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在大型網路下以群簇法為基礎的樣本比對定位法之研究

學生:吳秉禎 指導教授: 曾煜棋老師

國立交通大學資訊工程學系(研究所) 碩士班

摘要

在定位服務裡, 系統的反應時間是一個關鍵點, 對於即時性的應用來說, 更是如此。 在大型

網路下 (如無線城市), 以樣本比對法為基礎的定位系統, 如此的需求更為明顯。 此類定位法的運

作是仰賴目前物體收集到的訊號強度特徵與事先在訓練階段建立的以訊號強度為樣本的資料庫

做比對來達到定位的目的。 在這篇論文中, 我們提出一個以群簇法為基礎的樣本比對定位架構

來加快定位的程序。 藉著將擁有類似的訊號特徵樣本的訓練點群聚在一起, 我們會展示如何降

低定位所需的比較複雜度來加速整個定位的流程。 為了解決訊號飄移的問題, 我們更提出了幾

個有效的分群法。 在許多廣泛的模擬的結果下, 我們可以發現: 平均來說, 在不影響定位準確度

的情況下, 我們提出的系統相較於原來的樣本比對法的比較複雜度上可減少至少90%。
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Abstract

In location-based services, the response time of location determination is critical, especially

in real-time applications. This is especially true for pattern-matching localization methods,

which rely on comparing an object’s current signal strengthpattern against a pre-established lo-

cation database of signal strength patterns collected at the training phase, when the sensing field

is large (such as a wireless city). In this work, we propose a cluster-based localization frame-

work to speed up the positioning process for pattern-matching localization schemes. Through

grouping training locations with similar signal strength patterns, we show how to reduce the

associated comparison cost so as to accelerate the pattern-matching process. To deal with sig-

nal fluctuations, several clustering strategies are proposed. Extensive simulation studies are

conducted. Experimental results show that more than 90% computation cost can be reduced in

average without degrading the positioning accuracy.
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Chapter 1

Introduction

Location-based services (LBSs) have emerged as one of the killer applications for mobile com-

puting and wireless data services. While providing great market values to business applications,

such services are also critical to public safety, transportation, emergency response, and disaster

management. Consequently, location estimation is essential to the success of LBSs. In addition

to the well-known GPS [1], a lot of techniques have been proposed for indoor localization, such

as infrared-based [2], ultrasonic-based [3], and RF-based[4,5] systems.

Among all localization systems, the RF-based systems are probably most cost-effective be-

cause they can rely on existing wireless network infrastructures (such as IEEE 802.11 WLAN).

However, such systems need to handle the characteristic of signal strengths, which may fluc-

tuate frequently. Thepattern-matchingschemes [4, 5, 6, 7, 8], or known as thefingerprinting

schemes, deal with this problem by involving two phases:trainingandpositioning. In the train-

ing phase, given a set of training locations, the received signal strengths of all base stations (or

beacons) at these locations are collected for a sufficient amount of time. Therefore, for each

training location, a feature vector is calculated. Then, inthe positioning phase, when an object

needs to determine its location, it can compare its current received signal strengths against the
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feature vectors in the location database to check their similarity. The corresponding location of

the most similar feature vector is selected as the possible location of the object.

Recently, many literatures apply pattern-matching localization methods to a large-scale en-

vironment [9, 10, 11, 12]. However, they may encounter the scalability problem because of the

huge calibration efforts required in the training phase andhigh comparison cost spent in the po-

sitioning phase. For example, in a wireless city, thousandsor millions of training records may

have to be collected in a location database. Several effortshave been dedicated to reducing the

calibration cost [10,13,14,15]. In this paper, we aim to reduce the computation cost incurred in

the positioning phase. This would enable us to support real-time LBSs. We propose a cluster-

based localization framework which also consists of two phases. In the training phase, similar

to existing pattern-matching approaches, we first collect feature vectors of training locations.

Through clustering techniques, those training locations with similar feature vectors are grouped

together. This results in a small number of clusters. For each cluster, a representative feature

vector is derived. Then in the positioning phase, given a signal strength vector, we first compare

it against all clusters’ representative feature vectors and pick the one whose representative fea-

ture vector is most similar to the given signal strength vector. Finally, only the training locations

in the selected cluster are further evaluated to determine the estimated location of the object.

