
 

國 立 交 通 大 學 
 

網路工程研究所 

 

碩 士 論 文 
 
 
 
 

在混合負載即時系統下之 

高能源效率動態電壓調整演算法 

 

Energy Efficient Dynamic Voltage Scaling for  

Mixed Workload Real-time Systems 
 
 
 

研 究 生：陳蒸民 

指導教授：王國禎  教授 

 
 
 

中 華 民 國  九 十 六  年 六 月 



 
在混合負載即時系統下之高能源效率動態電壓調整演算法 

Energy Efficient Dynamic Voltage Scaling for  
Mixed Workload Real-time Systems  

 
 

研 究 生：陳蒸民          Student：Jheng-Ming Chen 

指導教授：王國禎          Advisor：Kuochen Wang 

 

國 立 交 通 大 學 

網 路 工 程 研 究 所 

碩 士 論 文 

 
A Thesis 

Submitted to Institute of Network Engineering 

College of Computer Science 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science 

 
June 2007 

 
Hsinchu, Taiwan, Republic of China 

中華民國九十六年六月 



 i

在混合負載即時系統下之 

高能源效率動態電壓調整演算法 

 

學生：陳蒸民     指導教授：王國禎 博士 

 
國立交通大學 資訊學院 網路工程研究所 

 

摘 要 

近年來，由於無線通訊的快速成長，使個人數位助理與手機等手持裝置的

能源消耗成為一個值得重視的研究問題。儘管有許多動態電壓調整演算法

被提出來降低即時系統上的能源消耗，但絕大部分的動態電壓調整演算法

僅針對只有週期性工作的即時系統，甚少動態電壓調整演算法適用於週期

性工作與非週期性工作同時存在的混合負載即時系統。一個混合負載即時

系統下的動態電壓調整演算法，不僅要節省能源消耗，同時也必須考慮到

非週期性工作的反應時間。本論文提出一個在速率單調(Rate Monotonic)

排程法下針對混合負載即時系統之基於工作需求估計寬裕時間(slack 

time)的高能源效率動態電壓調整演算法(WSS)。WSS 估計寬裕時間是依據

非週期性工作排程伺服器的執行行為和原本只適用於純週期性工作即時



 ii

系統下的短期工作需求分析法。除此之外，當非週期性的工作量大於非週

期性工作排程伺服器所能服務的量時，WSS 會利用所估計的寬裕時間來提

前服務非週期性工作，因此可縮短非週期性工作的反應時間。模擬結果顯

示，我們所提出的方法相較於現存的 SNRT (BSS) 方法，節省了 23% (13%) 

的能源消耗，縮短了 38% (31%) 的非週期性工作的反應時間，同時也減

少 52% (40%) 的能源消耗與反應時間乘積。 

 

關鍵詞：實際工作量、任務間動態電壓調整方法、混合負載即時系統、寬

裕時間、最差執行時間。 

 
 



 iii

Energy Efficient Dynamic Voltage Scaling for 
Mixed Workload Real-time Systems 

 

Student: Jheng-Ming Chen   Advisor: Dr. Kuochen Wang 

Department of Computer Science 

National Chiao Tung University 

Abstract 
Recently the wireless communication is rapidly growing up and the energy 

consumption on mobile devices, such as personal digital assistants (PDAs) and cellular 

phones, becomes a critical issue. In spite of numerous inter-task dynamic voltage scaling 

(DVS) algorithms have been brought up for energy saving of real-time systems with only 

periodic tasks or only aperiodic tasks, few of them were aimed at the mixed workload of 

periodic tasks and aperiodic tasks. A DVS algorithm for mixed workload real-time systems 

should not only focus on energy saving, but also consider low response time of aperiodic 

tasks. In this thesis, we develop an on-line energy efficient scheduling, Work-demand-based 

Slack-Stealing scheme (WSS), to reduce CPU energy consumption for mixed workload 

real-time systems under the Rate Monotonic (RM) scheduling policy. The WSS calculates 

the available slack time by the execution behaviors of scheduling servers for aperiodic tasks 

and by short-term work-demand analysis, which was originally designed for real-time 

systems with periodic tasks only. Moreover, the WSS also utilizes the concept of slack 

stealing to service aperiodic tasks and to reduce the response time when the actual workload 

of aperiodic tasks is close to the server utilization. Simulation results shows that the 

proposed WSS can effectively reduce the energy consumption, response time, and energy 

consumption * response time, in average, by 23%, 38%, 52% compared to the SNRT and 

13%, 31% , 40% compared to the BSS, respectively.  



 iv

 

Keywords: Actual workload, inter-task dynamic voltage scaling, mixed workload real-time 

system, slack time, worst case execution time. 

 

 

 



 v

 

Acknowledgements 

Many people have helped me with this thesis. I deeply appreciate my thesis advisor, Dr. 

Kuochen Wang, for his intensive advice and instruction. I would like to thank all the 

classmates in Mobile Computing and Broadband Networking Laboratory for their invaluable 

assistance and suggestions. This work was supported by the NCTU EECS-MediaTek 

Research Center under Grant Q583. 

Finally, I thank my Father and Mother for their endless love and support. 



 vi

 

Contents 

 
Abstract (in Chinese)………………………………………………………………… i 

Abstract (in English).………………………………………………………………...iii 

Acknowledgements……………………………………………………………………v 

Contents....................................................................................................................... vi 

List of Figures ...........................................................................................................viii 

List of Tables ............................................................................................................... ix 

Chapter 1 Introduction ......................................................................................... 1 

Chapter 2 Preliminaries ........................................................................................ 4 

2.1 Categories of Aperiodic Real-Time Tasks Scheduling .......................... 4 

2.2 Categories of On-Line Inter-Task DVS Strategies ................................ 5 

2.3 Low Power Work-Demand Analysis (lpWDA)..................................... 7 

Chapter 3 Related Work ..................................................................................... 13 

3.1 Existing DVS Algorithms for Mixed Workload Real-Time Systems.. 13 

3.2 Comparison of Existing Inter-Task DVS Algorithms for Mixed ...........

 Workload Real-time Systems .............................................................. 15 



 vii

Chapter 4 Proposed WSS Algorithm ................................................................. 17 

4.1 System Model, Assumptions and Notations........................................ 17 

4.2 Basic Idea ............................................................................................ 17 

4.3 Two Modes of the WSS....................................................................... 18 

4.4 The Stretching Rules in Power Saving Mode...................................... 18 

4.5 The Serviced Rules in Non-Power Saving Mode................................ 24 

Chapter 5 Simulation Results and Discussion................................................... 25 

5.1 Simulation Model ................................................................................ 25 

5.2 Effects of Different Workloads of Aperiodic Tasks on Performance .. 26 

5.3 Effects of Different WCET/BCET Ratios of Periodic Tasks on ............

 Performance......................................................................................... 29 

5.4 Practical Issues .................................................................................... 32 

Chapter 6 Conclusions and Future Work.......................................................... 33 

