

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

一 個 縮 短 發 生 圖 建 立 時 間 的 技 術

A Technique for Reducing Occurrence Graph Building Time

研 究 生：林友涵

指導教授：王豐堅 教授

中 華 民 國 九 十 六 年 八 月

 1

一 個 縮 短 發 生 圖 建 立 時 間 的 技 術

A Technique for Reducing Occurrence Graph Building Time

研 究 生：林友涵 Student：Yo-Han Lin

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學
網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

August 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年八月

 2

一個縮短發生圖建立時間的技術

研究生: 林友涵 指導教授: 王豐堅 博士

國 立 交 通 大 學
網 路 工 程 研 究 所

碩 士 論 文

摘要

 隨著資訊時代的進步，各類系統愈來愈複雜，分析這些系統正確性的方法好壞變得

很重要。執行一個方法的需求時間也是這個方法好壞的一個關鍵點。派翠網是一種可以

被用來分析許多系統的模型，而發生圖是派翠網的狀態圖。一個派翠網的發生圖可以被

用來分析許多這個派翠網的特性。這篇論文提出了一個技術：當在特定條件下融合兩個

派翠網間的轉移點時利用它們的發生圖來縮短建立新發生圖的時間。如此一來當一些使

用發生圖的分析方法需要取得發生圖時即可節省時間。因為這個技術一次只融合兩個派

翠網，融合三個以上的派翠網的方法以及影響也會被討論。另外，文章中也會提出這個

技術的兩個較明顯的應用方向。

關鍵字： 派翠網、轉移點融合、發生圖、狀態圖、遞增分析、工作流程

 i

A Technique for

Reducing Occurrence Graph Building Time

Student: Yo-Han Lin Advisor: Dr. Feng-Jian Wang

Institute of Network Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

 Petri net is a kind of model which can be used to analyze many kinds of systems. An

occurrence graph is the state diagram of a Petri net. It can be used to analyze many kinds of

properties of the net. This thesis presents a technique that reduces the occurrence graph

building time by applying the occurrence graphs of two Petri nets whose transitions to be

merged. Since the technique merges two Petri nets a time only, the policy of merging more

than two nets is discussed in this thesis. Two significant applications are also indicated.

Keywords: Petri net, transition mergence, occurrence graph, marking graph, state diagram,

incremental analysis, workflow.

 ii

誌謝

 本篇論文的完成，首先要感謝我的指導教授王豐堅博士兩年來不斷的指導與鼓勵，

讓我在軟體工程及工作流程的技術上得到很多豐富的知識，使我可以在派翠網路上找到

靈感。另外，也非常感謝我的畢業口試評審委員朱治平博士以及留忠賢博士，提供許多

寶貴的意見，補足我論文裡不足的部分。

 其次，我要感謝實驗室的學長姊們在研究生涯上的指導與照顧，尤其是靜慧學姊的

督促與幫忙以及建德學長提供的寶貴經驗，讓我學得許多做研究的方法和技巧，得以順

利的撰寫論文。

 最後，我要感謝我的家人，由於有你們的支持，讓我能讀書、作研究到畢業，此外，

謝謝同期碩士班好友們的打氣，在我遇到挫折時能互相勉勵並度過難關。由衷地感謝你

們大家一路下來陪著我走過這段研究生歲月。

 iii

Table of Contents

摘要 ...i

Abstract...ii

誌謝 ...iii

Table of Contents...iv

List of Figures...v

Chapter 1. Introduction...1

Chapter 2. Background...3

2.1 Motivation ..3

2.2 Petri Net..4

2.3 Occurrence Graph...7

2.4 Related Works...9

Chapter 3. Petri Net Transition Mergence .. 11

3.1 Combination of Two Petri Nets .. 11

3.2 The Algorithm of Combining Two Petri Nets ..17

3.3 Merging Petri Net Transitions ..21

3.4 Transition Mergence Algorithm..32

Chapter 4. More about Transition Mergence..39

4.1 Merging Places and Transitions..39

4.2 Merging Policy ...46

4.3 Possible Applications..49

4.3.1 The Analysis Following the Component Mergence ..50

4.3.2 Incremental Analysis for Edition in a Petri Net...52

Chapter 5. Example ..60

Chapter 6. Conclusion and Future Works...67

Reference ..69

Appendix ..71

 iv

List of Figures

Figure 2.1An example of a Petri net.. 4

Figure 2.2 The marking after firing t1.. 7

Figure 2.3 The O-graph of the Petri net in Figure 2.1 ... 8

Figure 3.1 (a) An example of a Petri net; (b) the O-graph of (a)................................. 11

