2 Drawdown Solutionsfor Constant-head Test
This chapter considers the constant-head test conducted in a homogeneous,
isotropic confined aquifer of constant thickness as shown in Figure 1. The
one-dimensional radial flow equation describing the drawdown in a confined aquifer

can be written as [Batu, 1998, p.147]

@ 10s_sos
or* ror T ot

(1)

where s(r,¢) is the observable drawdown corresponding to the radial distance »
from the test well and the time yariable #;,S is the storativity, and 7 is the
transmissivity. The drawdown is initially assumed.zero before an aquifer test, i.e.,
S(r,O) =0.

For the constant-head test, the drawdown in the test well is maintained a constant
and denoted as s,,. The rim of the wellbore is selected as the inner boundary and
the inner boundary condition for the drawdown is then denoted as s(r,,#)=s, where
ry 1s the well radius. An outer boundary condition should be provided for solving
the flow equation, Equation (1). Hereinafter, this study will present and discuss the
solution for the outer boundary specified as a zero drawdown and located at either an

infinite or a finite distance from the test well. In addition, the drawdown solution

derived by considering or neglecting the effect of the well radius will also be



presented.

2.1 Infinitedomain with afinite well radius

Analvtical solution

It is assumed that the outer boundary is located at infinity and the outer boundary
condition is expressed as s(c0,£)=0. The solution subject to the infinite domain
assumption is referred to as an infinite-domain solution. By using the method of
Laplace transforms, the general Laplace domain solution of Equation (1) can be
obtained in terms of bases [/, andy'K, which'are modified Bessel functions of the
first and second kinds of order zeroj respectively.» The function [, tends to infinity
under the outer boundary condition and'therefore must be excluded.

Application of the inverse Laplace transform under the inner boundary condition
yields the Laplace domain and time domain drawdown distribution for the

constant-head test, respectively, as [Carslaw and Jaeger, 1959, p.335]

« s, Ky(qr)

s = 2
)= e @
and
s(r.1)= s{l —E]O.exp(—zxztj YO(VX)J;(er)—Jg(rx)YO(,,Wx)ﬂ 3

7T N Jo (r,x)+ Yy (r,x) X



where p is the Laplace variable; ¢ =/ pS/T ; K, is modified Bessel function of the
second kind of order one; and J, and Y, are the Bessel functions of the first and
second kinds of order zero, respectively.

The flow rate across the wellbore at the test well, therefore, can be obtained by
applying Darcy’s law to Equations (2) and (3). Accordingly, the wellbore fluxes for

Laplace domain and time domain are, respectively,

— s gK, (qgr
Q(”W,P) — ZWWT—WM (4)
p K,(qr,)
and
8Ts,, T T 1 dx
WEANEREL L 5
T S Jo (r, %) +X5 (%) x

Note that the negative sign of Q corresponds to withdrawal and the positive sign
corresponds to injection.

Because the exponential term on the right-hand side of Equation (3) reduces to
zero as time approaches infinity; thus, the steady-state drawdown is obtained as s, .
This result implies that the steady-state drawdown within the entire domain is kept the
same as the fixed drawdown at test well.  Also, Equation (5) shows that the wellbore
flux decreases with the increasing time and approaches zero at the large time rather

different from the Thiem equation. These results suggest that under the infinite outer



boundary condition there is not enough water to maintain a constant non-zero flow
rate within the aquifer for the constant-head test. The solid line in Figure2
demonstrates the plot of dimensionless wellbore flux of Equation (5),
O(r,.t)/2x T, , versus dimensionless time, T t/ r2S. Tt can be observed that the

wellbore flux approaches zero as time becomes infinitely large.