Although the clustering technique is able to reduce the computation cost, its positioning

accuracy may be reduced if the right cluster is not selected.If a false cluster is selected, the final

location estimation may be incorrect. We refer to this as thefalse cluster selection. Apparently,

the probability of a false cluster selection should be reduced. In this paper, we propose several

clustering strategies. First, we show that the traditionalk-means algorithm [16] is not suitable

when the effect of noise is not negligible. Then we propose three clustering strategies to enhance

the k-means algorithm by allowing clusters to have overlapping members. Although having
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duplications is redundant, it can effectively reduce the events of false cluster selection due

to noises. To verify our results, a simulation model is builtand extensive simulation studies

are conducted. Experimental results show that this framework is able to reduce at least 90%

computation cost without sacrificing accuracy.

The rest of this paper is organized as follows. Chapter 2 discusses some reviews. The pro-

posed cluster-based framework is described in Chapter 3. Chapter 4 presents several clustering

strategies. Chapter 5 contains our performance studies. Chapter 6 concludes this paper.
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Chapter 2

Related Works

Several localization systems have explored the pattern-matching techniques. In [4], the nearest-

neighbor algorithm is applied to search the location database for the training location with the

shortest Euclidean distance in the signal space. Based on probability theory, [5] presents a

probabilistic framework for localization to handle signalstrength fluctuations. Reference [8]

adopts the similar concept to develop recursive Bayesian filters for localization. In general, the

nearest-neighbor approach is not as effective as the probabilistic one [17].

In [6], a more sophisticated network-based classification method is proposed. A neural

network, which consists of multiple layers of interconnected neurons is adopted to model the

dependencies among a set of random variables. It has a forward and back propagation mecha-

nism to adaptively assign suitable weights to neuron connections in the training phase. Then,

the well trained network can be used to classify an observed sample of signal strengths in the

positioning phase. Based on the statistical learning theory, [7] proposes asupport vector ma-

chine (SVM)to find a high-dimensional hyperplane such that any two training data set can be

partitioned between two sides of this plane and their distances to this plane can be as far as

possible.
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For large-scale environments, some literatures have considered the scalability issue incurred

in the training phase [13,14,11] and the positioning phase [18,19]. In the training phase, to re-

lieve huge labor cost needed for training data collection, an intuitive idea is to collect less train-

ing locations. However, it also represents that we cannot capture the detailed signal strength

patterns so the positioning results will be coarse-grained. Hence, [13] proposes to generate

a small number of virtual training locations from the actualones by interpolation techniques.

Similarly, multidimensional regression [14] is used to build a nonlinear mapping between the

signal space and the physical space. For the reason that manually collecting training samples

with the correct location labels is time-consuming, [13] suggests to use unlabeled user traces

to compensate the loss of accuracy caused by a relatively small number of training locations.

An unlabeled user trace is a sequences of continuously received signal strength measurements

without location labels. With the help of a hidden Markov model to model user traces, unla-

beled user traces can be used to simplify the training process while keeping a certain degree

of positioning accuracy. Furthermore, a calibration-freemechanism is the extreme solution to

save labor cost. Without a training phase, signal propagational models can be used to pre-

dict the characteristics of signal strengths in the environment [4]. However, such systems will

have higher positioning error because multipath fading andinterference are hard to be precisely

modeled in an indoor environment.

The issue of reducing the real-time comparison cost in the positioning phase is discussed

in [18, 19]. Their main ideas are both to apply clustering techniques to the training locations,

so only a subset of them needs to be searched. Reference [18] constructs clusters according

to the physical coordinates of training locations. It claims that the estimated locations of two

consecutive location queries should be very close in the physical space. Thus, only the training

locations close to the previous estimated one need to be searched for the current query. However,
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it does not consider the actual signal space and its searching range strongly relies on the query

interval and the user mobility model.

