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A Technique for

Reducing Occurrence Graph Building Time

Student: Yo-Han Lin Adpvisor: Dr. Feng-Jian Wang
Institute of Network Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

Petri net is a kind of model which can be used-to analyze many kinds of systems. An
occurrence graph is the state diagtam:of a Petrinet. It can be used to analyze many kinds of
properties of the net. This thesis presents a téchnique that reduces the occurrence graph
building time by applying the occurrence graphs of two Petri nets whose transitions to be
merged. Since the technique merges two Petri nets a time only, the policy of merging more

than two nets is discussed in this thesis. Two significant applications are also indicated.

Keywords: Petri net, transition mergence, occurrence graph, marking graph, state diagram,

incremental analysis, workflow.
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Chapter 1. Introduction

Petri net is a kind of model which can be represented by graphical and mathematical
ways. The graphical representations increase their readability while the mathematical
representations define them clearly and let them can be analyzed by many kinds of methods
([3], [5], [8]). The powerful modeling ability, two kinds of representations, and many
analyzing methods of Petri nets let them very practical to model and analyze many kinds of

systems ([4], [5], [8]).

An occurrence graph (O-graph) is the state diagram of a Petri net. The nodes in the
O-graph represent the reachable states (alsocalled “marking”) while the arcs represent the
variations of states from one to another: Since the O-graphs represent the behaviors of the

Petri nets, many kinds of analyzing methods-are based on them ([2], [3]).

Two Petri nets can be applied to"construct a new Petri net by merging part of their
transitions. This thesis presents a technique to reduce the construction time of a new O-graph
of a Petri net for the mergence. The work is done by reusing the O-graphs of two original nets
instead of using the new net. The mergence works on two Petri nets at a time, and the policy
of merging more than two nets is then introduced. In a large distributed system, there are lots
of components. These components can be modeled by Petri nets and our work provides an
effective way for the construction and analysis of the Petri nets and their O-graph from their
component. Another method can be applied in the incremental analysis of a Petri net by

dividing the net into many components actively.

The rest of this thesis is organized as follows. Chapter 2 presents the motivation and



introduces Petri nets, O-graphs, and some other related works. The algorithms of merging
transitions between two Petri nets and generating new O-graph are described in Chapter 3
while Chapter 4 introduces some extended applications. Chapter 5 uses an example to trace
the execution of the main algorithm in Chapter 3. Chapter 6 concludes the thesis and indicates

some future works.



Chapter 2. Background

This chapter introduces the motivation for merging Petri nets in Section 2.1. There are
two necessary models is defined for the mergence first in Section 2.2 and 2.3. Some other

related works are introduced in Section 2.4.

2.1 Motivation

When workflows are more and more complex, the ability of analyzing workflows when
they are edited is needed. One characteristicrof this ability is incremental analysis. For
example, most code editor softwares nowadays have some incremental analysis abilities to
assist a person under coding. A well known function is raising a warning of syntax error in a
meaningful time when a programmer is editing the code. Like that, if workflow editor
software has the ability of incremental analysis, the errors can be found and corrected in the

editing phase.

Since Petri nets is a kind of models which can be applied to model and analyze
workflows ([9], [10], [11]), if the ability of incremental analysis can be added on Petri nets,
the related analysis for workflows can be applied incrementally, too. So, the technique of
merging two existent Petri nets with their transitions is proposed in this thesis to help

incremental analysis.

Because Petri nets are used to analyze not only workflows but also many other systems

([3], [8]), this technique might be applied in many other kinds of systems further.



2.2 Petri Net

Petri nets originated from the early work of Carl Adam Petri ([7]). Most readers refer to

[8] when applying Petri nets.

Petri nets are a kind of models, which can be used to model many kinds of system and

analyzed with techniques. Petri nets used in this thesis are also called marked place/transition

nets in the Petri net taxonomy ([3]).

P>

Figure 2.1An example of a Petri net

A Petri net (also called “net” in this thesis for short) is a directed graph with two kinds of
nodes, interpreted as places and transitions, such that no arc connects two nodes of the same
kind. A Petri net is also equipped with an initial marking which puts tokens on some places. A

marking of a net is a state of this net. Figure 2.1 shows an example of a Petri net. A circle



means a place, a rectangle means a transition, and a dot means a token. If this is the initial

state of the Petri net, the initial marking of the Petri net puts a token on the place p;.

Definition 2.1: A Petri net is a tuple PN = (P, T, F, my) where

® P is a finite set of places;

® Tis a finite set of transitions such that P N T'= &J;

® F'is a finite set of directed arcs, F < (P U T) X (P U T), satisfying
FNPXP)y=FN((TXT=U,

® myis the initial marking, my: P — N where N = {0, 1, 2, ...}.

This is the mathematical definition of a Petri net used in this thesis. While this thesis
presents a technique about Petri Net, some precise mathematical definitions about Petri Net

must be defined.

Definition 2.2:
® A marking of a set of place P is a mapping m: P — N where
N=1{0,1,2,...}.

® A marking of a Petri net PN = (P, T, F, my) is a marking of a set of place P.

A marking of a net represents a state of this net. It is a function defined from a set of
places (or a set of all places in a net) to the set of nonnegative integers which means the
number of tokens on each place. For the reason of readability, a marking of a net in an
example can be expressed as an array with nonnegative integers which each element in it
means the number of tokens on each place. For example, the marking of the net showed in

Figure 2.1 can be represented as (1, 0, 0, 0, 0).



Definition 2.3: Let PN = (P, T, F, my) be a Petri net.

® Foranelementx € P U T, its pre-set °x is defined by
*x={yePUT|(yx) €F}

® and its post-set x° is defined by
xX*={yePUT|(x,y)EF}.

This definition defines the notations about the input and output sets of a node (place or
transition) in a net. Note that the input and output sets of a place can only be the sets of

transitions and the input and output set of a transition can only be the sets of places.

Definition 2.4: A transition ¢ is enabled by a marking m if m marks all places in
°t. In this case ¢ can occur. Its occurrence transforms m into the marking m’,
defined for each place p by

m(p)-1 if pet-r,
m’(p) m(p)+1 if pet-'t,
m(p) otherwise.

This definition defines the words “enable” and “occur” (also called “fire’). The sentence
“m marks all places in °¢” indicates that the marking m puts at least one token on each place in
°t. This definition defines the behavior of Petri nets while an occurrence of a transition can
transform from one marking to another in a net, that is, from one state to another. Intuitively,
when a transition is fired, it removes a token from each input place of it and adds a token on

each output place of it.



p2

D3

Figure 2.2 The marking after firing ¢,

For example, in the net showed in Figure 2.1, if ¢ is fired, the marking of this net
becomes Figure 2.2 — a token is removed from p; and two tokens is added on p, and p;

separately.

2.3 Occurrence Graph

An occurrence graph (O-graph) can also be called a marking graph because it is a graph
uses markings as its nodes. An O-graph of a Petri net is a graph uses all reachable markings
from the initial marking as its nodes and uses all possible behaviors as its arcs. A behavior
represents a transition being fired on a marking and the marking being transformed to another.
Since O-graphs are state diagrams of Petri nets, they provide a very straightforward and

easy-to-use method to analyze many properties of Petri nets.



Definition 2.5: An arc-labeled directed graph is a tuple DG = (V, A) where

® [isaset of nodes (or vertices);

® Aisasetofarcs (oredges),4 S VX L X Vwhere L is a given set of some
labels.

Definition 2.6: The occurrence graph of a Petri net (P, T, F, my) is an arc-labeled
directed graph OG = (V, A) where

® Vs the set of all reachable markings from my;

® A= {(myt,my) € VX TX V|m;isthe marking after firing # on m,}.

These two definitions define the O-graph of a net. The O-graph uses a transition of the

net as the label of an arc because a behavior can only correspond to a transition.

‘ : ‘ - ‘ : ‘

Figure 2.3 The O-graph of the Petri net in Figure 2.1

Figure 2.3 shows the O-graph of the net showed in Figure 2.1. Each circle denoted by a
number is a node (i.e. a marking) and the double circle is the initial marking. The numbers in
the circles separate these nodes and each of them corresponds to a marking: 1 = (1, 0, 0, 0, 0),

2->(,1,1,0,0),3->(0,0,0,1,0),4->(0,0,0,0, 1).



2.4 Related Works

Julia Padberg [12] applied an extension of high-level replacement systems ([14]) to Petri
nets in order to achieve an integration of transformations with the preservation of safety
properties. This article proves that the transformations of Petri nets under three kinds of rules
can preserve safety properties (something bad should never happen). A safety property can be
expressed by a temporal logic formula in terms of numbers of tokens on places. In [13], she
extended safety preservation to the transformations of algebraic high-level nets, which is a

kind of high-level Petri nets.

Piotr Chrzastowski-Wachtel [6] proposed five basic refinement rules (sequential place
split, sequential transition split, OR-split, AND-split, Loop) to refine workflow nets (WF-net,
defined in [10], WF-net is a kind-of Petrinet).using a top-down manner. If a WF-net is started
from a single place with no transitions;and only the five refinement rules are proposed on it,
the resulting WF-net is sound (defined in [6] and [10]). Since the refinement rules are not
enough to produce every kinds of WF-net, this article also presents two kinds of
non-refinement rules called “communication” and “synchronization” that can also modify

WF-nets without losing soundness property.

The above works can preserve some kinds of properties when modifying Petri nets
according to some rules. They have an advantage that there is no analysis needed to analyze
these properties after modification. But, they also have shortcomings. First, the modifying
rules are restricted for some specific properties, e.g., the flexibility is restricted and the
integrations are more complicated. Second, although some properties can be preserved after

several modifications containing some characteristics, these properties may still exist after



other kinds of modifications.

