

 I

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

無線微型感測網路上之具防禦力的時間同

步協定

Outlier-Filtered Time Synchronization Protocol for

WSNs

研 究 生：簡浩洋

指導教授：謝續平 教授

中 華 民 國 九 十 六 年 六 月

 II

無線微型感測網路上之具防禦力的時間同

步協定

Outlier-Filtered Time Synchronization Protocol for

WSNs

研 究 生: 簡浩洋 Student: Hao-Yang Jian

指導教授: 謝續平 博士 Advisor: Dr. Shiuhpyng Shieh

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis

Submitted to

Institute of Network Engineering

College of Computer Science

National Chiao Tung University

In Partial Fulfillment of the Requirements

For the Degree of

Master

In

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

 III

無線微型感測網路上之具防禦力的時間同

步協定

研究生：簡浩洋 指導教授：謝續平

國立交通大學 資訊工程學系

摘 要

對無線微型感測網路來說，時間同步是一個重要的前提，因為在眾多的應用

程式中，皆需要建立在彼此的時間需一致之上，此類的應用有物體追蹤、速度測

量、資料聚合和使用時間槽方式溝通的應用。有一些攻擊會降低現存協定的精確

度。此類的攻擊有 pulse-delay attack、spoofing attack、replay attack 和 insider

attack。目前已經有很多篇 PAPER 以安全的角度去設計時間同步協定，但他們並

沒有辦法完整抵禦這些攻擊，或是只同步了時間差而沒有同步頻率差。此篇論文

介紹了兩種有效率的傳遞方式，一個是使用群播的方式，一個是使用改進過的

µTESLA 的方式。最後我們提出了一種篩選演算法能濾掉 Outlier，我們使用了簡

單的評分機制濾掉 Extreme outliers 然後使用線性回歸線來過濾 Mild outliers。在

我們的實驗中，我們產生了一些 Outliers，然後使用我們的過濾演算法，我們觀

察到當過濾比率比 Outlier 的比率大時，同步完的時間將不會受到 Outlier 的汙染

且是非常準確的。

 IV

Outlier-Filtered Time Synchronization Protocol for

WSNs

Student: Hao-Yang Jian Advisor: Shiuhpyng Shieh

Institute of Network Engineering

College of Computer Science

National Chiao Tung University

Abstract

Time synchronization is considered an important issue for wireless sensor networks

(WSNs) where many applications, such as object tracking and data aggregation, rely

on the synchronization of the clock of each node. Some types of attacks, such as

insider attack and pulse-delay attack, can be used to decrease the precisions of time

synchronization protocols. Recently, many time synchronization protocols were

designed with security concern. Some of them cannot defend against these attacks,

while others cannot synchronize the relative clock skews and offsets simultaneously

or cannot support global time synchronization in multi-hop sensor networks. In this

paper, we propose two efficient methods to reduce the overhead for propagating the

global time. One uses authenticated multicast by inserting multiple MACs into a

message. This method is more efficient than the other, but the amount of receivers

must be less than eight. The other uses authenticated broadcast based on uTESLA and

it doesn‟t limit the amount of receivers. The proposed methods can filter the outliers

introduced by attacks and keeps the precision about the order of microsecond.

 V

誌 謝

本篇論文的完成首先要感謝我的指導老師謝續平教授。感謝老師認真的指導

以及給予許多寶貴的經驗與意見，也感謝老師不厭其煩的幫我修改文章，以致能

有今天這份完整的畢業論文。其次要感謝我的父母，感謝他們多年來辛苦的栽

培，沒有他們在背後支持，今日我將無法得以在此完成本篇論文，感謝他們總在

我疲憊的時候給予我最多的鼓勵，在我徬徨的時候指點我正確的方向。此外要感

謝分散式系統與網路安全實驗室的諸位學長姐學弟妹與同學們，感謝他們在我論

文撰寫過程給予的諸多幫助，因為有他們的督促以及經驗交流，我才能順利的通

過碩士論文的考驗。在論文寫作期間，我的老婆適逢懷孕時期，很感激她幫我分

擔了大部分的責任，讓我能夠專心於研究之路，謝謝妳，老婆。

最後我要感謝的是所有在我求學過程曾經幫助過我的師長朋友，感謝所有人

給予我的關懷和照顧，這篇論文是我至今完成過最棒的作品。

 VI

Table of Contents
1. Introduction .. 1

1.1. Features of Wireless Sensor Network .. 1

1.2. Issue of Time Synchronization .. 3

1.3. Attacks for Time Synchronization Protocol .. 4

1.3.1. Spoofing Attack .. 4

1.3.2. Replay Attack ... 5

1.3.3. Pulse-Delay Attack ... 5

1.3.4. Insider Attack .. 7

1.4. The Weakness of Flooding Time Synchronization Protocol 7

1.5. Contribution ... 8

1.6. Synopsis ... 9

2. Related Work .. 10

2.1. Conventional Schemes .. 10

2.2. Insecure Time Synchronization Protocols for WSNs 11

2.3. Secure Time Synchronization Protocols for WSNs 12

3. Proposed Scheme ... 15

3.1. Assumption .. 16

3.2. Basic Scheme ... 16

3.3. Phase I: Propagate Global Time to One-hop Neighbors and Promise the

Integrity .. 17

3.3.1. Authenticated Communication with Unicast 18

3.3.2. Authenticated Communication with Multicast 19

3.3.3. Authenticated Communication with Broadcast 19

3.4. Calculate the Relation between Local Clock and Global Clock 20

3.5. Phase II: Filter Outliers and Calculate Local Clock‟s Skew and Offset 22

3.5.1. Score Filter ... 25

3.5.2. Regressive Filter ... 27

4. Analysis.. 28

4.1. Performance Analysis .. 28

4.2. Security Analysis ... 29

5. Evaluation .. 32

5.1. Simulation setup .. 32

5.2. Extreme Outliers .. 33

5.3. Mild Outliers.. 36

6. Conclusion ... 41

References .. 42

 VII

Table of Figures

Figure 1-1: Pulse-Delay Attack .. 6

Figure 3-1: Communication with unicast .. 18

Figure 3-2: Broadcast the message with n-MACs 19

Figure 3-3: Datasets in normal situation .. 22

Figure 3-4: The situation of pulse delay attack .. 23

Figure 3-5: The situation of insider attack ... 24

Figure 3-6: Calculating the Score .. 26

Figure 3-7: Scoring each dataset and filter some outliers. 27

Figure 3-8: Filter the dataset which is farthest away from the regression line.

.. 27

Figure 4-1: The relation between transmitting bytes and the count of

neighbors .. 29

Figure 5-1: The average error between calculated slope with extreme

outliers and the assumptive slope in each case 33

Figure 5-2: The standard deviation of the calculated slopes with extreme

outliers in each case ... 34

Figure 5-3: The average error between calculated offset with extreme

outliers and the assumptive offset in each case.................................... 35

Figure 5-4: The standard deviation of the calculated offsets with extreme

outliers in each case ... 36

Figure 5-5: The average error between calculated slope with mild outliers

and the assumptive slope in each case ... 37

Figure 5-6: The standard deviation of the calculated slopes with mild

outliers in each case ... 38

Figure 5-7: The average error between calculated offset with mild outliers

and the assumptive offset in each case... 39

Figure 5-8: The standard deviation of the calculated offsets with mild

outliers in each case ... 40

file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895
file:///D:\�����\Mine\Outlier-Filtered%20Time%20Synchronization%20Protocol%20for%20WSNs(Final).doc%23_Toc1719895

 1

1. Introduction

Recent advances in technology have made low-cost, low-power wireless sensors

a reality. Wireless Sensor Networking is an emerging research area with potential

applications in environmental monitoring [11][12][13], surveillance, military, health

[14][15] , and security. Such a network normally comprises a few sink nodes and a

huge number of nodes, called sensor nodes. Each node is equipped with one or more

sensors, an embedded processor, and a low-power radio. Typically, these nodes are

linked by a wireless medium to perform distributed sensing tasks. This kind of sensor

networks offers a monitoring capability in virtually any environment even if a wired

connection is not possible or physical placement of the nodes is difficult. The sensor

nodes are responsible for sensing the environment, such as temperature, humidity,

sound, light, pressure, intruder detection, and location tracking. Sensor nodes will

buffer the sensing data and then send it to sink node. A sink node is a more powerful

sensor node and it is the control center of a sensor network where user could retrieve

data gathered from sensor networks. Time synchronization is an important issue in

WSNs. If each node‟s clock is different from each other, the sensing result would be

useless because of an event including both sensing data and real timestamp. An

attacker might launch different kinds of attacks to break the time synchronization

protocol due to its importance.

