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無線微型感測網路上之具防禦力的時間同

步協定 

研究生：簡浩洋                          指導教授：謝續平 

國立交通大學  資訊工程學系 

摘  要 

 

對無線微型感測網路來說，時間同步是一個重要的前提，因為在眾多的應用

程式中，皆需要建立在彼此的時間需一致之上，此類的應用有物體追蹤、速度測

量、資料聚合和使用時間槽方式溝通的應用。有一些攻擊會降低現存協定的精確

度。此類的攻擊有 pulse-delay attack、spoofing attack、replay attack 和 insider 

attack。目前已經有很多篇 PAPER 以安全的角度去設計時間同步協定，但他們並

沒有辦法完整抵禦這些攻擊，或是只同步了時間差而沒有同步頻率差。此篇論文

介紹了兩種有效率的傳遞方式，一個是使用群播的方式，一個是使用改進過的

µTESLA 的方式。最後我們提出了一種篩選演算法能濾掉 Outlier，我們使用了簡

單的評分機制濾掉 Extreme outliers 然後使用線性回歸線來過濾 Mild outliers。在

我們的實驗中，我們產生了一些 Outliers，然後使用我們的過濾演算法，我們觀

察到當過濾比率比 Outlier 的比率大時，同步完的時間將不會受到 Outlier 的汙染

且是非常準確的。 
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Outlier-Filtered Time Synchronization Protocol for 

WSNs 

Student: Hao-Yang Jian                  Advisor: Shiuhpyng Shieh 

Institute of Network Engineering 

College of Computer Science 

National Chiao Tung University 

Abstract 

Time synchronization is considered an important issue for wireless sensor networks 

(WSNs) where many applications, such as object tracking and data aggregation, rely 

on the synchronization of the clock of each node. Some types of attacks, such as 

insider attack and pulse-delay attack, can be used to decrease the precisions of time 

synchronization protocols. Recently, many time synchronization protocols were 

designed with security concern. Some of them cannot defend against these attacks, 

while others cannot synchronize the relative clock skews and offsets simultaneously 

or cannot support global time synchronization in multi-hop sensor networks. In this 

paper, we propose two efficient methods to reduce the overhead for propagating the 

global time. One uses authenticated multicast by inserting multiple MACs into a 

message. This method is more efficient than the other, but the amount of receivers 

must be less than eight. The other uses authenticated broadcast based on uTESLA and 

it doesn‟t limit the amount of receivers. The proposed methods can filter the outliers 

introduced by attacks and keeps the precision about the order of microsecond.  
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1. Introduction 

Recent advances in technology have made low-cost, low-power wireless sensors 

a reality. Wireless Sensor Networking is an emerging research area with potential 

applications in environmental monitoring [11][12][13], surveillance, military, health 

[14][15] , and security. Such a network normally comprises a few sink nodes and a 

huge number of nodes, called sensor nodes. Each node is equipped with one or more 

sensors, an embedded processor, and a low-power radio. Typically, these nodes are 

linked by a wireless medium to perform distributed sensing tasks. This kind of sensor 

networks offers a monitoring capability in virtually any environment even if a wired 

connection is not possible or physical placement of the nodes is difficult. The sensor 

nodes are responsible for sensing the environment, such as temperature, humidity, 

sound, light, pressure, intruder detection, and location tracking. Sensor nodes will 

buffer the sensing data and then send it to sink node. A sink node is a more powerful 

sensor node and it is the control center of a sensor network where user could retrieve 

data gathered from sensor networks. Time synchronization is an important issue in 

WSNs. If each node‟s clock is different from each other, the sensing result would be 

useless because of an event including both sensing data and real timestamp. An 

attacker might launch different kinds of attacks to break the time synchronization 

protocol due to its importance.   

1.1. Features of Wireless Sensor Network 

The major differences among Wireless Sensor Networks and other wireless 

networks, such as Mobile Ad-hoc networks and cellular networks, are listed in 
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[16][17][18][19]： 

 

1. Critical energy consumption：The small volume of sensor node causes the 

critical battery capacity. It seems to be impossible to recharge the batteries of 

sensor nodes. The energy consumption becomes the most critical issue of the 

design of sensor node. 

2. Low communication bandwidth：Radio-frequency transmission is the only 

channel to transmit data, but it is the main power consumption on a node. The 

bandwidth of Wireless Sensor Networks is about 20 – 250kb/s and is relative 

low to the tradition wireless networks. 

3. Limited computing power and memory space：Due to the small volume and low 

cost of each sensor node, the computing power and memory space are critically 

limited. There is only several kilo bytes to hundreds kilo bytes memory 

equipped on each sensor node, and the computing power ranges from 4MHz to 

100MHz. 

4. The large scales of deployment：Wireless Sensor Networks often consist of 

hundreds, even thousands of wireless sensor nodes. Those sensor nodes are 

deployed in a large wireless area for some monitoring task. 

5. Highly damageable environment：Due to the low-cost design of wireless sensor 

devices, tamper resistance is beyond the concept. Each node is highly 

damageable under many external forces from the deploying environment. 

  

The success of Wireless Sensor Networks is the appearance of tiny, lightweight 

network devices, called MICAz. MICAz is a low-power, tiny wireless measurement 

system which is designed specifically for deeply embedded sensor networks. Its 

wireless communication transceiver follows IEEE 802.15.4/ZigBee spec with 250 
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kbps data rate. The program memory is 128K bytes while data memory is 4K bytes. 

Power consumption of microprocessor is 8mA in active mode and less than 15μA in 

sleep mode while that of radio-frequency transceiver is 19.7mA in receive mode, 

11mA in transmit mode, 20μA in idle mode and 1μA in sleep mode. 

1.2. Issue of Time Synchronization 

The reason why time synchronization in sensor networks requires more precisely 

than in traditional Internet applications is their close coupling with the physical world 

and their energy constraints. It‟s sometimes on the order of microsecond. For example, 

the target tracking applications using Kalman filter to estimate the target position, 

measuring the time-of-light of sound and distributing a beamforming array need the 

precise time. An event consists of timestamp and sensed data and sink node needs the 

timestamp to suppress redundant messages by recognizing duplicate events sensed by 

different sensors.  

Network Time Protocol (NTP) is the current standard for time synchronization 

on the Internet. Though it has been deployed broadly and proven to be effective, 

secure and robust on the Internet, it is not suitable for Wireless Sensor Networks 

because of its energy consumption and lower accuracy about the order of millisecond. 