Since the size of an O-graph is often huge, Pierre Molinaro [16] presented a technique
that can generate a huge O-graph in a reasonable amount of time and memory space. This
technique is based on the Vector Decision Diagram (VDD) data structure, which is inspired by
Binary Decision Diagrams (BDDs) introduced in [18]. A tool ([17]) based on the technique is

also proposed.
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Chapter 3. Petri Net Transition Mergence

This chapter presents the algorithms merging pairs of Petri net (also called “net” for
short) transitions. The discussions are done in both formal and informal ways from the
combination' of two Petri nets (without merging any pair of transition) to transition
mergence”. In order to simplify the understandability, a sample case based on two identical
nets shown in Figure 3.1 (a) is used through this chapter. Figure 3.1 (b) shows the O-graph of
the net in (a) where the number marked on each marking indicates the token on what place in
(a). Section 3.1 shows the way to combine two nets and their occurrence graphs (O-graph)
while Section 3.2 shows transition mergence with a deletion-based algorithm. Section 3.3

presents a construction-based algorithm corresponding to the above two algorithms.

p1 t p2 t p3 t3 P4

Figure 3.1 (a) An example of a Petri net; (b) the O-graph of (a)

3.1 Combination of Two Petri Nets

" Which is defined in Definition 3.1
2 Which is defined in Definition 3.5

11



Our discussion starts from combining two distinct nets to a new one without merging any
transition. Figure 3.2 (a) is a simple example of combining two identical nets showed in
Figure 3.1 (a). The O-graph of the result net is presented in Figure 3.2 (b). Instead of built
from the result net (Figure 3.2 (a)), this O-graph can be built as a matrix graph from original
O-graphs directly. For the matrix graph, each row corresponds to the O-graph of subnet 1
while each column presents subnet 2. As shown in Figure 3.2 (b), the two subnets have no
mutual intersection, so the variety of marking on the nets can be handled as two isolated parts,
denoted by left and right. In the matrix graph, each node with a left/right symbol represents
the marking variety of subnet 1 and 2 separately. For example, the node denoted as “1/1”
represents the marking that puts a token on p;.; and a token on p;_;; the node denoted as “1/2”
represents the marking that puts a token on pjj.and a token on p,,. Different with the
markings, each arc is denoted by the corresponding- transition that is associated with two
numbers, which the first representsithe_subnet it belongs and the second separates the
transition from others in the same ‘subnet. Foriexample, if the transition #,; is fired on the
marking denoted as “1/1”, a token moves from p,_; to p,., while another is still placed on p;_;

and the marking of the result net is transformed from “1/1” to “1/2”.

12



(a) Di1 ti; Pi2 1.2 P13 113 Dia
)23 Lrr P22 %) D23 I3 Do

(b)

subnet 2

marking change of subnet 1 —

Figure 3.2 (a) The Petri net generated by combining two Petri nets in Figure 3.1 (a); (b) the
O-graph of (a)

Since the above two subnets are distinct, a transition belonging to a subnet firing

represents a marking change on the direction of the subnet.

We give a formal definition for “combine” as below.

13



Definition 3.1: Two distinct Petri nets PN; = (P;, T;, F;, my;) and PN, = (P3, T>,
F>, my,) are combined to a new Petri net PN = (P, T, F, my), where

(1) P=P;UP;;

(2) T=T;V Ty

(3) F=F;UF;;

(4) Vp € Pimop)=my(p);

(5) Vp € Py my(p) = my2(p).

PN can be called as the combination of PN; and PN-.

With the example (Figure 3.2) mentioned above, the combination functions are
(1) P=1pi1,pr2 P13 praf Y { pr1, p22, P23, Pr4f

(2) T={ti1, tiz t13} U {tog, t22, 2.3}

(3) F'is the union of all the arcs that connectplaces’and transitions in subnet 1 and subnet 2.

(4) The token numbers on thes¢ places p; 1, pi2, P13, p1-4 about my (the initial marking of the
net combined from the two Subnet) are-the same as those about my; (the initial marking
of subnet 1).

(5) The token numbers on these places p,.;, p22, p2-3, p2-4 about my are the same as those
about my, (the initial marking of subnet 2). Items (4) and (5) indicate that m, is merged

from my; and m,, without other modifications.

The relationship between the O-graphs of PN;, PN, and PN can be discussed now.

14



Definition 3.2: Let two Petri nets PN; = (P;, T}, F;, my,;) and PN; = (P>, T5, F>,
my,2) be distinct, the O-graphs OG; = (V;, A;) and OG, = (V>, A,) belong to PN,
and PN, separately, and M be the set of all markings of P; U P,. The marking
mapping function Mpy; py> Which is a function defined from V; X V; into M ,
and V v; € V;and v, € V3

(1) 'V p € P Mpnipv2(vis vi)() = vilp);

(2) YV p € P2 Mpnipv2(vis v)(p) = vi(p).

Although this definition uses the notations v; and v; to denote the nodes in OG; and OG>,
the two notations still denote the markings of PN; and PN, that is, the functions defined from
a set of places (P; or P,) to the set of nonnegative integer. The reason for using v instead of m
to denote a marking here is that the markings in this definition are treated as the nodes of the
O-graphs. In the rest, using v to denote a marking only means that the marking is treated as a
node in an O-graph while the definition of v.has nothing different with the definition of a

marking.

Mpy; py2 1s a function which merges two reachable markings of PN; and PN, separately
together. For example, while using the marking (1, 0, 0, 0) (node “1” in Figure 3.1 (b)) of the
subnet 1 in Figure 3.2 (a) and the marking (0, 1, 0, 0) (node “2” in Figure 3.1 (b)) of the
subnet 2 as inputs, the function M of the two subnets outputs the marking (1, 0, 0, 0, 0, 1, 0, 0)
(the numbers in the array specify the numbers of tokens of the places in this order (p;.;, p;.2,

Pi1-3, P1-4, P2-1, P2-2, P2-3, p2_4)) (node “1/2” in Figure 3.2 (b))

Proposition 3.1: If PN = (P, T, F, my) is the combination of PN; = (P;, Ty, F1,
711(),1) and PN2 = (Pz, Tg, Fg, 711(),2) and the O—graphs oG = (V, A), OG] = (V[, A]),
and OG; = (V>, A2) belong to PN, PN;, and PN, separately, Mpy; pn2 18 @

one-to-one and onto function defined from V; X V, into V

15



Because PN; and PN, are distinct, their O-graphs are orthogonal. When PN is only the
combination of PN; and PN, without other modifications, its reachable markings can be

generated by combining two reachable markings of PN; and PN, separately, that is, Mpy; pn>.

Definition 3.3: Let two Petri nets PN; = (P, T;, F;, mg,;) and PN, = (P, T>, F>,

my,2) be distinct, the O-graphs OG, = (V;, A;) and OG: = (V>, A,) belong to PN;

and PN, separately, and M be the set of all markings of P; U P,. The arc

mapping function Rpy; pa2 1s a function defined from (4; X V>) U (42 X V;) into

M X (T; U T,) XM , and

(1) VveV,a= vt vy € Az Renipvaa, v) = (Mpyipn2Av, vi), t,
Mpyi,pn2A(v, v2));

2) VveVya =Wyt vy) € A Rpnipnvaa, v) = (Mpyi pn2(vi, v), t,

Mpni pn2(V2, V).

The function Rpy; py2 maps the behaviors (arcs in the O-graph) of the nets PN; and PN,

to the behaviors of the combination of PN; and PN,.

Proposition 3.2: If PN = (P, T, F, my) is the combination of PN; = (P;, T}, F},
my,;) and PN, = (P,, T», F», my) and the O-graphs OG = (V, A), OG; = (V1, 4)),
and OG, = (V>, A2) belong to PN, PN;, and PN separately, Rpy; py2 1S a
one-to-one and onto function defined from (4; X V) U (4, X V;) into A.

Because the behaviors in OG/ are not influenced by what state (marking) PN is at since
PN, and PN, are distinct from each other and each marking in OG; can be combined with

every markings in OG; (i.e. each marking in OG; can be mapped to n markings in OG by

16



Mpyi pn2, Where n is the number of markings in OG>), the markings in OG mapped to the

same marking in OG; must have those arcs which start from that marking in OG/ (i.e. each
arc a; in A; has the corresponding arcs (a; X V3) in 4). For example, because transition ¢; is

enabled by marking “1” in Figure 3.1, transition #,; is enabled by “1/17, “1/2”, “1/3”, and

“1/4” in Figure 3.2. The arcs in OG, have the same property as those in OG, too. Except

those arcs in 4 which have the relations with 4; or 4, (those arcs in the set Rpy; pn2((A; X V5)

U (42 X V7)), there are no other arcs being made in 4 since PN; and PN; have no change (i.e.
there are no new markings or transitions to create new behaviors). So Rpy; py2 1S @ one-to-one

and onto function defined from (4; X V,) U (4, X V) into 4.

These two definitions and twe propesitions indicate a way of building the O-graph for
the net combined from two distinct nets. Because the two functions M and R are onto function,

it can be guaranteed that the O-graph created-by-them is complete.

3.2 The Algorithm of Combining Two Petri Nets

These are some structures about Petri net used in the algorithm of Petri net combination:

17



Structure PetriNet {

Place[] p;
Transition[] t;
FlowRelation[] f;
Ograph 0G;

Structure Place {
int initialMarking;
FlowRelation[] fln;
FlowRelation[] fOut;

Structure Transition {
FlowRelation[] fln;
FlowRelation[] fOut;

Structure FlowRelation {
Null* start;  // point to Place or Transition

Null* end;  // point to Transition or Place

Although FlowRelation.start and FlowRelation.end are null pointers, they only point to
Place or Transition and do not both point to Place or Transition at the same time to satisfy the
definition of Petri net that one directed arc does not connect the same kind of nodes (place or

transition).

These are some structures about O-graph:
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Structure Ograph {

Vertex|] v
Arcl[] a;
Vertex|] pointerTable1D;  // pointer to the vertex by ID

Vertex[][] pointerTable2D;  // pointer to the vertex by tmpID1 and 2

Structure Vertex {
Marking m;
Arcl[] arcOut;
Arcl[] arcln;
// the three kinds of ID will be used in the algorithm
int ID; /1 All vertexes have the different ID from O to size — 1.
/I ' The vertex with the ID “0” is the initial marking.
/I ' The two kinds of tmpID will map this vertex to the two original markings

// like an inverse function of M.

int tmplID1;
int tmpID2;
h
Structure Arc {
Vertex vStart;
Vertex vEnd;

Transition t;

Vertex.ID gives each vertex a unique integer ID in an O-graph while Vertex.tmpID1 and
Verex.tmpID2 map each vertex (node) to its original vertexes (like an inverse function of M)
in two subnets. Ograph.pointerTablelD and Ograph.pointerTable2D point to the vertexes by
the three kinds of ID, so they can be used to find the vertexes that are needed in the

algorithms without doing unnecessary search.

This is the algorithm of the Petri net combination:
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Algorithm 3.1: PNCombining(PetriNet PN1, PetriNet PN2) — combines two
Petri nets PN and PN2 and returns the result net.

DN W N =

// Creat a new empty net then combine PN/ and PN2 to it.
PetriNet PN = new PetriNet;

// merge the Petri net part

PN.p =clone(PN1.p + PN2.p); // initial marking (token number in the place) can
also be copy in this stage.