Approximate solution at large time

The time domain solution of the wellbore flux, Equation (5), is complicate and

difficult to evaluate accurately due’to the problems of alternately oscillatory, slowly

convergence, and a singularity at the origin [Peng-et al., 2002]. Therefore, it is

common to derive a large-time approximate solution of the wellbore flux by using the

SPLT relationship. However, Chen and Stone [1993] and Mathias and Zimmerman

[2003] indicate that erroneous results were obtained when applying the SPLT

relationship. Based on SPLT, the approximate solution for large-time drawdown

distribution of constant-head test under the assumptions of an infinite domain and a

well of a finite radius can be derived successfully and is presented as follows. In

addition, a detailed mathematical derivation using SPLT approach for deriving the

water transfer coefficient involved in Mathias and Zimmerman [2003] is shown in

Appendix A.
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Using the limiting forms of K,(x)=—[In(x/2)+y] and K, (x)=1/x, where
y=0.57722... is Euler’s constant, for small value of x [Abramowitz and Stegun,
1970, p.375], the wellbore flux for small p, Equation (4), in Laplace domain can be

reduced to

— 1

Q(Vw,p)5—4ﬂTSwm (6)

where A =4T/ (czrwz,S) and c=exp(y) . The large-time wellbore flux is
subsequently obtained by taking the inverse Laplace transform of Equation (6).
Chen and Stone [1993] used a inyersé Laplace transform formula given by the
Oberhettinger and Badii [1973](formula 6.75, p.276:and 424) for the inverse Laplace

transform of term 1/[pIn(p/A)]~in Equation<{(6) as

-1 1 _ T (Ae)
’ Lm(p/z)}—f rea)™ (7)

where F(x) is the gamma function. They integrated Equation (7) and obtained the
large-time wellbore flux as Q(r,,f)=—co. In addition, they showed that this
large-time wellbore flux was contradictory to the result obtained by applying the

Tauberian theorem (also called final-value theorem [Spiegel, 1965]) to Equation (6),

re., O(r,,t >o)=0. Based on their study, they concluded that the application of

the SPLT relationship should be used with care because of possible failure to obtain a

11



correct large-time solution.

In fact, the use of inverse Laplace transform formula of Equation (7) should be
under a constraint of p > A which is proven in the Appendix A. For most confined
aquifers, the value of the storativity falls in the range 10” ~ 10~ and for sand and silt
formations the value of hydraulic conductivity falls in the range of 107 ~ 10' m/day
[Todd and Mays, 2005, p.93]. Assuming that the thickness of confined aquifer is 10
m and the radius of the test well is 5 cm; then, the value of A ranges from 10%/day to
10°/day. Notice that the Laplace variable p is required to be small in Equation (6)
and A should be small too. Yet, the value of'#4 is larger than 10%day in reality as
demonstrated above; accordingly, Equation (7) does not hold at all.

Hereafter, this study proposes an+alternative formula for the inverse Laplace
transform of term 1/[pIn(p/A)] in Equation (6). Ritchie and Sakakura [1956]
presented an article on expanding the solutions of the heat conduction equation in
terms of an infinite series approximately in an internally bounded cylindrical solid.
They gave the inverse Laplace transform for the term 1/[pIn(p/A)] when p is small

as

’”Lm (v/7) } Zl[an Tf} i) ] ®

where the dimensionless variable 7= A¢, column vector (—1,s) is the binomial

12



coefficient, and N is the number of truncated terms depending on the values of the
remainder.

The right hand side (RHS) of Equation (8) is a summation of products of the
dimensionless variable Inz and the constant value of the Gamma function. For a
large value of time, the terms of 1/ (Inn)’ and higher order terms may be truncated
since 7 is proportional to the dimensionless time. Therefore, the large-time
wellbore flux can be obtained based on Equations (6) and (8). Appendix B shows
the detailed expansion of Equation (8) and the large-time solution for the wellbore

flux is obtained approximately as

Q(rw,t); 4rTs,, ! A 6

_ 9
In7  (nn)  “(ng) (nn)* ®

The numerators of the RHS terms of Equation (9) are all constants and the
denominators are the function of dimensionless time, 7 = 47Tt/ (czer ) The value of
Inn reaches infinity if ¢ approaches infinity; therefore, Equation (9) becomes zero,
1.e., the steady-state solution for the wellbore flux is zero. Notice that Jaeger [1943]
and Carslaw and Jaeger [1959, p.336] gave a large-time wellbore flux which has the

first three terms and first two terms of Equation (9), respectively.