6.1 Concluding Remarks ........................................................................... 33 

6.2 Future Work ......................................................................................... 33 

Bibliography............................................................................................................... 34 

 



 viii

 

List of Figures 

 
Fig. 1. lpWDA algorithm  [22]..............................................................................10 

Fig. 2. Short-term work-demand analysis example .............................................12 

Fig. 3. The UpdataLoadInfo procedure in the WSS. ...........................................21 

Fig. 4. An example of work-demand-based slack-stealing scheme.....................23 

Fig. 5. Effects of the workload of aperiodic tasks on (a) normalized energy 

consumption (b) normalized response time (c) normalized energy * 

response time ............................................................................................29 

Fig. 6. Effects of the WCET/BCET ratio of periodic tasks on (a) normalized 

energy consumption (b) normalized response time (c) normalized 

energy * response time. ............................................................................31 

 

 



 ix

 

List of Tables 

 
Table 1. Example task set ..................................................................................................12 

Table 2.  Qualitative comparison of existing on-line DVS algorithms for mixed 

workload real-time systems. ................................................................................16 

Table 3.  Periodic task set description. ...............................................................................26 

 
 



 1

 

Chapter 1  

Introduction 

In order to conserve energy for battery-powered real-time systems, some techniques 

were proposed in the past. Such as shutting down systems parts while they are not in use is 

one of the techniques for portable devices. However, restarting the hardware takes time and 

increasing the response time. It's not effortless to determine when and which device should 

be shut down and woken up [1]. Another approach, called dynamic voltage scaling (DVS), 

to conserve power is by scaling down the processor voltage and frequency when some 

unused idle periods exist in the schedule at run time. The voltage scheduler determines 

which voltage to use by analyzing the state of the system. That is, the voltage scheduler of 

the real-time system supplies the lowest possible level voltage without affecting the system 

performance. Several commercially available processors provide the DVS feature, including 

Intel Xscale [2] and Xeon [3], Transmeta Crusoe [4], AMD Mobile Athlon [5], and IBM 

PowerPC 405LP [6]. 

It is known that the energy consumption E of a CMOS circuit is dominated by its 

dynamic supply voltage and is proportional to the square of its supply voltage, which is 

defined as CVCE ddeff ⋅⋅= 2 [7], where effC is the effective switched capacitance, ddV  is the 

supply voltage, and C is the number of execution cycles. Degrading the supply voltage also 

drops the maximum operating frequency proportionally ( fVdd ∝ ). Thus E could be 

approximated as being proportional to the operating frequency squared ( 2fE ∝ ). Therefore, 

lowering operating frequency and according supply voltage is an effective technique for 

reducing energy consumption. 



 2

However, reduction of the operating frequency leads to long service time. For this 

reason, applying DVS algorithms for real-time tasks to reduce energy consumption should 

still meet all requirements of real-time systems. For hard real-time tasks, DVS algorithms 

which lower operating frequency have to ensure no task missing its deadline. In the same 

way, DVS algorithms have to ensure reasonable response time of soft real-time tasks while 

reducing the operating frequency. 

Despite several obvious advantages by using DVS algorithms, it also causes more 

preemptions which increase energy consumption in memory subsystems, and extra energy 

consumption and time for voltage transitions. However, these overheads have been 

generally ignored because the overhead can be included into the worst case execution time 

(WCET) of a task [8][9]. Thus, a DVS algorithm can be used without modifications for real 

variable-voltage processors [8]. Additionally, [10] provides a technique that takes the task 

preemption into account while adjusting the supply voltage using the delayed preemption 

technique. 

The DVS algorithms have been proposed in growing numbers to minimize energy 

consumption in the past decade. In [11], it classifies existing DVS algorithms for real-time 

systems into two categories. One is intra-task DVS algorithms, which uses the slack time 

when a task is predicted to complete before its WCET. The other is inter-task DVS 

algorithms, which allocates the slack time between the current task and the following tasks. 

The basic difference between them is that intra-task algorithms adjust the supply voltage 

during an individual task boundary, while inter-task algorithms adjust the supply voltage 

task by task. 

In this thesis, we consider inter-task scheduling. Most of the existing inter-task 

algorithms were targeted at periodic tasks, and could get all tasks information in advance 

including arrival time, deadline, and WCET at the maximum processor speed. However, 



 3

practical real-time applications involve both periodic and aperiodic tasks. For instance, in 

multimedia applications such as MPEG players, some tasks such as decoding frames 

periodically have stringent periodic performance, and some aperiodic user requests (e.g., 

volume control) should be with reasonable response times [8]. Another example, a partition 

of jobs in a robot control application such as sensory acquisitions, data processing, path 

planning and low level control loops arrive periodically and must be serviced before each 

deadline to ensure robot stability. Other jobs such as operator requests or displaying 

activities occur randomly and usually have soft deadlines or no deadlines at all [12]. The 

flight systems and the automatic memory reclamation in real-time systems also have both 

periodic and aperiodic tasks [8]. Periodic tasks are time driven with absolute hard deadlines, 

in general, and aperiodic tasks are event driven with soft deadline. Moreover, a portion of 

aperiodic tasks could not know the actual workload in advance [13]. 

Therefore, we reduce the energy consumption while satisfying the requirements of 

periodic tasks. Although the aperiodic tasks are soft real-time and can be executed with the 

minimum speed to minimize the energy consumption, the response time of aperiodic tasks 

may become long. Contrarily, using the maximum speed wastes energy. It's not a suitable 

approach especially when we want battery-powered devices to live longer. So while 

reducing energy consumption on mixed workload real-time systems one has to consider the 

response time of aperiodic tasks. 

The rest of this thesis is organized as follows. In chapter 2, we classify aperiodic 

real-time tasks scheduling, existing on-line inter-task DVS strategies, and describe the low 

power work-demand analysis. Chapter 3 reviews related work. Chapter 4 presents the target 

system model and describes the proposed WSS algorithm. In chapter 5, simulation results 

are evaluated and discussed. Some practical issues are also addressed. Finally, chapter 6 

concludes with a summary and future work. 



 4

 

Chapter 2  
Preliminaries 

2.1 Categories of Aperiodic Real-Time Tasks Scheduling  

Approaches to serve aperiodic and periodic tasks in real-time systems can be classified 

into four types: 

(1). Background [14] 

This is the simplest approach to service aperiodic tasks. In order to execute hard real-time 

tasks (i.e., periodic tasks) without deadline miss, the periodic tasks need to be serviced first. 

While there are no periodic tasks in the ready queue waiting for executing, aperiodic tasks can 

be serviced. The advantage of this approach is simple and with low overhead, but the response 

time of aperiodic tasks is large. 

(2). Polling Server [14] 

It creates a polling server as a periodic task, and aperiodic tasks are served during the 

activation of the polling server. It is characterized by Qs and Ts, where Qs is the maximum 

budget and Ts is the period of the server. The polling server is up periodically at integer 

multiplies of Ts, and it executes aperiodic tasks until the budget is exhausted or no aperiodic 

task is in the queue. Then the polling server goes down and waits for the next wake-up time. 