In [19], training locations that see theq strongest signal strengths from the sameq access

points (APs) are grouped together. This clustering technique is simple but has several draw-

backs. First, the topq APs with the strongest signals at a fixed location may vary over time,

thus causing false cluster selection. Second, the number ofclusters is not a controllable param-

eter. In our work, the number of clusters is tunable and falsecluster selection can be effectively

avoided.
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Chapter 3

The Cluster-Based Pattern-Matching
Localization Framework

The proposed clustering framework can be applied to most pattern-matching localization meth-

ods. It also consists of two phases: training and positioning. Fig. 3.1 depicts the structure of the

framework.

3.1 The Training Phase

We assume that there arem beacons (or APs), denoted asB = {b1, b2, . . . , bm}, being deployed

in the field. In this field, we definen training locationsL = {ℓ1, ℓ2, . . . , ℓn}. Let the feature

spaceF ∈ R
m, whereR is the set of possible signal strengths. For each training locationℓi,

i = 1..n, we collect a sufficient number of training samples from beacons and calculate the

feature vectorυi = [υi,1, υi,2, . . . , υi,m] ∈ F for ℓi, whereυi,j is the average received signal

strength frombj at ℓi. For those training locations with similar feature vectors, we exploit

clustering techniques to group them together. Specifically, we will computek location sets

C1, C2, . . . , Ck such thatCi ⊆ L, i = 1..k, and
⋃k

i=1 Ci = L. The detail clustering algorithms
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will be given in Section 4. For each location setCi, its representative feature vector is expressed

by ωi = [ωi,1, ωi,2, . . . , ωi,m] ∈ F , whereωi,j is the average of signal strengths

∑

x:ℓx∈Ci
υx,j

|Ci|
.

Note that two location sets may have overlaps, i.e.,Ci ∩ Cj is not necessarily an empty set.

3.2 The Positioning Phase

In the positioning phase, when an object needs to determine its location, we can measure its

signal strength vectors = [s1, s2, . . . , sm], wheresj is the signal strength ofbj . Our goal is

to determine the object’s location in a real-time manner. Intypical pattern-matching methods,

s will be compared to alln feature vectors in the location database. However, in a large-scale

field (such as a wireless city), thousands or millions of vectors may need to be compared. By

clustering training locations with similar feature vectors into a group, we only need to compare

s against the representative feature vectorωi of eachCi first. As in most works, the similarity

betweens andCi is defined as the Euclidean distance of their feature vectorsin F , sim(s, Ci) =

‖s, ωi‖ =
√

∑m

j=1(sj − ωi,j)2. Then, the most similar cluster, denoted byC∗, is selected, i.e.,

C∗ = arg minCi
sim(s, Ci). That is, only the training locations inC∗ will be further searched.

We refer to this as the Nearest Neighbor in Signal Space (NNSS) algorithm [4]. In NNSS,

users’ locations are estimated by comparings against each training locationℓi in C∗ according

to the Euclidean distance, i.e.,sim(s, ℓi) = ‖s, υi‖ =
√

∑m

j=1(sj − υi,j)2 in F . The estimated

location isℓ∗ = arg minℓi∈C
∗ sim(s, ℓi). Therefore, the computation cost is decreased from

O(|L|) to O(k +
|L|

k
) if any two location sets are disjoint.
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Chapter 4

Clustering Algorithms

Below, we propose several clustering algorithms to partition the location database. We start

with the well-knownk-means algorithm, followed by three enhanced clustering strategies.

4.1 k-means Algorithm

Thek-means algorithm developed in [16] can be applied to our model. There are multiple iter-

ations. In thex-th iteration, we will formk clustersC(x)
1 , C

(x)
2 , . . . , C

(x)
k . Initially, we construct

k seedsω(0)
1 , ω

(0)
2 , . . . , ω

(0)
k ∈ F , where each seedω(0)

i , i = 1..k, is randomly selected from the

set of feature vectors{υ1, υ2, . . . , υn}, andω
(0)
i 6= ω

(0)
j for all i 6= j. (Other ways to choose the

initial values ofω(0)
1 , ω

(0)
2 , . . . , ω

(0)
k are discussed in [20]. Here we adopt the random strategy.)