13



2.2 Infinite domain with neglecting the well radius

For the case of neglecting the effect of test well radius, that is, », — 0, the basis
K, of the general Laplace domain solution tends to infinity and therefore there is no
solution for this case. The transient and steady-state solutions of the drawdown for
the constant-head test with and without considering the effect of well radius under the

infinite domain assumption are listed in Table 1.

2.3 Finitedomain with afinite well radius

In this section, a well of a finite radius 1S considered and a finite distance, R, is
selected to represent the outer boundary if the drawdown beyond R is zero or
negligible. Generally speaking, the radius of influence which can be estimated by an
empirical relationship [Bear, 1979, p.306] is finite. Thus, the solution under a finite
outer boundary condition denoted as s(R,#)=0 is referred to as a finite-domain
solution. Carslaw and Jaeger [1959, p.332] gave the solution for this problem under
Cauchy boundary conditions. By assuming the flux of the Cauchy boundary being
equal to zero, a new drawdown solution for an aquifer of a finite domain under the

assumption of a finite well radius can be derived as

(10)

| W®fr) & (_ T 2jJ()(rwanm(mn)—Y0<rwa,,)Jo<ran>
S("’t)_s{ R g S e R T (Ra)
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where «, are the roots of J (r,a)Y,(Ra)-Y,(r,a)J,(Rx)=0. A detailed
derivation for Equation (10) is given in Appendix C. The flow rate at wellbore can

then be determined as

< exp(— Taft/S)

11
= Ve -Ji(Ra,) | I (Ra,) (h

Q(rwat): 27Z'TSW 111%-1—4

Obviously, the steady-state wellbore flux of Equation (11) for time approaching
infinity is Q(r,)=27Ts,/In(R/r,) which indeed is the Thiem equation. Figure 2
shows that the curve of Equation (11), i.e., the finite-domain solutions, coincides with
that of Equation (9), i.e., the infinite-demain solutions, at the early stage of the
pumping test and asymptotically approaches Thiem-equation after a long period of
time. In other words, the infinite-domain solution can approximate the finite-domain
solution when time is less than the boundary-effect time criterion, denoted as ¢,
implying that the finite boundary has no affect on the wellbore flux. In addition, the
finite-domain solution can be reduced to Thiem equation when time is larger than the
steady-state time criterion, denoted as ¢,, implying that the wellbore flux can be
considered at the steady state. It is worth noting that both the Thiem equation and
the infinite-domain solution has the advantage of computing the drawdown solution
more easily over the finite-domain solution.

Figure 2 indicates that both 7, and ¢, increase with the dimensionless distance

15



R/r, . The time criteria of 7, and ,can be obtained as R2S/ 107 and 4R2S/T ,
respectively, for the constant-head test where the absolute difference of dimensionless

wellbore flux between Equations (9) and (11) is about less than 107 . Table 2 gives

a list of time criteria for the finite-domain solution.

2.4 Finite domain with neglecting the well radius

In this section, the outer boundary of radial flow system is located at finite
distance from the test well and the inner boundary of well radius is negligible. Note
that /, and K, are the bases of thé general Laplace domain drawdown solution for
the constant-head test as mentioned in section 2.1. = Therefore, the base K, has to
be excluded from the general solution as~ 7, —>0" and the other base /, can not
satisfy the boundary conditions of fixed drawdown at wellbore and zero drawdown at
the finite distance simultaneously. Therefore, there is no solution for this case.
Table 1 also lists the transient and steady-state drawdown solutions of the
constant-head test when the outer boundary is finite with and without considering the

effect of well radius.

16



Chapter 3 Drawdown Solutionsfor the Constant-flux Test

This chapter considers a constant-flux test conducted at a confine aquifer.
Equation (1) is the one-dimensional radial flow equation describing the drawdown
distribution.  The initial condition for the drawdown before pumping is assumed zero.
The drawdown solutions are presented in the following sections for the cases of the
outer boundary of zero drawdown located at either an infinite or a finite domain with
or without considering the effect of the inner boundary of well radius.
3.1 Infinitedomain with afinite well radius

The constant-flux test at a constant pumping rate, says 0, is conducted at the test

well. Thus, the inner boundary condition for the constant-flux test may be written as

Os 0 (12)

orl,_, 2zr, T

The drawdown solution for the constant-flux test subject to Equation (12) and

zero drawdown at infinity can be obtained by the application of the Laplace

transforms as [Carslaw and Jaeger, 1959, p.338]