Thus the budget is the WCET of the polling server, and the slack time is the interval that no 

aperiodic task is in the queue and the polling server goes down early. However, aperiodic 

tasks have to wait for next integer multiplies of Ts if they arrive when the polling server just 

went down. As a result, the response time of aperiodic tasks becomes long. 

(3). Bandwidth-Preserving Servers [12][14][15][16] 

It is similar to the polling server. The concept of the bandwidth preserving servers is 



 5

creating a server with execution budget which is a time amount for executing aperiodic tasks. 

It is also characterized by an ordered pair (Ts, Qs). Qs / Ts is the server utilization (Us). The 

difference from the polling serve is that it serves aperiodic tasks anytime while the budget 

isn't zero. It will execute aperiodic tasks according to the execution budget. If the execution 

budget is exhausted, it will stop or delay serving the aperiodic tasks. For instance, the 

deferrable servers (DS) algorithm [14] is the simplest bandwidth-preserving servers. The 

execution budget qs of DS is consumed while aperiodic tasks execute. An aperiodic task can 

execute as long as the DS has the highest priority and the execution budget is larger than zero. 

If the execution budget is exhausted, aperiodic tasks are serviced at background priority until 

the next replenishment time (NRT). At each replenishment time, the execution budget is 

replenished to a maximum budget Qs. The replenishment of DS is at time kTs, for k = 0, 1, 

2…. 

(4). Slack Sealing [17][18] 

The slack stealing is executing aperiodic tasks by using the available slack times of 

periodic tasks. If there is available slack time from periodic tasks, aperiodic tasks could be 

serviced first without causing any deadline miss of period tasks. In this approach, the response 

time of aperiodic tasks is the lowest, but the complexity of such a real-time system is the 

highest among the above four approaches. 

2.2 Categories of On-Line Inter-Task DVS Strategies 

Existing on-line DVS algorithms for periodic tasks in real-time systems can be classified 

into four strategies [11][19]: 

(1). Stretching-to-NTA [9] 

This strategy is based on that the scheduler already knows the next task arrival time (NTA) 

of periodic tasks. The scheduler will stretch the execution time to the NTA, if it doesn't cause 

deadline miss in this way. Therefore, the operating frequency and supply voltage can be 



 6

decreased. 

(2). Priority-Based Slack Stealing [20] 

Because not all the execution time of tasks are in the worst cases, the slack time remains 

on the schedule if high priority tasks complete earlier than their WCETs.  Consequently, the 

allowed execution time of low priority tasks can be extended. 

(3). Utilization Updating [21] 

The worst case processor utilization can be computed by the WCETs of tasks off-line. 

However, the actual execution time can be obtained on-line when a task completes its 

operation. That is, the actual processor utilization can be computed during run time, and it is 

less than the worst case processor utilization. Hence, the operating frequency can be 

decreased according to the new actual processor utilization. 

(4). Short-Term Work-Demand Analysis [22] 

The slack time is estimated by using the short term work-demand analysis. It enlarges the 

available slack time of the scheduled task by delaying the schedule of lower-priority tasks in 

near future as late as possible. 

Note that most DVS algorithms used these strategies for real-time systems with periodic 

tasks only, and directly using these algorithms for mixed workload real-time systems is not 

appropriate. If we directly use the stretching-to-NTA for mixed workload real-time systems, it 

is hard to know the next arrival time of an aperiodic task. As a result, there will be deadline 

miss of hard real-time periodic tasks when high priority aperiodic tasks abruptly arrive during 

the stretching period.  

In the priority-based slack stealing strategy and the utilization updating strategy, although 

getting the slack time of a periodic task is easy, it's not easy to decide the slack time of an 

aperiodic task. Especially, we even don't know the arrival time and the WCET of each 

aperiodic task ahead. If utilizing the slack time from an aperiodic task is too aggressive or the 

actual workload of aperiodic tasks is higher than the predict processor utilization, the deadline 



 7

miss will occur just like that occurs in the stretching to NTA. In the short-term work-demand 

analysis strategy, it’s hard to calculate the amount of work of the aperiodic tasks required to 

be processed in a period. Therefore, for mixed workload real-time systems, we should adapt 

these strategies to satisfy the timing constraints of periodic tasks and the short response time 

requirement of aperiodic tasks. That is, we need to modify the on-line DVS algorithms for 

periodic tasks and integrated them with the previous mentioned aperiodic real-time tasks 

scheduling approaches. 

2.3 Low Power Work-Demand Analysis (lpWDA) 

The lpWDA [22], which was originally designed for real-time systems with periodic 

tasks only, is an efficient on-line slack estimation heuristic for the RM scheduling. The slack 

estimation procedure uses the short-term work-demand analysis. The goal of the lpWDA is 

to extend the available slack time of the scheduled task by delaying the schedule of 

lower-priority tasks in near future as late as possible. 

 The slack time, slacki(t) of a periodic task Ti at time t can be computed as Di – t – 

loadi(t), where Di is the deadline of Ti and loadi(t) is the amount of work required to be 

processed in [t, Di]. loadi(t) consists of three types of work: (1) )(twrem
i : the remaining 

WCET of Ti at time t for Ti itself, (2) Hi(t): the work from the higher-priority tasks, and (3) 

Li(t): the work from the lower-priority tasks. )(twrem
i  is the known value at each scheduling 

point, but Hi(t) and Li(t) should be computed from a complex analysis. In the lpWDA, it 

computes approximate estimates of Hi(t) and Li(t), )(tH~i  and )(tL~i , where 

)()( tH tH~ ii ≥ and )()( tL tL~ ii ≥ , for a safe estimation on available slack times. Therefore, 

slacki(t) can be computed by estimating an approximate value of  loadi(t), )t(oadl~ i , 

where )()()()( tL~ tH~twtoadl~ ii
rem
ii ++= . Here, slacki(t) may be a negative value when 



 8

)t(oadl~ i  is overestimated.  Fig. 1 are the lpWDA algorithm, where Pi and Wi are the 

period and WCET of Ti, ε is the infinitesimal, udi is the upcoming deadline of Ti, donew  is 

the amount of work to be done between Ti being scheduled for execution and being 

preempted, past
iH  of Ti is the work required by uncompleted higher-priority tasks before t, 

and CalcSlackTime() is a procedure of the lpWDA used to calculate the slack time slacki(t) 

of Ti [22]. 

