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定水頭與定流量試驗洩降解之研究 

研 究 生：王智澤      指導教授：葉弘德 

國立交通大學環境工程研究所 

中文摘要 

Theis 方程式可用來估算抽水條件下洩降隨著空間或時間的變化，亦可根據

洩降觀測值推估含水層的參數。物理上，在抽水試驗的初期，已知井位的洩降觀

測值會隨時間而變化，然後隨著時間的增加而趨於穩定。但是在數學上，Theis

方程式在時間很大時，並不能回復到穩態的 Thiem 方程式。此外，被廣泛應用

的 Thiem 方程式，卻不適用於距離為零或無限遠時的情況。另一方面，由於徑

向流場的洩降解，具有複雜且不易計算的特性，因此適用於時間很小或很大的近

似解，可符合工程簡易計算的需求。在地下水相關的研究中，利用拉普拉斯域變

數很小相當於時間很大(small p large t, SPLT) 的關係，可自拉普拉斯域解得到適

用於時間很大的近似解。然而，Chen and Stone [1993]的研究指出，SPLT方法應

用在推求定水頭試驗的井緣流量，會得到錯誤的近似解。本研究的目的，是推導

定水頭與定流量試驗在不同邊界條件下的暫態洩降解，並討論穩態解與 Thiem 

方程式的關係，以及驗證 Chen and Stone [1993]的推導。研究的結果顯示，地下

水流系統必須是在有限區域的條件下，暫態洩降解才會在時間很大時，回復到

Thiem 方程式，此結果符合質量平衡的概念。因此，在應用 Thiem 方程式時，
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討論井半徑為零或距離為無限遠的不合理情況，是沒有意義的。本研究亦證明，

定水頭試驗的井緣流量經由 SPLT方法，可以得到正確的近似解。 

關鍵詞：地下水、穩態解、近似解、拉普拉斯轉換、井水力學 
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A Study on the Drawdown Solutions of Constant-head and  

Constant-flux Tests 

Student：Chih-Tse Wang           Advisor：Hund-Der Yeh 

Institute of Environmental Engineering 

National Chiao Tung University 

Abstract 

Theis equation is a non-equilibrium equation which can be used to predict the 

drawdown distribution during pumping or analyze drawdown data in determining the 

aquifer parameters.  Physically, the aquifer drawdown changes with time at the early 

stage of pumping and approaches a constant value after a long period of pumping.  

However, the Theis equation can not reduce to Thiem equation mathematically when 

time approaches infinity.  Also, the Thiem equation is not valid if the well radius 

approaches zero or the outer boundary goes to infinity.  The main objectives of this 

dissertation are to derive the steady-state drawdown solution from the transient 

solutions of the constant-head and the constant-flux tests and to explain the use of 

mass balance concept in obtaining the steady-state solution.  The result indicates that 

a flow system of a finite domain and a well of finite diameter are the necessary 
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conditions for obtaining the Thiem equation from the transient solutions.  While 

Thiem equation is employed, it implies that the problem has to be addressed within a 

region instead of zero well radius and/or infinite outer boundary.  In addition, the 

dimensionless times criterion required to approximate the solutions of finite domain 

by the infinite-domain solution and the Thiem equation are also presented.  An 

approximate solution is useful for practical applications if the corresponding 

analytical solution is complicated and difficult to accurately evaluate.  The second 

objective of this dissertation is to examine the algorithm for obtaining a large-time 

solution by using the Laplace transforms and the well-known “small p – large t” 

relationship.  In the past, the relationship was commonly applied to the Laplace 

domain solution in developing a large-time solution in the groundwater area.  

However, Chen and Stone [1993] pointed out that the use of this relationship might 

fail to obtain a correct solution of the wellbore flux for the constant-head test problem.  

This dissertation also shows that the relationship of small p versus large t is 

appropriate for obtaining a large-time solution of the transient constant-head test 

through the detailed mathematical development. 

Keywords: Ground water; Steady state models; Large-time solution; Laplace 

transforms; Well hydraulics. 
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Notation 
 

The following symbols are used in this dissertation: 

0I  = modified Bessel function of the first kind of order zero; 

0J  = Bessel function of the first kind of order zero; 

1J  = Bessel function of the first kind of order one; 

0K  = modified Bessel function of the second kind of order zero; 

1K   = modified Bessel function of the second kind of order one; 

p = Laplace dummy variable; 

q = TpS ; 

Q = wellbore flux for constant-head test or pumping rate for constant-flux test; 

Q  = Laplace domain wellbore flux or pumping rate; 

r  = radial coordinate; 

wr  = well radius; 

R = radius of influence; 

s  = drawdown; 

s  = Laplace domain drawdown; 

ws  = drawdown in pumping well; 

S = storativity of confined aquifer; 

t = time; 



 xi

T  = transmissivity of confined aquifer; 

u = ( )tTSr 42 ; 

U = ( )tTSR 42 ; 

W  = well function; 

0Y  = Bessel function of the second kind of order zero; 

1Y  = Bessel function of the second kind of order one; 

nα  = roots of 0)()()()( 0000 =− αααα RJrYRYrJ ww ; 

nβ  = roots of 0)()()()( 0101 =− ββββ RJrYRYrJ ww ; 

λ  = ( )SrcT w
224  which ( )γexp=c ;  

η  = tλ ;  

γ  = K57722.0  is the Euler’s constant; 

nχ  = roots of Bessel function 0)(0 =χJ ; and 

Φ = coefficient used in Chen [1984]. 
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Chapter 1 Introduction 

1.1 Statement of the problem 

The spatial and temporal distributions of drawdown in an aquifer may change in 

response to a head change or pumping rate applied at the test well.  The former holds 

a fixed drawdown in the test well and is referred to the constant-head test.  The latter 

keeps a constant pumping rate in the test well and is referred to the constant-rate test.  