(13)

ool
—
"
~
~
I
St—38

1 ex [‘Z’szj Yy (1m0)J, (7, %) = Jy (M), (1, %) dx
s IS

where J, and Y, are the Bessel functions of the first and second kinds of order one,

respectively.  Yeh et al. [2003] presented a closed-form solution with detailed

17



numerical evaluations for a radial two-zone drawdown equation for groundwater
under constant-flux pumping in a finite-radius well. Their solution reduces to
Equation (13) if the transmissivities and storativities for the skin zone and formation
zone are the same.

Figure 3 gives a graphical representation of dimensionless drawdown of
Equation (13) for the dimensionless time ranging form 10° to 10°. The plot of
drawdown distribution demonstrated that the drawdown increases with time and
diverges as time approaches infinity. It implies that there is not enough water at the
outer boundary to balance the  continuous well pumping and the aquifer is
overdrawdown when time goes |infinitelylarge. - This result indicates that the
steady-state drawdown solution™.of the constant-flux test in an infinite domain by

considering the effect of the well radius does not reduce to the Thiem equation.

3.2 Infinite domain with neglecting the well radius

The solution for the constant-flux test neglecting the effect of well radius
conducted in an infinite domain is analyzed in this section. By applying the Laplace
transforms and the asymptotic form of modified Bessel function [Abramowitz and

Stegun, 1970], one obtains the drawdown equation as

18



s(r, t) = 47€T T expi— x)dx (14)

where u=r>S / (4T t) is inversely proportional to time.

Equation (14) is the famous Theis equation. The integration in Equation (14) is
called the well function and expressed as (u) which tends to infinity when time
approaches infinity. Thus the drawdown of the Theis equation becomes infinity. In
addition, Cooper-Jacob's solution, a special case of the Theis equation under the
condition of u<0.01, should also give an infinite drawdown solution when u
approaches zero.

The transient and steady-state drawdown .solutions for a constant-flux test
conducted in an aquifer with an infinite-outer boundary are compared in Table 1.
The results for the constant-head and constant-flux tests indicate that these two tests in
an infinite domain do not have steady-state solutions; thus, Equations (3), (13), and

Theis equation can not reduce to the Thiem equation.

3.3 Finitedomain with a finite well radius
Similar to the development of Equation (10), the drawdown solution for
Equation (1) subject to Equation (12) and a zero drawdown at finite distance can be

obtained as [Carslaw and Jaeger, 1959, p.334]

19



(15)

Mnl

of R x ( jJ(rﬂ)Y(rﬂ) AT ARG
()= { Do BB~ I (RB)] T (RA,)

where S, represent the roots of J,(r,B)Y,(RB)-Y,(r,8)J,(RB)=0 . The
steady-state drawdown solution can be easily obtained by setting the time to be
infinity in Equation (15) which is indeed the Thiem equation if the distance 7 is
equal to the well radius.

Figure 3 shows the distribution of dimensionless drawdown of Equation (15)
versus dimensionless time for R/r, equal to 10° and 10* with r/r, =10>. It also
demonstrates that the curve of Equation (15),i.e., finite-domain solutions, can be
approximated by that of Equatien (13), i.€., infinite-domain solutions, at early period
of time and reduce to Thiem equationat'a‘large period of time. The former indicates
the drawdown solution can be treated as that for an infinite aquifer before the
boundary effect acts. The latter implies that the drawdown almost reaches its
steady-state solution and the Thiem equation is applicable if the time is larger than the
steady-state time criterion. = When the absolute difference of dimensionless
drawdown is less than 107, the dimensional time criteria of t, and ¢, for the
constant-flux test considering well radius are 3R’S/100T and 8R’S/T ,

respectively, as shown in Table 2
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3.4 Finite domain with neglecting well radius
In this section, the outer boundary is some finite distance away and the well

radius is negligible. Chen [1984] obtained the drawdown solution for this case as

S(V,t)z%[W(u)—W(U)ﬁt 20] (16)

and

n=1 Zn'] (Zn U X

CD:Z [(u/U 1/2)(n] j.exp[ U _ x(1- x)}ﬁ an

where Uis R’S/(4Tt) and y, represents the'foots of Bessel function J,(y,)=0.