PN.t =clone(PNI.t+ PN2.t);

PN.f = clone(PNI.f+ PN2.f);

// merge the O-graph part
int newID = 0;
// create the vertexes;
PN.OG.pointerTable2D = new Vertex[PN1.Ograph.v.size][PN2.Ograph.v.size];
FOR i from 0 to PN1.OG.pointerTable1 D.size - 1
vx = PN1.0OG.pointerTable1DJi];
FOR j from 0 to PN1.0G.pointerTable1 D.size - 1
vy = PN2.0G.pointerTable 1 D[j];
Vertex v = new Vertex;
v.mn = vX.m + vy.m;
v.tmpID1 =i;
v.tmplD2 = j;
v.ID = newlD;
PN.OGv t+=v;
PN.OG.pointerTable | D[newID] = v;
PN.OG.pointerTable2 D[i][j] = v;
newlID++;
END
END
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29  // create the arcs
30 FORALL ax € PN1.0OG.a

31 FOR ALL vy € PN2.OG.v

32 Arc a = new Arc;

33 a.vStart = pointerTable2D[ax.vStart.ID][vy.ID];

34 PN.OG.pointerTable2 D[ax.vStart.ID][vy.ID].arcOut += a;
35 a.vEnd = pointerTable2D[ax.vEnd.ID][vy.ID];

36 PN.OG.pointerTable2D[ax.vEnd.ID][vy.ID].arcIn += a;
37 a.t = ax.t;

38 PN.OGa+=a;

39 END

40 END

41

42 FORALL ay € PN2.0Ga

43 FOR ALL vx € PN1.OG.v

44 Arc a = new Arc;

45 a.vStart = pointerTable2D[vx.ID][ay.vStart.ID];

46 PN.OG.pointerTable2 D[vx.ID][ay.vStart.ID].arcOut += a;
47 a.vEnd = pointerTable2D[vx.ID][ay.vEnd.ID];

48 PN.OG.pointerTable2 D[vx.ID][ay.vEnd.ID].arcIn += a;
49 a.t=ax.t;

50 PN.OGa+=a;

51 END

52 END

53

54 RETURN PN;

Lines 4 to 7 in the algorithm unite the places, transitions and flow relations together
separately in two input nets to the result net. Lines 11 to 27, like the marking mapping
function M, create new vertexes from the original O-graphs. It also builds the vertex IDs and

the pointer tables. Lines 29 to 52, like the arc mapping function R, create the arcs from the

original O-graphs. The codes between line 30 and line 40 correspond to (4; X V) in

Definition 3.3 while the codes between line 42 and line 52 correspond to (4, X V).

3.3 Merging Petri Net Transitions
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(a)

(b)

Figure 3.3 (a) Merge two transitions between two nets from Figure 3.1 (a); (b) the O-graph of
(a)

Merging two transitions represents inserting synchronization for them. Figure 3.3 (a) is a
simple example of merging two transitions in Figure 3.2 (a), where the dashed transitions are
merged as a new transition #,. Figure 3.3 (b) is the O-graph of Figure 3.3 (a) where the node
“1/1” with double circle is the initial marking. This O-graph can be generated from the
O-graph in Figure 3.2 (b) by removing the dashed nodes and arcs and adding the arc of double
black (“2/2”, t,,, “3/3”). When the two dashed transitions are merged, the arcs corresponding

to them (the dashed double black arcs in Figure 3.3 (b)) must be removed. Because the node
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“2/2” enables the two dashed transitions (the node is the starting point of two arcs
corresponding to these two transitions separately), a new arc (the arc of double black in
Figure 3.3 (b)) corresponding to the new transition #, and starting from this node must be
added. Node “3/3” are the end of a path that starts from “2/2” and passes through two arcs
corresponding to the two dashed transitions separately, so it is the end point of the new arc of
double black. Other dashed nodes and arcs are removed since they are not reachable from the
initial marking “1/1” after removing the dashed double black arcs and adding the arc of

double black.

Above example indicates a rough sketch of the method that generates the new O-graph.
Before the discussion of the algorithm generating the new net for merging transitions and its

O-graph, we first define the differences between two original subnets and the new net.

Definition 3.4 (merging relation): Let two distinct sets of transitions 7; and 7, be
held by two distinct Petri nets PN; and PN respectively. For a merging relation
MR from T; to Tr, MR < T; XT5, and V (ta,, ta,), (tb,, thy) € MR: if (ta;, ta,) #
(tb;, thy) then ta; + tb; and ta, + tb.

A merging relation is a relation from the set of all transitions in a net to that in another.
All elements in a merging relation are distinct. A transition mergence which is defined in

Definition 3.5 merges transitions between two nets according a merging relation.
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Definition 3.5 (transition mergence): Let PN, = (P;, T}, F1, mg;) and PN, = (P»,
T,, F, my ) be two Petri nets. A Petri net PN = (P, T, F, my) generated by a
transition mergence according to a merging relation MR from 7, to 7>, where
(1) P=P;UP;
2) T=(T;UT,UMR)-T,where T"={t|3(t;, 1) €E MR: t;=tort,=t};
3) F=(F;UF,UF;”UF,”)-(F;"UF,’), where
Fr'={f]3(t;, 1) € MR: (p1, t))=f € For (t;,p1)=f € Fi},
Fy’={f] (¢, t2) € MR: (p2, t2) =f € Fror (t2, p2) =f € F>},
F;7={f1(3(tas, ti2) = t, € MR and A(pas, ta1) € Fi; f= (pas, t) ) or
( A(ts1, tr2) =ty € MR and A(ty1, po1) € Fr; = (4, po1) )}, and
F>” = {1 (A(tas, ta2) = ta € MR and A(pa2, ta2) € F2; f= (pa2, 1) ) OF
( (o1, tr2) = t, € MR and I(tp2, pr2) € Fo; f= (¢, pp2) )}
(4) Vp € Pizmy(p)=mo(p);
(5) Vp € Py my(p) = my(p).

In this definition, both original transitions. to'be merged are deleted and a corresponding
transition is generated as follows: Letitwo transitions #; and ¢, be merged as a transition ¢ in a
transition mergence, and then all of 7, and ¢, aré transferred to input/output places of 7. A pair
of transitions to be merged can not appear inside any of both original nets. There might be
more than one pair of transitions to be merged, and the merged transitions in any two pairs
must be distinct. Item (4) and (5) indicate that the initial marking of P is the same as P; and

P,’s initial marking correspondingly.

The content of the box shown below is the data structures about merging relation used in

the following algorithm of transition mergence.
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Structure MergingRelation {

TransitionPair[] tp;

Structure TransitionPair {
Transition tl;

Transition 2

Algorithm 3.2: PNTransitionMergenceV1(PetriNet PN1, PetriNet PN2,
MergingRelation MR)

—_—

PetriNet PN = PNCombining(PetriNet PN/, PetriNet PN2);

2

3 FOR i from 0 to (MR.tp.size - 1)

4 // make new transition in PN

5 Transition t = mergeTransition(PN, MR.tp[i]);

6 // remove or make the arcs

7 FOR ALL (arcl € PN.OGa) && (arcl.t == MR.tp[i].t])

8 IF (darc2 € arcl.vStart.arcOut, arc2.t == MR.tp[i].t2)
9 Arc a = new Arc;

10 at=t;

11 a.vStart = arcl.vStart;

12 arcl.vStart.arcOut += a;

13 a.vEnd = PN.OG.pointerTable2D[arc1.vEnd.tmpID1][arc2.vEnd.tmpID2];
14 PN.OG.pointerTable2D[arc1.vEnd.tmpID1][arc2.vEnd.tmpID2].arcIn+= a;
15 PN.OGa += a;

16 END

17 removePath(PN.OG, arcl);

18 END

19 FOR ALL (arc2 € PN.OGa) && (arc2.t == MR.tp[i].t2)

20 removePath(PN.OG, arc2);

21 END

22 END

23 regenerate]D(PN.OG);

24

25 RETURN PN;
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This algorithm does a transition mergence according to the merging relation MR between
two Petri nets PNI and PN2 by a deletion-based way and returns the result Petri net. All the

inputs of it must conform to the definitions about transition mergences.

This algorithm based on Algorithm 3.1 modifies the result O-graph returned from
Algorithm 3.1 like the example mentioned at the beginning of this section. Line 1 in this
algorithm calls Algorithm 3.1 and gets its result Petri net. The loop from line 3 to line 22 deals
one transition pair (MR.tp[i]) a time. Line 5 calls the function mergeTransition (Algorithm
3.2.1) to delete the old transitions to be merged (i.e. in the transition pair MR.tp[i]), add the
new transition generated from merging the transition pair, and redirect the flow relations in
the nets that connect with them (for:example, modify from the net in Figure 3.2 (a) to that in
Figure 3.3 (a)). Among the loop, two small loops from line 7 to line 21 remove the arcs
corresponding to the old transitions in-the transition-pair MR.tp[i] and add new arcs on the
markings that enable the two old transitions (For'example, add the arc ¢, in Figure 3.3 (b)).
The function removePath (Algorithm 3.2.2) removes the input arc from the input O-graph and
if the marking following this arc is not pointed by other arcs, it will be removed and its output
arcs will be removed by using removePath function recursively. The function regenerateID
(Algorithm 3.2.3) in line 23 can reconstruct an ID for each vertex for later use. This can

prevent any unconnection (if a vertex with ID = i exists in OG then a vertex with ID =1 — 1
also exists for all i > 1) in the ID system to make sure that another algorithm using this Petri

net as its input to work correctly.

These are the three algorithms used in Algorithm 3.2
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Algorithm 3.2.1: mergeTransition(PetriNet PN, TransitionPair tp)

Transition t = new Transition;

FOR ALL fin € #p.t1.fIn
fin.end = t;
t.fln += fin;

END

FOR ALL fout € #p.t1.fOut
fout.start =t;
t.fOut += fout;

END

PNA[] —= ip.tl;

FOR ALL fin € #p.t2.fIn
fin.end = t;
t.fln += fin;

END

FOR ALL fout € #p.t2.fOut
fout.end = t;
t.fOut += fout;

END

PNt -=p.t2;

PNt +=1

RETURN t;

Algorithm 3.2.2: removePath(Ograph OG, Arc arc)

arc.vEnd.arcln —= arc;
0G.a —= arc;
IF (arc.vEnd.arcIn == &)
FOR ALL a € arc.vEnd.arcOut
removePath(OG, a);
END
OG.v —= arc.vEnd;
OG pointerTable 1 D[arc.vEnd.ID] = null;
END
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Algorithm 3.2.3: regeneratelD(Ograph OG)

inti=0;
FOR j from 0 to OG.pointerTable1D.size - 1
v = OG.pointerTable 1 D[j];
v.ID =1,
OG.pointerTable 1 D[i] = v;
it+;
END

Proposition 3.3: If PN is generated by a transition mergence between PN; and
PN according to a merging relation MR where MR = (J, then PN is the
combination of PN; and PN..

This proposition shows the relation and difference between Petri net combination and a
transition mergence. Actually, the difference 1s only at the merging relation MR. A transition
mergence merges one or more paif.of transitions between two Petri nets while a combination

only deems two distinct Petri nets as one.