 For instance, there are two periodic tasks in Table 1 and their periods are 6 and 8, 

respectively. The WCET of tasks are 1 and 2 time units, respectively. Fig. 2 (a) shows the 

non-DVS scheme, and Fig. 2 (b) shows the load estimation of each task at t = 0. While the 

first instance of T1, T1,1, is scheduled for execution, slack1(0) has to be calculated. The 

analysis scope of the lpWDA is [0, 8] according to the latest upcoming deadline, and 

 H~ (0)1 = 0 and  H~ (0)2 = 2 can be derived. Now (0)1
remw  and  H~ (0)1  are known values, 

but (0)1L~  has to be determined by T2 which has the earliest upcoming deadline among 

tasks whose priorities are lower than that of T1.  According to the lpWDA, (0)1L~ = 

max(0,∆), where ∆= )(0)((0)(0)(0) 12112 D-ud- H~-woadl~ rem− , and  ud2(t) = 8 is the 

upcoming deadline of task T2. Once (0)2oadl~  is computed, we can estimate slack1(0) as 

follows, 

(0)2oadl~  = (0)2
remw + (0)2H~ + (0)2L~  = 2 + 2 + 0 = 4 

(0)1L~ = max(0, 4 – 1 – 0 – (8 – 6)) = 1 

slack1(0) = 6 – 0 – 1 – 0 – 1 = 4 

Therefore, the available execution time A1(0) for T1 can be estimated as 



 9

A1(0) = max(0, slack1(0)) + (0)1
remw  = 5 

And the clock speed can be adjusted to  

Sclk = ( (0)1
remw / A1(0))× Smax = 1/5× Smax 



 10

 

lpWDA Algorithm : 

 
IF system start then 
 FOR each task Tx 
    udx = Px 

Hx (t) = past
xH  

∑ −

=
×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡ +
−⎥

⎦

⎥
⎢
⎣

⎢ −
+

1

1
1x

i i
ii

x W
P

t
P

ud εε
 

 IF Tx is activated THEN  

rem
xw (t) = xW  

END IF 
IF Tx is completed or preempted THEN 

Call UpdataLoadInfo() 
END IF 
IF Tx is scheduled for execution THEN 

Call CalcSlackTime() to get slack time slackx(t) 
Set the clock frequency and voltage accordingly. 

END IF 
END IF 

Function CalcSlackTime() 

 
Identify the task Ty that has the earliest upcoming deadline 
among tasks whose priorities are not higher than that of Tx 

Ly(t) = CalcLowerPriorityWork(Ty) 

loady(t) = rem
yw (t) + Hy(t) + Ly(t) 

slackx(t) = max (0, udy – t – loady(t) ) 
return (slackx(t)) 

Fig. 1. lpWDA algorithm [22]  



 11

 

Function CalcLowerPriorityWork() 

 
IF Ty is identical to Tn THEN return 0 END IF 
Identify the task Tz that has the earliest upcoming deadline 
among tasks whose priorities are lower than that of Ty 

Lz(t) = CalcLowerPriorityWork(Tz) 
loadz(t) = rem

zw (t) + Hz(t) + Lz(t) 

Ly(t) = max (0, loadz(t) – rem
yw (t) – Hy(t) – udz + udy) 

return (Ly(t)) 

Function UpdateLoadInfo() 

 
IF (COMPLETION) THEN  
 udx = udx + Px 

Hx(t) = ∑ −

=
×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡ +
−⎥

⎦

⎥
⎢
⎣

⎢ −1

1
1x

i i
ii

x W
P

t
P

ud εε
 

 LOOP each task Ti, i = x + 1 until i = n  

  Hi(t) = Hi(t) – rem
xw (t) 

END LOOP 

rem
xw (t) = 0 

ELSE (PREEMPTION)  

 rem
xw  = rem

xw  – donew  

LOOP each task Ti, i = x + 1 until i = n  

  Hi(t) = Hi(t) – donew  

END LOOP 
END IF 

Fig. 1. lpWDA algorithm [22] (cont.) 



 12

Table 1. Example task set  
 

 
 
 
 

 (a) 

 
(b) 

Fig. 2. Short-term work-demand analysis example: (a) shows the non-DVS scheme before 
using lpWDA. (b) shows the load estimation of each task at t = 0 using lpWDA. (The 
gray-boxes mean the amount of work from the higher or same priority tasks, and the 
black-boxes mean the amount of work from the lower priority tasks.) 

Task WCET(ms) Period(ms) 
T1 1 6 
T2 2 8 



 13

 

Chapter 3  
Related Work 
3.1 Existing DVS Algorithms for Mixed Workload 

Real-Time Systems 

Recently, several researchers proposed DVS algorithms for mixed workload real-time 

systems. Under the EDF (Earliest Deadline First) (or EDF*) scheduling policy, most of these 

algorithms integrate the bandwidth preserving servers and priority-based slack stealing 

strategy. 

Doh et al. [23] proposed an approach which leads to proper allocation of energy budgets 

for hard periodic and soft aperiodic real-time tasks. Given an energy budget, it computes a 

proper voltage setting for attaining an improved performance for aperiodic tasks while 

meeting the deadline requirements of periodic tasks. It used Total Bandwidth Servers (TBS) 

[12], which is a kind of bandwidth preserving servers, and only focused on the off-line static 

scheduling problem. 

Aydin et al. proposed three separate on-line schemes with mixed workload under a power 

consumption constraint. It also used TBS and Dynamic Reclaiming Algorithm (DRA) [20] 

under the EDF* scheduling policy. In the Basic Reclaiming Scheme (BRS) [24] the earliness 

of aperiodic tasks is only used for reclaiming the coming aperiodic tasks, and the earliness of 

periodic tasks is only used for reclaiming the coming periodic tasks. The Mutual Reclaiming 

Scheme (MRS) [24] was developed from BRS. The main difference between MRS and BRS 

is that in the MRS both periodic and aperiodic tasks can mutually reclaim their unused 

computation times. The Bandwidth Sharing Scheme (BSS) [24] is to solve the problem of the 

actual aperiodic workload that is relatively lower than the predict aperiodic workload. In the 



 14

BSS when the TBS is idle, the algorithm will create a ghost job J to produce more earliness to 

aggressively reduce the clock speed. But it will increase the response time of aperiodic tasks 

if an actual aperiodic task arrives right after creating the ghost job. 

In [26], Shin et al. merged the TBS and two DVS algorithms, lppsEDF [9] and DRA, 

respectively, under the EDF* scheduling policy. They also proposed an enhanced approach 

called Workload-based Slack Estimation (WSE) [8], which integrates Constant Bandwidth 

Servers (CBS) [16] and DRA. The WSE is almost the same as the MRS (as indicated in [8]). 

 All of the above approaches focused on the EDF (or EDF*) scheduling policy. Few 

of existing DVS for mixed workload real-time systems were proposed under the RM 

scheduling policy. The RM scheduling policy has been adopted in most real-time schedulers 

of practical interest due to its low overhead and predictability [25]. 

 Under the RM scheduling policy, most of these algorithms integrate the bandwidth 

preserving servers and stretching-to-NTA strategy. The Stretching-To-NRT (SNRT) [26] 

scheme is the first proposed DVS algorithm for mixed workload real-time systems under 

the RM scheduling policy by Shin et al. The SNRT is a modified stretching-to-NTA 

algorithm with the Deferrable Servers (DS) and Sporadic Servers (SS). Because the arrival 

time of an aperiodic task is unknown, the stretching rules are only applied when the budget 

of bandwidth preserving servers is exhausted. But it is inefficient when the workload of 

aperiodic tasks is small and the budget is larger than 0. They also proposed 

Bandwidth-Based Slack-Stealing (BSS) [8] scheme which considers the bandwidth of a 

scheduling server and identifies the maximum available time (MAT) for a periodic task. 