Both the arguments u and U in Equation (11) are inversely proportional to time.
The functions W(u) and W(U) can be expressed.in terms of an infinite series and
approximated as —(0.5772+lnu) and —(0.5772+an ), respectively, as u—0
and U — 0 after a large period of time [Todd and Mays, 2005, p.167]. The
difference of W(u) and W(U) reduces to 21n(R/ r) where 7 is a finite distance from
the test well. Moreover, the exponential term in the integrand of Equation (17)
approaches zero as U — 0 and the value of @& is negligible. As a result, the
drawdown of Equation (16) approaches Thiem equation when time approaches
infinity. The results of transient and steady-state drawdown solutions of the

constant-flux test under a finite outer boundary condition by considering or neglecting
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the effect of well radius are also shown in Table 1.

Again, Equation (16), i.e., a finite-domain solution, can be approximated by the
Theis equation, Equation (14), when U >4 [Chen, 1984] and reduce to the Thiem
equation when U <107 if the absolute difference of dimensionless drawdown is less
than 107°. The time criteria of #, and ¢, for the constant-flux test by neglecting
the effect of well radius are R>S/16T and 10°R>S/4T, respectively, as shown in

Table 2.
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Chapter 4 Conclusions

The uses of the drawdown solution in predicting the drawdown distribution or
determining the formation properties have been intensively studied in hydrology
literature. Two well-known tests, the constant-head and constant-flux tests, are
routinely used toward those goals. However, the derivations from the transient-state
solution to the Thiem equation and the approximate solution at large period of time
obtained from Laplace domain solution have not ever been thoroughly or correctly
studied. Two main contributions from this dissertation can be summarized as
follows.

First, the steady-state solutions developed from transient drawdown solutions for
constant-head and constant-flux tests in' a finite¢ or infinite domain and with or without
considering the effect of well radius have been presented. @A new transient
drawdown solution is derived for the constant-head test by considering the effect of
well radius and maintaining a zero drawdown at a finite boundary. The results show
that the finite domain condition is necessary for obtaining a steady-state solution from
a transient solution for a groundwater flow problem. Such an imposed condition
ensures that the mass balance is satisfied and the flow can reach steady state condition
within a bounded domain. In addition, the time criteria are provided for the

approximation of the finite-domain solution by the infinite-domain solution or Thiem
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equation. The infinite-domain solutions can be used to determine the drawdown
distribution or the aquifer parameters if the time is smaller than the boundary-effect
time criterion. Similarly, the Thiem equation is valid if the time is greater than the
steady-state time criterion.

Second, in regard to the large-time solution of wellbore flux in constant-head
problem, this study found that the inverse Laplace transform formula in Oberhettinger
and Badii [1973] adopted to invert Laplace domain solution by Chen and Stone [1993]
should be under the constraint p>A. One will obtain an erroneous solution if
applying that inverse Laplace transform formula without satisfying this necessary
constraint. Therefore, the inconsistent results obtained by Chen and Stone [1993]
from the SPLT relationship and the Tauberian theorem that arose from a violation of
the constraint from applying the inverse Laplace transform formula rather than using
the SPLT relationship. In addition, a new large-time solution of the wellbore flux
for the constant-head test is presented based on the SPLT relationship and the work of

Ritchie and Sakakura [1956].
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Appendix A: Examination of SPLT for dual-pore problem

A fractured aquifer consisted of fractures, fissures, cracks, and macropores can
be simulated as two separate but connected medium, one is associated with fracture
medium and the other involves porous matrix. Such a fractured aquifer system is
called dual-porosity system. Mathematically, a dual-porosity system involves two
flow equations which are coupled by means of a transfer term of water flow
[Dykhuizen, 1990]. Gerke and van Genuchten [1993] proposed a first-order model
to account this transfer term which is assumed to be proportional to the difference in
pressure head between the fracture medium and porous matrix. The specific value of
water transferred to head difference is referred as water transfer coefficient.