Definition 3.6:

® et PN be generated by a transition mergence between PN; and PN,
according to a merging relation MR and PN}, be generated by combining
PN; and PN, then PN is also deemed as the Petri net after doing a
transition mergence according to the merging relation MR from PN, to PN.,
and PN, is also deemed as the Petri net before doing this transition
mergence.

® With above MR, PN, PN,, PN;, PN>, OG, the O-graph of PN, is deemed as
the O-graph after doing a transition mergence according to the merging
relation MR from PN, to PN,, and OGj, the O-graph of PN}, is deemed the

O-graph before doing this transition mergence.
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This definition defines other denominations of PN, PN,, OG, and OG, that will be used

later for easy understanding.

Proposition 3.4: Let PN = (P, T, F, vy) be the Petri net after doing transition

mergence according to the merging relation MR from PN, to PN, PNy = (Pp, T,

Fy, viy) be the Petri net before doing this transition mergence, OG = (V, A) be the

O-graph of PN, and OG;, = (V5, Ap) be the O-graph of PN,

(1) vo=vpo;

2) VSV

(3) Va=(,t vy €A:ift & MR, thena € Ay,

4) Va=(W,t vy €A:ift € MR, thena & Ay,

5) Y ar=vytp,v2) € Ap: if (A (21, 12) €E MR: t; =ty o1 t; = 1p), then ap & A,

6) €V

(7) VY v, € Vi if (A (v, t, vi) € A) and v, £y, then v, & V;

®) VY ar,=yt,v;) € Ap:ifv; & V, then a, & A,

(9) Y vi=Mpni,pn2(Var, Va2) €V, (11, t2) € MR: iff (3 v3 = Mpy1 pno(Vai1, Va2) €
Vi: (v, t1, v3) € Ap) and (3 vy = Mpn; pno(Var, Vi2) € Ve (vi, t2, vg) € Ap), 3
(v, (t1, 2), v2) € A where v2 = Mpy; pn2(Voi, Vi2);

(10) Y ap= (v;, t,v2) € Ap:if v; € Vaand (A (t;, 1) € MR: t; = tor t, = £), then a,
€ A;

(1) Vv e Viprif A (v, t, ) € 4, then v, € V.

Proof:

(1) Because the definitions of the initial markings of PN and PN, are the same (see
Definition 3.1 and Definition 3.5), vy = vp.

(2) Since the firing behavior of each new transition ¢ is the same as the behavior of firing the
two original transitions merged as ¢ one by one, the action of merging transitions does

not produce new reachable markings. So, V'is the subset of V.
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Because V' is the subset of V, all the arcs starting at the markings belonging to V" but not
corresponding to the new transitions can be found in A4,.

Because the transitions belonging to MR are new transitions that can not be found in 75,
the arcs corresponding to them can not be found in 4.

The transitions that are merged must be removed after the transition mergence, thus each

arc corresponding to them does not exist in the O-graph after the transition mergence.
v € Vand vy = vy, therefore vpg € V.

Since there is no arc pointing to the marking v, in OG, such markings do not exist in OG
but the initial marking.

If v; does not exist in the new O-graph OG, the arcs starting from it to v, can not occur in
0G.

The new transition (¢;, #,).,can bemenabled by a marking only when both original
transitions ¢; and ¢, are enabled by the marking. Each this kind of marking v; must add an
output arc a corresponding to (#y, #>) ‘and'no _other arc corresponding to (#;, £,) must be
added in OG. Since the firing behavior of (7;, t,) is the same as the behavior of firing ¢,
and 7, one by one, the output marking of arc a is Mpn;pn2(Vei, vb2) When the input
marking of arc a is Mpn; pn2(Vai, Va2), firing ¢; on v,; in PN; changes the marking to vy,

and firing #, at v, in PN, changes the marking to v,.

(10) Because v; is still a reachable marking of PN and ¢ is still the transition in PN with the

same input and output places, when ¢ can be fired at v; and changes the marking to v; in

PN,, the same behavior can occur in PN.

(11) This is straightforward in the definition of graph.

To help understand the proposition, we made the items that mapping the notations in this

proposition to the targets in the example shown at the beginning of the section.
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PN: the net showed in Figure 3.3 (a)

OG: the O-graph showed in Figure 3.3 (b)

PNy: the net showed in Figure 3.2 (a)

OGy: the O-graph showed in Figure 3.2 (b)

MR: {(t;.2, t2.2)} (note that ¢, = (¢,.2, t2-2))

In item (3), a can be (“1/17, t;.4, “2/17), (“1/27, t;1, “2/27), (“1/17, to1, “1/27),
(“2/17, oy, “2/27), (“3/37, t1.3, “4/37), (“3/47, t1.3, “4/47), (“3/3”, t2.3, “3/47), or
(“4/37, t2.3, “4/4”)

In item (4), a can be (“3/3”, t,,, “3/4”)

In item (5), ap can be (“2/17, t;.5, “3/17), (“2/2”, t;5, “3/27), (“2/3”, t;2, “3/3”),
(“2/47, 12, “3/47), (“1/27%5 15, “1/3), (227, t5., “2/37), (“3/27, t2.5, “3/37), or
(“4/27, t5.5, “4/3”)

In item (7), v, which satisfies'the “if” condition can be “1/3”, “1/4”, “2/3”, “2/4”,
“3/17,“3/2”,“4/1”, or “4/27

In item (8), a, which satisfies the “if” condition can be (“1/3”, ¢;.;, “2/3”), (“1/4”,
tig, “2/47), (“2/37, t12, “3/37), (“2/47, t12, “3/47), (“1/37, to3, “2/47), (“2/3”, tr3,
€147, (“3/17, t1.3, “4/17), (“3/27, t13, “4/27), (“3/17, t2g, “3/27), (“4/17, t2.g, “4/27),
(“3/27, t5.5, “3/37), or (“4/2”, t5.2, “4/3”)

In item (9), for the mapping from (v;, (¢, t2), v2) to (“2/2”, (t;.2, t2:2), “3/37), vas 1S
the marking (0, 1, 0, 0) in subnet 1 and v, is the marking (0, 1, 0, 0) in subnet 2.

When vy; is the marking (0, 0, 1, 0) in subnet 1 and v, is the marking (0, 0, 1, 0) in
subnet 2, the “if” condition can be satisfied, so (“2/2”, (¢;.2, t2.2), “3/3”) € A
In item (10), using the mapping from a, to (“2/17, t.4, “2/2”) as an example, when

“2/1” € V and ¢,.; is not belonging to any pair in MR, (“2/17, t,.1, “2/2”) € A

31



® In item (11), using the mapping from v, to “2/2” as an example, when (“2/1”, 1,4,

2027y € 4,227 €V

In Proposition 3.4 (2) ~ (4), it can be observed that V" can be built by removing some
markings in ¥, and 4 can be built by removing some arcs in 4, and adding some arcs
corresponding to the new transitions. Items (5) and (8) detect the arcs to be removed, while
item (10) certifies the removes with (5) and (8) are complete. Item (7) detects the markings to
be removed, while (11) certifies the removes with (7) are complete. Item (9) can show the arcs

to be added for a new transition between two markings.

Proposition 3.4 can prove the correctness of the deletion-based algorithm of transition
mergence (Algorithm 3.2). Line 8.to line 16yin'thisalgorithm, adds the arcs corresponding to
the new transition discussed in item(9) of this proposition. Line 17 and line 20 use Algorithm
3.2.2 to remove the arcs and the markings for-items (5), (7), and (8) in this proposition when
the O-graph before the transition mergence contains no loop. In the algorithm, if all arcs
pointing to a marking are removed then it is removed; if the input marking of an arc is
removed then the arc is removed. So, if the O-graphs containing loops, all markings and arcs
in these loops are unable to be removed even when they are unreachable from the initial
marking. Although some methods which can check the reachability of the nodes can deal with
the problem, they are not needed to be added in the technique since the problem does not exist

in another construction-based algorithm discussed in Section 3.4.

3.4 Transition Mergence Algorithm
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The construction-based algorithm for transition mergence is discussed in this section,
where the two algorithms discussed in last two sections are used to explain the concept of

transition mergences.

Algorithm 3.3: PNTransitionMergenceV2(PetriNet PN, PetriNet PNy,
MergingRelation MR)

generate result Petri net PN,

slpool = {J} is a set of marking;

s2pool = {J} is a set of marking;

add Mpy; pno(my, my) into O-graph OG and sIpool where m; is the initial marking of PN; and
m; is the initial marking of PN>;

AW N~

5 WHILE (sipool or s2pool is not empty)

6 WHILE (sipool is not empty)

7 remove a marking v = Mpy; pn2(v;, v,) from sipool,;

8 FOR ALL (a; = (v;, t;, w;) € the set of output arcs of v; in PN;)
9 IF (¢, is to be merged)

10 label a; on v;

11 ELSE

12 add arc Rpy; py2(ay, v2) into OG;

13 IF (Mpy1.pn2(wy, v,) does not exist in OG)

14 add Mpy; pnvo(Wy, v2) into OG and s1pool;
15 END

16 END

17 END

18 add v into s2pool,

19 END
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two Petri nets PN/ and PN2 and teturng . the-result Petri net and its O-graph, which is built by
a construction-based way in this algorithm, All inputs must conform to the definitions about

transition mergences. The detail of this algorithm is shown in the appendix Algorithm A.

continuing generating the arcs and the markings that can reach from the markings in OG (i.e.
the arcs conforming with Proposition 3.4 (9) or (10) and the markings conforming with

Proposition 3.4 (14)). It has not the problem about loops existing in Algorithm 3.2 because the

WHILE (s2pool is not empty)
remove a marking v = Mpy; pn2(v;, v2) from s2pool,
FOR ALL (a; = (v,, t;, w,) € the set of output arcs of v, in PN)
IF (¢, is to be merged)
IF (v has been labeled by an arc a; = (v,, ¢;, w;) where (¢;, t,) € MR)
add arc (v, (¢, t2), Mpy; pnv2(W1, W) ) into OG;
IF (Mpy; pn2(wi, wy) does not exist in OG)
add Mpy; pno(w;, w;) into OG and sipool,
END
END
ELSE
add arc Rpy; pya(as, v;) into OG;
IF (Mpyy.pn2(vi, wo) does not exist in OG)
add Mpy; pno(vy, wy) into OG and sipool,;
END
END
END
remove all labels on v;
END
END
return PN and OG

This algorithm does a transition mergence according to the merging relation MR between

This algorithm builds the new O-graph OG starting from the initial marking and

unreachable markings are never put into OG to build unreachable paths to them self.

the rest of the Lines generate OG, the O-graph of PN. Lines 2 and 3 initial two pools used in

Line 1 in the algorithm constructs places, transitions, and the flow relations of PN while
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the rest of this algorithm. s/pool records the markings that have not been examined with the
O-graph belonging to PN; while s2pool records the markings that have not been examined
with the O-graph belonging to PN, but have already been examined with that belonging to
PN;. Line 4 creates the initial marking merged from the two initial markings in two original
nets then put it into s/pool. Lines 5 to 37 describe a loop which jumps out when s/pool and
s2pool are both empty, which indicates that all current markings in OG are already examined

with two original nets and OG has been completely built.

