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Abstract

In location-based services, the response;time of locagberdhination is critical, especially
in real-time applications. This:is especially.true for pattmatching localization methods,
which rely on comparing an object’s current signal strempgttiern against a pre-established lo-
cation database of signal strength patterns collectecdtaming phase, when the sensing field
is large (such as a wireless city). ‘In‘this-work, we proposkister-based localization frame-
work to speed up the positioning process for pattern-matrticalization schemes. Through
grouping training locations with similar signal strengtitgerns, we show how to reduce the
associated comparison cost so as to accelerate the pat#tching process. To deal with sig-
nal fluctuations, several clustering strategies are prxghogxtensive simulation studies are
conducted. Experimental results show that more than 90%utation cost can be reduced in

average without degrading the positioning accuracy.
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Chapter 1

| ntroduction

Location-based services (LBSs) have emerged as one ofit&edpplications for mobile com-
puting and wireless data services. While providing greaketavalues to business applications,
such services are also critical to public.safety, transjpiomn, emergency response, and disaster
management. Consequently, location estimation Is essémthe success of LBSs. In addition
to the well-known GPS]1], a lot of technigues.have been pseddor indoor localization, such

as infrared-based][2], ultrasonic-based [3], and'RF-bf&&] systems.

Among all localization systems, the RF-based systems ateapty most cost-effective be-
cause they can rely on existing wireless network infrastmes (such as IEEE 802.11 WLAN).
However, such systems need to handle the characteristigradlsstrengths, which may fluc-
tuate frequently. Theattern-matchingschemes(]4,/5)6] 7} 8], or known as thegerprinting
schemes, deal with this problem by involving two phasesning andpositioning In the train-
ing phase, given a set of training locations, the receivgdadistrengths of all base stations (or
beacons) at these locations are collected for a sufficieouatof time. Therefore, for each
training location, a feature vector is calculated. Therthapositioning phase, when an object

needs to determine its location, it can compare its cures#ived signal strengths against the



feature vectors in the location database to check theitaiityi The corresponding location of

the most similar feature vector is selected as the possib&tibn of the object.

Recently, many literatures apply pattern-matching laedion methods to a large-scale en-
vironment [9/10, 11, 12]. However, they may encounter tlaadslity problem because of the
huge calibration efforts required in the training phasel@gti comparison cost spent in the po-
sitioning phase. For example, in a wireless city, thousamdsillions of training records may
have to be collected in a location database. Several efiaxts been dedicated to reducing the
calibration cost[10,13,14,15]. In this paper, we aim tauagthe computation cost incurred in
the positioning phase. This would enable us to supporttieed-LBSs. We propose a cluster-
based localization framework which also consists of twosglsa In the training phase, similar
to existing pattern-matching approaches;:we first colleature vectors of training locations.
Through clustering techniques,.those training locatioitls gimilar feature vectors are grouped
together. This results in a small’"number of clusters. Foh e&gcster, a representative feature
vector is derived. Then in the positioningphase, given aaigtrength vector, we first compare
it against all clusters’ representative feature vectots@ok the one whose representative fea-
ture vector is most similar to the given signal strength@edtinally, only the training locations

in the selected cluster are further evaluated to deterrhmestimated location of the object.

Although the clustering technique is able to reduce the agatjn cost, its positioning
accuracy may be reduced if the right cluster is not sele¢tedalse cluster is selected, the final
location estimation may be incorrect. We refer to this adakse cluster selectiarApparently,
the probability of a false cluster selection should be redudn this paper, we propose several
clustering strategies. First, we show that the traditidnaleans algorithm [16] is not suitable
when the effect of noise is not negligible. Then we propoeestislustering strategies to enhance

the k-means algorithm by allowing clusters to have overlappiregnbers. Although having



duplications is redundant, it can effectively reduce then¢s of false cluster selection due
to noises. To verify our results, a simulation model is baiitd extensive simulation studies
are conducted. Experimental results show that this framlevgoable to reduce at least 90%

computation cost without sacrificing accuracy.

The rest of this paper is organized as follows. Chdgter 2idses some reviews. The pro-
posed cluster-based framework is described in Chépter 8pt€iidl presents several clustering

strategies. ChaptEl 5 contains our performance studiespt€f® concludes this paper.