With these seeds, we define clusterC
(1)
i in the first iteration as follows:

ℓj ∈ C
(1)
i ⇔ ω

(0)
i = arg min

ω
(0)
y

‖υj, ω
(0)
y ‖.

That is,ℓj will be categorized as a member of clusterC
(1)
i if υj is closest to the seedω(0)

i among

all other seeds. From each clusterC
(1)
i , i = 1..k, we then calculate a new seedω

(1)
i by averaging
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Figure 4.1: An example of the problem ofk-means algorithm.

the received signal strengths for allℓj ∈ C
(1)
i ,

ω
(1)
i = avg{υj : ∀ℓj ∈ C

(1)
i }.

In thex-th iteration, for allx ≥ 2, according to the seeds generated in the(x − 1) − th

iteration, we define clusterC(x)
i as follows:

ℓj ∈ C
(x)
i ⇔ ω

(x−1)
i = arg min

ω
(x−1)
y

‖υj, ω
(x−1)
y ‖.

Similarly, from each clusterC(x)
i , we can calculate another seedω

(x)
i = avg{υj : ∀ℓj ∈ C

(x)
i }.

The regrouping processes will be repeated iteratively until the conditionC(x)
j = C

(x+1)
j is satis-

fied for all j = 1..k. At last, we obtainωj = ω
(x)
j for each location setCj = C

(x)
j .

Ideally, in the positioning phase, when an object provides its current signal strength vector

s, we would expect that a correct cluster with the most similarfeature vector can be selected.

However, due to the fluctuation of radio signal, this cannot always be achieved. Fig. 4.1 shows

an example with three clusters in a feature space. Due to signal fluctuation, the signal strength

vectors of an object which locates atℓ1 may appear in multiple clusters. As shown by dotted

circles in the figure, the distribution ofs is modeled by an uniform distribution for ease of
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discussion. According to thek-means algorithm, ifs is in the gray region, it is more similar to

the clusterC2 thanC1 andC3. Hence, a false cluster selection happens. Clearly, this situation is

more serious near the boundary of clusters.

4.2 Clustering Techniques Allowing Overlaps

The problem shown in Fig. 4.1 calls for the design of clusterswith certain degrees of overlaps.

Below, we propose three clustering schemes extended from thek-means algorithm, which allow

a training location to join multiple clusters. We defineoverlapping degreeλ to be the average

number of clusters that training locations can join. Clearly, this will increase the searching

complexity in the positioning phase toO(k + λ ×
|L|

k
).

All schemes are similar to thek-means algorithm partitioningL into k sets. The main

difference is the way to determine which clusters a traininglocation will join. In the firstmulti-

nearest-neighborstrategy, each training location can join the first few clusters closest to it.

In the secondVoronoi-basedstrategy, the overlapping degree is determined by the geometric

characteristic of the distribution of clusters. The lastprobability-basedstrategy can adaptively

adjust the overlapping degree of each training location according to the levels of environmental

noise.

4.2.1 Multi-Nearest-Neighbor Strategy

The multi-nearest-neighbor strategy assigns a constant overlapping degreeλM to all training

locations. As mentioned before,k clusters of training locations{C1, C2, . . . , Ck} are obtained

by thek-means clustering algorithm. Then, for each training location ℓi, it will join the top λM

similar clusters, which are ranked by the inverse of Euclidean distance1/‖υi, ωj‖. Averagely,

13



the searching space is increased fromO(k+
|L|

k
) to O(k+λM ×

|L|

k
) compared to thek-means

clustering algorithm.

This strategy allows each training location to join multiple closest clusters in the feature

space, unlike the single one in thek-means clustering algorithm. It is an intuitive solution for

solving the signal fluctuation problem. If samples of a location are possible to be estimated to

many nearby clusters, there is no reason to make this training location join only one cluster. For

the example illustrated in Section 4.1, we can avoid incorrect location estimations caused by

false cluster selection ifℓ1 is allowed to join two closest clustersC2 andC3 simultaneously.