A given drawdown solution can be used to predict the drawdown distribution at any 

location and time if the aquifer parameters are known.  It can also be used to 

determine the aquifer parameters if coupled an optimization approach in analyzing the 

observed drawdown data.  

Theis and Thiem equations are the famous transient and steady-state drawdown 

solutions, respectively, of a constant-rate test conducted in confined aquifer.  Both 

equations are easily used to predict the aquifer drawdown distribution in practical 

application.  Theis equation is derived under the conditions of having an infinite 

extent confined aquifer and neglecting the effect of well radius.  It, therefore, is not 

valid if the aquifer has a finite boundary.  In addition, the Theis equation will give an 

infinite drawdown solution if the time approaches infinity or the radius approaches 

zero.  Chen [1984] proposed a modified Theis equation for drawdown distribution in 

a finite confined aquifer and gave a time criterion when applying the Theis solution. 
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Thiem equation, the steady-state solution, can be derived either from the 

continuity equation coupled with Darcy’s law [e.g., Todd and Mays, 2005] or the 

radial steady-state flow equation [e.g., Charbeneau, 2000].  Many researches have 

discussed the problem of steady-state flow and gave a warning of erroneous result 

when employing Thiem equation to problems of an infinite aquifer [e.g., Bear, 1979].  

Zaadnoordijk [1998] proposed a superposition algorithm, includes Thiem equation 

and Theis equation, to simulate the transition between two given steady-state 

groundwater fields.  His study indicates that the steady-state condition is directly 

related to the effects of well radius and finite boundary.  However, the issue of 

deriving the Thiem equation directly from the transient drawdown solutions has never 

been addressed before. 

Contrary to the constant-flux test, the constant-head aquifer test is suitable in 

determining the hydraulic parameters of low-permeability aquifer.  This test 

maintains a constant head on the pumping/injection well throughout the test period, 

and the change of flow rate across the wellbore versus time is recorded [e.g., Batu, 

1998].  The head distribution for constant-head test in a confined aquifer is 

analogous to the heat distribution for constant temperature maintained at a bounded 

circular cylinder; thus, the head solutions in both Laplace domain and time domain 

can be obtained from Carslaw and Jaeger [1959].  The wellbore flux can then be 
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derived based on the solution of head distribution and Darcy’s law [e.g., Yang and 

Yeh, 2002; Peng et al., 2002].  However, the time domain solution of the wellbore 

flux is complex and difficult to accurately evaluate.  Therefore, it was common to 

derive the approximate solutions for small or large value of the time for the wellbore 

flux [e.g., Carslaw and Jaeger, 1959, p.336]. 

One way for obtaining the small- or large-time solution is to apply the 

relationship of large p versus small t (hereinafter referred to as LPST) or small p 

versus large t (hereinafter referred to as SPLT) to the Laplace domain solution, 

respectively.  This concept is based on a symbolic relation between the derivative 

operator of time, i.e., dtd , in the time domain and the dummy variable, p, in the 

Laplace domain [van Everdingen and Hurst, 1949].  Then, one may obtain a small- 

or large-time solution from taking the inverse Laplace transform on the reduced 

Laplace domain solution for a large or a small dummy variable, respectively.  Some 

of the successful illustrations of applying this concept can be found in the 

groundwater literature.  van Everdingen and Hurst [1949] used the relationships of 

LPST and SPLT to derive the pressure head of groundwater flow in a reservoir at 

small and large time, respectively.  Accounting for the aquitard storage for the flow 

in a leaky aquifer system, Hantush [1960] obtained the small- and large-time 

drawdown solutions by applying those two relationships.  Neuman and Witherspoon 
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[1969] studied the problem for flow in a confined two-aquifer system by considering 

the aquitard storage and drawdown in the unpumped aquifer.  They used the LPST 

relationship to obtain the small-time solution for their problem.  Singh and Sagar 

[1980] proposed approximate solutions of head to the linearized flow equation of 

slightly compressible fluids by using the relationships of LPST and SPLT.  Javandel 

and Witherspoon [1983] and Butler and Liu [1993] provided a large-time solution for 

pumping-induced drawdown in a vertical and horizontal nonuniform aquifer, 

respectively, based on the SPLT relationship.  Chakrabarty et al. [1993] provided a 

nonlinear pressure distribution of compressible liquid and the corresponding small- 

and large-time solutions obtained in a homogeneous formation using the relationships 

of LPST and SPLT, respectively.  In addition, a number of approximate solutions  

at small and/or large time were derived based on these relationships in areas such as 

the solute transport problem [van Genuchten et al., 1984; Chen, 1985; 1986; Yates, 

1990], dual-porosity media problem [Barker, 1985], and unsteady infiltration problem 

[Philip, 1986]. 