Even when the execution budget is larger than 0, the MAT can be calculated before the 

arrival time of next periodic task. Therefore, the clock speed of the periodic task can be 

slow down based on the MAT. 

 One problem of existing approaches is that they only calculate the MAT from the 

schedule point to NTA. To have long MAT, in this thesis, we propose an on-line DVS 



 15

algorithm named Work-demand-based Slack-Stealing (WSS) scheme for mixed workload 

real-time systems under the RM scheduling policy. The WSS integrates the bandwidth 

preserving servers and lpWDA [22] to compute the MAT by delaying the schedule of 

lower-priority periodic tasks. As a result, the MAT of high periodic tasks can be extended 

and the overall energy consumption can be reduced. Another problem of the existing 

approaches is that a periodic task with the highest priority may still run slowly even if there 

are some aperiodic tasks, without the execution budget, waiting in the ready queue. The 

WSS use the concept of slack stealing, which was originally used in mixed workload real 

time systems without DVS, to service aperiodic tasks when there are some aperiodic tasks, 

without the execution budget, waiting in the ready queue. 

3.2 Comparison of Existing Inter-Task DVS Algorithms 

for Mixed Workload Real-time Systems 

Table 2 shows the qualitative comparison of several existing inter-task DVS algorithms 

for mixed workload real-time systems along with the proposed WSS. The scheduling policy 

indicates an DVS algorithm uses RM or EDF scheduling policy, which are the two most 

popular real-time schedulers. EDF* is almost the same as EDF. The difference is that, in EDF*, 

among the tasks whose deadlines are the same, the task with the earliest arrival time has the 

highest priority. Among the tasks whose deadlines and arrival times are the same, the task 

with the lowest index has the highest priority. The scaling decision describes that the decision 

of the clock speed is calculated on-line or off-line. The on-line DVS strategy indicates that the 

DVS algorithms for mixed workload real-time systems belong to which on-line DVS 

strategies that were described in Chapter 2. The “bandwidth-preserving servers” indicates it 

combined which bandwidth-preserving servers to schedule aperiodic tasks. The metric of 

energy consumption indicates the CPU energy consumption of each DVS algorithm. The 

metric of response time represents the time interval between the arrival and completion of an 



 16

aperiodic task. We will compare the proposed WSS with the non-DVS scheme, SNRT, BSS 

quantitatively in chapter 5. 

 

Table 2. Qualitative comparison of existing on-line DVS algorithms for mixed 
workload real-time systems. 

Algorithm 
Scheduling 

Policy 
Scaling 

Decision

On-line 
DVS 

Strategy 

Bandwidth-
Preserving 

Servers 

Energy 
Consumption 

Response 
Time 

EBA [23] EDF Off-Line None TBS High Low 

WSE [8] EDF* On-Line (2) CBS Medium Medium 

BRS [24] EDF* On-Line (2) TBS Medium Medium 

MRS [24] EDF* On-Line (2) TBS Medium Medium 

BSS [24] EDF* On-Line (2) TBS Low High 

SNRT [26] RM On-Line (1) SS/DS High High 

BSS [8] RM On-Line (1) SS/DS Medium Medium 

WSS 
(proposed) 

RM On-Line (4) SS/DS Low Low 

 



 17

 

Chapter 4  
Proposed WSS Algorithm  
4.1 System Model, Assumptions and Notations 

The target processor can change its supply voltage (V) and clock speed (Sclk) (or 

frequency) continuously within its operational ranges, [ minV , maxV ] and [ minS , maxS ]. There are 

two components of mixed workload real-time systems: a set of T = { T1…Tn } of n periodic 

tasks with hard deadlines, and a set of J aperiodic tasks arriving randomly with soft deadlines. 

Ji is the ith aperiodic task. Ti has higher priority than Tj if i < j. A periodic task Ti can be 

specified as Ti(Pi, Wi), where Pi and Wi are the period and WCET of Ti. Based on related work 

[8][12][14][15][16][24][26], the arrival time, period and WCET of periodic tasks are known 

in advance, but those of aperiodic tasks are made available only when they arrive. The relative 

deadline (Di) of each periodic task instance is assumed equal to its period. All tasks are 

assumed to be independent. 

4.2 Basic Idea 

The basic idea of the proposed WSS (Work-demand-based Slack-Stealing) is to compute 

the slack time under the existence of the bandwidth preserving servers by using short-term 

work-demand analysis. Moreover, the WSS uses two modes of operation to reduce the 

response time of aperiodic tasks. It uses the concept of slack stealing to service aperiodic 

tasks. If there are some aperiodic tasks waiting in the ready queue, and there is no execution 

budget and the slack time is large than 0, the WSS will service the aperiodic tasks first and 

will not cause any deadline miss of periodic tasks. 



 18

4.3 Two Modes of the WSS 

There are two modes of operation in the WSS: power saving mode and non-power saving 

mode. When the execution budget is exhausted and there are still some aperiodic tasks in the 

ready queue, the mode is set to the non-power saving mode. When no aperiodic task is in the 

ready queue or the execution budget is replenished, the mode is switched back to the power 

saving mode. 

4.4 The Stretching Rules in Power Saving Mode 

In the real-time systems with mixed workload, the slack time can still be computed by 

assuming that the bandwidth preserving server is an additional periodic task TBPS. The WCET 

of TBPS is Qs and the period is Ts. The priority of TBPS is according to Ts. However, TBPS isn’t 

like other periodic tasks. TBPS will not be executed even if its execution time is not zero when 

there is no aperiodic task in the ready queue. The algorithm of the lpWDA with the DS/SS has 

to be modified as follows in order to be applicable to mixed workload real time systems: 

 When a periodic tasks Ti finishes, Hi(t) has to be recalculated in the lpWDA. If the 

bandwidth preserving server (BPS), which has the remaining execution budget qs, 

has a higher-priority than Ti, the calculation of Hi(t) must include qs when Ti 

finishes. 

 When an aperiodic task is completed, it is just seen as a preemption of TBPS. 

 At the deadline DBPS of TBPS, Hi(t) of each lower priority task Ti (for i > BPS) has to 

be recomputed as Hi(t) = Hi(t) - qs. This implies that TBPS is completed at DBPS. 

 When an aperiodic task is scheduled for execution, no computation of slack time is 

needed. 

Therefore, in the power saving mode, we calculate the clock speed by following two 

stretching rules: 

 Stretching rule for a periodic task Ti: The clock speed of Ti can be calculated as 



 19

follows: 

0)())(0(
)( S

twtslack,max
tw

rem
ii

rem
i ×

+
 

where S0 is the initial clock speed. 