The loop from line 6 to line 19 is executed if any marking exists in s/pool. It removes a
marking v = Mpy; pn2(vy, v2) from sipool at line 7 and deals with this marking at a time. The
loop from line 8§ to line 17 checks an arc a; that starts at v; in PN, corresponding to v at a time.
If a; is corresponding to a transition to be merged, line 10 labels a; on v sets a related flag
recording this transition pair and-the are Rpyz paa(ay; v) is not created (by Proposition 3.4 (5),
the arc does not exist in the new-O-graph). If a;.is corresponding to a transition that is not to
be merged (the arc satisfies the conditions.of ‘Proposition 3.4 (10)), a related new arc
Rpnipna(ag, v) 1s generated and put into OG at line 12. If the marking pointed by Rpy; py2(ay, v)
(the marking satisfies the conditions of Proposition 3.4 (11)) does not exist in OG, it is
generated and added into OG and sipool at line 14. v is added into s2pool at line 18 after the

examining mentioned above is done.

The loop from line 20 to line 35 is executed if any marking exists in s2pool. It removes a
marking v = Mpy; pn2(vy, v2) from s2pool and deals with this marking at a time. Although this
loop is like that from line 6 to line 19 but to check with PN, there are still some different
points. Lines 21 and 22 check that if the transition ¢, corresponded by a, must be merged with
t; and there is an arc (v;, t;, w;) labeled on v (this situation satisfies the conditions of

Proposition 3.4 (9) where v; = v). If so, line 23 creates a new arc (v, (¢;, £2), Mpn1.pn2(wi, w2) )
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where w; is the marking pointed by a, in PN,. If Mpn; pn2(wi, ws) does not exist in OG, it is

generated and added into OG and s/pool at line 25.

Since only v; belongs to ¥ in Proposition 3.4 items (9) and (10) and (v, ¢, v») belongs to
A in item (11), all other conditions in these items only relate with the elements in the O-graph
before the transition mergence (which can create from the two original O-graphs by functions
M and R), the current state of the new O-graph under the algorithm operated does not
influence the examination of a marking corresponding to v; according to the three items. So,
each marking only needs to be checked with the two original nets one time. This algorithm
uses the two pools to make sure that each marking in new O-graph is checked exactly one
time by two original nets. Since all markings in an O-graph are reachable from its initial

marking, there is no marking or arc.being lost by the algorithm.

Now, Algorithm 3.3 can be compared.with the original algorithm ([2]) that constructs the
O-graph directly from its corresponding Petri net.

Algorithm 3.4

® input: a Petri net
® output: its O-graph

Waiting = &;
Node(my);
WHILE (Waiting = &)
select a node v; € Waiting;
FOR ALL (t, v;) € Next(v)
Node(v,);
Arc(vy, t, vp);
END
Waiting = Waiting — {v,};
END

O 0 3 O L B W N =~

—_
(=

Node(v) is a procedure that creates a new node (marking) v and adds v into Waiting, a set
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of markings, and the new O-graph. If v exists in the O-graph already, the procedure does

nothing. Next(v;) is used to denote the set of all possible “next moves” from v;. L.e., Next(v;)
= {(t, v2) € T X V| vy is the marking after firing ¢ on v;}. Arc(v,, t, v2) is a procedure that

creates a new arc (v, ¢, v) and adds it to the new O-graph.

Let n be the number of nodes in the result O-graph. The loop from line 3 to line 10
repeats n times because each node contained in the result O-graph should be added into
Waiting and examined one time in this loop. Let # be the number of transitions in the Petri net.
Since the set Next(v;) must be known at line 5, each transition in the result net must be
examined whether it is enabled by v; or not. This indicates that the complexity of finding the
set Next(v;) is O(t). Because Node(v) does, nothing if v exists in the result O-graph already,
the procedure Node(v) checks if viis alreadysin'O-gtaph and the complexity of this search is
O(n). So, the complexity of thistalgorithm 1s°O(n * ¢ n). This complexity is also shown in

[16].

Now, check the complexity of Algorithm 3.3. Since all markings that must be added into
the result O-graph should be checked one time with two subnets, the loop from line 6 to 19
and that from 20 to 36 will run n * 2 times totally when considering the loop from 5 to 37. Let
t; be the number of transitions in PN/ and ¢, be the number of transitions in PN2. The loop
from line 8 to line 17 runs #; times at most because each marking in the O-graph of PN/ can

have ¢; arcs as output at most. With similar reason, the loop from line 20 to line 34 runs #,
times at most. While #;, £, < ¢, the complexity of the two loops are O(¢). Note that each

marking usually enables a small part of all the transitions only, so the running times of the two

loops usually are much fewer than . The complexity of Algorithm 3.3 is O(n * f).
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Although the complexity of Algorithm 3.3 is smaller than the complexity of the original
algorithm, there are still situations which influence the time of generating the final result Petri
net by merging a set of nets while applying a transition mergence have some differences with

applying the original algorithm. These situations are discussed in Section 4.2.
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Chapter 4. More about Transition Mergence

This chapter introduces two kinds of extension about transition mergences and discusses
two significant applications can be applied with transition mergences. Section 4.1 indicates
that the O-graph can also be generated by Algorithm 3.3 with a modification when merging
places with a restriction. Section 4.2 shows how to build a Petri net from merging more than
two nets using transition mergences and the influences of the merging sequence. Section 4.3
discusses two significant applications can be applied with the technique for transition

mergence.

4.1 Merging Places and Transitions

Place mergence between two Petri nets is not as easy as transition mergence. For
example, the new markings unreachable in the combination net might become reachable after
place mergence. Since these markings must be found, the condition is more complex. On the
other hand, a restriction for the input/output transitions in a place mergence might makes the
O-graph of the result net extremely like the O-graph built by a transition mergence according

to these pairs of transitions.

Figure 4.1 (a) is the result net of merging two pairs of transitions between two subnets in
Figure 3.2 (a) while Figure 4.1 (b) is the net after merging a pair of places in Figure 4.1 (a).
The shapes of O-graphs of these two Petri nets are the same, as in Figure 4.1 (¢). In Figure 4.1

(a), the input transitions of places p; and p, are merged together. So are their output transitions.
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The numbers of tokens on both two places in the initial marking are zero. So, the token
numbers in p; and p, are the same no matter what series of transitions are fired. Since both
places have the same token number in each reachable marking in the O-graph, they can be
merged together and the result place has the same token number with them in each marking.
So, the difference between the two O-graphs of the two nets in (a) and (b) is only the content
of each marking. The O-graph of the net in (b) can be built by removing the token numbers
corresponding to p; and p; in each marking in the O-graph of the net in (a), and adding the

same number for p to the marking.
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(b)
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tm]
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Figure 4.1 (a) The result net of merging two pairs of transitions between two subnets from

Figure 3.2 (a); (b) merging two places in (a); (c¢) the O-graph of (a) and (b)

The definitions about merging pairs of places and transitions are shown below.
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Definition 4.1 (merging relation of Petri net): Let PN, = (P;, T}, F;, my,;) and
PN, = (P,, T, F>, my ) be two distinct Petri nets. For a merging relation of Petri
net MRP from PN; to PN,, where

MRP < (P; U T)) X (P> U T);

V(e;, ;) € MRP: ife; € P, then e, € Py;

V(e;, e;) € MRP: ife; € T), thene; € T5;

Y (aj, az), (b;, by) € MRP: if (a;, a;) # (b, by), then a; + b; and a, # by;
Vp; € Py, p; € Py if (py, p2) € MRP, then my, /(p;) = mo.2(p2);

Vp; € P;,ps € Py, t; € Ty if (p1, p2) € MRP and (¢4, p;) € F;, then 3| 1,
€ T (t2, p2) € Frand (¢4, t2) € MRP;

Vp; € P, ps € Py, t; € Ty if (p1, p2) € MRP and (py, t;) € F;, then 3| 1,
€ T (pa2, t2) € Frand (¢4, t2) € MRP;

Vp; € P, ps € Py, 1) € Ty if (p1, p2) € MRP and (5, p;) € F>, then 3| ¢,
€ T (t1, pr) € Frand (¢, t2) € MRP;

Vp; € P, ps € Py, 1) € Ty if (p1, p2) € MRP and (p», 1) € F>, then 3| ¢,
€ T (p1, t)) € Frand (¢, t2) € MRP.

extends to the places while merging relation contains the relationships between transitions
only. Besides the restriction that all elements in the relation are distinct (item (4)), there are
several restrictions added as follows. The components in the relation are of the same type
(items (2) and (3)). Two places contained in the relation have the same token number in the

initial marking (item (5)). An input and output transitions of two places have the relation if the

This definition is modified-from, the definition -of merging relation (Definition 3.4). It

two places have the relation (items (6) to (9)).
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Definition 4.2 (transition and place mergence): Let PN; = (P;, T}, F;, my,;) and PN,
= (P, T>, F», my2) be two distinct Petri nets. A Petri net PN = (P, T, F, m) generated
by a transition and place mergence (T&P mergence) according to a merging relation
of Petri net MRP from PN; to PN,, where
(1) P=(P;UP,UP”)-P ,whereP’={p|(p € Prand dp’ € P,: (p,p’) €
MRP)or(p € Pand dp’ € P;: (p°, p) € MRP)} and P” = {p | p=(p1, p2) €
MRP where p; € P;and p; € P»};
2) T=(T;UT,UT")-T,where T"={t|(t € T;and 3¢ € T,: (t,t’) € MRP) or
(teT,and A € T;: (£, 1) € MRP)} and T = {t| t = (t;, t;) € MRP where ¢,
€ Tyand t; € T},
(3) F=(F; UF,UFT;”UFT,” UFT;” UFT,” UFP UFP”)-(F;"UF5’),
where
F;’=1{f| d(a;, az) € MRP: (a;, b))=f € F,or (b;,a;)=f € F},
Fy’=1{f| d(a;, az) € MRP: (a,, by) =f € F,or (b, a;) =f € F>},
FT;'={(p, )| 311 € T1, 2 € To, (11, 12) =t € MRP, and (py, t;) € F; and
A (p1, p2) € MRP},
FT'={(p2 )| At; € T, t2 € T5, (t1, t2) =t € MRP, and (p», t2) € F> and
A (p1, p2) € MRP},
FT;”={(t,pn|dti €T1,t: € T5, (t1, 1) =t € MRP, and (t;, p;) € F; and
A (p1, p2) € MRP},
FT,"={(t,p)|dt1 € T1,t: € T5, (t1, 1) =t € MRP, and (12, p;) € F> and
A (p1, p2) € MRP},
FP ={(t,p)| A p; € P1,p> € P2, (p1, p2) =p € MRP, and (¢;, t;) =t € MRP:
(t1, p1) € Frand (22, p2) € F},
FP”={(p,t)| A p; € P, p> € P, (p1, p2) =p € MRP, and (¢;, ;) =t € MRP:
(p1, ;) € Frand (p,, o) € F};
(4) Vp; € P if (Ap; € Py: (p1, p2) € MRP), then my(p;) = my,1(p));
(5) Vp, € Py if (Ap; € Pz (p1, p2) € MRP), then my(p>) = my,2(p2);
(6) YV (p1,p2)=p € MRP:ifp; € P;and p> € P,, then my(p) = mo,1(p1) = mo2(p2).