However, Chen and Stone [1993] presented a calculation of the flow rate across 

the wellbore for the constant-head test problem and concluded that the SPLT 

relationship might fail to obtain a correct large-time solution in this case.  Later, 

Mathias and Zimmerman [2003] indicated that a poor result was obtained by Gerke 
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and van Genuchten [1993] when using the relationship of small p versus large t to 

derive the water transfer coefficient for the dual-porosity media problem.  The 

relationships of LPST and SPLT have been widely used in the groundwater literature 

for more than 40 years.  Previous researches indicated that the SPLT relationship 

could successfully yield correct large-time solutions if applied to the related Laplace 

domain solutions.  The contrary results of Chen and Stone [1993] and Mathias and 

Zimmerman [2003], therefore, may depress the further study on this issue. 

 

1.2 Objectives 

The drawdown distribution may change in response to the constant-head or the 

constant-flux test.  Mathematically, these two tests can be formulated as different 

types of boundary value problem.  With or without considering the effect of well 

radius, many studies have been devoted to developing analytical solutions for those 

problems under various boundary conditions. The goal of this dissertation is to 

investigate the problems regarding to the drawdown solutions of constant-head and 

constant-flux tests in a homogeneous confined aquifer.  Toward this goal the 

dissertation organization is as follows: 

(1) To examine the drawdown solutions of constant-head and constant-flux tests in a 

finite or infinite confined aquifer with or without the consideration of the effects of 
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well radius;  

(2) To verify the drawdown solutions of these two tests in a finite domain converging 

to the Thiem equation after a long period of pumping;  

(3) To present dimensionless time criteria required to approximate the solutions of 

finite domain by the infinite-domain solution or the Thiem equation; 

(4) To resolve the dispute on the validity of the SPLT relationship raised by Chen and 

Stones [1993] and Mathias and Zimmerman [2003] through the detailed mathematical 

development; and 

(5) To derive a correct large-time solution of the wellbore flux rate for the 

constant-head test based on the Laplace domain solution and the SPLT relationship. 
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Chapter 2 Drawdown Solutions for Constant-head Test 

This chapter considers the constant-head test conducted in a homogeneous, 

isotropic confined aquifer of constant thickness as shown in Figure 1.  The 

one-dimensional radial flow equation describing the drawdown in a confined aquifer 

can be written as [Batu, 1998, p.147] 

t
s

T
S

r
s

rr
s

∂
∂

=
∂
∂

+
∂
∂ 1

2

2

 (1) 

where ( )trs ,  is the observable drawdown corresponding to the radial distance r  

from the test well and the time variable t, S is the storativity, and T  is the 

transmissivity.  The drawdown is initially assumed zero before an aquifer test, i.e., 

( ) 00, =rs . 

For the constant-head test, the drawdown in the test well is maintained a constant 

and denoted as ws .  The rim of the wellbore is selected as the inner boundary and 

the inner boundary condition for the drawdown is then denoted as ( ) ww strs =,  where 

rw is the well radius.  An outer boundary condition should be provided for solving 

the flow equation, Equation (1).  Hereinafter, this study will present and discuss the 

solution for the outer boundary specified as a zero drawdown and located at either an 

infinite or a finite distance from the test well.  In addition, the drawdown solution 

derived by considering or neglecting the effect of the well radius will also be 
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presented. 

 

2.1 Infinite domain with a finite well radius 

Analytical solution 

It is assumed that the outer boundary is located at infinity and the outer boundary 

condition is expressed as ( ) 0, =∞ ts .  The solution subject to the infinite domain 

assumption is referred to as an infinite-domain solution.  By using the method of 

Laplace transforms, the general Laplace domain solution of Equation (1) can be 

obtained in terms of bases 0I  and 0K , which are modified Bessel functions of the 

first and second kinds of order zero, respectively.  The function 0I  tends to infinity 

under the outer boundary condition and therefore must be excluded. 

Application of the inverse Laplace transform under the inner boundary condition 

yields the Laplace domain and time domain drawdown distribution for the 

constant-head test, respectively, as [Carslaw and Jaeger, 1959, p.335] 

( )
)(
)(

,
0

0

w

w

qrK
qrK

p
s

prs =  (2) 

and 

( ) ( ) ( ) ( ) ( )









+
−







−−= ∫

∞

x
dx

xrYxrJ
xrYrxJxrJrxY

tx
S
Tstrs

ww

ww
w )()(

exp21, 2
0

2
0

0000

0

2

π
 (3) 
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where p is the Laplace variable; TpSq = ; 1K  is modified Bessel function of the 

second kind of order one; and 0J  and 0Y  are the Bessel functions of the first and 

second kinds of order zero, respectively. 

The flow rate across the wellbore at the test well, therefore, can be obtained by 

applying Darcy’s law to Equations (2) and (3).  Accordingly, the wellbore fluxes for 

Laplace domain and time domain are, respectively,  

( )
)(
)(

2,
0

1

w

ww
ww qrK

qrKq
p

s
TrprQ π=  (4) 

and 

( )
x

dx
xrYxrJ

tx
S
TTs

trQ
ww

w
w )()(

1exp
8

, 2
0

2
00

2

+






−= ∫

∞

π
 (5) 

Note that the negative sign of Q corresponds to withdrawal and the positive sign 

corresponds to injection. 

Because the exponential term on the right-hand side of Equation (3) reduces to 

zero as time approaches infinity; thus, the steady-state drawdown is obtained as ws .  