4.2.2 Voronoi-based Strategy

Although the multi-nearest-neighbor strategy is simple tobe implemented and easy to control

the average searching space, the parameterλM is hard to determine. IfλM is too small, it may

not compensate for the effect of signal fluctuations. Thus, the problem of false cluster selection

remains. On the other hand, ifλM is too large, some training locations may join unnecessary

clusters, thus causing redundancy. We can observe that whenυi of a training location is close

to the center of a cluster inF , the number of clusters it joins should not the same as another

training location whose feature vectorυj is near the periphery of a cluster.

For this consideration, we next propose the Voronoi-based strategy. After performing thek-

means algorithm,{υ1, υ2, . . . , υn} is decomposed intok partitions centered atωj, 1 ≤ j ≤ k.

It can be observed that‖υi, ωx‖ ≤ ‖υi, ωy‖ for all y 6= x if ℓi ∈ Cx. This property is equivalent

to a Voronoi diagram [21], where all points in a Voronoi cell are closest to the Voronoi vertex

in the same cell. Thus, the members of a clusterCx are contained in a Voronoi cellVx with a

Voronoi vertex atωx. If we let a training location which is close to Voronoi edgesjoin more

14
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Figure 4.2: An example of Voronoi-based Overlapping mechanism.

clusters and oppositely let the others join less clusters, we can improve the effectiveness of the

overlapping technique.

Motivated by the observation above, we propose the Voronoi-based strategy. For each neigh-

boring Voronoi cellsVx andVy, we formally define an overlapping regionRx,y (x < y) in

which any training location whose feature vector located joins bothCx andCy. For example, in

Fig. 4.2(a), there are three Voronoi cellsV1, V2, andV3, separated by three Voronoi edgese1,2,

e2,3, ande1,3, and three overlapping regionsR1,2, R1,3, R2,3, are shaded. The feature vectorυ1

is insideR2,3 andυ2 is located both inR2,3 andR1,3. As a result,ℓ1 joins C2 andC3; while ℓ2

joinsC1, C2, andC3. An overlapping regionRx,y can be regarded as an expansion of an Voronoi

edgeex,y along the edges incident to the endpoints ofex,y, like the gray regionR2,3 shown in

Fig. 4.2(b). The expansion rangeδ is used to control the size ofRx,y by expanding both sides

from ex,y.

To determine which overlapping regions where a feature vector υi located, we have to

determine the Voronoi cellVx such thatℓi ∈ Cx and a neighboring Voronoi cellVy of Vx.

Let dist(υi, ex,y) be the vertical distance betweenυi and the Voronoi edgeex,y. Then, if

dist(υi, ex,y) < δ, thenυi is definitely inRx,y. Hence,ℓi will join Cy in the Voronoi-based

strategy.
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However, due to the costly computation ofex,y in high dimension feature space [21], we do

not calculatedist(υi, ex,y) directly. Instead, we use the projection of the vector−−−−−−−⇀
ωxυi on the line

ωxωy to obtaindist(υi, ex,y). Again in Fig. 4.2(b), we want to determinedist(υ1, e2,3) = |υ1a|.

First, −−−−−−−⇀ω3υ1 is projected onω3ω2 as
−−−−−−−⇀
ω3υ

′
1. Let b be an intersection point ofω3ω2 ande2,3.

The edgee2,3 andω3ω2 are mutually orthogonal, which is a property of a Voronoi diagram.

Therefore, the pointsυ1, υ
′
1, b, anda form a rectangle so|υ′

1b| = |υ1a|. Finally, |υ′
1b| can be

obtained by||ω3b|−|ω3υ
′
1|| = |ω2ω3|/2−−−−−−−−⇀

ω3υ1 ·
−−−−−−−⇀
ω3ω2/‖

−−−−−−−⇀
ω3ω2‖. Compared with finding|υ1a|

directly, this method saves more computation cost.

The above procedure functions well based on the assumption that each Voronoi cell knows

the neighborhood information. For example,V3 knowsV1 andV2 are its neighbors in Fig. 4.2(b).