Like a transition mergence, all transitions to be merged (contained in a pair of transitions
in the MRP) must be removed and the new transitions generated by merging a pair of

transitions must be added (item (2)). All places to be merged (contained in a pair of places in
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the MRP) must be removed and the new places generated by merging a pair of places must be
added (item (1)). All the arcs connected with an old place or transition to be merged must be
reconnected to the new place or transition generated by merging this old place or transition
with another (item (3)). After a T&P mergence, the token number of every place not merged
in the initial marking is not changed (items (4) and (5)) while the token number of a new
place generated by merging a pair of old places is the same as the token number of an old
place (item (6)) (note that the token numbers about the two places to be merged are the same

by the definition of T&P mergence).

As the example net in Figure 4.1 (b) generated by a T&P mergence according to a
merging relation of Petri net MRP = {p = (p1-3, p2-3), tmi = (t1-2, 12:2), tm2 = (t13, t23)} from
subnet 1 to subnet 2 in Figure 3.2 (a); P" = {p;.3, pa3}; P"=1{p}; T"={t;2, tro, t13, 23}, T =
Umis tm2}s F1° = (P12, 112), (81-2,P1:3)s (P35 L-3), (Eies p1a) b5 B2 = {(p22, 122), (822, P2-3), (D223,
123), (t23, p2-a)}s FT1" = {(p12, tm) }s "= Pa2s k1) }s FT17 = {(tw2, pra)}s FT27 = {(tm2

pra)}s FP' = {(tur, )}; FP” = {(p, tud)}:

Definition 4.3: Let PN; = (P}, T;, F1, my;) and PN> = (P», T>, F», my) be two
distinct Petri nets, MR is a merging relation from 7 to 75, and MRP is a merging
relation of Petri net from PN, to PN,. MR is called the pre-merging relation of
MRP if and only if (V (¢, t2) € MR: (t;, ;) € MRP) and (V (¢, t;) € MRP: if ¢,
€ T;and t; € T», then (¢, 1) € MR).

If a merging relation MR is a pre-merging relation of a merging relation of Petri net MRP,

MR 1is the same as the set of all pairs of transitions in MRP.
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Proposition 4.1: Let PN; = (P, T}, F'1, mg,;) and PN, = (P2, T», F», my,) be two
distinct Petri nets, MRP be a merging relation of Petri net from PN; to PN,, MR be
the pre-merging relation of MRP, PN, be the Petri net generated by the transition
mergence according to MR, PN be the Petri net generated by the T&P mergence
according to MRP, OG,, = (V,, 4,) be the O-graph of PN,, and OG = (V, 4) be the
O-graph of PN.

Let VF be a function defined from V), into V' where V v, € V)

® VYV pe P UPxif(A(p1, p2) € MRP: p; = p or p> = p), then VE(v,)(p) = vp(p);

® V (p5,p2) € MRP:if (p; € P;and p, € P,), then VF(v,))((p1, p2)) = vo(p1) =
vp(p2)

and AF be a function defined from 4, into 4 where V a, = (v}, t, v2) € 4,

AF(a,) = (VF(v)), t, VF(v,)), then

(1) VFi1s aone to one and onto function defined from V), into /" and

(2) AF 1s aone to one and onto function defined from 4, into 4.

The difference between PN-and PN, 1s-only at those pairs of places in MRP. Since the
input and output transitions of two places ineach pair of places in MRP are the same
(Definition 4.1 items (6) ~ (9)) and the token numbers of them have not difference in the
initial marking (Definition 4.1 item (5)), the token numbers of the two places in each
reachable marking of PN, (i.e. each marking in V) are the same. The mergence of the two
places does not change the whole behavior. So, when merging the pairs of places in MRP, the
only change from OG, to OG is that each node should be transform by VF and each arc

should be reconnected to the new node by AF.

From Proposition 4.1, it can be known that OG can be generated from OG, by VF and

AF. Since OG, can be generated from the O-graphs of PN; and PN, by Algorithm 3.3, the

technique of generating OG from PN; and PN; is found.
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4.2 Merging Policy

Since a T&P mergence merges two Petri nets to one, the final result net of a sequence of
T&P mergences is a node, i.e., the root of the binary tree according to the mergences. The
nodes including those generated in the mergences, and their binary relationships can be

deemed as a merging tree.

Figure 4.2 An example of a merging tree

Figure 4.2 is an example of a merging tree. Each node in the tree is a Petri net and each
non-leaf node is generated by a T&P mergence between its two branching nodes. For example,
net (node) Nj, is generated by a T&P mergence between net 1 and net 2 while net Nays is
generated by a T&P mergence between net 3 and net Nys. The root (net Ni,345) is the final

result net. The numbers following “N” indicates this node is merged from what leaf nodes.
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Definition 4.4: Let PNS be a set of distinct Petri nets, 7 be the union of all sets of

transitions in the Petri nets belonging to PNS, P be the union of all sets of places

in the Petri nets belonging to PNS, and F be the union of all sets of directed arcs in

the Petri nets belonging to PNS. A total merging relation for PNS denoted as TMR

where

(1) TMR < (TU P) X (T U P);

2) VteT,pe P (t,p) & TMR and (p, t) & TMR;

(3) If(es, e2) € TMR, then (e, e;) € TMR,;

(4) If(es, e2) € TMR and (e, e3) € TMR, then (e}, e3) € TMR;

(5) V t,t € T:ift; belongs to the same Petri net with #,, then (¢, ;) &€ TMR.

(6) V pi,p2 € P:if p; belongs to the same Petri net with p,, then (p,, p2) &€ TMR.

(7) Vpi,p>€P,t; €T if (p1, p2) € TMR and (11, p;) € F, then 3| 1, € T: (1,
p2) € Fand (¢, t;) € TMR,;

(8) VpuLp,€P,t; €T if(p1, p2) € TMR and (p;, t;) € F, then 3| 1, € T (pa,
t;) € Fand (1), t;) € TMR,

When merging a set of distinct Petri nets into one'net using a series of T&P mergences, a
total merging relation for this set'of nets can'be used to define which pairs of transitions and

places must be merged together in each T&P mergence.

Definition 4.5: Let PNS and TMR be as above, S be the set of all transitions and

places in PNS.

MRP is a merging relation of Petri net following TMR, where

® MRP is a merging relation of Petri net from PN, to PN, where PN, and PN,
are merged by two distinct subsets of PNS separately;

® ]l elements belonging to S; X S, belong to TMR, where S; and S> are the
subset of S.

Note: In this definition, if PN; € PNS, S; = {e;}; if PN, € PNS, S, = {ez}.
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Definition 4.6: Let PNS and TMR be as above.

MT is a merging tree constructed based on 7MR, where

® MTis a merging tree;

® the set of all leaves of MT is equal to PNS;

® VYV NLPN € the set of all non-leaf nodes of MT: NLPN is generated by a T&P

mergence according to a merging relation of Petri net following TMR

Definition 4.7: Let TMR be as above and PN be a Petri net. PN is generated
according to TMR, where PN is the root of a merging tree constructed based on
TMR.

Above three definitions show how to generate a Petri net by merging a set of distinct nets
according to a total merging relation for the set of nets. Note that there is one or more trees
constructed based on the same total merging relation. This indicates that the sequence of T&P
mergence can be changed under above definitions. Figure 4.3 is a merging tree representing
different sequences of T&P mergence from those in Figure 4.2. If both trees are constructed
based on the same total merging relation, the two roots (both denoted by “Ni2345”") in the two

figure are the same.
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Figure 4.3 Another example of merging tree

An interesting characteristic can be observed from this example. In Figure 4.2, if net 5 is
modified, nets Nus, Niss, and Nyzsss and their O-graphs must be reconstructed when the
O-graph of the final result net (Nj;345) is used.“In Figure 4.3, once net 5 is modified, only net
Ni2345 and its O-graph have to be:re-construeted-when they are needed. Once a net is modified
and the root and its O-graph are needed, the.eloser the net modified is to the root, the fewer of
the nets need be reconstructed. So, a merging tree containing the modified net closer to the

root needs less reconstructing time.

4.3 Possible Applications
In the application layer, there are two significant directions that the technique for T&P

mergence can be applied to: merging components into one and dividing a Petri net into a set

of nets for incremental analysis.
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4.3.1 The Analysis Following the Component Mergence

When a system is composed by several components, these components may have several
synchronizations between them. Since a T&P mergence between two nets is a kind of
synchronization and Petri nets can be used to model and analyze many kinds of systems ([4],
[5], [8]), T&P mergences can be used to model some kinds of relationships between two
components. When the generating time of the O-graph of a Petri net can be reduce, the times
of many Petri net analysis methods using O-graphs ([2], [3]) might be reduced. As presented
previously, it can reduce the generation time of the O-graph of a Petri net PN by merging the
O-graphs of the original subnets together, instead of using PN directly. On the other hand,

such mergences might be used to help to analyze the system.

Figure 4.4 shows an application. When two transitions ¢; and ¢, in two WorkFlow nets
(WF-net) (defined in [10], WF-net is;a-kind_of Petri-net) are merged, whether all reachable
markings can reach the end marking (only each-“‘out” place has a token) of the whole net must
be checked. In Figure 4.5, the O-graph of the whole net generated by applying Algorithm 3.3
is displayed. With some graphical algorithms ([19]) (in this case, search according to the
reverse arcs), the six reachable markings (marked with two gray oval) which can not reach the
end marking can be found. Since the generation time of the O-graph can be reduced, the total

analyzing time can be reduced. Similarly, the time of various analyses can be reduced.
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> WF-net |

>~ WF-net 2

Figure 4.4 Merging two transitions bétween two WorkFlow nets

initial marking

end marking

Figure 4.5 The O-graph of the whole net shown in Figure 4.4
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4.3.2 Incremental Analysis for Edition in a Petri Net

During edition of a Petri net, the net can be deemed as the mergence of its subnets. In the
merging tree corresponding to the Petri net, the O-graphs of each node can be generated by
the technique for T&P mergence. When a change is happened in one or more subnets during
edition, the O-graphs of these nets related to each modification must be re-constructed while

the rest are not.