This result implies that the steady-state drawdown within the entire domain is kept the 

same as the fixed drawdown at test well.  Also, Equation (5) shows that the wellbore 

flux decreases with the increasing time and approaches zero at the large time rather 

different from the Thiem equation.  These results suggest that under the infinite outer 
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boundary condition there is not enough water to maintain a constant non-zero flow 

rate within the aquifer for the constant-head test.  The solid line in Figure2 

demonstrates the plot of dimensionless wellbore flux of Equation (5), 

( ) ww sTtrQ π2, , versus dimensionless time, SrTt w
2 .  It can be observed that the 

wellbore flux approaches zero as time becomes infinitely large. 

 

Approximate solution at large time 

The time domain solution of the wellbore flux, Equation (5), is complicate and 

difficult to evaluate accurately due to the problems of alternately oscillatory, slowly 

convergence, and a singularity at the origin [Peng et al., 2002].  Therefore, it is 

common to derive a large-time approximate solution of the wellbore flux by using the 

SPLT relationship.  However, Chen and Stone [1993] and Mathias and Zimmerman 

[2003] indicate that erroneous results were obtained when applying the SPLT 

relationship.  Based on SPLT, the approximate solution for large-time drawdown 

distribution of constant-head test under the assumptions of an infinite domain and a 

well of a finite radius can be derived successfully and is presented as follows.  In 

addition, a detailed mathematical derivation using SPLT approach for deriving the 

water transfer coefficient involved in Mathias and Zimmerman [2003] is shown in 

Appendix A.   
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Using the limiting forms of ( ) ( )[ ]γ+−≅ 2ln0 xxK  and ( ) xxK 11 ≅ , where 

K57722.0=γ  is Euler’s constant, for small value of x [Abramowitz and Stegun, 

1970, p.375], the wellbore flux for small p, Equation (4), in Laplace domain can be 

reduced to 

( ) ( )λπ
pp

TsprQ ww ln
14, −≅  (6) 

where ( )SrcT w
224=λ  and ( )γexp=c .  The large-time wellbore flux is 

subsequently obtained by taking the inverse Laplace transform of Equation (6).  

Chen and Stone [1993] used a inverse Laplace transform formula given by the 

Oberhettinger and Badii [1973] (formula 6.75, p.276 and 424) for the inverse Laplace 

transform of term ( )[ ]λpp ln1  in Equation (6) as 

( )
( )
( )∫

∞
−

+Γ
=









0

1

1ln
1 dx

x
t

pp
L

xλ
λ

 (7) 

where ( )xΓ  is the gamma function.  They integrated Equation (7) and obtained the 

large-time wellbore flux as −∞=),( trQ w .  In addition, they showed that this 

large-time wellbore flux was contradictory to the result obtained by applying the 

Tauberian theorem (also called final-value theorem [Spiegel, 1965]) to Equation (6), 

i.e., 0),( =∞→trQ w .  Based on their study, they concluded that the application of 

the SPLT relationship should be used with care because of possible failure to obtain a 
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correct large-time solution. 

In fact, the use of inverse Laplace transform formula of Equation (7) should be 

under a constraint of λ>p  which is proven in the Appendix A.  For most confined 

aquifers, the value of the storativity falls in the range 10-5 ~ 10-3 and for sand and silt 

formations the value of hydraulic conductivity falls in the range of 10-2 ~ 101 m/day 

[Todd and Mays, 2005, p.93].  Assuming that the thickness of confined aquifer is 10 

m and the radius of the test well is 5 cm; then, the value of λ  ranges from 104/day to 

109/day.  Notice that the Laplace variable p is required to be small in Equation (6) 

and λ  should be small too.  Yet, the value of λ  is larger than 104/day in reality as 

demonstrated above; accordingly, Equation (7) does not hold at all. 

Hereafter, this study proposes an alternative formula for the inverse Laplace 

transform of term ( )[ ]λpp ln1  in Equation (6).  Ritchie and Sakakura [1956] 

presented an article on expanding the solutions of the heat conduction equation in 

terms of an infinite series approximately in an internally bounded cylindrical solid.  

They gave the inverse Laplace transform for the term ( )[ ]λpp ln1  when p is small 

as 
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where the dimensionless variable tλη = , column vector ( )Ts,1−  is the binomial 
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coefficient, and N is the number of truncated terms depending on the values of the 

remainder.   

The right hand side (RHS) of Equation (8) is a summation of products of the 

dimensionless variable ηln  and the constant value of the Gamma function.  For a 

large value of time, the terms of ( )5ln1 η  and higher order terms may be truncated 

since η  is proportional to the dimensionless time.  Therefore, the large-time 

wellbore flux can be obtained based on Equations (6) and (8).  Appendix B shows 

the detailed expansion of Equation (8) and the large-time solution for the wellbore 

flux is obtained approximately as 
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The numerators of the RHS terms of Equation (9) are all constants and the 

denominators are the function of dimensionless time, ( )SrcTt w
224=η .  The value of 

ηln  reaches infinity if t approaches infinity; therefore, Equation (9) becomes zero, 

i.e., the steady-state solution for the wellbore flux is zero.  Notice that Jaeger [1943] 

and Carslaw and Jaeger [1959, p.336] gave a large-time wellbore flux which has the 

first three terms and first two terms of Equation (9), respectively.  
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2.2 Infinite domain with neglecting the well radius 

For the case of neglecting the effect of test well radius, that is, 0→wr , the basis 

0K  of the general Laplace domain solution tends to infinity and therefore there is no 

solution for this case.  The transient and steady-state solutions of the drawdown for 

the constant-head test with and without considering the effect of well radius under the 

infinite domain assumption are listed in Table 1. 