Chapter 2

Related Works

Several localization systems have explored the pattetcinmag techniques. In[4], the nearest-
neighbor algorithm is applied to search the location datelfer the training location with the
shortest Euclidean distance in.the signal.space. Basedatralpiity theory, [5] presents a
probabilistic framework for localization to handle sigrsaitength fluctuations. Reference [8]
adopts the similar concept to develop recursive Bayesiamdifor localization. In general, the

nearest-neighbor approach is not as effective as the pisatone [17].

In [6], @ more sophisticated network-based classificati@thod is proposed. A neural
network, which consists of multiple layers of interconmecheurons is adopted to model the
dependencies among a set of random variables. It has a tbamarback propagation mecha-
nism to adaptively assign suitable weights to neuron cdioresin the training phase. Then,
the well trained network can be used to classify an obserastpke of signal strengths in the
positioning phase. Based on the statistical learning th4idf proposes aupport vector ma-
chine (SVM}o find a high-dimensional hyperplane such that any two imgindlata set can be
partitioned between two sides of this plane and their degtarto this plane can be as far as

possible.



For large-scale environments, some literatures have deresi the scalability issue incurred
in the training phase |13,14,111] and the positioning ph&8¢19]. In the training phase, to re-
lieve huge labor cost needed for training data collectionptuitive idea is to collect less train-
ing locations. However, it also represents that we cannptuca the detailed signal strength
patterns so the positioning results will be coarse-grainddénce, [[13] proposes to generate
a small number of virtual training locations from the actaaks by interpolation techniques.
Similarly, multidimensional regression |14] is used tolda nonlinear mapping between the
signal space and the physical space. For the reason thatityacoilecting training samples
with the correct location labels is time-consumirig,! [13}gests to use unlabeled user traces
to compensate the loss of accuracy caused by a relativelly sumber of training locations.
An unlabeled user trace is a sequences of continuouslyegtsignal strength measurements
without location labels. With the’help of a hidden Markov rebtb model user traces, unla-
beled user traces can be used to simplify the training psosdsle keeping a certain degree
of positioning accuracy. Furthermore,“a calibration-imeechanism is the extreme solution to
save labor cost. Without a training phase, signal propagatimodels can be used to pre-
dict the characteristics of signal strengths in the envitent [4]. However, such systems will
have higher positioning error because multipath fadingiateiference are hard to be precisely

modeled in an indoor environment.

The issue of reducing the real-time comparison cost in tigitipaing phase is discussed
in [18,[19]. Their main ideas are both to apply clusteringhteques to the training locations,
so only a subset of them needs to be searched. Refererceddftfucts clusters according
to the physical coordinates of training locations. It claithat the estimated locations of two
consecutive location queries should be very close in theiphlspace. Thus, only the training

locations close to the previous estimated one need to betsehfor the current query. However,



it does not consider the actual signal space and its segrchinge strongly relies on the query

interval and the user mobility model.

In [19], training locations that see thestrongest signal strengths from the sageccess
points (APs) are grouped together. This clustering teakig simple but has several draw-
backs. First, the togp APs with the strongest signals at a fixed location may vary twee,
thus causing false cluster selection. Second, the numlmdusters is not a controllable param-
eter. In our work, the number of clusters is tunable and felisgter selection can be effectively

avoided.



Chapter 3

The Cluster-Based Pattern-Matching
L ocalization Framewor k

The proposed clustering framework .can'be-applied to motpamatching localization meth-
ods. It also consists of two phases: training and positmritiig.[3.1 depicts the structure of the

framework.

3.1 TheTraining Phase

We assume that there arebeacons (or APs), denoted/8s= {b1, bo, . .., b, }, being deployed
in the field. In this field, we define training locationsC = {/¢y,/s,...,¢,}. Let the feature
spaceF € R™, whereR is the set of possible signal strengths. For each trainiogtion/;,

1 = 1..n, we collect a sufficient number of training samples from lo@gcand calculate the
feature vectorv; = [v;1,vi2,...,vim| € F for ¢;, wherev, ; is the average received signal
strength fromb; at ¢;. For those training locations with similar feature vector@ exploit
clustering techniques to group them together. Specificaly will computek location sets

C1,Cy,...,Cp such thaC; C L, i = 1.k, and{J!_, C; = £. The detail clustering algorithms
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will be given in Sectiofl4. For each location getits representative feature vector is expressed
by w; = [wi1,wis, ..., wim] € F, Wherew, ; is the average of signal strengt]%“rcecfl’].
Note that two location sets may have overlaps, €7 C; is not necessarily an empty set.