Transtform

Get needed O-graphs

a merging tree and analyze
Modify some

components

the modified tree )

Modify some

components

Figure 4.6 A method for incremental analyzing a Petri net

Figure 4.6 shows a method for incremental analysis using the technique for T&P
mergence. Let an oval in the figure be a state. The related activities associated with the arcs
are:

® Transform: transform the input Petri net into a merging tree;
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® Modify some components: modify, add, or delete some nets in the tree without
reconstructing their O-graphs;
® Reconstruct: reconstruct the O-graphs of the modified nets;

® Get needed O-graphs and analyze: get the O-graphs needed and analyze them.

First, a Petri net PN edited and analyzed is transformed into a merging tree whose root is
PN. According to the definition of T&P mergence, each concurrent flow can be split as an
isolated component. In other words, the “And Split” and “And Join” components can be
divided as in Figure 4.7. When the problem of infinite markings can be dealt with, a
“Sequence” can be divided as Figure 4.8 because its second half can generate infinite tokens.
On the other hand, if the technique for place mergence is found, the division can be applied on

places.

T e
! !

F
& &

F
& &

Figure 4.7 (a) “And Split” division; (b) “And Join” division
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OO wm O-l 2O

Figure 4.8 “Sequence” division

When a change happens in the structure of PN, it is necessary to perform “Modify some
components” in Figure 4.6. Thus, the corresponding components in the merging tree are
modified. Note that it is not necessary to reconstruct.the O-graphs of the nodes of the merging

tree here.

When an analysis applying O-graphs.oceuts; if the state is “the modified tree” in Figure
4.6, i.e., the tree has been modified but its O-graphs have not been renewed, activity
“Reconstruct” is performed to rebuild the O-graphs of the modified component. This activity
applies the technique for T&P mergence discussed previously and then the state becomes “a
merging tree”, where activity “Get needed O-graphs and analyze” can be executed to analyze

the properties of PN using the O-graphs in the merging tree.

Since not all O-graphs must be reconstructed when “Reconstruct” is executed, the
O-graphs not to be renewed can be preserved. This characteristic has been discussed in

Section 4.2.

A simple example of the method is shown below. Figure 4.9 (a) is a Petri net PN. First, it
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is divided into two subnets as in Figure 4.10 (a). A merging tree with two leaves
corresponding to these two nets and a root for PN can be constructed. When PN is modified
as in Figure 4.12 (a), by add a loop on top half, and it is denoted as PN’ and the corresponding
component, subnet 1, is modified as subnet 1’ in Figure 4.11 (a). When an analysis applying
O-graph of PN’ occurs, this O-graph can be generated by reconstructing the O-graph of
subnet 1’ (Figure 4.11 (b)) and merging the O-graphs of the two subnets into one (Figure 4.12

(b)) with the technique for T&P mergence.

(a) (b)

Figure 4.9 (a) A Petri net PN; (b) the O-graph of PN
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:%—D—Q subnet 2

(a) (b)

Figure 4.10 (a) Two subnets after dividing PN; (b) their O-graphs

— % subnet 1’ i i

(a) (b)

Figure 4.11 (a) The net modified from subnet I; (b) its O-graph
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(2) (b)

Figure 4.12 (a) The Petri net PN’ merged from subnets 1’ and subnets 2; its O-graph

Since the complexity of generating the final O-graph by the technique for T&P mergence
has linear relation with the O-graph’s marking number and quadratic relation with the
reachable marking number of subnet 1°, it is-smaller;than the complexity of generating the
O-graph directly from PN’ which has the-quadratic relation with the O-graph’s marking

number.
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Figure 4.13 A resource allocating system

Figure 4.13 is a more complicated example. This Petri net models a resource allocating
system with two concurrent processes (P1 and P2) and three resources (R/, R2, and R3). By
the method, a merging tree using the five nets shown in Figure 4.14 as its leaves and the
resource allocating system as its root can be generated at “Divide” activity and the technique

for T&P mergence can be applied to.
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Figure 4.14 Five parts-of the resource allocation system in Figure 4.13
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Chapter 5. Example

In this chapter, another example which is more complex than that in Chapter 3 is used to
go through Algorithm 3.3. Figure 5.1 shows a Petri net modified from the net in Figure 3.1 (a)
(an extra token is added into p;) and its corresponding O-graph. Figure 5.2 shows an example
combination of the two nets in Figure 5.1 (a) and Figure 3.1 (a) and the O-graph of combining
result. Figure 5.3 shows the net after doing a transition mergence according to the merging

relation {(¢,.2, t,)} and its O-graph.

(2,0,0,0) 0,0,1,1)  (0,0,0,2)

(0,2,0,0) (0,1,1,0)  (0,0,2,0)

Figure 5.1 (a) An example of Petri net; (b) the O-graph of the net shown in (a)
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(a) Pi1 11 P12 1.2 P13 t13  Dig
D21 try P22 .2 D23 tz3 Pra
3

®
1
CO—»
-
subnet 2
subnet 1

Figure 5.2 (a) A Petri net generated from combining two nets; (b) the O-graph of the net

shown in (a)

In Figure 5.2 (b), there are two kinds of arcs, a black arc is corresponding to a firing of a

transition in subnet 1 in Figure 5.2 (a) and a gray arc is corresponding to a firing of a

transition in subnet 2. After applying Algorithm 3.1 for combining Petri nets, each marking of

subnet 1 is merged with each marking of subnet 2 to become a marking in the new O-graph.
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subnet 1
(a)
subnet 2
13 14
11
(b)
-
1 2
subnet 2
a ’
subnet 1

Figure 5.3 (a) A Petri net generated from doing a transition mergence; (b) the O-graph of the

net showed in (a)

Figure 5.3 shows the net after merge #;.; and #,., and its O-graph. The nodes in Figure 5.3
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(b) are the net’s markings:

“1”=(2,0,0,0,1,0,0,0);“2”=(1,1,0,0, 1,0, 0, 0);

“37=(0,2,0,0,1,0,0,0); “4”=(2,0,0,0,0, 1,0, 0);

“57=(1,1,0,0,0,1,0,0); “6”=(0,2,0,0,0, 1,0, 0);
“77=(1,0,1,0,0,0,1,0);“8”=(0,1,1,0,0,0, 1, 0);
“9”=(1,0,0,1,0,0,1,0);“10°=(0,1,0,1,0,0, 1, 0);

“117=(1,0,1,0,0,0,0, 1); “12”=(0, 1, 1,0, 0, 0, 0, 1);

“137=(1,0,0,1,0,0,0, 1); “14”=(0, 1,0, 1,0,0,0, 1)

(the numbers in the arrays specify the numbers of tokens of the places in this order (p;_;, p;.2,

D1-3y Di-4> P2-15 P2-2, D235 P2-4))-

The O-graph, OG, generating steps are shown-below:

(1) Generating the initial marking “1” = (2,05 0,-0, 1, 0, 0, 0) refers the two initial marking
(2,0,0,0)and (1, 0, 0, 0) ofthe two-subnets. The result is put into OG and s1pool.
slpool = {17}, s2pool = {}

(2) Marking “1”=(2,0,0,0, 1, 0, 0, 0) is gotten from s1pool and what arcs starting from (2,
0, 0, 0) in subnet 1 are checked.

a. The arc ((2, 0, 0, 0), #;4, (1, 1, 0, 0)) is found. When #;.; is not in the merging
relation and node (1, 1, 0, 0, 1, 0, 0, 0) is not in OG, arc (“1”=(2,0,0,0, 1, 0, 0, 0),
tr1,“27=(1,1,0,0, 1,0, 0, 0)) and node “2” are generated and put into OG. “2” is
put into s1pool.
slpool = {27}, s2pool = {}

“1” is put into s2pool.

slpool = {*2”}, s2pool = {“17’}

(3) Marking “2” is gotten from s1pool and what arcs starting from (1, 1, 0, 0) in subnet 1 are

checked.
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a. The arc ((1, 1, 0, 0), #,4, (0, 2, 0, 0)) is found. When #;.; is not in the merging
relation and node “3” is not in OG, arc (‘“2”, t;;, “3”) and node “3” are generated
and put into OG. “3” is put into s1pool.
slpool = {“3”}, s2pool = {“17’}

b. The arc ((1, 1, 0, 0), #,2, (1, 0, 1, 0)) is found. When ¢,_; is in the merging relation,
“2” is marked with ¢, (denoted as “2”).

“2”m 1s put into s2pool.

slpool = {*“37}, s2pool = {17, “27”,}

(4) Marking “3” is gotten from s1pool and what arcs starting from (0, 2, 0, 0) in subnet 1 are
checked.

a. The arc ((0, 2, 0, 0), #,2, (0, 1, 1, 0)) is found. When ¢,_; is in the merging relation,
“3” is marked with #;.>.

“3”m 1s put into s2pool.

slpool = {}, s2pool = {*“1”,%2” 153"}

(5) Marking “1” is gotten from s2peoland what arcs starting from (1, 0, 0, 0) in subnet 2 are
checked.

a. The arc ((1, 0, 0, 0), £2.4, (0, 1, 0, 0)) is found. When #,.; is not in the merging
relation and node “4” is not in OG, arc (“17, t,.;, “4”) and node “4” are generated
and put into OG. “4” is put into s1pool.
slpool = {47}, s2pool = {27, “37"m}

(6) Marking “2” is gotten from s2pool and what arcs starting from (1, 0, 0, 0) in subnet 2 are
checked.

a. The arc ((1, 0, 0, 0), £2.4, (0, 1, 0, 0)) is found. When #,.; is not in the merging
relation and node “5” is not in OG, arc (‘“2”, t,.;, “5”) and node “5” are generated
and put into OG. “5” is put into s1pool.

slpool = {“4”, “5”}, s2pool = {*“37,}
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(7)

(8)

)

Marking “3” is gotten from s2pool and what arcs starting from (1, 0, 0, 0) in subnet 2 are

checked.

a. The arc ((1, 0, 0, 0), £2.4, (0, 1, 0, 0)) is found. When #,.; is not in the merging
relation and node “6” is not in OG, arc (“3”, t,.;, “6”) and node “6” are generated
and put into OG. Puts “6” into s1pool.
slpool = {“4”, “5”,“6™}, s2pool = {}

Marking “4” is gotten from s1pool and what arcs starting from (2, 0, 0, 0) in subnet 1 are

checked.

a. The arc ((2, 0, 0, 0), #,4, (1, 1, 0, 0)) is found. When #;.; is not in the merging
relation and node “5” is in OG, arc (“4”, t;.;, “5”) is generated and put into OG.