1.1. Features of Wireless Sensor Network

The major differences among Wireless Sensor Networks and other wireless

networks, such as Mobile Ad-hoc networks and cellular networks, are listed in

 2

[16][17][18][19]：

1. Critical energy consumption：The small volume of sensor node causes the

critical battery capacity. It seems to be impossible to recharge the batteries of

sensor nodes. The energy consumption becomes the most critical issue of the

design of sensor node.

2. Low communication bandwidth：Radio-frequency transmission is the only

channel to transmit data, but it is the main power consumption on a node. The

bandwidth of Wireless Sensor Networks is about 20 – 250kb/s and is relative

low to the tradition wireless networks.

3. Limited computing power and memory space：Due to the small volume and low

cost of each sensor node, the computing power and memory space are critically

limited. There is only several kilo bytes to hundreds kilo bytes memory

equipped on each sensor node, and the computing power ranges from 4MHz to

100MHz.

4. The large scales of deployment：Wireless Sensor Networks often consist of

hundreds, even thousands of wireless sensor nodes. Those sensor nodes are

deployed in a large wireless area for some monitoring task.

5. Highly damageable environment：Due to the low-cost design of wireless sensor

devices, tamper resistance is beyond the concept. Each node is highly

damageable under many external forces from the deploying environment.

The success of Wireless Sensor Networks is the appearance of tiny, lightweight

network devices, called MICAz. MICAz is a low-power, tiny wireless measurement

system which is designed specifically for deeply embedded sensor networks. Its

wireless communication transceiver follows IEEE 802.15.4/ZigBee spec with 250

 3

kbps data rate. The program memory is 128K bytes while data memory is 4K bytes.

Power consumption of microprocessor is 8mA in active mode and less than 15μA in

sleep mode while that of radio-frequency transceiver is 19.7mA in receive mode,

11mA in transmit mode, 20μA in idle mode and 1μA in sleep mode.

1.2. Issue of Time Synchronization

The reason why time synchronization in sensor networks requires more precisely

than in traditional Internet applications is their close coupling with the physical world

and their energy constraints. It‟s sometimes on the order of microsecond. For example,

the target tracking applications using Kalman filter to estimate the target position,

measuring the time-of-light of sound and distributing a beamforming array need the

precise time. An event consists of timestamp and sensed data and sink node needs the

timestamp to suppress redundant messages by recognizing duplicate events sensed by

different sensors.

Network Time Protocol (NTP) is the current standard for time synchronization

on the Internet. Though it has been deployed broadly and proven to be effective,

secure and robust on the Internet, it is not suitable for Wireless Sensor Networks

because of its energy consumption and lower accuracy about the order of millisecond.

Global Position System (GPS) is the other approach to synchronize to external

timescale and its accuracy could be about 200 nanoseconds relative to UTC. There are

two reasons that a sensor is not suitable to equip GPS device. One is the energy

consumption, because sensors usually do not have much power. The other is that GPS

requires clear sky view, but many applications of sensors are inside of buildings,

beneath dense foliage and underwater.

Many clock synchronization protocols for Wireless Sensor Networks have been

 4

proposed over the years, but some of them are not designed with security in mind.

These insecure protocols could be classified as three categories. The protocols in first

category are precision driven; their idea is to maximizing the clock precision

[5][6][7][9]. Second category is lightweight driven; their focus is on minimizing the

power consumption [26][27][28]. Another category is scalability driven; the

advantage of them is allowing user to trade off between convergent time and energy

consumption [27][29][30]. Because without secure concern, all above protocols

designed without security may suffer from many kinds of attacks like spoofing attack,

replay attack, pulse-delay attack and insider attack.

1.3. Attacks for Time Synchronization Protocol

There are various attacks proposed for time synchronization for WSNs. Some of

them could be defended against by using authenticated communication. Two of them,

pulse-delay attack [20] and insider attack [21], cannot be solved using cryptographic

techniques. They will affect the time of reception of message and mislead a receiver

to adjust clock incorrectly.

1.3.1. Spoofing Attack

Spoofing attack means that an external attacker may fake (local) broadcast

messages used for global synchronization or forge broadcast messages when relaying

them to mislead the regular nodes. Sensor nodes usually use broadcast to

communicate with each other. In hostile environments, broadcast must be

authenticated to promise the authenticity and integrity of the broadcast messages. For

defending spoofing attack, promising the integrity of the messages is essential, and

currently there are two ways, digital signatures and TELSA-based approaches, could

 5

provide broadcast authentication. However, both of approaches are not applicable for

time synchronization in Wireless Sensor Networks. Such operations which perform

public key cryptography on low-end sensor nodes still cost substantial computational

and power resources and are subject to DoS attacks. The TESLA-based approaches

use efficient symmetric cryptography to provide the broadcast authentication.

However, the TESLS-based approaches require loose time synchronization between

the sender and receivers, and thus cannot be used for global time synchronization

directly when they are not synchronized. In our scheme, two approaches are proposed

to promise the integrity of the messages. To perform these approaches, the assumption

is that any nodes which want to communicate with the other node must share a unique

pairwise key with it, so that the communications between them are authenticated.

Such pairwise keys could be provided by key predistribution schemes proposed for

sensor networks recently [3][4].

1.3.2. Replay Attack

Due to the property of wireless media, messages could be monitored by anyone.

External attackers could buffer the messages and replay them after a period. If

receivers accept this kind of messages, the result will be wrong. Fortunately,

conventional solution for replay attack is padding a unique number like counter to

messages. Essentially, the timestamp is a counter, so the duplicated messages could be

found by checking if the timestamps in messages are the same or not.

1.3.3. Pulse-Delay Attack

Pulse-delay attack is like replay attack, but the attacker needs more effort to

achieve this attack. Figure 1-1 shows the situation of pulse-delay attack. The sender

 6

sends a message to the receiver at Ts and the receiver will receive the message at Tr.

In normal situation, the relative equation is Tr = Ts + δ + d. δ is the clock offset

between the sender and the receiver and d is the end-to-end delay between the sender

and the receiver.

When the sender sends a message, the attacker not only snoops, but also lets the

receiver miss the message by jamming the channel. After a period, the attacker

replays it to receiver. Because the attacker does not change the content of message,

the receiver cannot find any exception by cryptographic techniques. If pulse-delay

attack occurs, the relative equation will change to Tr„= Ts + δ + d + Δ. Δ is the delay

performed by the attacker. In two-way communication, the sender could detect this

attack by Secure Pairwise Synchronization (SPS) [20]. But in one-way transmission,

because the receiver cannot know the occurrence of this attack, they cannot predict

and fix the Δ.