Unfortunately, we cannot obtain this information until therelationship between Voronoi cells

is completely discovered. This is as hard as finding Voronoi edges. Note that thek-means

clustering algorithm only finds out the Voronoi vertex of each cell. Here, we propose a simple

speculation technique, calledneighborhood speculation, to guess the neighborhood relation-

ship. It is based on an observation that if two Voronoi cellsVx andVy are neighbors, then the

midpoint ofωxωy is usuallycloser toVx andVy than any other cell. Therefore, we use the po-

sition of the midpoint ofVx andVy to speculate the relationship between them. If the midpoint

is inside other cells except forVx or Vy, we tend to believe thatVx andVy are not neighbors.

4.2.3 Probability-based Strategy

So far, the above overlapping strategies cannot adaptivelyadjust the overlapping degree of each

training location according to different levels of environmental noise. Besides, the proposed

strategies are lack of guaranteeing the probability of correct cluster selection. Hence, we pro-

pose the probability-based strategy which can overcome these problems by an off-line analysis.
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As we have mentioned, the received samples are uncertain because of signal fluctuations.

This uncertainty is usually modeled by a zero-mean Gaussiannormal distribution. Hence, we

denote the possible received samples atℓi as a vector of random variablesSi = [ri,1 +N1, ri,2 +

N2, . . . , ri,m + Nm], whereri,j is the expected signal strength ofbj at ℓi without fluctuations

andNj = N(0, σj), j = 1..m, are independent and identically distributed zero-mean normal

random variables with variancesσj , j = 1..m.

Then, we define a random variableZx,y = X − Y , whereX is the square of the Euclidean

distance between a random sampleSi collected at a fixed locationℓi and a cluster feature vector

ωx, andY is the square of the Euclidean distance betweenSi and anotherωy. Then we have

Zx,y = X − Y

= ‖Si, ωx‖
2 − ‖Si, ωy‖

2

=

m
∑

j=1

[(ri,j + Nj) − ωx,j]
2 − [(ri,j + Nj) − ωy,j]

2

=
m

∑

j=1

2(ωy,j − ωx,j)(ri,j + Nj) − (ω2
y,j − ω2

x,j). (4.1)

Assume the number of training samples is large, so we can expect υi,j = ri,j. Let Θj =

ω2
y,j − ω2

x,j andΦj = ωy,j − ωx,j. Hence,

Zx,y =

m
∑

j=1

2ΦjNj +

m
∑

j=1

(2Φjυi,j − Θj). (4.2)

Because allNj = N(0, σj), for j = 1..m, arei.i.d. andΦj , Θj, andυi,j are constants,Zx,y is

still a normal distributed random variable. Its mean and variance is

µx,y =
m

∑

j=1

(2Φjυi,j − Θj),

σ2
x,y =

m
∑

j=1

(2Φjσj)
2.
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Therefore, the probability of the eventX < Y is

Pr(Zx,y < 0)

=

∫ 0

−∞

1
√

2πσ2
x,y

exp(
−(zx,y − µx,y)

2

2σ2
x,y

)dzx,y. (4.3)

Let X < Y be equivalent toX ≤ Y . For a randomly collected sampleSi, if ‖Si, ωx‖ is

smaller than‖Si, ωj‖ for all j = 1..k, j 6= x, the estimated cluster will beCx. We can express

the probability of this event by

Pr(C∗ = Cx)

=Pr(Zx,1 ≤ 0, Zx,2 ≤ 0, . . . , Zx,x−1 ≤ 0,

Zx,x+1 ≤ 0, . . . , Zx,k ≤ 0). (4.4)

For ease of computation, we assume eventsZx,j ≤ 0 for all j = 1..k, j 6= x, are independent.

Thus, Eq. (4.4) can be rewritten as

Pr(C∗ = Cx) =
k

∏

j=1
j 6=x

Pr(Zx,j ≤ 0). (4.5)

In the multi-nearest-neighbor strategy,ℓi is allowed to join the topλM close clusters in

F . Instead, in this strategy,ℓi can join different number of clusters based on Eq. (4.5). A

probability thresholdξ is defined here to denote the expected probability of a correct cluster

selection. Then, we sort the clusters according toPr(C∗ = Cx) for all x = 1..k in descending

order. By this sequence,ℓi will join the clusters one by one until
∑

x Pr(C∗ = Cx) ≥ ξ.