 Stretching rule for an aperiodic task: If there is no periodic task in the ready queue, 

execute the aperiodic task at the clock speed of 

0))((
S

q,tD,R,NTAminmax
q

sBPS

s ×
−

 

where the next periodic task arrival time (NTA), the next replenishment time (R) of 

the bandwidth preserving server, and the deadline (DBPS) of TBPS are known in 

advance and t is the start time of the aperiodic task. 

If there is any periodic task in the ready queue, the clock speed of aperiodic task is 

S0. 

In this way, Hi(t) of periodic task Ti is still an overestimated value for a safe estimation 

on available slack time, because the consumed execution budget of bandwidth preserving 

server will not exceed Qs in a period of Ts. Fig. 3 is the modified UpdateLoadInfo procedure 

of Fig. 1 for the WSS, where budget∆  is the amount of consumed execution budget. 

We give an example to illustrate the operation of WSS. Assume there are two periodic 

tasks Ta(6,1) and Tb(8,2). Fig. 4 (a) shows two aperiodic tasks are serviced by a DS(5,1) 

without DVS. At t = 1, an aperiodic task J1 arrives. Because the execution budget is large than 

zero and the DS has the highest priority, J1 can be serviced immediately and the execution 

budget of DS is consumed at a rate of the clock speed per unit time. At t = 5, the execution 

budget is replenished. If any aperiodic task arrives between t = 2 and t = 5, the aperiodic task 

will be serviced by the background priority which was described in Chapter 2. Fig. 4 (b) and 

(c) show how to use the short-term work-demand analysis with a DS. When a periodic task is 

scheduled for execution, the calculation of slack time has to consider the execution budget of 

the DS. Because Ts of the DS is 5, TBPS has the highest priority. Therefore, we let TBPS = T1, Ta 



 20

= T2, and Tb = T3. At t = 0 , H0(0) = 0, H1(0) = 2, H2(0) = 4, and then slack2(0) = 2 can be 

derived by the CalcSlackTime() of Fig. 1. And the clock speed of T2 is 1 / (2 + 1) ×  S0 = 1/3 

×  S0. If T2,1 completes at t =1, H2(1) and H3(1) will be recalculated. Thus, H2(1) = 2 + 1 = 3 

(1 from qs) and H3(1) = 3 according to Fig. 3. At this time, an aperiodic task J1 arrives, and it 

will complete at t = 2 as shown in Fig. 4(d). Then H2(2) and H3(2) are 2 and 2 according to 

Fig. 3. 



 21

Function UpdateLoadInfo() 
IF (PERIODIC TASK COMPLETION) THEN 

udx = udx + Px 
IF x < BPS THEN 

Hx(t) = ∑ −

=
×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡ +
−⎥

⎦

⎥
⎢
⎣

⎢ −1

1
1x

i i
ii

x W
P

t
P

ud εε
 

ELSE IF x > BPS THEN 

Hx(t) = ∑ −

=
×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡ +
−⎥

⎦

⎥
⎢
⎣

⎢ −1

1
1x

i i
ii

x W
P

t
P

ud εε
 + qs 

END IF 
LOOP each task Ti, i  = x + 1 until i = n  

 Hi(t) = Hi(t) – rem
xw (t) 

END LOOP 
rem
xw (t) = 0 

 
ELSE IF(PERIODIC TASK PREEMPTION) THEN 

rem
xw  = rem

xw  – donew  
LOOP each task Ti, i = x + 1 until i = n  

 Hi(t) = Hi(t) – donew  
END LOOP 
 

ELSE IF(APERIODIC TASK PREEMPTION OR COMPLETION) THEN 
rem
BPSw  = rem

BPSw  – budget∆  
LOOP each task Ti, i = BPS + 1 until i = n 

Hi(t) = Hi(t) – budget∆  
END LOOP 
 

ELSE IF(DBPS) THEN 
LOOP each task Ti, i = BPS + 1 until i = n  

  Hi(t) = Hi(t) – qs 
END LOOP 
udBPS = udBPS + PBPS 

HBPS (t) = ∑ −

=
×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡ ε+
−⎥

⎦

⎥
⎢
⎣

⎢ ε−1

1
1BPS

i i
ii

BPS W
P

t
P

ud
 

rem
BPSw (t) = Qs 

 
END IF 

Fig. 3. The UpdataLoadInfo procedure in the WSS. 



 22

 
 

 
(a) 

 (b) 



 23

 
 (c) 

(d) 
 

Fig. 4. An example of work-demand-based slack-stealing scheme: (a) shows that tasks are 
scheduled with a DS without DVS. (b) shows the analysis scope with a DS. (c) shows the 
load estimation of each task at t = 0. (The gray-boxes mean the amount of work from higher 
or same priority tasks, and the black-boxes mean the amount of work from lower priority 
tasks.) (d) shows an aperiodic task completed at t = 2. 



 24

 

4.5 The Serviced Rules in Non-Power Saving Mode 

If an aperiodic task arrives and no other aperiodic task is in the ready queue in the 

non-power saving mode, the WSS computes the slack time of a periodic task which has the 

highest priority in the ready queue and services the aperiodic task according to the slack time. 

For instance, if Jy arrives at time t without the execution budget and no other aperiodic task in 

the ready queue, slacki(t) of the periodic task Ti, which has the highest priority in the ready 

queue has to be calculated. If slacki(t) is greater than zero, it means the schedulability of Ti 

will not be affected even if the execution time of Ti is deferred by the amount of slacki(t). 

Hence, we set [t, min(t + slacki(t), NRT)] as an time interval allowed to execute aperiodic 

tasks. If no aperiodic task is in the ready queue, slacki(t) can be reclaimed for Ti and the mode 

can be switched back to the power saving mode. In other words, aperiodic tasks can be 

executed first if slacki(t) is larger than zero in the non-power saving mode, and in this way the 

response time can be reduced when the actual workload of aperiodic tasks is large than the 

execution budget. On the other hand, if slacki(t) is smaller than or equal to zero, Ti will be 

executed using clock speed S0. If Ti completes early, Jy has an opportunity to be serviced 

according to the slack time of the new scheduled periodic task. 

If Jy arrives at time t without execution budget but another aperiodic task is already in the 

ready queue, then task Jy will be placed in a queue of pending tasks according to the FIFO 

(first in, first out) scheduling policy. In addition, if another higher priority task Tj (j < i) 

arrives during a time interval allowed to execute aperiodic tasks, this time interval has to be 

recalculated. 

Moreover, if an aperiodic task is serviced in the non-power saving mode, the Hi(t)’s of 

the other lower priority tasks ( BPS < i ) need not be modified. The period of servicing 

aperiodic tasks looks like an idle period of the schedule in the non-power saving mode. 



 25

 

Chapter 5  
Simulation Results and Discussion 
5.1 Simulation Model 

Aperiodic tasks were generated by the exponential distribution with interarrival time 

(1/λ) and service time (1/µ). We used a fixed value µ and varied λ to control the workload (ρ 

= λ/µ) of aperiodic tasks under a fixed utilization Up of periodic tasks [8]. There are three 

periodic tasks in Table 3. The period of each task is 6, 8, and 14, respectively and the 

WCET of each task is 0.5, 1.0, and 1.283, respectively. The utilization Up of periodic tasks 

is 0.3 ((0.5 / 6) + (1.0 / 8) + (1.283 / 14)) [8].  