“4” is put into s2pool.

slpool = {57, “6™}, s2pool = {447}

Marking “5” is gotten from-slpool and what arcs-starting from (1, 1, 0, 0) in subnet 1 are

checked.

a. The arc ((1, 1, 0, 0), #,./5405.2, 0,.0))*1s found. When #;.; is not in the merging
relation and node “6” is in OG, arc (“5”, t;.;, “6”) is generated and put into OG.

b. The arc ((1, 1, 0, 0), #,2, (1, 0, 1, 0)) is found. When ¢,_, is in the merging relation,
“5” is marked with #;.>.

“5”m 1s put into s2pool.

slpool = {6}, s2pool = {“4”, “57”,}

(10) Marking “6” is gotten from s1pool and what arcs starting from (0, 2, 0, 0) in subnet 1 are

checked.

a. The arc ((0, 2, 0, 0), #,2, (0, 1, 1, 0)) is found. When ¢,_; is in the merging relation,
“6” is marked with #;.,.

“6”m 1s put into s2pool.

slpool = {}, s2pool = {*“4”, “5”, “6”"m}
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(11) Marking “4” is gotten from s2pool and what arcs starting from (0, 1, 0, 0) in subnet 2 are
checked.
a. The arc ((0, 1, 0, 0), £2.2, (0, 0, 1, 0)) is found. When #,.; is in the merging relation
but “4” is not marked with ¢;_,, nothing should be done.
slpool = {}, s2pool = {*“57n, “6"m}
(12) Marking “5” is gotten from s2pool and what arcs starting from (0, 1, 0, 0) in subnet 2 are
checked.
a. The arc ((0, 1, 0, 0), £2.2, (0, 0, 1, 0)) is found. When ¢, is in the merging relation,
“5” is marked with #;.,, and node “7” is not in OG, arc (“5”, t,,, “7”") and node “7”
are generated and put into OG. “7” is put into s1pool.
slpool = {7}, s2pool = {“6"}
(13) Marking “6” is gotten from s2pool and what arcs starting from (0, 1, 0, 0) in subnet 2 are
checked.
a. The arc ((0, 1, 0, 0), t2:2, (050,-1,.0)).is found. When ¢, is in the merging relation,
“6” is marked with #;.,, and node “8is'not in OG, arc (“6”, t,, “8”) and node “8”
are generated and put into OG. “8” is put into s1pool.
slpool = {77, “8”}, s2pool = {}

... (until s1pool and s2pool are both empty)

Finally, OG becomes the O-graph shown in Figure 5.3 (b).
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Chapter 6. Conclusion and Future Works

The major contribution of this thesis is to introduce a method that reduces the O-graph
building time when merging some pairs of transitions in two Petri nets. The purpose is
achieved by utilizing the O-graph of the two Petri nets directly to generate the new one.

O-graph building time reduction contributes to the analyses to Petri net.

Besides merging pair of transitions, this thesis also introduces two extensions: The first
one is merging pairs of places when their input and output transitions are merged. The
algorithm of transition mergence can be used itr this case. Second, merging tree is introduced
to model merging policy when a sequence of transition mergences happens. What applications
could use the method provided by us is also-discussed-here. Two examples about merging two
WorkFlow nets and dividing a Petri net for incremental analysis are used to demonstrate the

method.

The future works are listed as follows:

1. State explosion and infinite states are two critical problems of O-graph. There are many
methods provided ([2], [3]) for solving these problems. Concerning these two factors to
integrate existing methods could increase the ability of our method.

2. The policies of building the merging trees are different in diverse applications. When the
structure of a merging tree has big influence to the analysis time, the researches about
how to build merging trees for applications is needed.

3. There are some actions/conditions not concerned. For example, places merging is not

concerned much. They might be worth while for further study.

67



4. There are many kinds of high-level Petri nets (For example, coloured Petri nets
introduced in [1], [2], and [4] and timed Petri nets introduced in [4]). One of our future

works is adapting our method to handle these high-level Petri nets.
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Appendix

The content of the box shown below contains the additional data structures about two

pools used in the following construction-based algorithm of transition mergence.

Structure Subnet1Pool {

Queue(Vertex)umsl;  // a queue with the element type “Vertex”

Structure Subnet2Pool {
Queue(UnsolvedMarkingS2) ums2;  // a queue with the element type

“UnsolvedMarkingS2”
h
Structure UnsolvedMarkingS2 {
Vertex  v;
Arcl[] marc;  //the arcs that must be marked
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Algorithm A is the detail of Algorithm 3.3, which is the construction-based algorithm for

transition mergence.

Algorithm A: PNTransitionMergenceV2(PetriNet PN1, PetriNet PN2,
MergingRelation MR)

1 // Creat a new empty Petri Net then add PN/ and PN2 in it.
2 PetriNet PN = new PetriNet;

3

4 // merge the Petri Net part

5 PN.p =clone(PNI.p + PN2.p);

6 PN.t=clone(PNI.t+ PN2.t);

7 PN.f = clone(PNI.f+ PN2.f);

8 Transition[] mt = new Transition[MR.tp.size];
9 FOR i from 0 to (MR.tp.size - 1)

10 // make new transition in PN

11 mt[i] = mergeTransition(PN, MR.tp[i));
12 END

13 // merge the occurrence graph part

14 intnewlD = 0;

15  SubnetlPool s1pool = new SubnetlPool;

16  Subnet2Pool s2pool = new Subnet2Pool;

17 Vertex vx = PN1.OG.pointerTable1D[0];

18  Vertex vy = PN2.0G.pointerTable1D[0];

19  Vertex v = new Vertex;

20 v.m=vx.m+ vy.m;

21  v.tmplID1 = vx.ID;

22 v.itmplD2 = vy.ID;

23 v.ID =newlD;

24 PN.OG.pointerTableD1[v.ID] = v;

25  newlD++;

26 PN.OGv t=v;

27  PN.OG.ppointerTableD2[v.tmpID1][v.tmpID2] = v;
28  add(slpool.umsl, v);

29

(to be continued)
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30  WHILE (slpool.ums1 #= & or s2pool.ums2 # &)

31 WHILE (slpool # )

32 v =remove(slpool.umdl);

33 UnsolvedMarkingS2 ums2 = new UnsolvedMarkingS2(v);

34 FOR ALL (originalArc € PN1.OG.pointerTable[v.tmpID1].arcOut)

35 boolean isMT = false;

36 FOR i from 0 to MR.tp.size - 1

37 IF original Arc.t == TM.tp[i].t1

38 ums2.marc[i] = originalArc;

39 isMT = true;

40 END

41 END

42 IF isMT != true

43 Arc arc = new Arc;

44 arc.vStart = v;

45 v.arcOut += arc;

46 IF PN.OG.pointerTable[original Arc.vEnd.ID][v.tmpID2] == null
47 Vertex newV = new Vertex;

48 newV.m = originalArc.vEnd.m + PN2.0OG.pointerTable[v.tmpID2].m;
49 newV.tmpID1 = originalArc.vEnd.ID;

50 newV.tmpID2 = v.tmpID2;

51 new V.ID = newlD;

52 PN.OG.pointerTable1 D[newV.ID] = newV;

53 newlD++;

54 PN.OGv +=newV,

55 PN.OG.pointerTable2D[newV.tmpID1][newV.tmpID2] = newV,
56 add(s1pool.umsl, v);

57 ELSE

58 Vertex newV = PN.OG.pointerTable[original Arc.vEnd.ID][v.tmpID2]
59 END

60 arc.vEnd = newV,

61 new V.arcln += arc;

62 arc.t = originalArc.t;

63 PN.OG.a +=arc;

64 END

65 END

66 add(s2pool.umd2, ums?2);

67 END

68

(to be continued)
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69 WHILE (s2pool # &)

70 ums?2 = remove(s2pool.ums?2);

71 v =ums2.v;

72 FOR ALL (originalArc € PN2.0G.pointerTable[v.tmpID2].arcOut)

73 boolean isMT = false;

74 FOR i from 0 to MR.tp.size - 1

75 IF originalArc.t == MR.tp[i].t2;

76 isMT = true;

77 IF ums2.marc[i] != null

78 Arc arc = new Arc;

79 arc.vStart = v;

80 v.arcOut += arc;

81 IF PN.OG.pointerTable[umd2.marc[i].vEnd.ID][originalArc.vEnd.ID] == null
82 Vertex newV = new Vertex;

83 newV.m = ums2.marc[i].vEnd.m + originalArc.vEnd.m;
84 newV.tmpID1 = ums2.marc[i].vEnd.ID;

85 newV.tmpID2 = originalArc.vEnd.ID;

86 newV.ID = newlD;

87 PN.OG.pointerTable1 D[newV.ID] = newV;

88 newlD++;

89 PN.OG.v +=newV;,

90 PN.OGpointerTable2D[newV.tmpID1][newV.tmpID2] = newV,;
91 add(s1pool.umsl, v);

92 ELSE

93 Vertex newV =

94 PN.OG.pointerTable[ums2.marc[i].vEnd.ID][original Arc.vEnd.ID];
95 END

96 Arc.vEnd = newV,

97 new V.arcln += arc;

98 arc.t = mt[i];

99 PN.OG.a += arc;

100 END

101 END

102 END

(to be continued)
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103 IF isMT != true;

104 Arc arc = new Arc;

105 arc.vStart = v;

106 v.arcOut += arc;

107 IF PN.OG.pointerTable[v.tmpID1][original Arc.vEnd.ID] == null

108 Vertex newV = new Vertex;

109 newV.m = PN/.OG.pointerTable[v.tmpID1].m + original Arc.vEnd.m;
110 newV.tmpID1 = v.tmpID1;

111 new V.tmpID2 = original Arc.vEnd.ID;

112 newV.ID = newlD;

113 PN.OG.pointerTable 1 D[newV.ID] = newV,

114 newID++;

115 PN.OG.v +=newV;

116 PN.OG.pointerTable2D[newV.tmpID1][newV.tmpID2] = newV,
117 add(s1pool.umsl, v);

118 ELSE

119 Vertex newV = PN.OG.pointerTable[v.tmpID1][original Arc.vEnd.ID]
120 END

121 arc.vEnd = newV,

122 new V.arcln += arc;

123 arc.t = originalArc.t;

124 PN.OG.a += arc;

125 END

126 END

127 END

128 END

129

130 RETURN PN;
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