Global Position System (GPS) is the other approach to synchronize to external 

timescale and its accuracy could be about 200 nanoseconds relative to UTC. There are 

two reasons that a sensor is not suitable to equip GPS device. One is the energy 

consumption, because sensors usually do not have much power. The other is that GPS 

requires clear sky view, but many applications of sensors are inside of buildings, 

beneath dense foliage and underwater.  

Many clock synchronization protocols for Wireless Sensor Networks have been 
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proposed over the years, but some of them are not designed with security in mind. 

These insecure protocols could be classified as three categories. The protocols in first 

category are precision driven; their idea is to maximizing the clock precision 

[5][6][7][9]. Second category is lightweight driven; their focus is on minimizing the 

power consumption [26][27][28]. Another category is scalability driven; the 

advantage of them is allowing user to trade off between convergent time and energy 

consumption [27][29][30]. Because without secure concern, all above protocols 

designed without security may suffer from many kinds of attacks like spoofing attack, 

replay attack, pulse-delay attack and insider attack. 

1.3. Attacks for Time Synchronization Protocol 

There are various attacks proposed for time synchronization for WSNs. Some of 

them could be defended against by using authenticated communication. Two of them, 

pulse-delay attack [20] and insider attack [21], cannot be solved using cryptographic 

techniques. They will affect the time of reception of message and mislead a receiver 

to adjust clock incorrectly.  

1.3.1. Spoofing Attack 

Spoofing attack means that an external attacker may fake (local) broadcast 

messages used for global synchronization or forge broadcast messages when relaying 

them to mislead the regular nodes. Sensor nodes usually use broadcast to 

communicate with each other. In hostile environments, broadcast must be 

authenticated to promise the authenticity and integrity of the broadcast messages. For 

defending spoofing attack, promising the integrity of the messages is essential, and 

currently there are two ways, digital signatures and TELSA-based approaches, could 
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provide broadcast authentication. However, both of approaches are not applicable for 

time synchronization in Wireless Sensor Networks. Such operations which perform 

public key cryptography on low-end sensor nodes still cost substantial computational 

and power resources and are subject to DoS attacks. The TESLA-based approaches 

use efficient symmetric cryptography to provide the broadcast authentication. 

However, the TESLS-based approaches require loose time synchronization between 

the sender and receivers, and thus cannot be used for global time synchronization 

directly when they are not synchronized. In our scheme, two approaches are proposed 

to promise the integrity of the messages. To perform these approaches, the assumption 

is that any nodes which want to communicate with the other node must share a unique 

pairwise key with it, so that the communications between them are authenticated. 

Such pairwise keys could be provided by key predistribution schemes proposed for 

sensor networks recently [3][4]. 

1.3.2. Replay Attack 

Due to the property of wireless media, messages could be monitored by anyone. 

External attackers could buffer the messages and replay them after a period. If 

receivers accept this kind of messages, the result will be wrong. Fortunately, 

conventional solution for replay attack is padding a unique number like counter to 

messages. Essentially, the timestamp is a counter, so the duplicated messages could be 

found by checking if the timestamps in messages are the same or not. 

1.3.3. Pulse-Delay Attack 

Pulse-delay attack is like replay attack, but the attacker needs more effort to 

achieve this attack. Figure 1-1 shows the situation of pulse-delay attack. The sender 
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sends a message to the receiver at Ts and the receiver will receive the message at Tr. 

In normal situation, the relative equation is Tr = Ts + δ + d. δ is the clock offset 

between the sender and the receiver and d is the end-to-end delay between the sender 

and the receiver.  

 

 

When the sender sends a message, the attacker not only snoops, but also lets the 

receiver miss the message by jamming the channel. After a period, the attacker 

replays it to receiver. Because the attacker does not change the content of message, 

the receiver cannot find any exception by cryptographic techniques. If pulse-delay 

attack occurs, the relative equation will change to Tr„= Ts + δ + d + Δ. Δ is the delay 

performed by the attacker. In two-way communication, the sender could detect this 

attack by Secure Pairwise Synchronization (SPS) [20]. But in one-way transmission, 

because the receiver cannot know the occurrence of this attack, they cannot predict 

and fix the Δ.  

 

Sender Receiver 

 

Snoop 

Jam the signal 

Replay it later 

X 

Figure 1-1: Pulse-Delay Attack 

Tr„= Ts + δ + d + Δ 

send at Ts receive at Tr 

Attacker 
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1.3.4. Insider Attack 

The definition of insider attack is the attack performed by compromised node. 

Here, the compromised nodes possess valid cryptographic keys. Most of the time 

synchronization protocols assume benign environments; however, sensor nodes may 

be compromised by malicious intruders to certainly attack the clock synchronization 

protocols due to the importance of synchronized clock time. Though authentication 

could be used to defend against external attacks, clock synchronization may still 

suffer from compromised nodes. The compromised node may report the incorrect 

clock information. In pairwise clock synchronization, the compromised node has 

limited impact on single-hop neighbor nodes. However the global time 

synchronization using multihop paths is vulnerable to compromised nodes because a 

compromised node in the path could introduce arbitrary errors and affect the nodes 

which are multi-hops away from it.   

We assume the compromised nodes may collude together to disrupt clock 

synchronization. They may cheat normal nodes by sending incorrect clock 

information. If they don‟t cooperate, the attacks could not cause maximum damage 

and even weaken them. Our goal is that even if a certain number of compromised 

nodes collude together to disrupt clock synchronization, each normal node could still 

synchronize its local clock to the global clock. 

1.4. The Weakness of Flooding Time Synchronization Protocol 

Flooding Time Synchronization Protocol (FTSP) [9] is the newest one with many 

advantages comparing to others. It decomposes the transmission delay exactly and 

adjusts sending timestamp in advance. The techniques FTSP used are the mac layer 

time-stamping which eliminates the most uncertain delay introduced by accessing the 
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communication channel and linear regression to predict the relation between local 

clock and global clock, thus, FTSP could be more precise than others. FTSP uses a 

root node to broadcast its local clock considered as global clock to all other nodes, 

and other nodes receive the syncMsg from the root and synchronize it local clock to 

global clock. While receiving a syncMsg, the receiver calculates the offset between 

local clock and the estimated global clock of sender. Then the receiver calculates its 

clock skew by using linear regression on a set of these offsets versus the time of 

reception of the messages. After a node was synchronized, it sent the estimated global 

clock to other nodes that could not communicate with root directly. On account of the 

resource-constrained hardware and the relation between global clock and local clock 

being linear in a short term, every node keeps 8 reference points only. 