 The actual execution time of each periodic task instance was generated by a normal 

distribution function in the range of [BCET, WCET], where BCET is the best-case 

execution time. The mean and the standard deviation were set to (WCET+BCET)/2 and 

(WCET-BCET)/6, respectively [24]. In the experiments, the voltage scaling overhead is 

assumed negligible both in the time delay and power consumption [8]. The total amount of 

Us and Up must be smaller than Ulub, which is the least upper bound of schedulable 

utilization. Ulub is 1 with EDF scheduling and n(21/n-1) for n tasks with RM scheduling. 

 In order to experimentally evaluate the performance of the proposed algorithms, 

WSS, we implemented the following existing schemes for performance evaluation:  

(1) PD scheme [8]: Aperiodic tasks were assumed to be serviced by the SS. It was also 

assumed that if the system is idle, it enters into the power-down mode (PD). The power 

consumption in the PD mode is assumed to be zero [8]. 



 26

 (2) Stretching-to-NRT (SNRT) scheme [25]: It was described in Chapter 3. 

 (3)Bandwidth-Based Slack-Stealing (BSS) scheme [8]: It was described in Chapter 3.  

For all experiments, all tasks were assigned an initial clock speed S0 = (Up + Us) Sm / Ulub, 

where Sm is the maximum clock speed [8]. In the following, we evaluated the performance 

of each scheme in terms of energy consumption and response time. The energy consumption 

and response time are normalized to those of PD [8]. 

 

Table 3. Periodic task set description. 

Task Set (millisecond) 
Task Period WCET 
T1 6 0.5 
T2 8 1.0 
T3 14 1.283 

 

5.2 Effects of Different Workloads of Aperiodic Tasks 

on Performance 

BCET is assumed to be 10% of WCET, and ρ is ranging from 0.05 to 0.25 (λ = 0.05 ~ 

0.25 and µ = 1.0) [8]. The server utilization Us is set from 10% ~ 35%, where Us is 

controlled by changing the value of Ts with a fixed Qs value [8]. The WSS is compared with 

the others three schemes under different workloads (server utilization) of aperiodic tasks. 

Fig. 5 shows the effects of different workloads (server utilization) on (a) normalized energy 

consumption, (b) normalized response time, and (c) normalized energy * response time of 

all schemes under different server utilization. From the simulation results, we have the 



 27

following observations:  

 As the server utilization (Us) increases, the energy consumption of all schemes 

increases because the initial clock speed S0 increases. 

 When the actual workload of aperiodic tasks is close to the server utilization, the 

energy consumption of the WSS is close to that of the BSS. The reason is that the 

slack time of the WSS will be used to service aperiodic tasks when the execution 

budget is exhausted. 

 When the workload of aperiodic tasks is close to server utilization, the response 

time of all schemes increases. 

 The WSS reduces the energy consumption, in average, by 58%, 22%, and 12% 

compared with the PD, SNRT, and BSS, respectively. 

 The WSS reduces the response time, in average, by 38% and 31% compared with 

the SNRT and BSS, respectively. The PD has the smallest response time. 

The normalized energy * response time [24] is a performance metric that combines the 

two important dimensions, energy consumption and response time, of the mixed workload 

real-time systems. As Fig. 5 (c) shown, the WSS has better performance than the other three 

schemes in terms of normalized energy * response time. 

 

 

 

 

 



 28

0.00

0.20

0.40

0.60

0.80

1.00

0.10

0.15

0.20

0.25

0.30

0.35

0.15

0.20

0.25

0.30

0.35

0.20

0.25

0.30

0.35

0.25

0.30

0.35

0.30

0.35

Server Utilization

N
or
m
al
iz
ed
 E
ne
rg
y 
C
on
su
m
pt
io
n

SNRT BSS WSS

 
(a) 

0 .00

0 .60

1 .20

1 .80

2 .40

3 .00

3 .60
0.10

0.15

0.20

0.25

0.30

0.35

0.15

0.20

0.25

0.30

0.35

0.20

0.25

0.30

0.35

0.25

0.30

0.35

0.30

0.35

S erver U tilization

N
or
m
al
iz
ed
 R
es
po
ns
e 
T
im
e

SNRT BSS WSS

 

(b) 
 



 29

0.00

0.40

0.80

1.20

1.60

2.00

0.10

0.15

0.20

0.25

0.30

0.35

0.15

0.20

0.25

0.30

0.35

0.20

0.25

0.30

0.35

0.25

0.30

0.35

0.30

0.35

Server Utilization

N
or
m
al
iz
ed
 E
ne
rg
y 
* 
R
es
p 
T
im
e

SNRT BSS WSS

  

(c) 
 

Fig. 5. Effects of the workload of aperiodic tasks on (a) normalized energy 

consumption (b) normalized response time (c) normalized energy * response time  

 

5.3 Effects of Different WCET/BCET Ratios of Periodic 

Tasks on Performance 

Assume that the workload of aperiodic tasks ρ is 0.1 [24], server utilization Us is 0.2, and 

the WCET/BCET ratio varies from 1 to 10 [20]. Fig. 6 shows the effects of different 

workloads (server utilization) on the (a) normalized energy consumption, (b) normalized 

response time, and (c) normalized energy * response time of all schemes. From these 

simulation results, we have the following observations: 

 The normalized energy consumption of the SNRT and BSS decreases very little 

with respect to the increase of the WCET/BCET ratio of periodic tasks. 

 As the WCET/BCET ratio increases, the normalized energy consumption of the 



 30

WSS decreases. The reason is that the slack time increases as WCET/BCET 

increases, and the WSS is more efficient in utilizing the slack time than the other 

three schemes. 

 The WSS reduces the energy consumption by an average of 66%, 23%, and 13% 

compared with the PD, SNRT, and BSS, respectively. 

 The WSS reduces the response time by 38%, and 31% compare with the SNRT and 

BSS, respectively. The PD has the smallest response time. 

 The WSS has better performance than the other three schemes in terms of 

normalized energy * response time. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10

WCET/BCET

N
or
m
al
iz
ed
 E
ne
rg
y 
C
on
su
m
pt
io
n

SNRT BSS WSS

 
(a) 



 31

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8 9 10

WCET/BCET

N
or
m
al
iz
ed
 R
es
po
ns
e 
T
im
e

SNRT BSS WSS

 

(b) 

0.00

0.30

0.60

0.90

1.20

1.50

1 2 3 4 5 6 7 8 9 10

WCET/BCET

N
or
m
al
iz
ed
 E
ne
rg
y 
* 
R
es
p 
T
im
e

SNRT BSS WSS

 
(c) 

 

Fig. 6. Effects of the WCET/BCET ratio of periodic tasks on (a) normalized energy 

consumption (b) normalized response time (c) normalized energy * response time. 