 

2.3 Finite domain with a finite well radius 

In this section, a well of a finite radius is considered and a finite distance, R, is 

selected to represent the outer boundary if the drawdown beyond R is zero or 

negligible.  Generally speaking, the radius of influence which can be estimated by an 

empirical relationship [Bear, 1979, p.306] is finite.  Thus, the solution under a finite 

outer boundary condition denoted as ( ) 0, =tRs  is referred to as a finite-domain 

solution.  Carslaw and Jaeger [1959, p.332] gave the solution for this problem under 

Cauchy boundary conditions.  By assuming the flux of the Cauchy boundary being 

equal to zero, a new drawdown solution for an aquifer of a finite domain under the 

assumption of a finite well radius can be derived as 
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where nα  are the roots of 0)()()()( 0000 =− αααα RJrYRYrJ ww .  A detailed 

derivation for Equation (10) is given in Appendix C.  The flow rate at wellbore can 

then be determined as 

( ) ( )
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 Obviously, the steady-state wellbore flux of Equation (11) for time approaching 

infinity is ( ) ( )www rRTsrQ ln2π=  which indeed is the Thiem equation.  Figure 2 

shows that the curve of Equation (11), i.e., the finite-domain solutions, coincides with 

that of Equation (9), i.e., the infinite-domain solutions, at the early stage of the 

pumping test and asymptotically approaches Thiem equation after a long period of 

time.  In other words, the infinite-domain solution can approximate the finite-domain 

solution when time is less than the boundary-effect time criterion, denoted as 1t , 

implying that the finite boundary has no affect on the wellbore flux.  In addition, the 

finite-domain solution can be reduced to Thiem equation when time is larger than the 

steady-state time criterion, denoted as 2t , implying that the wellbore flux can be 

considered at the steady state.  It is worth noting that both the Thiem equation and 

the infinite-domain solution has the advantage of computing the drawdown solution 

more easily over the finite-domain solution. 

Figure 2 indicates that both 1t  and 2t  increase with the dimensionless distance 
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wrR .  The time criteria of 1t  and 2t can be obtained as TSR 102  and TSR24 , 

respectively, for the constant-head test where the absolute difference of dimensionless 

wellbore flux between Equations (9) and (11) is about less than 510− .  Table 2 gives 

a list of time criteria for the finite-domain solution. 

 

2.4 Finite domain with neglecting the well radius 

In this section, the outer boundary of radial flow system is located at finite 

distance from the test well and the inner boundary of well radius is negligible.  Note 

that 0I  and 0K  are the bases of the general Laplace domain drawdown solution for 

the constant-head test as mentioned in section 2.1.  Therefore, the base 0K  has to 

be excluded from the general solution as 0→wr  and the other base 0I  can not 

satisfy the boundary conditions of fixed drawdown at wellbore and zero drawdown at 

the finite distance simultaneously.  Therefore, there is no solution for this case.  

Table 1 also lists the transient and steady-state drawdown solutions of the 

constant-head test when the outer boundary is finite with and without considering the 

effect of well radius. 
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Chapter 3 Drawdown Solutions for the Constant-flux Test 

This chapter considers a constant-flux test conducted at a confine aquifer.  

Equation (1) is the one-dimensional radial flow equation describing the drawdown 

distribution.  The initial condition for the drawdown before pumping is assumed zero.  

The drawdown solutions are presented in the following sections for the cases of the 

outer boundary of zero drawdown located at either an infinite or a finite domain with 

or without considering the effect of the inner boundary of well radius. 

3.1 Infinite domain with a finite well radius 

The constant-flux test at a constant pumping rate, says Q, is conducted at the test 

well.  Thus, the inner boundary condition for the constant-flux test may be written as 

Tr
Q

r
s

wrr w
π2

−=
∂
∂

=

 (12) 

The drawdown solution for the constant-flux test subject to Equation (12) and 

zero drawdown at infinity can be obtained by the application of the Laplace 

transforms as [Carslaw and Jaeger, 1959, p.338]  
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where 1J  and 1Y  are the Bessel functions of the first and second kinds of order one, 

respectively.  Yeh et al. [2003] presented a closed-form solution with detailed 
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numerical evaluations for a radial two-zone drawdown equation for groundwater 

under constant-flux pumping in a finite-radius well.  Their solution reduces to 

Equation (13) if the transmissivities and storativities for the skin zone and formation 

zone are the same. 

Figure 3 gives a graphical representation of dimensionless drawdown of 

Equation (13) for the dimensionless time ranging form 210  to 910 .  The plot of 

drawdown distribution demonstrated that the drawdown increases with time and 

diverges as time approaches infinity.  It implies that there is not enough water at the 

outer boundary to balance the continuous well pumping and the aquifer is 

overdrawdown when time goes infinitely large.  This result indicates that the 

steady-state drawdown solution of the constant-flux test in an infinite domain by 

considering the effect of the well radius does not reduce to the Thiem equation. 

 

3.2 Infinite domain with neglecting the well radius 

The solution for the constant-flux test neglecting the effect of well radius 

conducted in an infinite domain is analyzed in this section.  By applying the Laplace 

transforms and the asymptotic form of modified Bessel function [Abramowitz and 

Stegun, 1970], one obtains the drawdown equation as 
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( ) ( )dx
x

x
T

Qtrs
u
∫
∞ −

=
exp

4
,

π
 (14) 

where ( )tTSru 42=  is inversely proportional to time. 