Figure 3.2 (a) The Petri net generated by combining two Petri nets in Figure 3.1 (a); (b)
the O-graph of (a) .. 13

Figure 3.3 (a) Merge two transitions between two nets from Figure 3.1 (a); (b) the
O-graph of (a) .. 22

Figure 4.1 (a) The result net of merging two pairs of transitions between two subnets
from Figure 3.2 (a); (b) merging two places further; (c) the O-graph of (a) and
(b) .. 41

Figure 4.2 An example of a merging tree .. 46

Figure 4.3 Another example of merging tree... 49

Figure 4.4 Merging two transitions between two WorkFlow nets............................... 51

Figure 4.5 The O-graph of the whole net shown in Figure 4.4 51

Figure 4.6 A method for incremental analyzing a Petri net ... 52

Figure 4.7 (a) “And Split” division; (b) “And Join” division...................................... 53

Figure 4.8 “Sequence” division... 54

Figure 4.9 (a) A Petri net PN; (b) the O-graph of PN .. 55

Figure 4.10 (a) Two subnets after dividing PN; (b) their O-graphs............................. 56

Figure 4.11 (a) The net after modifying subnet 1; (b) its O-graph 56

Figure 4.12 (a) The Petri net PN’ after merging subnets 1’ and 2; its O-graph........... 57

Figure 4.13 A resource allocation system.. 58

Figure 4.14 Five parts of the resource allocation system in Figure 4.13..................... 59

Figure 5.1 (a) An example Petri net; (b) the O-graph of the net showed in (a)........... 60

Figure 5.2 (a) A Petri net generated from combine to nets; (b) the O-graph of the net
showed in (a) ... 61

Figure 5.3 (a) A Petri net generated from doing a transition mergence; (b) the O-graph of
the net showed in (a).. 62

 v

Chapter 1. Introduction

 Petri net is a kind of model which can be represented by graphical and mathematical

ways. The graphical representations increase their readability while the mathematical

representations define them clearly and let them can be analyzed by many kinds of methods

([3], [5], [8]). The powerful modeling ability, two kinds of representations, and many

analyzing methods of Petri nets let them very practical to model and analyze many kinds of

systems ([4], [5], [8]).

 An occurrence graph (O-graph) is the state diagram of a Petri net. The nodes in the

O-graph represent the reachable states (also called “marking”) while the arcs represent the

variations of states from one to another. Since the O-graphs represent the behaviors of the

Petri nets, many kinds of analyzing methods are based on them ([2], [3]).

 Two Petri nets can be applied to construct a new Petri net by merging part of their

transitions. This thesis presents a technique to reduce the construction time of a new O-graph

of a Petri net for the mergence. The work is done by reusing the O-graphs of two original nets

instead of using the new net. The mergence works on two Petri nets at a time, and the policy

of merging more than two nets is then introduced. In a large distributed system, there are lots

of components. These components can be modeled by Petri nets and our work provides an

effective way for the construction and analysis of the Petri nets and their O-graph from their

component. Another method can be applied in the incremental analysis of a Petri net by

dividing the net into many components actively.

 The rest of this thesis is organized as follows. Chapter 2 presents the motivation and

 1

introduces Petri nets, O-graphs, and some other related works. The algorithms of merging

transitions between two Petri nets and generating new O-graph are described in Chapter 3

while Chapter 4 introduces some extended applications. Chapter 5 uses an example to trace

the execution of the main algorithm in Chapter 3. Chapter 6 concludes the thesis and indicates

some future works.

 2

Chapter 2. Background

 This chapter introduces the motivation for merging Petri nets in Section 2.1. There are

two necessary models is defined for the mergence first in Section 2.2 and 2.3. Some other

related works are introduced in Section 2.4.

2.1 Motivation

 When workflows are more and more complex, the ability of analyzing workflows when

they are edited is needed. One characteristic of this ability is incremental analysis. For

example, most code editor softwares nowadays have some incremental analysis abilities to

assist a person under coding. A well known function is raising a warning of syntax error in a

meaningful time when a programmer is editing the code. Like that, if workflow editor

software has the ability of incremental analysis, the errors can be found and corrected in the

editing phase.