Sender Receiver

Snoop

Jam the signal

Replay it later

X

Figure 1-1: Pulse-Delay Attack

Tr„= Ts + δ + d + Δ

send at Ts receive at Tr

Attacker

 7

1.3.4. Insider Attack

The definition of insider attack is the attack performed by compromised node.

Here, the compromised nodes possess valid cryptographic keys. Most of the time

synchronization protocols assume benign environments; however, sensor nodes may

be compromised by malicious intruders to certainly attack the clock synchronization

protocols due to the importance of synchronized clock time. Though authentication

could be used to defend against external attacks, clock synchronization may still

suffer from compromised nodes. The compromised node may report the incorrect

clock information. In pairwise clock synchronization, the compromised node has

limited impact on single-hop neighbor nodes. However the global time

synchronization using multihop paths is vulnerable to compromised nodes because a

compromised node in the path could introduce arbitrary errors and affect the nodes

which are multi-hops away from it.

We assume the compromised nodes may collude together to disrupt clock

synchronization. They may cheat normal nodes by sending incorrect clock

information. If they don‟t cooperate, the attacks could not cause maximum damage

and even weaken them. Our goal is that even if a certain number of compromised

nodes collude together to disrupt clock synchronization, each normal node could still

synchronize its local clock to the global clock.

1.4. The Weakness of Flooding Time Synchronization Protocol

Flooding Time Synchronization Protocol (FTSP) [9] is the newest one with many

advantages comparing to others. It decomposes the transmission delay exactly and

adjusts sending timestamp in advance. The techniques FTSP used are the mac layer

time-stamping which eliminates the most uncertain delay introduced by accessing the

 8

communication channel and linear regression to predict the relation between local

clock and global clock, thus, FTSP could be more precise than others. FTSP uses a

root node to broadcast its local clock considered as global clock to all other nodes,

and other nodes receive the syncMsg from the root and synchronize it local clock to

global clock. While receiving a syncMsg, the receiver calculates the offset between

local clock and the estimated global clock of sender. Then the receiver calculates its

clock skew by using linear regression on a set of these offsets versus the time of

reception of the messages. After a node was synchronized, it sent the estimated global

clock to other nodes that could not communicate with root directly. On account of the

resource-constrained hardware and the relation between global clock and local clock

being linear in a short term, every node keeps 8 reference points only.

There are two problems in FTSP. When the sender propagates the syncMsg, the

receivers cannot promise the integrity of it. This introduces the external attackers

could launch spoofing attack to break the time synchronization protocol. The other

problem is that the receiver does not filter any outlier. In statistics, an outlier is an

observation that is numerically distant from the rest of the data. Statistics derived

from data sets that include outliers will often be misleading. The outlier could be

generated due to above mentioned attacks or systematic error.

1.5. Contribution

We propose a resilient time synchronization protocol based on FTSP [9]. Our

approach works normally even when attacks occur. The attacks which could be

defended against are pulse-delay attack, insider attack, spoofing attack and replay

attack. We cannot handle Denial-of-Service attacks that completely jam the

communication channel. All the same, no existing protocol could defend against such

 9

extreme DoS attacks. Our scheme proposes two methods to reduce the overhead of

communication and promises the integrity of messages simultaneously. A neat method

is employed to filter outliers in the collected datasets because of the resource

constraints of sensors. After filter and calculation, the nodes would get the relation

between local clocks to global clock.

1.6. Synopsis

The rest of this paper is organized as follows. The related work of the existing

time synchronization protocols will be presented in Section 2. Section 3 describes our

proposed time synchronization protocol. Section 4 provides the analysis of the

proposed scheme. Section 5 presents the evaluation of the proposed protocol through

simulation. Finally we will make a conclusion in Section 6.

 10

2. Related Work

Time synchronization is important in many systems, both wired and wireless, and a

large number of time synchronization schemes exist. Well-known synchronization

schemes include GPS [2] and the Network Time Protocol (NTP) [1]. There are many

insecure and secure time synchronization protocols for WSNs, but they are still

insufficient in some aspects.

2.1. Conventional Schemes

Wireless Sensor Networks pose a number of challenges beyond traditional network

systems. Elson and Romer [32] describe the differences quite exhaustively and the

other detailed design principles are described by Santashil et al.[30] Network Time

Protocol (NTP) is the current standard for synchronizing clock on Internet, but it is

not suitable for Wireless Sensor Networks because of some constraints. One is that

WSN applications need higher precision such as the order of microsecond because of

their close coupling with the physical world, but the precision of NTP is about the

order of milliseconds. The other reason is that sensor node is usually

resource-constrained and NTP is not energy efficient although it has been widely

deployed and proved to be effective and robust on the Internet. Global Position

System (GPS) devices could synchronize the time to external timescale and its

accuracy could be about 200 nanoseconds relative to UTC. However GPS is not

available in places such as inside building and underwater and it might also be

power-consumed and expensive relative to resource constraint sensor nodes. Thus,

both protocols are not suitable for Wireless Sensor Networks.

 11

2.2. Insecure Time Synchronization Protocols for WSNs

These insecure protocols could be categorized as three parts. The protocols in first

category are precision-driven and focus on maximizing the clock precision

[5][6][7][9]. The reference broadcast synchronization (RBS) scheme [5] is the first

work addressing the time synchronization issue in sensor networks; however it could

only synchronize multiple receivers in a local region. Later, another scheme, called

timing-sync protocol for sensor networks (TPSN) [7], was proposed and it could

achieve network-wide time synchronization. The most precise scheme, called

Flooding Time Synchronization Protocol (FTSP) [9], is the one with many advantages

comparing to others. It decomposes the transmission delay exactly and adjusts

sending timestamp in advance. The techniques FTSP used are the mac layer

time-stamping which eliminates the most uncertain delay and linear regression to

predict the relation between local clock and global clock, thus, FTSP could be more

precise than others. Another advantage of FTSP is that it supports dynamic network

topology and this makes FTSP more complete. Unfortunately, FTSP is an insecure

scheme because it was designed without security concern. Two types of attacks have

been proposed, namely pulse-delay attack and insider attack introduced by

compromised nodes. Both of these attacks form the outliers of collected syncMsg, but

FTSP cannot filter them. In FTSP, when attacks occur, some of the reference points

which contain a pair of global and local timestamps referring to the same time instant

become outliers and introduce serious error. Another problem is that FTSP propagate

timestamp by broadcast, but it does not support message authentication; so external

attackers could forge the packets with an arbitrary syncMsg. Our goal is to filter the

outliers which are further away from their expected values than what are deemed

reasonable.

 12

Second category is lightweight driven; their concentration is not to maximize

accuracy, but to minimize the complexity to achieve a given precision [26][27][28].

Thus, the needed synchronization accuracy is assumed to be given as a constraint, and

the target is to devise a synchronization algorithm with minimal complexity to

achieve a given precision. This approach is supported by the claim of the authors that

the maximum time accuracy needed in sensor networks is relatively low (within

fractions of a second), so it is sufficient to use a relaxed, or lightweight,

synchronization scheme in sensor networks.

Another category is scalability driven [27][29][30]. These protocols consider clock

synchronization might not be necessary at all times, except during sensor reading

integration. Providing clock synchronization all the time will be a waste on the limited

resources of sensors. For saving resources, the nodes re-synchronize only when there

is a need for synchronization.