There are two problems in FTSP. When the sender propagates the syncMsg, the 

receivers cannot promise the integrity of it. This introduces the external attackers 

could launch spoofing attack to break the time synchronization protocol. The other 

problem is that the receiver does not filter any outlier. In statistics, an outlier is an 

observation that is numerically distant from the rest of the data. Statistics derived 

from data sets that include outliers will often be misleading. The outlier could be 

generated due to above mentioned attacks or systematic error. 

1.5. Contribution 

We propose a resilient time synchronization protocol based on FTSP [9]. Our 

approach works normally even when attacks occur. The attacks which could be 

defended against are pulse-delay attack, insider attack, spoofing attack and replay 

attack. We cannot handle Denial-of-Service attacks that completely jam the 

communication channel. All the same, no existing protocol could defend against such 
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extreme DoS attacks. Our scheme proposes two methods to reduce the overhead of 

communication and promises the integrity of messages simultaneously. A neat method 

is employed to filter outliers in the collected datasets because of the resource 

constraints of sensors. After filter and calculation, the nodes would get the relation 

between local clocks to global clock. 

1.6. Synopsis 

The rest of this paper is organized as follows. The related work of the existing 

time synchronization protocols will be presented in Section 2. Section 3 describes our 

proposed time synchronization protocol. Section 4 provides the analysis of the 

proposed scheme. Section 5 presents the evaluation of the proposed protocol through 

simulation. Finally we will make a conclusion in Section 6. 
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2. Related Work 

Time synchronization is important in many systems, both wired and wireless, and a 

large number of time synchronization schemes exist. Well-known synchronization 

schemes include GPS [2] and the Network Time Protocol (NTP) [1]. There are many 

insecure and secure time synchronization protocols for WSNs, but they are still 

insufficient in some aspects. 

2.1. Conventional Schemes 

Wireless Sensor Networks pose a number of challenges beyond traditional network 

systems. Elson and Romer [32] describe the differences quite exhaustively and the 

other detailed design principles are described by Santashil et al.[30] Network Time 

Protocol (NTP) is the current standard for synchronizing clock on Internet, but it is 

not suitable for Wireless Sensor Networks because of some constraints. One is that 

WSN applications need higher precision such as the order of microsecond because of 

their close coupling with the physical world, but the precision of NTP is about the 

order of milliseconds. The other reason is that sensor node is usually 

resource-constrained and NTP is not energy efficient although it has been widely 

deployed and proved to be effective and robust on the Internet. Global Position 

System (GPS) devices could synchronize the time to external timescale and its 

accuracy could be about 200 nanoseconds relative to UTC. However GPS is not 

available in places such as inside building and underwater and it might also be 

power-consumed and expensive relative to resource constraint sensor nodes. Thus, 

both protocols are not suitable for Wireless Sensor Networks.  
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2.2. Insecure Time Synchronization Protocols for WSNs 

These insecure protocols could be categorized as three parts. The protocols in first 

category are precision-driven and focus on maximizing the clock precision 

[5][6][7][9]. The reference broadcast synchronization (RBS) scheme [5] is the first 

work addressing the time synchronization issue in sensor networks; however it could 

only synchronize multiple receivers in a local region. Later, another scheme, called 

timing-sync protocol for sensor networks (TPSN) [7], was proposed and it could 

achieve network-wide time synchronization. The most precise scheme, called 

Flooding Time Synchronization Protocol (FTSP) [9], is the one with many advantages 

comparing to others. It decomposes the transmission delay exactly and adjusts 

sending timestamp in advance. The techniques FTSP used are the mac layer 

time-stamping which eliminates the most uncertain delay and linear regression to 

predict the relation between local clock and global clock, thus, FTSP could be more 

precise than others. Another advantage of FTSP is that it supports dynamic network 

topology and this makes FTSP more complete. Unfortunately, FTSP is an insecure 

scheme because it was designed without security concern. Two types of attacks have 

been proposed, namely pulse-delay attack and insider attack introduced by 

compromised nodes. Both of these attacks form the outliers of collected syncMsg, but 

FTSP cannot filter them. In FTSP, when attacks occur, some of the reference points 

which contain a pair of global and local timestamps referring to the same time instant 

become outliers and introduce serious error. Another problem is that FTSP propagate 

timestamp by broadcast, but it does not support message authentication; so external 

attackers could forge the packets with an arbitrary syncMsg. Our goal is to filter the 

outliers which are further away from their expected values than what are deemed 

reasonable. 
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Second category is lightweight driven; their concentration is not to maximize 

accuracy, but to minimize the complexity to achieve a given precision [26][27][28]. 

Thus, the needed synchronization accuracy is assumed to be given as a constraint, and 

the target is to devise a synchronization algorithm with minimal complexity to 

achieve a given precision. This approach is supported by the claim of the authors that 

the maximum time accuracy needed in sensor networks is relatively low (within 

fractions of a second), so it is sufficient to use a relaxed, or lightweight, 

synchronization scheme in sensor networks. 

Another category is scalability driven [27][29][30]. These protocols consider clock 

synchronization might not be necessary at all times, except during sensor reading 

integration. Providing clock synchronization all the time will be a waste on the limited 

resources of sensors. For saving resources, the nodes re-synchronize only when there 

is a need for synchronization. 

2.3. Secure Time Synchronization Protocols for WSNs 

There are some studies for secure time synchronization in sensor network proposed 

recently [20][21][22][23][31], but there are some insufficiencies among them. The 

insufficiency of the Secure Pairwise Synchronization (SPS) proposed by Ganeriwal et 

al. [20] is that it just aborts the action when detecting the attacks and it cannot achieve 

the goal of time synchronization. Manzo et al. discussed the attacks against time 

synchronization protocols and proposed some countermeasures [21]. But it still 

suffers from pulse-delay attack and it doesn‟t resolve the conflict when using the μ

TESLA-based broadcast authentication which requires loose time synchronization. 