3.2 ThePositioning Phase

In the positioning phase, when an object needs to deterrtsrledation, we can measure its
signal strength vectas = [sy, so, ..., s,), Wheres; is the signal strength df;. Our goal is
to determine the object’s location in a real-time mannetypical pattern-matching methods,
s will be compared to alh feature vectors in the location database. However, in &laogle
field (such as a wireless city), thousands or millions of @extmay need to be compared. By
clustering training locations with.similar feature veaanto a group, we only need to compare
s against the representative feature veatpof eachc; first. As in most works, the similarity

betweens andC; is defined as the Euclidean distance of their feature vertoFs sim(s, C;) =

|8, wil| = \/Z?;(sj — w; ;)%. Then, the most similar cluster, denoted®y is selected, i.e.,
C* = argming, sim(s,C;). That s, only the training locations & will be further searched.
We refer to this as the Nearest Neighbor in Signal Space (NN&®rithm [4]. In NNSS,

users’ locations are estimated by comparmsnggainst each training locatidhin C* according

to the Euclidean distance, i.eim(s, ¢;) = ||s, v;|| = \/Z;”:l(sj —v;;)? in F. The estimated
location is¢* = argmin, .- sim(s,¢;). Therefore, the computation cost is decreased from
£]

O(|L))to O(k + ?) if any two location sets are disjoint.

10



Chapter 4

Clustering Algorithms

Below, we propose several clustering algorithms to partithe location database. We start

with the well-knownk-means algorithm, followed by three enhanced clusteriragesjies.

4.1 k-meansAlgorithm

The k-means algorithm developedin [16] canbe applied to our mddesre are multiple iter-
ations. In thez-th iteration, we will formk clustersc\”, ¢{” ... ¢\™). Initially, we construct
kseedsol” wl” ... w” € F,where each seed”, i = 1..k, is randomly selected from the
set of feature vectorguy, vy, . . ., v, }, andwfo) #+ w]@) forall i # j. (Other ways to choose the
initial values ofw'”, w{”, ... w'” are discussed i [20]. Here we adopt the random strategy.)
With these seeds, we define cIquélr) in the first iteration as follows:

tiecV & w? = arg min v, w®|.

Wy

That is,¢; will be categorized as a member of clustg? if v, is closest to the seed”’ among

all other seeds. From each cluscEéV, i = 1..k, we then calculate a new seeél) by averaging

11



RSS from b2

Cluster C

RSS from b,

Figure 4.1: An example of the problem bfmeans algorithm.

the received signal strengths for &llc Ci(l),

wV = avg{v; : V{; € Cfl)}.

i =

In the x-th iteration, for allz"> 2, according to the seeds generated in(the- 1) — th

iteration, we define clust&ﬂf’”) as follows:

l; e Ci(m) & wi(m_l) = argmin ||'Uj,wl(f_1)]|.
(a—1)
Wy

Similarly, from each clustef\”, we can calculate another seeff’ = avg{v; : v¢; € C™}.
The regrouping processes will be repeated iteratively Umiconditioncj(.“”) = C](.”l) IS satis-

fied for allj = 1..k. At last, we obtainv; = w](m) for each location set; = Cj(””).

Ideally, in the positioning phase, when an object providesurrent signal strength vector
s, we would expect that a correct cluster with the most sinfdature vector can be selected.
However, due to the fluctuation of radio signal, this canhwbgs be achieved. Fig. 4.1 shows
an example with three clusters in a feature space. Due taldigictuation, the signal strength
vectors of an object which locates @ may appear in multiple clusters. As shown by dotted

circles in the figure, the distribution &f is modeled by an uniform distribution for ease of

12



discussion. According to thlemeans algorithm, i§ is in the gray region, it is more similar to
the clustelC, thanC,; andC;. Hence, a false cluster selection happens. Clearly, ttuatsin is

more serious near the boundary of clusters.

4.2 Clustering Techniques Allowing Overlaps

The problem shown in Fi§."4.1 calls for the design of clustgthk certain degrees of overlaps.