2.3. Secure Time Synchronization Protocols for WSNs

There are some studies for secure time synchronization in sensor network proposed

recently [20][21][22][23][31], but there are some insufficiencies among them. The

insufficiency of the Secure Pairwise Synchronization (SPS) proposed by Ganeriwal et

al. [20] is that it just aborts the action when detecting the attacks and it cannot achieve

the goal of time synchronization. Manzo et al. discussed the attacks against time

synchronization protocols and proposed some countermeasures [21]. But it still

suffers from pulse-delay attack and it doesn‟t resolve the conflict when using the μ

TESLA-based broadcast authentication which requires loose time synchronization.

Sun et al. proposed a resilient time synchronization protocol whose focus is on the

defense of compromised nodes [23], but it also suffers from pulse-delay attack. The

 13

problem of Song et al. proposed two methods for detecting and tolerating delay

attacks [22], but the insufficiency is that it doesn‟t support global time

synchronization in multi-hop sensor networks. The latest scheme,

called TinySeRSync [31], has solved all existing attacks. The concept of

TinySeRSync for solving insider attack is to choose the median from 2t+1 data. It

adopts the Secure Pairwise Synchronization (SPS) [20] with a slight modification to

deal with pulse-delay attack and wormhole attacks. To avoid substantial

communication overhead as well as frequent message collisions in dense sensor

networks, it designs a local authenticated broadcast for the propagation of global

synchronization messages, effectively harnessing the broadcast nature of wireless

communication. The insufficiency of TinySeRSync is that the sensor cannot get the

clock skew between its local clock and the global clock to compensate the constant

clock drifts. Due to the effect of clock skew, the nodes need to resynchronize

frequently to maintain certain precision. The more messages a sensor transmits, the

more power it consumes. For saving power, maximizing the interval of

resynchronization period by compensating the constant clock drifts is necessity.

Finally, the summaries of these insufficiencies of secure protocols are in Table 1.

Table 1: The insufficiencies of existing secure time synchronization

protocols

Paper Existing problems

Secure time synchronization service for sensor

networks [20]

Only abort the action when

detecting the attacks

Time synchronization attacks in sensor networks [21] Cannot defend against

pulse-delay attack

Attack-resilient time synchronization for wireless

sensor networks [22]

Can‟t support global time

synchronization in multi-hop

sensor networks

Secure and resilient clock synchronization in wireless Cannot defend against

 14

sensor networks [23] pulse-delay attack

TinySeRSync: Secure and resilient time

synchronization in wireless sensor networks [31]

Only synchronize the initial

offset instead of clock skew

 15

3. Proposed Scheme

In this section, we present our Resilient Time Synchronization Protocol, namely

RTSP. Some notations and definitions are mentioned at first. The offset of two clocks

is the time difference between them, while the clock skew is the frequency difference

between them. Global time is considered as the time of sink node. A dataset consists

of two timestamps; one is the global time estimated by sender and the other is the time

of reception of packet. The outlier is the dataset which is further away from its

expected value than what is deemed reasonable. It could be introduced by critical

error or attacks. The neighbors of a node are those nodes which are one hop away

from it. The summary of these notations and definitions is in Table 2. The assumption

is mentioned following. In Section 3.2, the overview of RTSP is described. The

remainders of Section 3 would explain the details of two phases in RTSP.

Table 2: Notations and Definitions

Clock Offset The clock offset is the time difference between two clocks. It

consists of initial offset and clock skew.

Clock Skew The clock skew is the frequency difference between two clocks.

Global Time It is considered as the time of sink node.

Dataset It consists of two timestamps, one is the global time estimated by

sender and the other is the time of reception of packet.

Outlier [33] The dataset which is further away from its expected value than

what is deemed reasonable.

Neighbor The neighbor is one hop away from A.

 16

F Hash function

F
j
(K) hash K j times

3.1. Assumption

A sensor network consists of a large number of resource-constrained motes such

as MICA series of motes. There is a trusted source node that is well synchronized to

the external clock, for example, through a GPS receiver. The goal is to synchronize

the clocks of all the sensor nodes in the network to that of the source node. The

assumption of the single, trusted source node is to simplify the discussion in this

paper.

Before a node start to synchronize its local time to global time, it must share a

secret pairwise key with its neighbors by some approaches which could defend

against insider attacks [3] and doesn‟t require the loose time synchronization. The

secret pairwise key is utilized to create the Message Integrity Code (MIC) added into

the sending packets to defend against the Sybil attacks [24][25], that one node

presents multiple identities to defeat typical fault tolerant mechanisms.

3.2. Basic Scheme

In our approach, a sink node needs to propagate its local time to each sensor. The

global time of the network is considered as the sink node‟s time. In previous approach

FTSP [9], it needs a root election procedure, but the sink node is essential in a WSNs.

Because the sink node is the data fusion of entire sensor network, the network cannot

work on the whole without it. Base on this hypothesis, we decide to employ the sink

node as our root in time synchronization protocol permanently. At the start of each

synchronization procedure, the root sends its clock information to its neighbors. It is

 17

some different with FTSP approach. FTSP uses the broadcast to communicate with its

neighbors. In our case, the nodes propagate global time through three different

methods because the integrity of messages cannot be promised in FTSP. After a node

was synchronized, it continued to send the estimated global time to its neighbors. The

receiver records the corresponding local time at the reception of the packet. An

estimated global time by sender and a timestamp from its local clock constitute a

dataset. The receiver filters some outliers and uses the remainder datasets to calculate

the relative clock skew and offset when receiving enough datasets. After working out

the clock skew of its local clock and initial offset between local clock and global

clock, it was synchronized because it could map its local time to global time. Then it

could propagate its estimated global time to next level neighbors. In the following

sections, we will present the detail of propagating global time and filter of outliers.

3.3. Phase I: Propagate Global Time to One-hop Neighbors and

Promise the Integrity

In this phase, a synchronized node needs to send its estimated global time to its

one-hop neighbors. The receivers only verify the integrities of messages, but not the

timeliness. The problem is handled in phase II. The sink node sends some packets

including its clock information to its one-hop neighbors to help them to adjust their

clocks initially. Because there is only one source at start of each round, the sink node

must send at least eight packets to let its neighbors collect adequate datasets to work

out their clock skews and offsets. The minimal count of datasets is eight because

FTSP [9] uses an eight entries regression table to store the datasets and is good

enough to meet the precision about the order of microsecond. But there might be

some outliers in the datasets, we enlarge data table from 8 entries to more than 16

 18

entries to tolerate them. After the neighbors of the sink node synchronize to the clock

of sink node, the nodes which are two hops away from the sink node could receive

estimated global time from them. If nodes receive the messages including the same

global time, nodes simply omit duplicate message to prevent replay attack. There are

huge methods about sending estimated global time to neighbors. We will propose

three of them.

3.3.1. Authenticated Communication with Unicast

The first method is the simplest method. Each node uses authenticated unicast

communication to propagate synchronization messages. The sending messages

include the estimated global time and the message authentication code (MAC). The

MAC is generated using the data and the secret pairwise key only shared by sender

and receiver, so it could protect both message's integrity as well as its authenticity, by

allowing receiver to detect any changes to the message content. External attackers

cannot generate illegal messages or tamper messages because they do not have the

pairwise key with normal nodes. The problem of this method is that it may introduce

substantial communication overhead as well as frequent message collisions in dense

sensor networks.

MAB={A,B,Data ,MACKAB (A,B,Data)}

MAC={A,C,Data ,MACKAC (A,C,Data)}

Figure 3-1: Communication with unicast

 19

3.3.2. Authenticated Communication with Multicast

The second method is to use broadcast to propagate the estimated global time in

Figure 3-2. If one node wants to send message to its n neighbors, the messages

will consist of the data and n MACs. Each MAC is generated by data and each

pairwise key shared by sender and neighbors, separately. The receiver could

authenticate the message by comparing each MAC with the MAC computed with the

secret pairwise key with the sender. The limit of this method is that n must be less

than eight because there is not enough time to insert the MAC before the transmission

of the MAC due to the delay introduced by the MIC calculation [19][23].