Sun et al. proposed a resilient time synchronization protocol whose focus is on the 

defense of compromised nodes [23], but it also suffers from pulse-delay attack. The 
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problem of Song et al. proposed two methods for detecting and tolerating delay 

attacks [22], but the insufficiency is that it doesn‟t support global time 

synchronization in multi-hop sensor networks. The latest scheme, 

called TinySeRSync [31], has solved all existing attacks. The concept of 

TinySeRSync for solving insider attack is to choose the median from 2t+1 data. It 

adopts the Secure Pairwise Synchronization (SPS) [20] with a slight modification to 

deal with pulse-delay attack and wormhole attacks. To avoid substantial 

communication overhead as well as frequent message collisions in dense sensor 

networks, it designs a local authenticated broadcast for the propagation of global 

synchronization messages, effectively harnessing the broadcast nature of wireless 

communication. The insufficiency of TinySeRSync is that the sensor cannot get the 

clock skew between its local clock and the global clock to compensate the constant 

clock drifts. Due to the effect of clock skew, the nodes need to resynchronize 

frequently to maintain certain precision. The more messages a sensor transmits, the 

more power it consumes. For saving power, maximizing the interval of 

resynchronization period by compensating the constant clock drifts is necessity. 

Finally, the summaries of these insufficiencies of secure protocols are in Table 1. 

 

Table 1: The insufficiencies of existing secure time synchronization 

protocols 

Paper  Existing problems 

Secure time synchronization service for sensor 

networks [20] 

Only abort the action when 

detecting the attacks 

Time synchronization attacks in sensor networks [21] Cannot defend against 

pulse-delay attack 

Attack-resilient time synchronization for wireless 

sensor networks [22] 

Can‟t support global time 

synchronization in multi-hop 

sensor networks 

Secure and resilient clock synchronization in wireless Cannot defend against 
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sensor networks [23] pulse-delay attack  

TinySeRSync: Secure and resilient time 

synchronization in wireless sensor networks [31] 

Only synchronize the initial 

offset instead of clock skew  
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3. Proposed Scheme 

In this section, we present our Resilient Time Synchronization Protocol, namely 

RTSP. Some notations and definitions are mentioned at first. The offset of two clocks 

is the time difference between them, while the clock skew is the frequency difference 

between them. Global time is considered as the time of sink node. A dataset consists 

of two timestamps; one is the global time estimated by sender and the other is the time 

of reception of packet. The outlier is the dataset which is further away from its 

expected value than what is deemed reasonable. It could be introduced by critical 

error or attacks. The neighbors of a node are those nodes which are one hop away 

from it. The summary of these notations and definitions is in Table 2. The assumption 

is mentioned following. In Section 3.2, the overview of RTSP is described. The 

remainders of Section 3 would explain the details of two phases in RTSP. 

 

Table 2: Notations and Definitions 

 

Clock Offset The clock offset is the time difference between two clocks. It 

consists of initial offset and clock skew. 

Clock Skew The clock skew is the frequency difference between two clocks. 

Global Time It is considered as the time of sink node. 

Dataset It consists of two timestamps, one is the global time estimated by 

sender and the other is the time of reception of packet. 

Outlier [33] The dataset which is further away from its expected value than 

what is deemed reasonable. 

Neighbor The neighbor is one hop away from A. 
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F Hash function 

F
j
(K) hash K j times 

3.1. Assumption 

A sensor network consists of a large number of resource-constrained motes such 

as MICA series of motes. There is a trusted source node that is well synchronized to 

the external clock, for example, through a GPS receiver. The goal is to synchronize 

the clocks of all the sensor nodes in the network to that of the source node. The 

assumption of the single, trusted source node is to simplify the discussion in this 

paper. 

Before a node start to synchronize its local time to global time, it must share a 

secret pairwise key with its neighbors by some approaches which could defend 

against insider attacks [3] and doesn‟t require the loose time synchronization. The 

secret pairwise key is utilized to create the Message Integrity Code (MIC) added into 

the sending packets to defend against the Sybil attacks [24][25], that one node 

presents multiple identities to defeat typical fault tolerant mechanisms. 

3.2. Basic Scheme 

In our approach, a sink node needs to propagate its local time to each sensor. The 

global time of the network is considered as the sink node‟s time. In previous approach 

FTSP [9], it needs a root election procedure, but the sink node is essential in a WSNs. 

Because the sink node is the data fusion of entire sensor network, the network cannot 

work on the whole without it. Base on this hypothesis, we decide to employ the sink 

node as our root in time synchronization protocol permanently. At the start of each 

synchronization procedure, the root sends its clock information to its neighbors. It is 
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some different with FTSP approach. FTSP uses the broadcast to communicate with its 

neighbors. In our case, the nodes propagate global time through three different 

methods because the integrity of messages cannot be promised in FTSP. After a node 

was synchronized, it continued to send the estimated global time to its neighbors. The 

receiver records the corresponding local time at the reception of the packet. An 

estimated global time by sender and a timestamp from its local clock constitute a 

dataset. The receiver filters some outliers and uses the remainder datasets to calculate 

the relative clock skew and offset when receiving enough datasets. After working out 

the clock skew of its local clock and initial offset between local clock and global 

clock, it was synchronized because it could map its local time to global time. Then it 

could propagate its estimated global time to next level neighbors. In the following 

sections, we will present the detail of propagating global time and filter of outliers.  

3.3. Phase I: Propagate Global Time to One-hop Neighbors and 

Promise the Integrity 

In this phase, a synchronized node needs to send its estimated global time to its 

one-hop neighbors. The receivers only verify the integrities of messages, but not the 

timeliness. The problem is handled in phase II. The sink node sends some packets 

including its clock information to its one-hop neighbors to help them to adjust their 

clocks initially. Because there is only one source at start of each round, the sink node 

must send at least eight packets to let its neighbors collect adequate datasets to work 

out their clock skews and offsets. The minimal count of datasets is eight because 

FTSP [9] uses an eight entries regression table to store the datasets and is good 

enough to meet the precision about the order of microsecond. But there might be 

some outliers in the datasets, we enlarge data table from 8 entries to more than 16 



 

 18 

entries to tolerate them. After the neighbors of the sink node synchronize to the clock 

of sink node, the nodes which are two hops away from the sink node could receive 

estimated global time from them. If nodes receive the messages including the same 

global time, nodes simply omit duplicate message to prevent replay attack. There are 

huge methods about sending estimated global time to neighbors. We will propose 

three of them. 