Below, we propose three clustering schemes extended freftieans algorithm, which allow

a training location to join multiple clusters. We defioeerlapping degree to be the average

number of clusters that training locations can join. Clhgaithis will increase the searching
£]

complexity in the positioning phase €k + \ x ?).

All schemes are similar to the-means algorithm partitioning into £ sets. The main
difference is the way to determine which clusters a traihaegtion will join. In the firstmulti-
nearest-neighbostrategy, each training-location can join the first few @ustclosest to it.
In the second/oronoi-basedstrategy, the overlapping degree is determined by the gemme
characteristic of the distribution of clusters. The lpsibability-basedstrategy can adaptively
adjust the overlapping degree of each training locatioomlicg to the levels of environmental

noise.

4.2.1 Multi-Nearest-Neighbor Strategy

The multi-nearest-neighbor strategy assigns a constatapping degree ,; to all training
locations. As mentioned beforg,clusters of training location§C,, Cs, . . ., Ci.} are obtained
by thek-means clustering algorithm. Then, for each training liocet;, it will join the top A,

similar clusters, which are ranked by the inverse of Eueliddistancd /||v;, w;||. Averagely,

13



the searching space is increased flofk + %) to O(k+ Ay X %) compared to thé-means

clustering algorithm.

This strategy allows each training location to join mukiglosest clusters in the feature
space, unlike the single one in theneans clustering algorithm. It is an intuitive solutiom fo
solving the signal fluctuation problem. If samples of a lamaare possible to be estimated to
many nearby clusters, there is no reason to make this tggiogation join only one cluster. For
the example illustrated in Secti@gn¥.1, we can avoid in@bri@cation estimations caused by

false cluster selection #; is allowed to join two closest clustefs andC; simultaneously.

4.2.2 Voronoi-based Strategy

Although the multi-nearest-neighbor strategy is simplbeédmplemented and easy to control
the average searching space,-the paramgjes hard to determine. Ik,, is too small, it may

not compensate for the effect of signal fluctuations. ThHus problem of false cluster selection
remains. On the other hand, Xfi;“is too large, some training locations may join unnecessary
clusters, thus causing redundancy. We can observe that whafra training location is close

to the center of a cluster ift, the number of clusters it joins should not the same as anothe

training location whose feature vectoy is near the periphery of a cluster.

For this consideration, we next propose the Voronoi-basategy. After performing thé-
means algorithm{v;, vs, ..., v, } is decomposed intd partitions centered a;, 1 < j < k.
It can be observed thv,;, w, || < ||v;,w,| forally # x if ¢; € C,. This property is equivalent
to a Voronoi diagram [21], where all points in a Voronoi cek @losest to the Voronoi vertex
in the same cell. Thus, the members of a clu€teare contained in a Voronoi celf, with a

\Voronoi vertex atw,. If we let a training location which is close to Voronoi edges more

14



Figure 4.2: An example of Voronoi-based Overlapping megmn

clusters and oppositely let the others join less clusteescan improve the effectiveness of the

overlapping technique.

Motivated by the observation above, we propose the Vorbased strategy. For each neigh-
boring Voronoi cellsV,, andV,,, we formally define an overlapping regid®, , (z < y) in
which any training location whese feature vector locatedgwothC, andC,. For example, in
Fig.[4.2(a), there are three Voronot cells 15, and Vs, separated by three Voronoi edges,
ez 3, ande; 3, and three overlappingregiohs s, Ry.3, R. 3, are shaded. The feature vectar
is inside R, 3 andw, is located both'inR, 3 and R, 5. As a result/; joins C, andCs; while ¢,
joinsCy, C,, andCs. An overlapping regiorR,, , can be regarded as an expansion of an Voronoi
edgee, , along the edges incident to the endpoints.of, like the gray regionk, ; shown in
Fig.[4.2(b). The expansion ranges used to control the size @, , by expanding both sides

frome,,.

To determine which overlapping regions where a featureoveet located, we have to
determine the Voronoi celV, such that/; € C, and a neighboring Voronoi cell, of V.
Let dist(v;, e,,) be the vertical distance between and the Voronoi edge,,. Then, if
dist(v;, e;,) < 6, thenwv; is definitely inR, . Hence,/; will join C, in the Voronoi-based

strategy.