For the dual-porosity media.problem, Gerke and van Genuchten [1993] solved a
large-time water transfer coefficient by comparing two Laplace domain solutions, one
was the “first-order” flux equation between fracture and matrix and the other was
Richards’s equation within the matrix block, while p became small. Moreover,
Mathias and Zimmerman [2003] also obtained a large-time water transfer coefficient
for the dual-porosity media problem based on the time domain approach. Their
solution differs from the one obtained by Gerke and van Genuchten [1993] using the
Laplace domain approach based on the SPLT relationship. When comparing both

Laplace- and time domain solutions with the exact solution, they implicitly indicated
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that the SPLT relationship did not hold. Therefore, the following context will go

through the detailed mathematical derivations involved in the issues of Gerke and van

Genuchten [1993] and resolve the argument on the validity of the SPLT relationship.

If the pressure head of the fracture pore is considered to be a constant in time, the

water transfer coefficient can be obtained by comparing two rearranged flow

equations in Laplace domain as [Gerke and van Genuchten, 1993]

E(p) _ (hf - hm,,- ] tanh(f) n hm,i

p S p (A1)

and

— h 1 h . 1
h (p)=—"L et
m(p) P(l"';j—i_ p [1"'4’_1] (A2)

where h_m and £, ; are the Laplace domain head and the initial head, respectively,

in the matrix block; 4, is the imposed head at the fracture boundary; and variables
0.5 . . . .

&= a[(l —-w, )Cm r/ Ka] and ¢ =(1- w, c,.p Ja, while a is the characteristic

is the hydraulic

a

half width of the matrix block, w, is the fracture porosity, K
conductivity of the matrix block near the fracture/matrix interface, C,, is the specific
water capacity at the matrix, and ¢, is the water transfer coefficient.

Mathias and Zimmerman [2003] applied the Laurent-type expansion to Equations

(A1) and (A2) and transferred those series to the time domain by the asymptotic
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formula of Doetsch [1961] when time is large. Based on the time domain approach,
they obtained an exact large-time water transfer coefficient of
a,=1'K, / 4a’ (2247K, / a’) which differs from the Laplace domain approach of
a, =3K, / a’ obtained by Gerke and van Genuchten [1993] derived from Equations
(A1) and (A2) based on the SPLT relationship.

Once the water transfer coefficient is obtained, the normalized head difference
for large value of time is [Mathis and Zimmerman, 2003]

hm(t)_hf — ex —a,t :l
hm,i_hf (1 Wf)C (A3)

where £, is the time domain head. Equation (A3):can be verified by comparing it

with the exact solution given in Crank [1956,.p.48] which was shown in Mathis and

Zimmerman [2003] as

~(2n+1) 77K, ¢t
h hy 753 @2n+1) (2a)2(1—wf)cm (Ad)

It is clear that the normalized head difference approaches zero while dimensionless
time K, t/ l(2a)2(1—wf)CmJ on the RHS of Equation (A4) goes to a very large
value.

After comparing with the exact solution given by Crank [1956], Mathias and

Zimmerman [2003] concluded that the discrepancy of the water transfer coefficient
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from the time domain approach and Laplace domain approach arises from the use of
the SPLT relationship. However, this study finds that this relationship is indeed
correct and the defect in Gerke and van Genuchten [1993] is mainly caused by
ignoring the convergent requirements of series expansion for Equations (Al) and
(A2).

Gerke and van Genuchten [1993] expanded tanh(¢) and 1/(1+¢) in Equations
(A1) and (A2) in terms of a series, respectively. Those two equations were then

respectively expressed as

B, ( )—h/’ 1 az(l_wf)cmp 2“4(1_Wf)zcil’2 17"6(1_W/')3C31P3
S Y 3 13K 3 315K Tt

a

h,. {azﬁwf)cmp 2 (Iow ey y Fa‘(l-w, fCip® }

p 3K, 15K 315K
(A5)
and
h_m(p)h_f|:l_(l_wf)cmp n (I_Wf)jcjzpz _ (I_Wf)jcj,p3 +“.:|+
p a, o, a,
by, [=w)Cp (-w, FClp® (-w, fCop® (A6)
p a, a, a,

The water transfer coefficient can then be obtained as «, =3K,/a’ if one
compares Equations (AS5) with (A6) and sets the second term on RHS of these two

equations are equal. Similarly, the water transfer coefficients obtained from the third
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and fourth terms are O(W:,/15/2Ka/a2 (=2.74K,/a’) and on=3,/315/17Ka/a2

(=22.65K, / a’), respectively. It seems that the estimated water transfer coefficient
appears monotonously decreasing from 3 and asymptotically approaches to 2.47.
Notice that Gerke and van Genuchten [1993] truncated the third and remaining higher
order terms of p in Equations (A5) with (A6) because of small p.