3.3.1. Authenticated Communication with Unicast 

The first method is the simplest method. Each node uses authenticated unicast 

communication to propagate synchronization messages. The sending messages 

include the estimated global time and the message authentication code (MAC). The 

MAC is generated using the data and the secret pairwise key only shared by sender 

and receiver, so it could protect both message's integrity as well as its authenticity, by 

allowing receiver to detect any changes to the message content. External attackers 

cannot generate illegal messages or tamper messages because they do not have the 

pairwise key with normal nodes. The problem of this method is that it may introduce 

substantial communication overhead as well as frequent message collisions in dense 

sensor networks. 

MAB={A,B,Data ,MACKAB (A,B,Data)} 

MAC={A,C,Data ,MACKAC (A,C,Data)} 

 

 

 

Figure 3-1: Communication with unicast 
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3.3.2. Authenticated Communication with Multicast 

The second method is to use broadcast to propagate the estimated global time in  

Figure 3-2. If one node wants to send message to its n neighbors, the messages 

will consist of the data and n MACs. Each MAC is generated by data and each 

pairwise key shared by sender and neighbors, separately. The receiver could 

authenticate the message by comparing each MAC with the MAC computed with the 

secret pairwise key with the sender. The limit of this method is that n must be less 

than eight because there is not enough time to insert the MAC before the transmission 

of the MAC due to the delay introduced by the MIC calculation [19][23]. 

The message M consists of data and n 

MACs.  

M={A,data,  

MAC[KAB](A,B,Data), 

MAC[KAC](A,C,Data), 

MAC[KAD](A,D,Data), 

 MAC[KAE](A,E,Data)}  

Figure 3-2: Broadcast the message with n-MACs 

3.3.3. Authenticated Communication with Broadcast 

The last method also uses broadcast to propagate the estimated global time. It 

works something like uTESLA, but it resolves the conflict between the goal of 

achieving time synchronization and the fact that uTESLA requires loose time 

synchronization. Before the sender sends packets, it generates a random key Ki and 

uses Ki to construct a key chain by repeatedly hashing it. For example, Ki-1 is the hash 

of Ki and K0 is called the commitment of the key chain. Before transmitting packets, a 
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sender must send the key commitment to the receivers using authenticated unicast 

communication. So the integrity of key commitment is assured. Then the sender 

continues to broadcast next packet including MAC generated by the data and next key. 

To authenticate this packet, the receiver must buffer it and then authenticate the 

included key, namely Kj, while receiving more packets. When the receiver receives 

Kj+n at latter packets, it hashes Kj+n for n times to get the Kj‟ and checks if Kj is legal or 

not by comparing Kj‟ to Kj. If Kj is legal, the Kj could be used to verity the integrity of 

that packet.  

 

Table 3: Local broadcast 

 

Sender 

A 

{K0 ,MACKAB 

( K0)},Unicast 

{Data ,K1, 

MACK1 (Data)} 

Broadcast 

{Data ,K2, 

MACK2(D

ata)} 

Broadcast 

{Data ,K3, 

MAC K3 (Data)} 

Broadcast 

{Data ,K4, 

MAC K4 (Data)} 

Broadcast 

Receiver 

B 

 

{K0 ,MACKAB 

( K0)},Unicast 

{Data ,K1, 

MACK1 (Data)} 

Broadcast 

if (F(K1)=K0) 

accept 

Lost {Data ,K3, 

MACK3 (Data)} 

Broadcast 

If(F
2
(K3)=K1) 

accept 

{Data ,K4, 

MACK4 (Data)} 

Broadcast 

If(F(K4)=K3) 

accept 

 

3.4. Calculate the Relation between Local Clock and Global Clock 

When a node collects ample datasets, it could utilize the least square to calculate 

the clock skew and initial offset between its local clock and global clock. The 

relationship between global time and local time could be described as Equation 1. 
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Cr(t)=brsCs(t)+ars                                     Equation 1 

 

brs is the relative clock skew and ars is the initial offset between global clock and 

local clock. If the realistic brs could be computed, the node could periodically 

compensate the drift caused by brs to keep the clocks more precise. Thus the 

resynchronization doesn‟t need to execute too frequently. The goal of time 

synchronization is not only making nodes have the same clock value in one instant by 

eliminating ars , but also periodically correcting the drift caused by brs a to keep the 

clocks synchronized. 

For convenience, let us convert Equation 1 to Equation 2. 

Y = α + βX + U                                   Equation 2 

α is equal to ars, β is equal to brs and U is the error due to some reasons introduced 

above. Then we want to find a linear equation to minimize U. The equation could be 

derived to Equation 3. To minimize Q, we make the partial differential of Equation 3 

to Equation 4 and Equation 5. 
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From Equation 4 and Equation 5, α and β are obtained. That means when a node 

collects adequate datasets, it could make use of x and y series to compute α and β, 

representing the initial offset and relative clock skew of local clock. 
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3.5. Phase II: Filter Outliers and Calculate Local Clock’s Skew and 

Offset 

Before we detail this phase, let us see the different situations in benign 

environment and hostile environment. After phase I, a node could collect the normal 

datasets, such as that plotted as Figure 3-3. Because of the uncertain delay, real local 

clock offset cannot be got directly. The calculated offset is the original offset and 

delay. We just subtract that from the delay to get the real offset. The communication 

delay does not influence the local clock skew, so we do not need to reprocess the 

calculated value. 

 

But at a hostile environment, the distribution of the collected datasets may 

become that in Figure 3-4 and in Figure 3-5, separately. The attacker could launch 

some attacks for time synchronization to pollute the result and mislead the node to 

synchronize wrong clock. Although Figure 3-4 and Figure 3-5 represent the outliers 

introduced by different attacks, the node couldn‟t differentiate between insider attacks 

L
o
cal tim

e 

Global time estimated by sender 

real clock D
elay

 

dataset The real function of local clock  

The calculated function of local clock  

delay 

Figure 3-3: Datasets in normal situation 
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and pulse-delay attacks. 

 

When pulse-delay attack occurs, the packet received is delayed. In Figure 3-4, 

the dataset moves toper than its expected value because the attacker postponed our 

reception of that packet. From Figure 3-4, we notice these outliers could perform 

serious error in the result. 