 Since Petri nets is a kind of models which can be applied to model and analyze

workflows ([9], [10], [11]), if the ability of incremental analysis can be added on Petri nets,

the related analysis for workflows can be applied incrementally, too. So, the technique of

merging two existent Petri nets with their transitions is proposed in this thesis to help

incremental analysis.

 Because Petri nets are used to analyze not only workflows but also many other systems

([3], [8]), this technique might be applied in many other kinds of systems further.

 3

2.2 Petri Net

 Petri nets originated from the early work of Carl Adam Petri ([7]). Most readers refer to

[8] when applying Petri nets.

 Petri nets are a kind of models, which can be used to model many kinds of system and

analyzed with techniques. Petri nets used in this thesis are also called marked place/transition

nets in the Petri net taxonomy ([3]).

t1 t2 t3p1

p2

p4 p5

p3

Figure 2.1An example of a Petri net

 A Petri net (also called “net” in this thesis for short) is a directed graph with two kinds of

nodes, interpreted as places and transitions, such that no arc connects two nodes of the same

kind. A Petri net is also equipped with an initial marking which puts tokens on some places. A

marking of a net is a state of this net. Figure 2.1 shows an example of a Petri net. A circle

 4

means a place, a rectangle means a transition, and a dot means a token. If this is the initial

state of the Petri net, the initial marking of the Petri net puts a token on the place p1.

 This is the mathematical definition of a Petri net used in this thesis. While this thesis

presents a technique about Petri Net, some precise mathematical definitions about Petri Net

must be defined.

Definition 2.1: A Petri net is a tuple PN = (P, T, F, m0) where
 P is a finite set of places;
 T is a finite set of transitions such that P ∩ T = ∅;
 F is a finite set of directed arcs, F ⊆ (P ∪ T) × (P ∪ T), satisfying

F ∩ (P × P) = F ∩ (T × T) = ∅;
 m0 is the initial marking, m0: P → ℕ where ℕ = {0, 1, 2, …}.

Definition 2.2:
 A marking of a set of place P is a mapping m: P → ℕ where
ℕ = {0, 1, 2, …}.

 A marking of a Petri net PN = (P, T, F, m0) is a marking of a set of place P.

 A marking of a net represents a state of this net. It is a function defined from a set of

places (or a set of all places in a net) to the set of nonnegative integers which means the

number of tokens on each place. For the reason of readability, a marking of a net in an

example can be expressed as an array with nonnegative integers which each element in it

means the number of tokens on each place. For example, the marking of the net showed in

Figure 2.1 can be represented as (1, 0, 0, 0, 0).

 5

 This definition defines the notations about the input and output sets of a node (place or

transition) in a net. Note that the input and output sets of a place can only be the sets of

transitions and the input and output set of a transition can only be the sets of places.

Definition 2.3: Let PN = (P, T, F, m0) be a Petri net.
 For an element x ∈ P ∪ T, its pre-set ●x is defined by

●x = {y ∈ P ∪ T | (y, x) ∈ F}
 and its post-set x● is defined by

x● = {y ∈ P ∪ T | (x, y) ∈ F}.

Definition 2.4: A transition t is enabled by a marking m if m marks all places in
●t. In this case t can occur. Its occurrence transforms m into the marking m',
defined for each place p by

()
()
()

⎪
⎩

⎪
⎨

⎧

−∈+
−∈−

••

••

.)(
,1
,1

'
otherwisepm

ttpifpm
ttpifpm

pm

 This definition defines the words “enable” and “occur” (also called “fire”). The sentence

“m marks all places in ●t” indicates that the marking m puts at least one token on each place in

●t. This definition defines the behavior of Petri nets while an occurrence of a transition can

transform from one marking to another in a net, that is, from one state to another. Intuitively,

when a transition is fired, it removes a token from each input place of it and adds a token on

each output place of it.

 6

t1 t2 t3p1

p2

p4 p5

p3

Figure 2.2 The marking after firing t1

 For example, in the net showed in Figure 2.1, if t1 is fired, the marking of this net

becomes Figure 2.2 – a token is removed from p1 and two tokens is added on p2 and p3

separately.

2.3 Occurrence Graph

 An occurrence graph (O-graph) can also be called a marking graph because it is a graph

uses markings as its nodes. An O-graph of a Petri net is a graph uses all reachable markings

from the initial marking as its nodes and uses all possible behaviors as its arcs. A behavior

represents a transition being fired on a marking and the marking being transformed to another.