The message M consists of data and n

MACs.

M={A,data,

MAC[KAB](A,B,Data),

MAC[KAC](A,C,Data),

MAC[KAD](A,D,Data),

 MAC[KAE](A,E,Data)}

Figure 3-2: Broadcast the message with n-MACs

3.3.3. Authenticated Communication with Broadcast

The last method also uses broadcast to propagate the estimated global time. It

works something like uTESLA, but it resolves the conflict between the goal of

achieving time synchronization and the fact that uTESLA requires loose time

synchronization. Before the sender sends packets, it generates a random key Ki and

uses Ki to construct a key chain by repeatedly hashing it. For example, Ki-1 is the hash

of Ki and K0 is called the commitment of the key chain. Before transmitting packets, a

 20

sender must send the key commitment to the receivers using authenticated unicast

communication. So the integrity of key commitment is assured. Then the sender

continues to broadcast next packet including MAC generated by the data and next key.

To authenticate this packet, the receiver must buffer it and then authenticate the

included key, namely Kj, while receiving more packets. When the receiver receives

Kj+n at latter packets, it hashes Kj+n for n times to get the Kj‟ and checks if Kj is legal or

not by comparing Kj‟ to Kj. If Kj is legal, the Kj could be used to verity the integrity of

that packet.

Table 3: Local broadcast

Sender

A

{K0 ,MACKAB

(K0)},Unicast

{Data ,K1,

MACK1 (Data)}

Broadcast

{Data ,K2,

MACK2(D

ata)}

Broadcast

{Data ,K3,

MAC K3 (Data)}

Broadcast

{Data ,K4,

MAC K4 (Data)}

Broadcast

Receiver

B

{K0 ,MACKAB

(K0)},Unicast

{Data ,K1,

MACK1 (Data)}

Broadcast

if (F(K1)=K0)

accept

Lost {Data ,K3,

MACK3 (Data)}

Broadcast

If(F
2
(K3)=K1)

accept

{Data ,K4,

MACK4 (Data)}

Broadcast

If(F(K4)=K3)

accept

3.4. Calculate the Relation between Local Clock and Global Clock

When a node collects ample datasets, it could utilize the least square to calculate

the clock skew and initial offset between its local clock and global clock. The

relationship between global time and local time could be described as Equation 1.

 21

Cr(t)=brsCs(t)+ars Equation 1

brs is the relative clock skew and ars is the initial offset between global clock and

local clock. If the realistic brs could be computed, the node could periodically

compensate the drift caused by brs to keep the clocks more precise. Thus the

resynchronization doesn‟t need to execute too frequently. The goal of time

synchronization is not only making nodes have the same clock value in one instant by

eliminating ars , but also periodically correcting the drift caused by brs a to keep the

clocks synchronized.

For convenience, let us convert Equation 1 to Equation 2.

Y = α + βX + U Equation 2

α is equal to ars, β is equal to brs and U is the error due to some reasons introduced

above. Then we want to find a linear equation to minimize U. The equation could be

derived to Equation 3. To minimize Q, we make the partial differential of Equation 3

to Equation 4 and Equation 5.

.
1

)(
1

),(
1

2

1

2 



n

i

i

n

i

ii U
n

XY
n

Q 

Equation 3

0)(
1

2),(
1








n

i

ii XY
n

Q 


 Equation 4

 0)(
1

2),(
1








n

i

iii XXY
n

Q 


 Equation 5

From Equation 4 and Equation 5, α and β are obtained. That means when a node

collects adequate datasets, it could make use of x and y series to compute α and β,

representing the initial offset and relative clock skew of local clock.

.

,

)(

))((

1

2

1

nnnn

n

i

ni

n

i

nini

n

XY

XX

YYXX

























 22

3.5. Phase II: Filter Outliers and Calculate Local Clock’s Skew and

Offset

Before we detail this phase, let us see the different situations in benign

environment and hostile environment. After phase I, a node could collect the normal

datasets, such as that plotted as Figure 3-3. Because of the uncertain delay, real local

clock offset cannot be got directly. The calculated offset is the original offset and

delay. We just subtract that from the delay to get the real offset. The communication

delay does not influence the local clock skew, so we do not need to reprocess the

calculated value.

But at a hostile environment, the distribution of the collected datasets may

become that in Figure 3-4 and in Figure 3-5, separately. The attacker could launch

some attacks for time synchronization to pollute the result and mislead the node to

synchronize wrong clock. Although Figure 3-4 and Figure 3-5 represent the outliers

introduced by different attacks, the node couldn‟t differentiate between insider attacks

L
o
cal tim

e

Global time estimated by sender

real clock D
elay

dataset The real function of local clock

The calculated function of local clock

delay

Figure 3-3: Datasets in normal situation

 23

and pulse-delay attacks.

When pulse-delay attack occurs, the packet received is delayed. In Figure 3-4,

the dataset moves toper than its expected value because the attacker postponed our

reception of that packet. From Figure 3-4, we notice these outliers could perform

serious error in the result.

L
o
cal tim

e

Global time estimated by sender

Normal datasets The real function of local clock

The originally calculated function of local clock

Outlier due to pulse delay attack

The wrongly calculated function of local clock

Figure 3-4: The situation of pulse delay attack

 24

When another attack, called insider attack, occurs, the global time we received is

incorrect. In Figure 3-5, the outliers move righter or lefter than expected value

because the compromised node would report bigger or smaller global time. If the

outliers tend towards any side on average, it cannot warp our calculated result, so we

assume the outlier will tend towards a specific side. Traditional noise filter like

“Kalman filter” is not suitable for our situation, because it assumes that the observed

noise is zero mean Gaussian white noise with covariance Rk. But the outliers

introduced by attacks are not. Vk is the observed noise and represented as Equation 6.

 Equation 6

We understand the truth from Figure 3-3, Figure 3-4 and Figure 3-5 that if we

use all the datasets to calculate the relative clock skew and initial offset, we may get

L
o
cal tim

e

Global time estimated by sender

Normal datasets The real function of local clock

The originally calculated function of local clock

Outliers due to insider attack

The wrongly calculated function of local clock

Figure 3-5: The situation of insider attack

 25

the wrong answer due to the existence of outliers. The importance is that both

pulse-delay attack and insider attack perform the same result, so we use the same

filter method to filter outliers and use the remainder datasets as the input of Least

Square Method.

3.5.1. Score Filter

The first step to filter the outliers is to calculate the score of each dataset. The

purpose of score is to find the relative equation posed by most datasets and filter the

outliers further away from this relative equation. The higher score means this dataset

is more likely normal. The idea is that the relative equation consists of most datasets

and we believe that the amount of normal datasets is more than that of outliers. There

are two scalable arguments are n, the number of collected datasets, and m, the filter

ratio (e.g., 0.5). Assuming we collect n datasets, for dataset d1 (x1 , y1), x1 is the

estimated global time by sender and y1 is the timestamp of reception of message, if d2

satisfies the relation with d1, the score of d1 increases one. Figure 3-7 presents the

normal bound of a dataset. δ is the variance of the predictive error. The normal

relations are wMaximumSke
xixj

yiyj





and

wMinimumSke
xixj

yiyj





.