L
o
cal tim

e 

Global time estimated by sender 

Normal datasets The real function of local clock  

The originally calculated function of local clock  

Outlier due to pulse delay attack 

The wrongly calculated function of local clock  

Figure 3-4: The situation of pulse delay attack 
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When another attack, called insider attack, occurs, the global time we received is 

incorrect. In Figure 3-5, the outliers move righter or lefter than expected value 

because the compromised node would report bigger or smaller global time. If the 

outliers tend towards any side on average, it cannot warp our calculated result, so we 

assume the outlier will tend towards a specific side. Traditional noise filter like 

“Kalman filter” is not suitable for our situation, because it assumes that the observed 

noise is zero mean Gaussian white noise with covariance Rk. But the outliers 

introduced by attacks are not. Vk is the observed noise and represented as Equation 6. 

                                                 Equation 6 

We understand the truth from Figure 3-3, Figure 3-4 and Figure 3-5 that if we 

use all the datasets to calculate the relative clock skew and initial offset, we may get 

L
o
cal tim

e 

Global time estimated by sender 

Normal datasets The real function of local clock  

The originally calculated function of local clock  

Outliers due to insider attack 

The wrongly calculated function of local clock  

Figure 3-5: The situation of insider attack 
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the wrong answer due to the existence of outliers. The importance is that both 

pulse-delay attack and insider attack perform the same result, so we use the same 

filter method to filter outliers and use the remainder datasets as the input of Least 

Square Method. 

3.5.1. Score Filter 

The first step to filter the outliers is to calculate the score of each dataset. The 

purpose of score is to find the relative equation posed by most datasets and filter the 

outliers further away from this relative equation. The higher score means this dataset 

is more likely normal. The idea is that the relative equation consists of most datasets 

and we believe that the amount of normal datasets is more than that of outliers. There 

are two scalable arguments are n, the number of collected datasets, and m, the filter 

ratio (e.g., 0.5). Assuming we collect n datasets, for dataset d1 (x1 , y1), x1 is the 

estimated global time by sender and y1 is the timestamp of reception of message, if d2 

satisfies the relation with d1, the score of d1 increases one. Figure 3-7 presents the 

normal bound of a dataset. δ is the variance of the predictive error. The normal 

relations are wMaximumSke
xixj

yiyj





and 

wMinimumSke
xixj

yiyj





. 

Because the clock skew differences of the crystals used in Micaz motes 

introduce drifts up to 40μs per second, we consider 1.00004 and 0.99996 as the 

maximum and minimum skew. The upper line is a line through d1 whose slope is 

1.00004 and the upper bound is shift up this line with the variance of predictive error; 

the lower line is a line through d1 whose slope is 0.99996 and the lower bound is shift 

down this line with the variance of predictive error. The pseudo-code describing how 

to generate the bound of dataset is presented at line 8-17 in Figure 3-7. After 
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calculating each dataset‟s score, we will insert the datasets to a collection S from 

maximum score to minimum score until the count of collection S is more 

than . Then the collection S continues to be the input of regressive filter. 

 

 

ScoreFilter(x,y) 

1 for i ← 1 to count of x 

2  do for j ← 1 to count of x 

3   △X ← Xj - Xi 

4     if △X > 0 

5    then UpperY ← yi + △X * MaximumSkew + DelayVariance 

6          LowerY ← yi + △X * MinimumSkew - DelayVariance 

7    else UpperY ← yi + △X * MinimumSkew + DelayVariance 

8           LowerY ← yi + △X * MaximumSkew - DelayVariance 

9 

L
o
cal tim

e 

Estimated global time by sender 

d1 

The upper line through d1 with slope = 1.00004 

The lower line through d1 with slope = 0.99996 

d2 outlier 

Because d2 is between upper bound and lower 

bound of d1, the score of d1 will add one. 

The upper bound is the upper line and the variance of delay 

The lower bound is the lower line and the variance of delay 

Figure 3-6: Calculating the Score 
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10   if  yj ≥ LowerY and yj ≤ UpperY 

11    then increase Scorei 

12   

13  

14  SortScore ← SortByDesend(Scorei) 

15  for NowScore ← SortScore(1) to SortScore(n) 

16   do for each Score ϵ SortScore 

17    do  if Scorei = NowScore 

18      then Add di to PickUpDatasets  

19    if count of PickUpDatasets > n * m 

20     do return 

3.5.2. Regressive Filter 

After score filter, maybe there are still some outliers included in that collection S 

because their scores are equal to some normal datasets. In this function, we will iterate 

to compute the regression line and delete the dataset which is farthest away from the 

regression line until the count of collection S equals to . The 

pseudo-code of regressive filter is presented in Figure 3-8. After regressive filter, we 

could consider the remainder datasets as normal datasets and use them to calculate the 

skew and offset of local clock. 

 

RegressiveFilter(PickUpDatasets) 

1 While Count of PickUpDatasets > n*m 

2  do Line=LeastSquare(PickUpDatasets); 

3      for i ← 1 to Count of PickUpDatasets 

4    do NowDistance ← GetDistance(xi,yi,Line) 

5       if  NowDistance > MaxDistance 

6      then MaxDistance ← NowDistance 

7               MaxIndex ← i 

8   PickUpDatasets.Remove(MaxIndex) 

 

Figure 3-7: Scoring each dataset and filter some outliers. 

Figure 3-8: Filter the dataset which is farthest away from the regression line. 
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4. Analysis  

In this section, we will analyze the transmission overhead of three different 

methods to propagate global time in phase I. Figure 4-1 represents the efficiencies of 

different methods. Then we will discuss the security analysis of phase II. 

4.1. Performance Analysis 

We assume the count of one node‟s neighbors is n and n must be more than four. 

This could let one node collect more than 16 datasets. Each node would send four 

packets to its neighbors. A packet consists of Preamble (4 bytes), SFD (1 byte), 

Length (1 byte), FCF (2 bytes), DSN (1 byte), Address (1~20 bytes), Payload (n bytes) 

and FCS (2 bytes). The payload is the timestamp and its length is 8 bytes. So the size 

of a packet is 27 bytes. 