In summary, this strategy provides a more effective and efficient way to determine the over-

lapping degree of each training location. There are two key advantages. First, it assigns the

18



overlapping degree of a training location by its possibility of correct cluster selection. Second,

no matter how the environment changes, it assures that the clusters to which a training location

belongs can cover most possible regions where its signal strengths would fluctuate inF .
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Chapter 5

Simulations

In this section, we conduct some experiments to evaluate theperformance of our proposed

framework. We study the impact of varying parameters used inour framework.

5.1 Simulation Model

We consider a 100×100 square meters sensing field. Eight beacons are placed at(0, 0), (0, 99),

(99, 0), (0, 50), (50, 0), (50, 99), (99, 50), and (99, 99), respectively. As to other 9992 grid

points, we collect 200 training samples at each of them in thetraining phase. Thelog-distance

path loss modelis exploited to model the signal propagation given by [22]:

PL(d) = PL(d0) + 10αlog(
d

d0
) + N(0, σ), (5.1)

whered0 = 1 is the reference distance, andd is the distance between the transmitter and the

receiver.α denotes the path loss exponent, typically from 2 to 6, andN(0, σ) is a zero-mean

normal distributed random variable with a standard deviationσ. Also, the transmit powerPt is

set to be 15 dBm,PL(d0) = 37.3, α = 2, andσ = 4.

To evaluate the system performance, three performance metrics are employed:
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• Positioning error: The error distance between the estimated location and the true location

is the positioning error. We will use this metric to evaluateour proposal framework with

other fingerprinted-based methods.

• Hit rate: To get insight into the impact of clustering on localization, the hit rate is de-

fined as the probability of accurately predicting the cluster containing the true location.

Obviously, the higher the hit rate, the less the positioningerror caused by false cluster

selection.

• Average cluster size: This metric stands for the improvement on computation reduction.

According to our cluster-enhanced localization framework, the total number of compar-

isons would beO(k + λ × |L|/k). Since the number of clusters is a tunable parameter

in our proposed clustering strategies, we more care about the average number of training

locations in clusters (i.e.,
∑k

i=1 |Ci|/k).

We evaluate the following clustering techniques:k-means algorithm, the Joint Clustering

(abbreviated asJC) technique in [19], the multi-nearest-neighbor (abbreviated asMNN) strat-

egy, the Voronoi-based (abbreviated asVoronoi) strategy, and the probability-based (abbreviated

asProb) strategy. A good clustering strategy should have a higher hit rate, a smaller average

cluster size, and a lower positioning error.

The signal propagation model mentioned in Eq. (5.1) is used again in the positioning phase

to simulate test samples. For each grid point, 200 test samples are generated and then a clus-

tering technique is applied for each sample to determine itsnearest cluster. A hit event occurs

when the selected cluster contains the corresponding location of this sample.

To implement the probability-based strategy, we have to calculate the integrals in Eq. (4.5).

However, it is not efficient and hard to obtain a precise product. Hence, in our simulations, we
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Figure 5.1: The comparison of the average positioning errorunder differentσ.

approximatePr(C∗ = Cx) by randomly generatingh samples for each grid pointℓi according

to the path loss model. After performing the probability-based clustering strategy to all these

h samples, we obtainPr(C∗ = Cx) = hx/h, wherehx is the number of samples whose closest

cluster isCx. In our simulation model,h is set to1000.

5.2 Impact of Clustering on the Average Positioning Error

We first investigate the impact of clustering on the average position error. To demonstrate that

clustering will also guarantee the accuracy of location estimation, we only compare the base-

line clustering method (i.e.k-means algorithm) with the JC algorithm. We vary the standard

deviationσ in the path loss model and show the effectiveness of clustering. Note that JC only

generates14 ∼ 18 clusters in our simulation and thus we set the number of clusters fork-means

algorithms to 10, 16 and 22, respectively. Fig. 5.1 shows theexperimental results. In Fig. 5.1,