Equation (14) is the famous Theis equation.  The integration in Equation (14) is 

called the well function and expressed as ( )uW  which tends to infinity when time 

approaches infinity.  Thus the drawdown of the Theis equation becomes infinity.  In 

addition, Cooper-Jacob's solution, a special case of the Theis equation under the 

condition of 01.0<u , should also give an infinite drawdown solution when u 

approaches zero. 

The transient and steady-state drawdown solutions for a constant-flux test 

conducted in an aquifer with an infinite outer boundary are compared in Table 1.  

The results for the constant-head and constant-flux tests indicate that these two tests in 

an infinite domain do not have steady-state solutions; thus, Equations (3), (13), and 

Theis equation can not reduce to the Thiem equation. 

 

3.3 Finite domain with a finite well radius 

Similar to the development of Equation (10), the drawdown solution for 

Equation (1) subject to Equation (12) and a zero drawdown at finite distance can be 

obtained as [Carslaw and Jaeger, 1959, p.334] 
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where nβ  represent the roots of ( ) ( ) ( ) ( ) 00101 =− ββββ RJrYRYrJ ww .  The 

steady-state drawdown solution can be easily obtained by setting the time to be 

infinity in Equation (15) which is indeed the Thiem equation if the distance r  is 

equal to the well radius. 

Figure 3 shows the distribution of dimensionless drawdown of Equation (15) 

versus dimensionless time for wrR  equal to 103 and 104 with 210=wrr .  It also 

demonstrates that the curve of Equation (15), i.e., finite-domain solutions, can be 

approximated by that of Equation (13), i.e., infinite-domain solutions, at early period 

of time and reduce to Thiem equation at a large period of time.  The former indicates 

the drawdown solution can be treated as that for an infinite aquifer before the 

boundary effect acts.  The latter implies that the drawdown almost reaches its 

steady-state solution and the Thiem equation is applicable if the time is larger than the 

steady-state time criterion.  When the absolute difference of dimensionless 

drawdown is less than 510− , the dimensional time criteria of 1t  and 2t  for the 

constant-flux test considering well radius are TSR 1003 2  and TSR 28 , 

respectively, as shown in Table 2. 
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3.4 Finite domain with neglecting well radius 

In this section, the outer boundary is some finite distance away and the well 

radius is negligible.  Chen [1984] obtained the drawdown solution for this case as 

( ) ( ) ( )[ ]Φ+−= 2
4

, UWuW
T

Qtrs
π

 (16) 
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where U is ( )tTSR 42  and nχ  represents the roots of Bessel function 0)(0 =nJ χ . 

Both the arguments u and U in Equation (11) are inversely proportional to time.  

The functions W(u) and W(U) can be expressed in terms of an infinite series and 

approximated as ( )uln5772.0 +−  and ( )Uln5772.0 +− , respectively, as 0→u  

and 0→U  after a large period of time [Todd and Mays, 2005, p.167].  The 

difference of W(u) and W(U) reduces to ( )rRln2  where r  is a finite distance from 

the test well.  Moreover, the exponential term in the integrand of Equation (17) 

approaches zero as 0→U  and the value of Φ is negligible.  As a result, the 

drawdown of Equation (16) approaches Thiem equation when time approaches 

infinity.  The results of transient and steady-state drawdown solutions of the 

constant-flux test under a finite outer boundary condition by considering or neglecting 
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the effect of well radius are also shown in Table 1.  

Again, Equation (16), i.e., a finite-domain solution, can be approximated by the 

Theis equation, Equation (14), when 4≥U  [Chen, 1984] and reduce to the Thiem 

equation when 510−≤U  if the absolute difference of dimensionless drawdown is less 

than 510− .  The time criteria of 1t  and 2t  for the constant-flux test by neglecting 

the effect of well radius are TSR 162  and TSR 410 25 , respectively, as shown in 

Table 2. 
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Chapter 4 Conclusions 

The uses of the drawdown solution in predicting the drawdown distribution or 

determining the formation properties have been intensively studied in hydrology 

literature.  Two well-known tests, the constant-head and constant-flux tests, are 

routinely used toward those goals.  However, the derivations from the transient-state 

solution to the Thiem equation and the approximate solution at large period of time 

obtained from Laplace domain solution have not ever been thoroughly or correctly 

studied.  Two main contributions from this dissertation can be summarized as 

follows. 

First, the steady-state solutions developed from transient drawdown solutions for 

constant-head and constant-flux tests in a finite or infinite domain and with or without 

considering the effect of well radius have been presented.  A new transient 

drawdown solution is derived for the constant-head test by considering the effect of 

well radius and maintaining a zero drawdown at a finite boundary.  The results show 

that the finite domain condition is necessary for obtaining a steady-state solution from 

a transient solution for a groundwater flow problem.  Such an imposed condition 

ensures that the mass balance is satisfied and the flow can reach steady state condition 

within a bounded domain.  In addition, the time criteria are provided for the 

approximation of the finite-domain solution by the infinite-domain solution or Thiem 
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equation.  The infinite-domain solutions can be used to determine the drawdown 

distribution or the aquifer parameters if the time is smaller than the boundary-effect 

time criterion.  Similarly, the Thiem equation is valid if the time is greater than the 

steady-state time criterion. 