First method using authenticated unicast needs 4 * n packets. A node must 

transmit 4 * n * 27 bytes. Second method using broadcasting multiple MACs needs 4 

packets. The size of payload is bigger, because it consists of multiple MACs. The 

length of MAC is 2 bytes. A node must transmit 4 * (27 + n * 2) bytes. Third method 

using broadcast needs to transmit n+4 packets. The first n packets including key 

commitment are transmitted to its neighbors using authenticated unicast and next 4 

packets are broadcasted to propagate global time. A node must transmit (n+4) * 27 

bytes. We summarize the overhead of communication in Table 4. 

 

Table 4: The overhead of transmission in three different methods (n is the 

count of neighbors) 
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Propagating methods in phase I Transmitted bytes (n ≥ 4) 

Unicast method 108 * n 

Broadcast with multiple MACs 108 + 8 * n 

uTESLA-based Broadcast 108 + 27 * n 

 

The relation of neighbor‟s count and the needed bytes was plotted in Figure 4-1. 

From this figure, we could understand when the amount of receivers is less than eight, 

the performance of broadcasting multiple MACs is best. If neighbor‟s count is more 

than eight, the uTESLA-based broadcast is more suitable. 

 

Figure 4-1: The relation between transmitting bytes and the count of 

neighbors 

 

4.2. Security Analysis 

The goal of phase I is to promise the integrities of packets and the authentication 

of communication. We will prove that the attackers cannot modify the packets or 

spoof the legal nodes. In the phase II, what we want to prove is when the ratio of 

outliers is smaller than half, our approach works successfully. The definitions are 

mentioned at first and we will prove that using the relation between the scores and 

amount of datasets. 
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Phase I: A node receives n datasets from Cm senders which are one-hop away from it. 

Nodes are defined as Ni, where i = 1… n. The key Kij is only shared by Ni and Nj. The 

key pool owned by Ni is defined as KPi. A Message Authentication Code is a family 

of functions f1 of {0,1}
k
× Dom(f1) to {0,1}

l
, where Dom(f1) denotes the domain of f1. 

In this paper, Dom(f1) = {0,1}
≤L

. For K ∈ {0,1}
k
 and M ∈ {0, 1}

≤L
, let σ = f1(K,M). 

We refer to σ as the tag or MAC of M. The message forged by attackers is denoted as 

Mf. Mij means the message which Ni sends to Nj. Theorem 1 states that different 

secret key cannot generate the same hash value. 

 

Theorem 1: ∀K, ∃ Kij ∧ Kij ∈ KPi ∧ Kij ∈ KPj, σ = f1(Kij,Mij) ≠ σ‟ = f1(K , Mij), K  

KPk 

 

Proof.  

∵Kij ∈ KPi ∧ Kij ∈ KPj, Kij  KPk 

→σ = f1(Kij,Mij), σ ≠ σ‟ = f1(K , Mij), K  KPk  

→Nk cannot generate σ = f1(Kij,Mij)  

∴Nk can‟t forge or spoof the Mij.                                        □ 

 

Because the secret key is only shared by two nodes, from theorem 1, other nodes 

cannot generate the same hash value to spoof or forge the packets. 

 

Phase II: A node receives n datasets which are defined as Di, where i = 1…n. The 

amount of outliers denoted as DO is Co and the amount of normal datasets denoted as 

DN is CN. All datasets is denoted as DA. Outlier ratio m means the Co divides n and 

the filter ratio r means how many datasets we will filter. We define the score of each 
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dataset as S(Di). We denote F(Di) as the instant of filtering the Di and the Dis(Di) 

means the distance between Di and the regression line. Theorem 2 states that when the 

amount of normal datasets is more than that of outliers, the scores of normal nodes are 

bigger than those of outliers.  

 

Theorem 2: DN∧ DO =φ, Di ∈ DO∧ Di ∈ DA, Dj ∈ DN∧ Di ∈ DA, if CN > Co 

→F(Di) ≧ F(Dj) 

 

Proof. 

∵CN > Co 

→S(Di) > S(Dj) 

→F(Di) < F(Dj) 

S(Di) = S(Dj) 

→∵Dis(Di) > Dis(Dj) 

→F(Di) < F(Dj) 

→r ≧ m, Di ∈ DO, F(Di) < F(Dj)                                      □ 

 

From theorem 2, because the scores of normal nodes are bigger than those of outliers 

and we will filter the datasets whose scores are smaller, the outliers would be filtered 

before the normal datasets. As the proof of these theorems, we demonstrate that the 

propagation method in the phase I can provide strong protection of the spoofing attack. 

The security of phase II we demonstrate is that when the outlier ratio r is bigger than 

the ratio of normal datasets m, the outlier can be filtered successfully. 
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5. Evaluation 

In the following section, we insert two types of outliers into our datasets separately. 

The relation of outliers in the first type is beyond the limit of physical crystals. 

Crystal‟s vendors could offer the maximum variance of skew like 40us per second. If 

the relation between the outlier and a normal dataset is outside this bound, we 

consider this outlier as extreme outlier. The other type of outlier is introduced by 

cooperative compromised nodes and their relation is inside the bound of physical 

limitation. We regard these outliers as mild outliers. Our simulation shows the end 

result after analyzing the different datasets. It uses MATLAB to generate the normal 

datasets and insert some outliers. Then we analyze the datasets and filter some outliers. 

Finally, we plot the error which is the difference between the calculated result and 

assumptive value at different cases. 

5.1. Simulation setup 

We assume a node received 32 datasets from its neighbors. The interval of the 

reception of each dataset is more than 500ms. Our assumptive relation of clock skew 

between its local clock and global clock is 1.00004 and the initial clock offset is 6 

second. In our simulation, we exercise 6 different filter ratio and 6 different outlier 

ratio, separately 0, 0.1, 0.2, 0.3, 0.4 and 0.5. 

In each case, we run 32 rounds to get the averages of calculated clock skew and 

initial offset. The error is the difference between the average and assumptive value. 

We will plot the relation between error, filter ratio and outlier ratio. 
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5.2. Extreme Outliers  

The first scenario we use to analyze is the datasets which contain the extreme 

outliers. Because the extreme outliers do not cooperate, their relations are not inside 

the bound of physical limitation. So these extreme outliers would be filtered at score 

phase easily.  
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Figure 5-1: The average error between calculated slope with extreme 

outliers and the assumptive slope in each case 

 

 

We could see the result from Figure 5-1 that when the filter ratio is more than 

the outlier ratio, the average error is smaller than 1us. This result is like the result of 

FTSP without attack and it represents that we filter the outliers specifically. There is 

strangeness in Figure 5-1. When the outlier ratio becomes bigger, the error is not more 

acute. The reason is that the scale of figure is too large relative to the difference of 

error. Actually the error increases about 0.003 (3ms) while the outlier ratio increases 
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0.1. The error is not absolute and is relative to the distribution of the attacked datasets. 