15



However, due to the costly computationef, in high dimension feature spade [21], we do
not calculatelist(v;, e,.,) directly. Instead, we use the projection of the veciop, on the line
w,w, to obtaindist(v;, e, ). Again in Fig[4.2(b), we want to determideést (v, ex 3) = |U1al.
First, wsv, is projected orozw, as?v{. Let b be an intersection point absw; andey ;.
The edgee, 3 andwsw, are mutually orthogonal, which is a property of a Voronoigiéam.

Therefore, the points,, v/, b, anda form a rectangle s@w!b| = |val. Finally, |v/b| can be

obtained by|wsb| — |wsv] || = |@w3|/2 — W30 - Wsws /|| wsws||. Compared with findingoral

directly, this method saves more computation cost.

The above procedure functions well based on the assump@breach Voronoi cell knows
the neighborhood information. For examgle knowsV; andV; are its neighbors in Fig.-4.2(b).
Unfortunately, we cannot obtain thissinformation until tteationship between Voronoi cells
is completely discovered. This'is as. hard-as finding Voronigies. Note that thé-means
clustering algorithm only finds-out the Voronoi vertex of kaell. Here, we propose a simple
speculation technique, callegtighborhood-speculatiorio guess the neighborhood relation-

ship. It is based on an observationthat.if two Voronoi céllsandV,, are neighbors, then the

midpoint ofw,w, is usuallycloser toV, andV, than any other cell. Therefore, we use the po-
sition of the midpoint ofV, andV, to speculate the relationship between them. If the midpoint

is inside other cells except féf, or V,,, we tend to believe that, andV,, are not neighbors.

4.2.3 Probability-based Strategy

So far, the above overlapping strategies cannot adaptdlist the overlapping degree of each
training location according to different levels of envimental noise. Besides, the proposed
strategies are lack of guaranteeing the probability ofeszircluster selection. Hence, we pro-

pose the probability-based strategy which can overconsetpeblems by an off-line analysis.

16



As we have mentioned, the received samples are uncertaaudeof signal fluctuations.
This uncertainty is usually modeled by a zero-mean Gaussamal distribution. Hence, we
denote the possible received samples as a vector of random variabl&s = [r; 1 + Ny, 72+
N, ...,rim + Ny, Wherer; ; is the expected signal strength igfat ¢; without fluctuations
andN; = N(0,0,), j = 1..m, are independent and identically distributed zero-meamab

random variables with variances, j = 1..m.

Then, we define a random varialfe , = X — Y, whereX is the square of the Euclidean
distance between a random sam§jeollected at a fixed locatiof) and a cluster feature vector

w,, andY’ is the square of the Euclidean distance betwgeand anothew,. Then we have
Zwy=X—-Y
= ||S;, w2 = 1|S;, w2

> (@t Nt (ri + N)) — wy )

1

RN
Il

[
NE

2@y e )T AN;) — (W — Wl ). (4.1)

Y.J z,j
1

.
Il

Assume the number of training samples is large, so we cancexpe = r;,. Let©; =
2 2 —
w, ; —w; ; and®; = w, ; — w, ;. Hence,

m

ZL?J = Z QquNj + Z(Qéjvm - @j) (42)
j=1

j=1
Because allV; = N(0,0;), for j = 1..m, arei.i.d. and®;, ©;, andv, ; are constants7, ,, is

still a normal distributed random variable. Its mean andavae is

17



Therefore, the probability of the eveAt < Y is

Pr(Z,, <0)

(e —ttna) g, (4.3)

0 1
= — X
/_Oo \ /27?0:%& P 20’%7y

Let X < Y be equivalent toX < Y. For a randomly collected sampt, if ||.S;, w,|| is
smaller than|S;, w,|| for all j = 1..k, j # x, the estimated cluster will b&,. We can express

the probability of this event by

Pr(C*=¢C,)
:PT(ZJ:,I < 0; Zm,2 < 07 BRI Zz,z—l < 07

Zy o 62 0, . mmpam, <H0). (4.4)

For ease of computation, we assume evefyts < 0 for all j = 1..k, j # z, are independent.

Thus, Eq.[[44) can be rewritten.as

k
Pr(C*=C,) = [[ Pr(Z.; <0). (4.5)

w
8]

In the multi-nearest-neighbor stratedy,is allowed to join the top\,; close clusters in
F. Instead, in this strategy, can join different number of clusters based on Eq.(4.5). A
probability threshold. is defined here to denote the expected probability of a codlester
selection. Then, we sort the clusters according’t9C* = C,) for all x = 1..k in descending

order. By this sequencé, will join the clusters one by one unfi’_ Pr(C* =C,) > &.