Second, in regard to the large-time solution of wellbore flux in constant-head 

problem, this study found that the inverse Laplace transform formula in Oberhettinger 

and Badii [1973] adopted to invert Laplace domain solution by Chen and Stone [1993] 

should be under the constraint λ>p .  One will obtain an erroneous solution if 

applying that inverse Laplace transform formula without satisfying this necessary 

constraint.  Therefore, the inconsistent results obtained by Chen and Stone [1993] 

from the SPLT relationship and the Tauberian theorem that arose from a violation of 

the constraint from applying the inverse Laplace transform formula rather than using 

the SPLT relationship.  In addition, a new large-time solution of the wellbore flux 

for the constant-head test is presented based on the SPLT relationship and the work of 

Ritchie and Sakakura [1956]. 
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Appendix A: Examination of SPLT for dual-pore problem 

A fractured aquifer consisted of fractures, fissures, cracks, and macropores can 

be simulated as two separate but connected medium, one is associated with fracture 

medium and the other involves porous matrix.  Such a fractured aquifer system is 

called dual-porosity system.  Mathematically, a dual-porosity system involves two 

flow equations which are coupled by means of a transfer term of water flow 

[Dykhuizen, 1990].  Gerke and van Genuchten [1993] proposed a first-order model 

to account this transfer term which is assumed to be proportional to the difference in 

pressure head between the fracture medium and porous matrix.  The specific value of 

water transferred to head difference is referred as water transfer coefficient. 

For the dual-porosity media problem, Gerke and van Genuchten [1993] solved a 

large-time water transfer coefficient by comparing two Laplace domain solutions, one 

was the “first-order” flux equation between fracture and matrix and the other was 

Richards’s equation within the matrix block, while p became small.  Moreover, 

Mathias and Zimmerman [2003] also obtained a large-time water transfer coefficient 

for the dual-porosity media problem based on the time domain approach.  Their 

solution differs from the one obtained by Gerke and van Genuchten [1993] using the 

Laplace domain approach based on the SPLT relationship.  When comparing both 

Laplace- and time domain solutions with the exact solution, they implicitly indicated 
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that the SPLT relationship did not hold.  Therefore, the following context will go 

through the detailed mathematical derivations involved in the issues of Gerke and van 

Genuchten [1993] and resolve the argument on the validity of the SPLT relationship. 

If the pressure head of the fracture pore is considered to be a constant in time, the 

water transfer coefficient can be obtained by comparing two rearranged flow 

equations in Laplace domain as [Gerke and van Genuchten, 1993] 
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where mh  and imh ,  are the Laplace domain head and the initial head, respectively, 

in the matrix block; fh  is the imposed head at the fracture boundary; and variables 

( )[ ] 5.01 amf KpCwa −=ξ  and ( ) wmf pCw αζ −= 1  while a  is the characteristic 

half width of the matrix block, fw  is the fracture porosity, aK  is the hydraulic 

conductivity of the matrix block near the fracture/matrix interface, mC  is the specific 

water capacity at the matrix, and wα  is the water transfer coefficient. 

Mathias and Zimmerman [2003] applied the Laurent-type expansion to Equations 

(A1) and (A2) and transferred those series to the time domain by the asymptotic 
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formula of Doetsch [1961] when time is large.  Based on the time domain approach, 

they obtained an exact large-time water transfer coefficient of 

)47.2(4 222 aKaK aaw ≅= πα  which differs from the Laplace domain approach of 

23 aK aw =α  obtained by Gerke and van Genuchten [1993] derived from Equations 

(A1) and (A2) based on the SPLT relationship.  

Once the water transfer coefficient is obtained, the normalized head difference 

for large value of time is [Mathis and Zimmerman, 2003] 
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where mh  is the time domain head.  Equation (A3) can be verified by comparing it 

with the exact solution given in Crank [1956, p.48] which was shown in Mathis and 

Zimmerman [2003] as  
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It is clear that the normalized head difference approaches zero while dimensionless 

time ( )[ ]mfa CwatK )1(2 2 −  on the RHS of Equation (A4) goes to a very large 

value.  

After comparing with the exact solution given by Crank [1956], Mathias and 

Zimmerman [2003] concluded that the discrepancy of the water transfer coefficient 
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from the time domain approach and Laplace domain approach arises from the use of 

the SPLT relationship.  However, this study finds that this relationship is indeed 

correct and the defect in Gerke and van Genuchten [1993] is mainly caused by 

ignoring the convergent requirements of series expansion for Equations (A1) and 

(A2). 

Gerke and van Genuchten [1993] expanded ( )ξtanh  and ( )ζ+11  in Equations 

(A1) and (A2) in terms of a series, respectively.  Those two equations were then 

respectively expressed as 
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and 
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 (A6) 

The water transfer coefficient can then be obtained as 23 aK aw =α  if one 

compares Equations (A5) with (A6) and sets the second term on RHS of these two 

equations are equal.  Similarly, the water transfer coefficients obtained from the third 



 34

and fourth terms are 2215 aKaw =α )74.2( 2aKa≅  and 23 17315 aKaw =α  

)65.2( 2aKa≅ , respectively.  It seems that the estimated water transfer coefficient 

appears monotonously decreasing from 3 and asymptotically approaches to 2.47.  

Notice that Gerke and van Genuchten [1993] truncated the third and remaining higher 

order terms of p in Equations (A5) with (A6) because of small p. 