In fact, the series expansion for tanh(£) in Equation (Al) and 1/(1+¢) in
Equation (A2) should be restricted to the convergent criteria |§| <z/2 and |§ | <1
[Abramowitz and Stegun, 1970, p.15 and 85], respectively. The series expansion of

tanh(cf) in Equation (A1) can be expressed as [Abramowitz and Stegun, 1970, p.85]

3 2n 2n_1
tanh§=§—%+£§5—l—7§7+ +2 (2 )32" EMN 4, n=12,...

157 31577 (2n)! - (A7)

where B,, is the nth Bernoulli number and the convergent criterion of tanh(£) is
|§| <7z/2. Subsequently, one uses the Fourier expansion of the Bernoulli number

[Abramowitz and Stegun, 1970, p.805] and obtains

-1Y"2(2n)1& 1
B2n = ( 22 )Sn ) z an > N= 1’2""
a k=1 (A8)

Therefore, the nth term of water transfer coefficient is obtained by letting

Equation (A5) equal to Equation (A6) as
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1
n—1 n—1 2n
awn{ 1) (20): } E = Re =23

2211 2211 _1 B a2 - 0 1 az ’
G -1)e. ) (A9)
k=1
The limit of «, for n—> o0 is
1
n-1
. " K, 7#°K,
o, = lim > 1 > = T >
n—ow e a a
(22 1—2); e (A10)
=1

where the limit of Riemann Zeta function, lim z::lk‘z” , equals 1.

n—0

The result shows that the water transfer coefficient has to be «, = 7°K, / 4a’ .

Obviously, the coefficient of- «, =3K, / a’ obtained from the Laplace domain
approach based on the SPLT relationship is exactly the same as that of Mathias and
Zimmerman [2003] derived from the time domain approach. Therefore, the dispute
in the discrepancy that was calculated using Laplace domain approach by making use
of the SPLT relationship and those found by working in the time domain is clearly

resolved.
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Appendix B: Derivation of Equation (7)
By applying the Laplace transform, the integral function of Equation (7) can be

expressed as

LF (o) dx}z]ze‘”]g ) i (B1)

The RHS of (B1) is a double integral and can be rearranged as

Ie‘PtTlfét_le dxdt = %Ig(; ﬁ (pt) d(pt)}d (B2)

0

The Gamma function is defined/as [Abramowitz and Stegun, 1970, p.255]

0

F(x+l):je_”uxdu (B3)

0

Replacing the second integral in Equation (B2) by Gamma function, the RHS of

Equation (B2) after the integration gives

(B4)

If p>A,theterm ( p/ ﬂ,)_z approaches to zero as z — o, then Equation (B4)

reduces to
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r(x+1)"x}:—p n(p/2) (B5)

This derivation shows that Equation (7) is valid only under the condition that p > 4 .

37



Appendix C: Derivation of Equation (9)
The first four terms of Equation (8) can be rewritten using the notation of Ritchie

and Sakakura [1956] as

1 BO,—I BO,—] BO,—] BO,—l
L' =+ 4+ -2 4 3 Cl
) [lnﬂ THRACY) (lnn)“} P

and

, §=0123 (C2)

where the coefficient B)™' is" related-|to the ‘Gamma function. The selected
properties of binomial coefficient, Gamma function, and Polygamma function applied

to the following derivation are, respectively, [Abramowitz and Stegun, 1970]

(_ lj =(-1) (C3)

r(l-v)=—-1(-v) (C4)
and

d’ _d

W)= ()] (C5)