In summary, this strategy provides a more effective andieffiavay to determine the over-

lapping degree of each training location. There are two ldyaatages. First, it assigns the

18



overlapping degree of a training location by its possipitit correct cluster selection. Second,
no matter how the environment changes, it assures thatuktecs to which a training location

belongs can cover most possible regions where its sigreaigins would fluctuate isF.

19



Chapter 5

Simulations

In this section, we conduct some experiments to evaluatg@én®rmance of our proposed

framework. We study the impact of varying parameters usediirrframework.

5.1 Simulation Model

We consider a 100100 square meters sensing field. Eight beacons are placedat(0, 99),
(99,0), (0,50), (50,0), (50,99), (99,50), and (99, 99), respectively. As to other 9992 grid
points, we collect 200 training samples at each of them intriiring phase. Thig-distance

path loss moddk exploited to model the signal propagation givenlby [22]:

PL(d) = PL(dy) + 10azog(di) + N(0,0), (5.1)
0

whered, = 1 is the reference distance, adds the distance between the transmitter and the
receiver.« denotes the path loss exponent, typically from 2 to 6, &itd, o) is a zero-mean
normal distributed random variable with a standard demedi. Also, the transmit powep, is

set to be 15 dBmPL(dy) = 37.3, « = 2, ando = 4.

To evaluate the system performance, three performancécsate employed:

20



e Positioning error The error distance between the estimated location andubddcation
is the positioning error. We will use this metric to evaluate proposal framework with

other fingerprinted-based methods.

e Hit rate: To get insight into the impact of clustering on localizatighe hit rate is de-
fined as the probability of accurately predicting the clustntaining the true location.
Obviously, the higher the hit rate, the less the positior@mgr caused by false cluster

selection.

e Average cluster sizeThis metric stands for the improvement on computation céda.
According to our cluster-enhanced localization framewdthke total number of compar-
isons would beO(k + X\ x |£]|/k). Since the number of clusters is a tunable parameter
in our proposed clustering strategies, we more care abewtvibrage number of training

locations in clusters (i.e}5r | [Ci/E).

We evaluate the following clusteringritechniguésmeans algorithm, the Joint Clustering
(abbreviated adC) technique in[[18], the multi-nearest-neighbor (abbreadaasMNN) strat-
egy, the Voronoi-based (abbreviated/asonoi strategy, and the probability-based (abbreviated
asProb) strategy. A good clustering strategy should have a highteate, a smaller average

cluster size, and a lower positioning error.

The signal propagation model mentioned in Eq.](5.1) is ugaihan the positioning phase
to simulate test samples. For each grid point, 200 test ssgrk generated and then a clus-
tering technique is applied for each sample to determineeigsest cluster. A hit event occurs

when the selected cluster contains the correspondingdocat this sample.

To implement the probability-based strategy, we have toutale the integrals in Ed.{4.5).

However, it is not efficient and hard to obtain a precise pobddence, in our simulations, we

21



Average Positioning Error
13

T T T
1L ——JT with g=3
---%--- k-means with k=10
---%--- k-means with k=16
~—B- k-means with k=22

11
10

Positioning Error (m)
T B B B \%I LN

w h 00O N

E
2 25 3 3.5 4 45 5 55 6
Standard Deviation (o)

Figure 5.1: The comparison of the average positioning emaler different.

approximatePr(C* = C,) by randomly generating samples for each grid poiidt according
to the path loss model. After performing the probabilityséd clustering strategy to all these
h samples, we obtaifr(C* = C,) ='h,/h, whereh, is the number of samples whose closest

cluster isC,.. In our simulation model, is:set ta1000.