In fact, the series expansion for ( )ξtanh  in Equation (A1) and ( )ζ+11  in 

Equation (A2) should be restricted to the convergent criteria 2πξ <  and 1<ζ  

[Abramowitz and Stegun, 1970, p.15 and 85], respectively.  The series expansion of 

( )ξtanh  in Equation (A1) can be expressed as [Abramowitz and Stegun, 1970, p.85] 
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where nB2  is the nth Bernoulli number and the convergent criterion of ( )ξtanh  is 

2πξ < .  Subsequently, one uses the Fourier expansion of the Bernoulli number 

[Abramowitz and Stegun, 1970, p.805] and obtains 
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Therefore, the nth term of water transfer coefficient is obtained by letting 

Equation (A5) equal to Equation (A6) as 
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The limit of wα  for ∞→n  is 
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where the limit of Riemann Zeta function, ∑∞

=
−

∞→ 1
2lim

k
n

n
k , equals 1. 

The result shows that the water transfer coefficient has to be 22 4aKaw πα = .  

Obviously, the coefficient of 23 aKaw =α  obtained from the Laplace domain 

approach based on the SPLT relationship is exactly the same as that of Mathias and 

Zimmerman [2003] derived from the time domain approach.  Therefore, the dispute 

in the discrepancy that was calculated using Laplace domain approach by making use 

of the SPLT relationship and those found by working in the time domain is clearly 

resolved. 
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Appendix B: Derivation of Equation (7) 

By applying the Laplace transform, the integral function of Equation (7) can be 

expressed as 
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The RHS of (B1) is a double integral and can be rearranged as 
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The Gamma function is defined as [Abramowitz and Stegun, 1970, p.255] 
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Replacing the second integral in Equation (B2) by Gamma function, the RHS of 

Equation (B2) after the integration gives 
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If λ>p , the term ( ) zp −λ  approaches to zero as ∞→z , then Equation (B4) 

reduces to 
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This derivation shows that Equation (7) is valid only under the condition that λ>p . 
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Appendix C: Derivation of Equation (9) 

The first four terms of Equation (8) can be rewritten using the notation of Ritchie 

and Sakakura [1956] as 
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where the coefficient 1,0B −
s  is related to the Gamma function.  The selected 

properties of binomial coefficient, Gamma function, and Polygamma function applied 

to the following derivation are, respectively, [Abramowitz and Stegun, 1970] 
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The values of 1,0B −
s  for s equal to 0, 1, 2, and 3 can be derived, respectively, as 
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where the Riemann Zeta function ( ) 2020569032.13 =ξ . 

Substituting Equations (C6) - (C9) into Equation (C1) gives 
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Thus, the inverse Laplace transform of Equation (6) results in Equation (9) when 

truncating high-order terms of Equation (8). 

 



 40

Appendix D: Derivation of Equation (10) 

General solutions of one-dimensional radial heat conduction equation in analogy 

to the groundwater drawdown equation subject to Cauchy boundary condition at the 

edges of hollow cylinder were given in Carslaw and Jaeger [1959].  The Cauchy 

boundary conditions in terms of drawdown were expressed as 
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where '
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'
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'
1321 ,,,,, kkkkkk  are constant; a and b are the radial distance of inner 

boundary and outer boundary in the considered region, respectively.  Equations (D1) 

and (D2) represent the combination of the constant-head and constant-flux boundary 

conditions. 

By using the Laplace transforms, the drawdown solutions based on Equations 

(D1) and (D2) is 
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where 
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and αn are the positive roots of 
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For the constant-head test with a finite well radius and outer boundary, the 

constants in Equations (D1) and (D2) can be replaced by k1=0, k2= -1, k3=sw, k1’=0, 

k2’=1, k3’=0, a=rw, and b=R.  By carefully substitution, the drawdown solution, i.e., 

Equation (10) can be obtained from Equation (D3). 
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Table 1  Transient and steady-state drawdown solutions for constant-head and 

constant flux tests 

 

Constant-head test Constant-flux test 
State 

Infinite domain Finite domain Infinite domain Finite domain 

Considering well radius 

Transient Equation (3) Equation (10) Equation (13) Equation (15) 

Steady ws  Thiem equation Infinity Thiem equation 

Neglecting well radius 

Transient No solution No solution Theis equation Equation (16) 

Steady No solution No solution Infinity Thiem equation 
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Table 2  The boundary-effect and steady-state time criteria for the finite-domain 

solutions  

Note: TSR 2=τ .  

 

Solution type 
Boundary-effect time 

criterion, 1t  

Steady-state time 

criterion, 2t  

Constant-head test τ
10
1  τ4  

Constant-flux test τ210
3  τ8  

Constant-flux test when 

neglecting well radius 
τ

16
1  τ

4
105
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Figure1 Schematic diagram of drawdown distribution under constant-head or 

constant-flux test in a confined aquifer.  
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Figure2 Dimensionless wellbore flux versus dimensionless time for the finite-domain 

solution, Equation (11) with wrR = 10 and 102, the infinite-domain solution, 

Equation (5), and the Thiem equation.  Note that both Equations (5) and (11) are 

solved for the constant-head test. 
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Figure3 Dimensionless drawdown versus dimensionless time for the finite-domain 

solution, Equation (15), with wrR = 103 and 104 and 210=wrr , the infinite-domain 

solution, Equation (13), and the Thiem equation.  Note that both Equations (13) and 

(15) are solved for the constant-flux test. 
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