Because the clock skew differences of the crystals used in Micaz motes

introduce drifts up to 40μs per second, we consider 1.00004 and 0.99996 as the

maximum and minimum skew. The upper line is a line through d1 whose slope is

1.00004 and the upper bound is shift up this line with the variance of predictive error;

the lower line is a line through d1 whose slope is 0.99996 and the lower bound is shift

down this line with the variance of predictive error. The pseudo-code describing how

to generate the bound of dataset is presented at line 8-17 in Figure 3-7. After

 26

calculating each dataset‟s score, we will insert the datasets to a collection S from

maximum score to minimum score until the count of collection S is more

than . Then the collection S continues to be the input of regressive filter.

ScoreFilter(x,y)

1 for i ← 1 to count of x

2 do for j ← 1 to count of x

3 △X ← Xj - Xi

4 if △X > 0

5 then UpperY ← yi + △X * MaximumSkew + DelayVariance

6 LowerY ← yi + △X * MinimumSkew - DelayVariance

7 else UpperY ← yi + △X * MinimumSkew + DelayVariance

8 LowerY ← yi + △X * MaximumSkew - DelayVariance

9

L
o
cal tim

e

Estimated global time by sender

d1

The upper line through d1 with slope = 1.00004

The lower line through d1 with slope = 0.99996

d2 outlier

Because d2 is between upper bound and lower

bound of d1, the score of d1 will add one.

The upper bound is the upper line and the variance of delay

The lower bound is the lower line and the variance of delay

Figure 3-6: Calculating the Score

 27

10 if yj ≥ LowerY and yj ≤ UpperY

11 then increase Scorei

12

13

14 SortScore ← SortByDesend(Scorei)

15 for NowScore ← SortScore(1) to SortScore(n)

16 do for each Score ϵ SortScore

17 do if Scorei = NowScore

18 then Add di to PickUpDatasets

19 if count of PickUpDatasets > n * m

20 do return

3.5.2. Regressive Filter

After score filter, maybe there are still some outliers included in that collection S

because their scores are equal to some normal datasets. In this function, we will iterate

to compute the regression line and delete the dataset which is farthest away from the

regression line until the count of collection S equals to . The

pseudo-code of regressive filter is presented in Figure 3-8. After regressive filter, we

could consider the remainder datasets as normal datasets and use them to calculate the

skew and offset of local clock.

RegressiveFilter(PickUpDatasets)

1 While Count of PickUpDatasets > n*m

2 do Line=LeastSquare(PickUpDatasets);

3 for i ← 1 to Count of PickUpDatasets

4 do NowDistance ← GetDistance(xi,yi,Line)

5 if NowDistance > MaxDistance

6 then MaxDistance ← NowDistance

7 MaxIndex ← i

8 PickUpDatasets.Remove(MaxIndex)

Figure 3-7: Scoring each dataset and filter some outliers.

Figure 3-8: Filter the dataset which is farthest away from the regression line.

 28

4. Analysis

In this section, we will analyze the transmission overhead of three different

methods to propagate global time in phase I. Figure 4-1 represents the efficiencies of

different methods. Then we will discuss the security analysis of phase II.

4.1. Performance Analysis

We assume the count of one node‟s neighbors is n and n must be more than four.

This could let one node collect more than 16 datasets. Each node would send four

packets to its neighbors. A packet consists of Preamble (4 bytes), SFD (1 byte),

Length (1 byte), FCF (2 bytes), DSN (1 byte), Address (1~20 bytes), Payload (n bytes)

and FCS (2 bytes). The payload is the timestamp and its length is 8 bytes. So the size

of a packet is 27 bytes.

First method using authenticated unicast needs 4 * n packets. A node must

transmit 4 * n * 27 bytes. Second method using broadcasting multiple MACs needs 4

packets. The size of payload is bigger, because it consists of multiple MACs. The

length of MAC is 2 bytes. A node must transmit 4 * (27 + n * 2) bytes. Third method

using broadcast needs to transmit n+4 packets. The first n packets including key

commitment are transmitted to its neighbors using authenticated unicast and next 4

packets are broadcasted to propagate global time. A node must transmit (n+4) * 27

bytes. We summarize the overhead of communication in Table 4.

Table 4: The overhead of transmission in three different methods (n is the

count of neighbors)

 29

Propagating methods in phase I Transmitted bytes (n ≥ 4)

Unicast method 108 * n

Broadcast with multiple MACs 108 + 8 * n

uTESLA-based Broadcast 108 + 27 * n

The relation of neighbor‟s count and the needed bytes was plotted in Figure 4-1.

From this figure, we could understand when the amount of receivers is less than eight,

the performance of broadcasting multiple MACs is best. If neighbor‟s count is more

than eight, the uTESLA-based broadcast is more suitable.

Figure 4-1: The relation between transmitting bytes and the count of

neighbors

4.2. Security Analysis

The goal of phase I is to promise the integrities of packets and the authentication

of communication. We will prove that the attackers cannot modify the packets or

spoof the legal nodes. In the phase II, what we want to prove is when the ratio of

outliers is smaller than half, our approach works successfully. The definitions are

mentioned at first and we will prove that using the relation between the scores and

amount of datasets.

 30

Phase I: A node receives n datasets from Cm senders which are one-hop away from it.

Nodes are defined as Ni, where i = 1… n. The key Kij is only shared by Ni and Nj. The

key pool owned by Ni is defined as KPi. A Message Authentication Code is a family

of functions f1 of {0,1}
k
× Dom(f1) to {0,1}

l
, where Dom(f1) denotes the domain of f1.

In this paper, Dom(f1) = {0,1}
≤L

. For K ∈ {0,1}
k
 and M ∈ {0, 1}

≤L
, let σ = f1(K,M).

We refer to σ as the tag or MAC of M. The message forged by attackers is denoted as

Mf. Mij means the message which Ni sends to Nj. Theorem 1 states that different

secret key cannot generate the same hash value.

Theorem 1: ∀K, ∃ Kij ∧ Kij ∈ KPi ∧ Kij ∈ KPj, σ = f1(Kij,Mij) ≠ σ‟ = f1(K , Mij), K 

KPk

Proof.

∵Kij ∈ KPi ∧ Kij ∈ KPj, Kij  KPk

→σ = f1(Kij,Mij), σ ≠ σ‟ = f1(K , Mij), K  KPk

→Nk cannot generate σ = f1(Kij,Mij)

∴Nk can‟t forge or spoof the Mij. □

Because the secret key is only shared by two nodes, from theorem 1, other nodes

cannot generate the same hash value to spoof or forge the packets.

Phase II: A node receives n datasets which are defined as Di, where i = 1…n. The

amount of outliers denoted as DO is Co and the amount of normal datasets denoted as

DN is CN. All datasets is denoted as DA. Outlier ratio m means the Co divides n and

the filter ratio r means how many datasets we will filter. We define the score of each

 31

dataset as S(Di). We denote F(Di) as the instant of filtering the Di and the Dis(Di)

means the distance between Di and the regression line. Theorem 2 states that when the

amount of normal datasets is more than that of outliers, the scores of normal nodes are

bigger than those of outliers.

Theorem 2: DN∧ DO =φ, Di ∈ DO∧ Di ∈ DA, Dj ∈ DN∧ Di ∈ DA, if CN > Co

→F(Di) ≧ F(Dj)

Proof.

∵CN > Co

→S(Di) > S(Dj)

→F(Di) < F(Dj)

S(Di) = S(Dj)

→∵Dis(Di) > Dis(Dj)

→F(Di) < F(Dj)

→r ≧ m, Di ∈ DO, F(Di) < F(Dj) □

From theorem 2, because the scores of normal nodes are bigger than those of outliers

and we will filter the datasets whose scores are smaller, the outliers would be filtered

before the normal datasets. As the proof of these theorems, we demonstrate that the

propagation method in the phase I can provide strong protection of the spoofing attack.