5.2 Impact of ClusteringontheAverage Positioning Error

We first investigate the impact of clustering on the averaggtion error. To demonstrate that
clustering will also guarantee the accuracy of locatiomesion, we only compare the base-
line clustering method (i.ek-means algorithm) with the JC algorithm. We vary the staddar
deviations in the path loss model and show the effectiveness of clugteilote that JC only
generate$4 ~ 18 clusters in our simulation and thus we set the number ofetsasork-means
algorithms to 10, 16 and 22, respectively. Figl 5.1 shows#perimental results. In Fig 5.1,
JC incurs larger average positioning error under differense levels. On the other hand, our
proposed framework is able to provide better performanaa that of JC in terms of average

positioning error.
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5.3 Sengitive Performance Study for Clustering Strategies

From the above experiment, our proposed framework with #eelne clustering algorithm
(i.e., k-mean algorithm) outperforms the existing algorithm (i.#C). Before comparing-
means with other proposed strategies, we first conducttsengerformance study for cluster-
ing strategies so as to determine the optimal parameteatir ene. The number of clusters for
each clustering strategy is set to 50, 100 and 200, respéctiig.[5.2 shows the performance
study of the three clustering strategies with their paransetaried §,, in MNN, ¢ in Voronoi,
and¢ in Prob). Note that to show their difference, we will comptmese clustering strategies in
terms of the hit rate and the average cluster size. It candreisd-ig[5.2(a) and Fig.3.2(c), the
hit rates of MNN and Voronoi have similar trend. However,.[Bg(b) and Figi-5]12(d) reveal
that the Voronoi strategy can hayve smaller avéerage clugieirsa lower density environment
(k = 50). In other words, Voronoi is mare:suitable-for a sparse emrirent. This agrees with

our claim that Voronoi can effectively avoid training loicats joining unnecessary clusters.

The performance study of the Prob strategy under diffefaatshown in Fig[5R(e) and
Fig. 22(f). By comparing with other strategies, we have fihllowing observations. First,
both Voronoi and Prob have almost the same hit rate and theiage cluster sizes are similar.
Second, the hit rate of Prob is always above the requiredtibid$ under different scenarios
(i.e., different setting fok), which indicates that the Prob strategy can automatiealjyst itself
to adapt to different environments. As a result, the Prodtegy is superior than the Voronoi

strategy.
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Figure 5.2: Sensitivity performance studies for threetelisg strategies.
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5.4 Performance Comparison of Clustering Strategies

In light of sensitive performance studies in Secfiod 5.3 seiect MNN with\;; = 4, Voronoi

with § = 5, and Prob with¢ = 0.9 to further compare their performance with the noise degree
varied. The performance study of these clustering straseigi shown in Fid.5l3. Fi§."5.3(a)
shows that in a very noisy environment (i.e., larger stathdawiation), the Prob strategy outper-
forms the others. Also, the hit rate of MNN and Voronoi is vargh wheno < 3.5. However,

the hit rates of these two strategies decrease quickly a& aeigree increases. It is worth men-
tioning that without the overlapping techniquemeans performs worst in terms of hit rates.
However, from the result in Fi§._3.3(b);mean has the smallest average cluster size. If the la-
tency caused by positioning is more important, this algarits a good choice because smaller
average cluster size implying shorter latency. Beside, NN and Voronoi have reasonable
average cluster size in the environment-with larger noigeede On the other hand, if accuracy
of location estimation is more important; one should emph&yProb strategy. Hence, upon the

requirement of applications, one.should determine to usitalde clustering technique.

5.5 Performance Study of Total Comparison Cost

The number of clusters will impact on the computation costné€, we further conduct some
experiments by varying the number of clusters. The experiate@esult is shown in Fig. 3.4,
where the total comparison cost is defined as the summatidineofluster number and the
average cluster size. In this experiment, each strategyldlgoarantee that the hit rate is larger
than 0.85. From Fig. 5.4, whén= 100, the total costs of Voronoi and Prob are minimal. On

the other hand, MNN generates more overhead than other tategies.
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Figure 5.3: Effect of the standard deviati@mon the (a) hit rate and (b) average cluster size.
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Chapter 6

Conclusion

In this paper, we presented an efficient cluster-enhan@adization framework to speed up the
pattern-matching positioning algorithms.in large-scaieel@ss networks. This framework can
be plugged into any clustering and positioning algorithnithihe aid of clustering techniques,
the training data can be divided into severalgroups basduearsimilarity defined in a specific
feature space. Then, we selected the'one which is most similae real-time received sample
and only search the locations injt:. Considering the probtdrpotential positioning errors
caused by false cluster selection, three clustering giesgt@llowing overlaps are proposed. Our
performance evaluation shows that the proposed overlggiategies can greatly improve the

hit rate of the clustering technique and reduce at least 3f¥¥patation cost.
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