The values of BS”I for s equal to 0, 1, 2, and 3 can be derived, respectively, as
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() -H
B [ 21J(_ 1 ddvzz L“(ll— v)} i - ;2((11)) +2 (1;3(3;2 =7 _%2

and

where the Riemann Zeta function &(3)=1.2020569032 .
Substituting Equations (C6) - (C9) into Equation (C1) gives

2 2

, .
Ll[ | }:_ Ly e 7 -7 7+260)
pin(p/a) Inz  (Inp)*  (ng) (In7)*

(Co)

(C7)

(C8)

(C9)

(C10)

Thus, the inverse Laplace transform of Equation (6) results in Equation (9) when

truncating high-order terms of Equation (8).
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Appendix D: Derivation of Equation (10)

General solutions of one-dimensional radial heat conduction equation in analogy
to the groundwater drawdown equation subject to Cauchy boundary condition at the
edges of hollow cylinder were given in Carslaw and Jaeger [1959]. The Cauchy

boundary conditions in terms of drawdown were expressed as

klg—lgs:kz_, r=a (D1)
or

and

k;@—k;szk;, r=b (D2)
or

where k,, k,, k,, k,, k,, k, are “constant;"a-and b are the radial distance of inner
boundary and outer boundary in the considered region, respectively. Equations (D1)
and (D2) represent the combination of the constant-head and constant-flux boundary

conditions.

By using the Laplace transforms, the drawdown solutions based on Equations

(D1) and (D2) is

S(V,t)= A _ﬂ.iexp(_gajtj [klvanJl (ba,,)_ﬁé(tlo()ban )]Co(l”,(ln)Az (an) (D3)
an

n=1

where
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_ —aks|k, — bk, In(b/a)|+ bk [k, + ak, In(r/a)]

A, , : :
ak,k, +bk,k} + abk,k, In(b/a)

A, =k, [kl'an‘]l (ban )_ ko J (ban )]_ ky [klan‘]l (aan )+ kyJ, (aan )]
CO (l", an ) = JO (ran )[klanYI (aan )+ kZ YO (aan )] - Yv() (aan )[klanjl (aan )+ kZJO (aan )]

Fla,)= ke + £ [, (ac, )+ koo act, T
- (klzaj + k22 Ikllan'jl (ban )_ kéJo (ban )]2

and a, are the positive roots of

[klaJl (aa)+ kyJ (aa)][kl'aYl (ba)_ kY, (ba)]
- [klaYl (aa)"' k)Y, (aa)][kl'all (ba)_ ey, (ba)] =0

For the constant-head test with a_finite well radius and outer boundary, the
constants in Equations (D1) and (D2).can be reéplaced by k=0, k= -1, ks=s,, k; =0,
k>’=1, k;3'=0, a=r,, and b=R. By carefully substitution, the drawdown solution, i.e.,

Equation (10) can be obtained from Equation (D3).
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Table 1 Transient and steady-state drawdown solutions for constant-head and

constant flux tests

Constant-head test Constant-flux test
State
Infinite domain Finite domain Infinite domain Finite domain
Considering well radius
Transient Equation (3) Equation (10) Equation (13) Equation (15)
Steady S, Thiem equation Infinity Thiem equation
Neglecting well radius
Transient No solution No solution Theis equation Equation (16)
Steady No solution No solution Infinity Thiem equation
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Table 2 The boundary-effect and steady-state time criteria for the finite-domain

solutions
Boundary-effect time Steady-state time
Solution type
criterion, ¢, criterion, ¢,
1
Constant-head test 0 T 4t
3
Constant-flux test 107 T 87
Constant-flux test when 1 10°
neglecting well radius 16

Note: 7 =R*S/T.
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Figurel Schematic diagram of drawdown distribution under constant-head or

constant-flux test in a confined aquifer.
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Figure2 Dimensionless wellbore flux versus dimensionless time for the finite-domain

solution, Equation (11) with R/r, = 10 and 10%, the infinite-domain solution,
Equation (5), and the Thiem equation. Note that both Equations (5) and (11) are

solved for the constant-head test.
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solution, Equation (15), with R/r, = 10° and 10* and r/ r, =10°, the infinite-domain
solution, Equation (13), and the Thiem equation. Note that both Equations (13) and

(15) are solved for the constant-flux test.
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