JC incurs larger average positioning error under differentnoise levels. On the other hand, our

proposed framework is able to provide better performance than that of JC in terms of average

positioning error.
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5.3 Sensitive Performance Study for Clustering Strategies

From the above experiment, our proposed framework with the baseline clustering algorithm

(i.e., k-mean algorithm) outperforms the existing algorithm (i.e., JC). Before comparingk-

means with other proposed strategies, we first conduct sensitive performance study for cluster-

ing strategies so as to determine the optimal parameter for each one. The number of clusters for

each clustering strategy is set to 50, 100 and 200, respectively. Fig. 5.2 shows the performance

study of the three clustering strategies with their parameters varied (λM in MNN, δ in Voronoi,

andξ in Prob). Note that to show their difference, we will comparethese clustering strategies in

terms of the hit rate and the average cluster size. It can be seen in Fig. 5.2(a) and Fig. 5.2(c), the

hit rates of MNN and Voronoi have similar trend. However, Fig. 5.2(b) and Fig. 5.2(d) reveal

that the Voronoi strategy can have smaller average cluster size in a lower density environment

(k = 50). In other words, Voronoi is more suitable for a sparse environment. This agrees with

our claim that Voronoi can effectively avoid training locations joining unnecessary clusters.

The performance study of the Prob strategy under differentξ is shown in Fig. 5.2(e) and

Fig. 5.2(f). By comparing with other strategies, we have thefollowing observations. First,

both Voronoi and Prob have almost the same hit rate and their average cluster sizes are similar.

Second, the hit rate of Prob is always above the required thresholdξ under different scenarios

(i.e., different setting fork), which indicates that the Prob strategy can automaticallyadjust itself

to adapt to different environments. As a result, the Prob strategy is superior than the Voronoi

strategy.
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Figure 5.2: Sensitivity performance studies for three clustering strategies.
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5.4 Performance Comparison of Clustering Strategies

In light of sensitive performance studies in Section 5.3, weselect MNN withλM = 4, Voronoi

with δ = 5, and Prob withξ = 0.9 to further compare their performance with the noise degree

varied. The performance study of these clustering strategies is shown in Fig. 5.3. Fig. 5.3(a)

shows that in a very noisy environment (i.e., larger standard deviation), the Prob strategy outper-

forms the others. Also, the hit rate of MNN and Voronoi is veryhigh whenσ ≤ 3.5. However,

the hit rates of these two strategies decrease quickly as noise degree increases. It is worth men-

tioning that without the overlapping technique,k-means performs worst in terms of hit rates.

However, from the result in Fig. 5.3(b),k-mean has the smallest average cluster size. If the la-

tency caused by positioning is more important, this algorithm is a good choice because smaller

average cluster size implying shorter latency. Besides, both MNN and Voronoi have reasonable

average cluster size in the environment with larger noise degree. On the other hand, if accuracy

of location estimation is more important, one should employthe Prob strategy. Hence, upon the

requirement of applications, one should determine to use a suitable clustering technique.

5.5 Performance Study of Total Comparison Cost

The number of clusters will impact on the computation cost. Hence, we further conduct some

experiments by varying the number of clusters. The experimental result is shown in Fig. 5.4,

where the total comparison cost is defined as the summation ofthe cluster number and the

average cluster size. In this experiment, each strategy should guarantee that the hit rate is larger

than 0.85. From Fig. 5.4, whenk = 100, the total costs of Voronoi and Prob are minimal. On

the other hand, MNN generates more overhead than other two strategies.
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Chapter 6

Conclusion

In this paper, we presented an efficient cluster-enhanced localization framework to speed up the

pattern-matching positioning algorithms in large-scale wireless networks. This framework can

be plugged into any clustering and positioning algorithm. With the aid of clustering techniques,

the training data can be divided into several groups based ontheir similarity defined in a specific

feature space. Then, we selected the one which is most similar to the real-time received sample

and only search the locations in it. Considering the problemof potential positioning errors

caused by false cluster selection, three clustering strategies allowing overlaps are proposed. Our

performance evaluation shows that the proposed overlapping strategies can greatly improve the

hit rate of the clustering technique and reduce at least 90% computation cost.
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