After our filter phase, the average error being smaller than 1us means that a node 

don‟t need to resynchronize time too frequently and could consume as less power as 

possible. 
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Figure 5-2: The standard deviation of the calculated slopes with extreme 

outliers in each case 

 

Figure 5-2 shows the standard deviation of slopes in each case. We observed that 

if there are outliers in datasets, the standard deviation of slope is very large. This is 

very critical for time synchronization, because the difference between each node‟s 

skews vary very much. Hence, each node‟s clock varies vastly. Another observation is 

that if we filter some part of outliers in such a case, the standard deviation becomes 

bigger. So we could infer that when there are few outliers in datasets, it could result in 

serious error. Fortunately, if the filter ratio is more than or equal to the outlier ratio, 

the standard deviation would downgrade to about the order of microsecond. 
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Figure 5-3: The average error between calculated offset with extreme 

outliers and the assumptive offset in each case 

 

The average error between calculated offset and the assumptive offset in each 

case is showed as Figure 5-3. Because of the existence of outliers, the severe error 

could be up to the ten orders of second. The error of offset, like the error of skew, is 

not absolute and it is relative to the distribution of the attacked datasets. This error 

could be reduced to the ten orders of microsecond by increasing the filter ratio. 

Although initial offset is a fixed value and the node does not use it to compensate the 

clock drift, we could note that the offset error is much bigger than the skew error. This 

critical error could influence many applications and induces some serious error. 
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Figure 5-4: The standard deviation of the calculated offsets with extreme 

outliers in each case 

 

The last evaluation with the existence of extreme outliers is the standard 

deviation of the initial offsets. Figure 5-4 shows the standard deviation of the initial 

offset is also huge like that of slope. This represents if there are a few outliers in 

datasets, the initial offset vary very much. 

From above figures, we observe some strangeness that how we could promise to 

filter the half of datasets which are just outliers if the ratio of outliers is 0.5. The cause 

is that these outliers are not mild outliers and their scores are certainly smaller than 

those of normal datasets because they don‟t cooperate with each other. If the outliers 

are all mild outliers and the attacked ratio is more than 0.5, we cannot filter them 

effectively. We would examine this case at next simulation.  

5.3. Mild Outliers  

The second scenario we want to analyze is the datasets which contain the mild 
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outliers. The mild outliers are introduced by cooperative compromised nodes and their 

relations are inside the bound of physical limitation. The mild outliers could not be 

filtered at score filter but could be at regressive filter. The difference between mild 

outliers and extreme outliers is if the attackers cooperate with each other or not. The 

key to filtering the outliers successfully is that the amount of outliers must be less 

than that of normal datasets. So the regression line would be near the most datasets. 

From underlying figures, we could discover the truth we cannot work successfully 

when the outlier ratio is equal to or more than the filter ratio. 
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Figure 5-5: The average error between calculated slope with mild outliers 

and the assumptive slope in each case 

 

In Figure 5-5, the average error of the datasets including mild outliers is smaller 

than those including extreme outliers. The importance of that is when the outlier ratio 

is equal to the filter ratio; both of our two filtering methods cannot work productively. 

The outliers‟ scores are equal to the normal datasets, so we could not filter any outlier 

at score filter. In the regressive filter, the regression may tend towards the incorrect 
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trend. So we are likely to filter some normal datasets and then calculated wrong 

answer. 
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Figure 5-6: The standard deviation of the calculated slopes with mild 

outliers in each case 

 

Figure 5-6 shows the standard deviation of slopes in each case. The result is like 

Figure 5-2. If there are few outliers, the computed output is unbelievable and the 

standard deviation is unpredictable. The difference from Figure 5-2 is that when the 

filter ratio and outlier ratio both are half of datasets, our result is not ideal because we 

cannot filter the outliers specifically. 
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Figure 5-7: The average error between calculated offset with mild outliers 

and the assumptive offset in each case 

 

The average error between calculated offset with mild outliers and the 

assumptive offset in each case is showed as Figure 5-7. Because the outliers are mild, 

the average error is about a few seconds. Although the error is smaller than that of 

extreme outliers, we still cannot tolerate it. In Figure 5-7, we could see that the error 

was reduced to the ten orders of microsecond by letting the filter ratio be more than 

the outlier ratio. 
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Figure 5-8: The standard deviation of the calculated offsets with mild 

outliers in each case 

 

Figure 5-8 shows that the standard deviation of initial offsets is also huge like 

that of slope. It also supports the same truth that if the outliers are all mild outliers and 

the outlier ratio is more than half, we cannot filter them effectively. 
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6. Conclusion 

In this paper, we proposed a time synchronization protocol based on FTSP, 

called Outlier-Filtered Time Synchronization Protocol for WSNs. It points the 

insufficiencies of FTSP and could resist attacks. FTSP deals with neither external 

attackers nor insider attackers. We proposed three methods for promising the 

authenticity and integrity of the messages to defend against external attackers. The 

first method is that communicating through unicast with each neighbor. The second 

method is to broadcast the message with multiple MACs. The last method is an 

uTESLA-based approach with a little modification. Their functionalities are all the 

same for avoiding external attackers forging and spoofing messages, but the 

limitations and overheads are different. Users could depend on environment to select 

a suitable one. 

To defend against insider attack and pulse-delay attack, we design a neat method 

due to the resource constraints of the sensors. The filter ratio is an adjustable 

parameter. The filter ratio could be set by the estimated ratio of outliers and also could 

be automatically tuned by extra computation. The smaller filter ratio means that we 

retain more reference points and the predictive relation between local clock and global 

clock will be the more precise. But smaller filter ratio means the security level is 

lower. 

Based on our experiments, we inserted both extreme and mild outliers into the 

normal datasets and observed that RTSP keeps the same precision as that of FTSP 

even when some attacks take place. The average error of skew could be less than 1us 

and the average error of offset could be less than 20us. The lower error of clock skew 

means that we don‟t need to resynchronize too frequently, so we could save more 
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energy. 
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