 32

5.4 Practical Issues 

In this thesis, we assumed that the CPU speed can be changed continuously for DVS. 

However, real CPUs only support a finite number of speed levels. The WSS can be adapted to 

real CPUs by choosing the lowest speed level that is equal to or greater than the speed value 

suggested by the WSS [20]. The more speed levels CPUs provide, the energy consumption is 

more close to that of ideal CPUs [20]. In the proposed WSS scheme, the time complexity to 

estimate slack time varies from O(1) (in the best case) to O(n) (in the worst case) with respect 

to the priorities of the scheduled tasks [22]. This is the overhead of the proposed algorithm. 

 



 33

 

Chapter 6  

Conclusions and Future Work 

6.1 Concluding Remarks 

In this thesis, we have presented an on-line dynamic voltage scaling (DVS) algorithm, 

called WSS, for mixed workload real-time systems. The WSS not only addresses the energy 

consumption for mixed workload real-time systems, but also consider the response time of 

aperiodic tasks. The WSS integrates the low power work-demand analysis (lpWDA [22]) to 

set a suitable clock speed and uses slack time to service aperiodic tasks when the actual 

workload of aperiodic tasks is close to the server utilization. The WSS can use the slack time 

more efficient than existing approaches, because it enlarges the slack time by delaying the 

schedule of lower-priority periodic tasks in near future as late as possible. Simulation results 

have shown that the WSS can effectively reduce the energy consumption, response time, and 

energy consumption * response time, in average, by 23%, 38%, 52% compared to the SNRT 

and 13%, 31% , 40% compared to the BSS, respectively. 

6.2 Future Work 

In the future, we may take more factors, such as number of preemptions, extra time and 

energy consumption overhead for voltage transitions and the realistic CPU speed levels, 

into consideration to make the proposed algorithm more feasible to realistic systems. The 

influences of these factors on energy consumption and response time deserve to further 

study. 



 34

 

Bibliography 

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques for system 

level dynamic power management,” IEEE Transactions on Very Large Scale 

Integration Systems, Vol.8, No.3, pp. 299-316, 2000. 

[2] Intel XScale® Technology, “Intel. PXA270 processor electrical, mechanical, and 

thermal specification,“ http://www.intel.com/design/intelxscale/ 

[3] Intel® Xeon® Processor, http://www.intel.com/products/processor/xeon/ 

[4] Trasmeta Corporation, “TN5400 processor specification,”  

http://www.transmeta.com/crusoe/ 

[5] Mobile AMD AthlonTM 64 processor, 

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_10220_10221,0

0.html 

[6] G. Carpenter, “Low power SOC for IBM's PowerPC information appliance platform,” 

in http://www.research.ibm.com/arl. 

[7] B. Moyer, “Low-power design for embedded processors,” in Proceedings of IEEE, 

Volume 89, Issue 11, pp. 1576-1587, November 2001. 

[8] D. Shin, and J. Kim, “Dynamic voltage scaling of mixed task sets systems in 

priority-driven systems,” IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, Volume 25,  Issue 3, pp. 438-453, March 2006.   

[9] Y. Shin, and K. Choi, “Power conscious fixed priority scheduling for hard real-time 

systems,” in Proceedings of the Design Automation Conference, pp. 134-139, 1999. 



 35

[10] W. Kim, J. Kim, and S. L. Min, “Preemption-aware dynamic voltage scaling in hard 

real-time systems,” in Proceedings International Symposium Low Power Electronics 

and Design, pp. 393–398, 2004. 

[11] W. Kim, D. Shin, H. S. Yun, S. L. Min, and J. Kim. ”Performance comparison of 

dynamic voltage scaling algorithms for hard real-time systems,” in Proceedings of the 

IEEE Real-Time and Embedded Technology and Application Symposium, pp. 219-228, 

September 2002. 

[12] M. Spuri and G. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,” 

Journal of Real-Time Systems, vol. 10, no. 2, pp. 179-210, 1996. 

[13] C. Rusu, X. Ruibin, R. Melhem, D. Mosse, "Energy-efficient policies for 

request-driven soft real-time systems," in Proceedings of Euromicro Conference on 

Real-Time Systems, pp.175-183, July 2004. 

[14] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server algorithm for 

enhanced aperiodic responsiveness in hard real-time environments,” IEEE 

Transactions on Computers, vol. 44, no. 1, pp. 73-91, Jan. 1995. 

[15] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task scheduling for hard real-time 

systems,” Journal of Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989. 

[16] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time 

systems,” in Proceedings of the IEEE Real-Time Systems Symposium, pp. 4-13, 1998. 

[17] J. P. Lehoczky, and S. Ramos-Thuel, “An optimal algorithm for scheduling 

soft-aperiodic tasks in fixed priority preemptive systems,” in Proceedings of the IEEE 

Real-Time Systems Symposium, pp. 110-123, Dec. 1992. 

[18] T.S. Tia, “Utilizing slack time for aperiodic and sporadic request scheduling in 

Real-Time Systems,” Technical Report No. UIUCDCS-R-95-1906, University of 

Illinois, April, 1995. 



 36

[19] C. Im, and S. Ha, “Dynamic voltage scaling for real-time multi-task scheduling using 

buffers,” in Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on 

Languages, compilers, and tools for embedded systems, pp. 88-94, 2004. 

[20] H. Aydin, R. Melhem, D. Moose, and P. Mejia-Alvarez, “Power-aware scheduling for 

periodic real-Time tasks,” IEEE Transactions on Computers, Volume 53, Issue 5, pp. 

584-600, May 2004. 

[21] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low power embedded 

operating systems,” in Proceedings of the ACM Symposium on Operating Systems 

Principles, pp. 89-102, 2001. 

[22] W. Kim, J. Kim, and S. L. Min, “Dynamic voltage scaling algorithm for fixed-priority 

real-time systems using work-demand analysis,” in Proceedings of the International 

Symposium on Low Power Electronics and Design, pp. 396-401, 2003. 

[23] Y. Doh, D. Kim, Y.-H. Lee, and C. M. Krishna, “Constrained energy allocation for 

mixed hard and soft real-time tasks,”  in Proceedings of 9th International Conference 

on Real-Time and Embedded Computing Systems and Applications, pp. 533-550, 2003. 

[24] H. Aydin, and Q. Yang, “Energy-responsiveness tradeoffs for real-time systems with 

mixed workload,” in  Proceedings of  10th IEEE Real-Time and Embedded 

Technology and Applications Symposium, pp 74-83, 2004. 

[25] X.S. Hu, G. Quan, B. Mochocki, “A realistic variable voltage scheduling model for 

real-time applications,” in Proceedings of the International Conference on 

Computer-Aided Design, pp. 726-731, 2002. 

[26] D. Shin and J. Kim, “Dynamic voltage scaling of periodic and aperiodic tasks in 

priority-driven systems,” in Proceedings of Asia and South Pacific Design Automation 

Conference, pp. 653-658, 2004. 

 