The security of phase II we demonstrate is that when the outlier ratio r is bigger than

the ratio of normal datasets m, the outlier can be filtered successfully.

 32

5. Evaluation

In the following section, we insert two types of outliers into our datasets separately.

The relation of outliers in the first type is beyond the limit of physical crystals.

Crystal‟s vendors could offer the maximum variance of skew like 40us per second. If

the relation between the outlier and a normal dataset is outside this bound, we

consider this outlier as extreme outlier. The other type of outlier is introduced by

cooperative compromised nodes and their relation is inside the bound of physical

limitation. We regard these outliers as mild outliers. Our simulation shows the end

result after analyzing the different datasets. It uses MATLAB to generate the normal

datasets and insert some outliers. Then we analyze the datasets and filter some outliers.

Finally, we plot the error which is the difference between the calculated result and

assumptive value at different cases.

5.1. Simulation setup

We assume a node received 32 datasets from its neighbors. The interval of the

reception of each dataset is more than 500ms. Our assumptive relation of clock skew

between its local clock and global clock is 1.00004 and the initial clock offset is 6

second. In our simulation, we exercise 6 different filter ratio and 6 different outlier

ratio, separately 0, 0.1, 0.2, 0.3, 0.4 and 0.5.

In each case, we run 32 rounds to get the averages of calculated clock skew and

initial offset. The error is the difference between the average and assumptive value.

We will plot the relation between error, filter ratio and outlier ratio.

 33

5.2. Extreme Outliers

The first scenario we use to analyze is the datasets which contain the extreme

outliers. Because the extreme outliers do not cooperate, their relations are not inside

the bound of physical limitation. So these extreme outliers would be filtered at score

phase easily.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2

0

2

4

6

8

10

12

14
x 10

5

filter ratio

E
rr

o
r

p
e
r

s
e
c
o

n
d

 d
u

e
 t

o
 i
n

c
o

rr
e
c
t

S
lo

p
e
 (

u
s
)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-1: The average error between calculated slope with extreme

outliers and the assumptive slope in each case

We could see the result from Figure 5-1 that when the filter ratio is more than

the outlier ratio, the average error is smaller than 1us. This result is like the result of

FTSP without attack and it represents that we filter the outliers specifically. There is

strangeness in Figure 5-1. When the outlier ratio becomes bigger, the error is not more

acute. The reason is that the scale of figure is too large relative to the difference of

error. Actually the error increases about 0.003 (3ms) while the outlier ratio increases

 34

0.1. The error is not absolute and is relative to the distribution of the attacked datasets.

After our filter phase, the average error being smaller than 1us means that a node

don‟t need to resynchronize time too frequently and could consume as less power as

possible.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18
x 10

4

filter ratio

S
lo

p
e

's
 S

td
 (

u
s

)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-2: The standard deviation of the calculated slopes with extreme

outliers in each case

Figure 5-2 shows the standard deviation of slopes in each case. We observed that

if there are outliers in datasets, the standard deviation of slope is very large. This is

very critical for time synchronization, because the difference between each node‟s

skews vary very much. Hence, each node‟s clock varies vastly. Another observation is

that if we filter some part of outliers in such a case, the standard deviation becomes

bigger. So we could infer that when there are few outliers in datasets, it could result in

serious error. Fortunately, if the filter ratio is more than or equal to the outlier ratio,

the standard deviation would downgrade to about the order of microsecond.

 35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-2.5

-2

-1.5

-1

-0.5

0
x 10

7

filter ratio

E
rr

o
r

o
f

in
it

ia
l

o
ff

s
e

t(
u

s
)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-3: The average error between calculated offset with extreme

outliers and the assumptive offset in each case

The average error between calculated offset and the assumptive offset in each

case is showed as Figure 5-3. Because of the existence of outliers, the severe error

could be up to the ten orders of second. The error of offset, like the error of skew, is

not absolute and it is relative to the distribution of the attacked datasets. This error

could be reduced to the ten orders of microsecond by increasing the filter ratio.

Although initial offset is a fixed value and the node does not use it to compensate the

clock drift, we could note that the offset error is much bigger than the skew error. This

critical error could influence many applications and induces some serious error.

 36

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6
x 10

6

filter ratio

In
it

ia
l

O
ff

s
e

t'
s

 S
td

 (
u

s
)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-4: The standard deviation of the calculated offsets with extreme

outliers in each case

The last evaluation with the existence of extreme outliers is the standard

deviation of the initial offsets. Figure 5-4 shows the standard deviation of the initial

offset is also huge like that of slope. This represents if there are a few outliers in

datasets, the initial offset vary very much.

From above figures, we observe some strangeness that how we could promise to

filter the half of datasets which are just outliers if the ratio of outliers is 0.5. The cause

is that these outliers are not mild outliers and their scores are certainly smaller than

those of normal datasets because they don‟t cooperate with each other. If the outliers

are all mild outliers and the attacked ratio is more than 0.5, we cannot filter them

effectively. We would examine this case at next simulation.

5.3. Mild Outliers

The second scenario we want to analyze is the datasets which contain the mild

 37

outliers. The mild outliers are introduced by cooperative compromised nodes and their

relations are inside the bound of physical limitation. The mild outliers could not be

filtered at score filter but could be at regressive filter. The difference between mild

outliers and extreme outliers is if the attackers cooperate with each other or not. The

key to filtering the outliers successfully is that the amount of outliers must be less

than that of normal datasets. So the regression line would be near the most datasets.

From underlying figures, we could discover the truth we cannot work successfully

when the outlier ratio is equal to or more than the filter ratio.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-5000

0

5000

10000

15000

20000

filter ratio

E
rr

o
r

p
e
r

s
e
c
o

n
d

 d
u

e
 t

o
 i
n

c
o

rr
e
c
t

S
lo

p
e
 (

u
s
)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-5: The average error between calculated slope with mild outliers

and the assumptive slope in each case

In Figure 5-5, the average error of the datasets including mild outliers is smaller

than those including extreme outliers. The importance of that is when the outlier ratio

is equal to the filter ratio; both of our two filtering methods cannot work productively.

The outliers‟ scores are equal to the normal datasets, so we could not filter any outlier

at score filter. In the regressive filter, the regression may tend towards the incorrect

 38

trend. So we are likely to filter some normal datasets and then calculated wrong

answer.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

500

1000

1500

2000

2500

3000

3500

filter ratio

S
lo

p
e

's
 S

td
 (

u
s

)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-6: The standard deviation of the calculated slopes with mild

outliers in each case

Figure 5-6 shows the standard deviation of slopes in each case. The result is like

Figure 5-2. If there are few outliers, the computed output is unbelievable and the

standard deviation is unpredictable. The difference from Figure 5-2 is that when the

filter ratio and outlier ratio both are half of datasets, our result is not ideal because we

cannot filter the outliers specifically.

 39

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-18

-16

-14

-12

-10

-8

-6

-4

-2

0
x 10

4

filter ratio

E
rr

o
r

o
f

in
it

ia
l

o
ff

s
e

t(
u

s
)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-7: The average error between calculated offset with mild outliers

and the assumptive offset in each case

The average error between calculated offset with mild outliers and the

assumptive offset in each case is showed as Figure 5-7. Because the outliers are mild,

the average error is about a few seconds. Although the error is smaller than that of

extreme outliers, we still cannot tolerate it. In Figure 5-7, we could see that the error

was reduced to the ten orders of microsecond by letting the filter ratio be more than

the outlier ratio.

 40

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5
x 10

4

filter ratio

In
it

ia
l

O
ff

s
e

t'
s

 S
td

 (
u

s
)

0% Outlier Ratio

10% Outlier Ratio

20% Outlier Ratio

30% Outlier Ratio

40% Outlier Ratio

50% Outlier Ratio

Figure 5-8: The standard deviation of the calculated offsets with mild

outliers in each case

Figure 5-8 shows that the standard deviation of initial offsets is also huge like

that of slope. It also supports the same truth that if the outliers are all mild outliers and

the outlier ratio is more than half, we cannot filter them effectively.

 41

6. Conclusion

In this paper, we proposed a time synchronization protocol based on FTSP,

called Outlier-Filtered Time Synchronization Protocol for WSNs. It points the

insufficiencies of FTSP and could resist attacks. FTSP deals with neither external

attackers nor insider attackers. We proposed three methods for promising the

authenticity and integrity of the messages to defend against external attackers. The

first method is that communicating through unicast with each neighbor. The second

method is to broadcast the message with multiple MACs. The last method is an

uTESLA-based approach with a little modification. Their functionalities are all the

same for avoiding external attackers forging and spoofing messages, but the

limitations and overheads are different. Users could depend on environment to select

a suitable one.

To defend against insider attack and pulse-delay attack, we design a neat method

due to the resource constraints of the sensors. The filter ratio is an adjustable

parameter. The filter ratio could be set by the estimated ratio of outliers and also could

be automatically tuned by extra computation. The smaller filter ratio means that we

retain more reference points and the predictive relation between local clock and global

clock will be the more precise. But smaller filter ratio means the security level is

lower.

Based on our experiments, we inserted both extreme and mild outliers into the

normal datasets and observed that RTSP keeps the same precision as that of FTSP

even when some attacks take place. The average error of skew could be less than 1us

and the average error of offset could be less than 20us. The lower error of clock skew

means that we don‟t need to resynchronize too frequently, so we could save more

 42

energy.

References

[1] Mills, D. L., “Internet Time Synchronization: The Network Time Protocol.

Global States and Time in Distributed Systems,” IEEE Computer Society Press,

1994.

[2] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins “GPS Theory and

Practice,” SpringerWienNewYork, 1997.

[3] Donggang Liu, Peng Ning, Rongfang Li, “Establishing Pairwise Keys in

Distributed Sensor Networks,” ACM Transactions on Information and System

Security, February 2005.

[4] W. Du, J. Deng, Y. S. Han, and P. Varshney, “A Pairwise Key Predistribution

Scheme for Wireless Sensor Networks,” Information and System Security,

October 2003.

[5] J. Elson, L. Girod, and D. Estrin, “Fine-Grained Network Time Synchronization

Using Reference Broadcasts,” ACM SIGOPS Operating System, 2002.

[6] Sichitiu, M.L., Veerarittiphan, C., ” Simple, Accurate Time Synchronization for

Wireless Sensor Networks,” Wireless Communications and Networking IEEE,

March 2003.

[7] Ganeriwal, S., Kumar, R., and Srivastava, M. B., “Timing-Sync Protocol for

Sensor Networks,” Embedded Networked Sensor System, November 2003.

[8] Y. Hu, A. Perrig, and D. Johnson, “Packet Leashes: A Defense Against Wormhole

Attacks in Wireless Ad Hoc Networks,” INFOCOM, April 2003.

[9] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time

synchronization protocol,” in Proc. 2nd ACM Conf. Embedded Networked

 43

Sensor Syst., Nov. 2004, pp. 39–49.

[10] Kopetz, H., and Ochsenreiter, W. Clock Synchronization in Distributed

Real-Time Systems. IEEE Transactions on Computers, C-36(8), p. 933–939,

August 1987.

[11] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless

Sensor Networks for Habitat Monitoring,” ACM International Workshop on

Wireless Sensor Networks and Applications, Atlanta, Georgia, USA, September

2002.

[12] C. Lin, C. Federspiel, and D. Auslander, “Multi-Sensor Single Actuator Control

of HVAC Systems,” International Conference for Enhanced Building Operations,

2002.

[13] N. Xu, “A Survey of Sensor Network Applications,”

http://enl.usc.edu/ningxu/papers, 2004.

[14] L. Schwiebert, S. Gupta, and J.Weinmann, “Research Challenges in Wireless

Networks of Biomedical Sensors,” Mobile Computing and Networking, 2001.

[15] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton, “Codeblue: An Ad Hoc

Sensor Network Infrastructure for Emergency Medical Care,” Wearable and

Implantable Body Sensor Networks, 2004.

[16] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on

Sensor Networks,” IEEE Communications Magazine, August, 2002.

[17] S. Slijepcevic, M. Potkonjak,V. Tsiatsis, S. Zimbeck, M. B. Srivastava, ”On

Communication Security in Wireless Ad-Hoc Sensor Network,” Infrastructure

for Collaborative Enterprises, June 2002.

[18] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next Century Challenges:

Scalable Coordination in Sensor Networks,” Mobile Computing and Networking,

August 1999.

http://enl.usc.edu/ningxu/papers

 44

[19] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, “A Taxonomy of Wireless

Microsensor Network Models,” ACM Mobile Computing and Communications ,

2002.

[20] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, Mani B. Srivastava,

“Secure Time Synchronization Service for Sensor Networks,” Mobile

Computing and Networking, September 2, 2005

[21] M. Manzo, T. Roosta, and S. Sastry., “Time Synchronization Attacks in Sensor

Networks,” Security of Ad Hoc and Sensor Networks, 2005.

[22] H. Song, S. Zhu, and G. Cao., “Attack-Resilient Time Synchronization for

Wireless Sensor Networks,” Mobile Ad-hoc and Sensor Systems, 2005.

[23] K. Sun, P. Ning, and C. Wang., “Secure and Resilient Clock Synchronization in

Wireless Sensor Networks,” IEEE Journal on Selected Areas in Communications,

February 2006.

[24] J. R. Douceur., “The Sybil Attack,” Peer-to-Peer Systems, March 2002.

[25] J. Newsome, R. Shi, D. Song, and A. Perrig., “The Sybil Attack in Sensor

Networks: Analysis and Defenses,” Information Processing in Sensor Networks,

April 2004.

[26] J. van Greunen and J. Rabaey., “Lightweight Time Synchronization for Sensor

Networks,” Wireless Sensor Networks and Applications, September 2003

[27] H. Dai and R. Han., “TSync : A Lightweight Bidirectional Time Synchronization

Service for Wireless Sensor Networks,” ACM Sigmobile Mobile Computing and

Communications, January 2004.

[28] Mingxia Xu, Minjian Zhao, Shiju Li., “Lightweight and Energy Efficient Time

Synchronization for Sensor Network,” Wireless Communications, Networking

and Mobile Computing, September 2005.

[29] D. L. Mills. W. Su and I. F. Akyildiz., “Time-Diffusion Synchronization Protocol

 45

for Wireless Sensor Networks,” IEEE/ACM Transactions On Networking, April

2005.

[30] Santashil PalChaudhuri. Amit Kumar Saha. David B. Johnson., “Adaptive Clock

Synchronization in Sensor Networks,” Information Processing In Sensor

Networks, 2004.

[31] Kun Sun, Peng Ning. Cliff Wang. An Liu, Yuzheng Zhou.,

“TinySeRSync: Secure and Resilient Time Synchronization in Wireless Sensor

Networks,” Computer and Communications Security, October, 2006

[32] Elson, J., Romer, K., “Wireless Sensor Networks: A New Regime for Time

Synchronization,” Hot Topics in Networks, Princeton, New Jersey, 2002

[33] http://en.wikipedia.org/wiki/Outlier

http://en.wikipedia.org/wiki/Outlier