Since O-graphs are state diagrams of Petri nets, they provide a very straightforward and

easy-to-use method to analyze many properties of Petri nets.

 7

Definition 2.6: The occurrence graph of a Petri net (P, T, F, m0) is an arc-labeled
directed graph OG = (V, A) where

 V is the set of all reachable markings from m0;
 A = {(m1, t, m2) ∈ V × T × V | m2 is the marking after firing t on m1}.

Definition 2.5: An arc-labeled directed graph is a tuple DG = (V, A) where
 V is a set of nodes (or vertices);
 A is a set of arcs (or edges), A ⊆ V × L × V where L is a given set of some

labels.

 These two definitions define the O-graph of a net. The O-graph uses a transition of the

net as the label of an arc because a behavior can only correspond to a transition.

t1 t2 t3
1 2 3 4

Figure 2.3 The O-graph of the Petri net in Figure 2.1

 Figure 2.3 shows the O-graph of the net showed in Figure 2.1. Each circle denoted by a

number is a node (i.e. a marking) and the double circle is the initial marking. The numbers in

the circles separate these nodes and each of them corresponds to a marking: 1 (1, 0, 0, 0, 0),

2 (0, 1, 1, 0, 0), 3 (0, 0, 0, 1, 0), 4 (0, 0, 0, 0, 1).

 8

2.4 Related Works

 Julia Padberg [12] applied an extension of high-level replacement systems ([14]) to Petri

nets in order to achieve an integration of transformations with the preservation of safety

properties. This article proves that the transformations of Petri nets under three kinds of rules

can preserve safety properties (something bad should never happen). A safety property can be

expressed by a temporal logic formula in terms of numbers of tokens on places. In [13], she

extended safety preservation to the transformations of algebraic high-level nets, which is a

kind of high-level Petri nets.

 Piotr Chrząstowski-Wachtel [6] proposed five basic refinement rules (sequential place

split, sequential transition split, OR-split, AND-split, Loop) to refine workflow nets (WF-net,

defined in [10], WF-net is a kind of Petri net) using a top-down manner. If a WF-net is started

from a single place with no transitions and only the five refinement rules are proposed on it,

the resulting WF-net is sound (defined in [6] and [10]). Since the refinement rules are not

enough to produce every kinds of WF-net, this article also presents two kinds of

non-refinement rules called “communication” and “synchronization” that can also modify

WF-nets without losing soundness property.

 The above works can preserve some kinds of properties when modifying Petri nets

according to some rules. They have an advantage that there is no analysis needed to analyze

these properties after modification. But, they also have shortcomings. First, the modifying

rules are restricted for some specific properties, e.g., the flexibility is restricted and the

integrations are more complicated. Second, although some properties can be preserved after

several modifications containing some characteristics, these properties may still exist after

 9

other kinds of modifications.

 Since the size of an O-graph is often huge, Pierre Molinaro [16] presented a technique

that can generate a huge O-graph in a reasonable amount of time and memory space. This

technique is based on the Vector Decision Diagram (VDD) data structure, which is inspired by

Binary Decision Diagrams (BDDs) introduced in [18]. A tool ([17]) based on the technique is

also proposed.

 10

Chapter 3. Petri Net Transition Mergence

 This chapter presents the algorithms merging pairs of Petri net (also called “net” for

short) transitions. The discussions are done in both formal and informal ways from the

combination 1 of two Petri nets (without merging any pair of transition) to transition

mergence2. In order to simplify the understandability, a sample case based on two identical

nets shown in Figure 3.1 (a) is used through this chapter. Figure 3.1 (b) shows the O-graph of

the net in (a) where the number marked on each marking indicates the token on what place in

(a). Section 3.1 shows the way to combine two nets and their occurrence graphs (O-graph)

while Section 3.2 shows transition mergence with a deletion-based algorithm. Section 3.3

presents a construction-based algorithm corresponding to the above two algorithms.

(a)

(b)

t1 t2 t3p1 p2 p3 p4

t1 t2 t3
1 2 3 4

Figure 3.1 (a) An example of a Petri net; (b) the O-graph of (a)

3.1 Combination of Two Petri Nets

1 Which is defined in Definition 3.1
2 Which is defined in Definition 3.5

 11

 Our discussion starts from combining two distinct nets to a new one without merging any

transition. Figure 3.2 (a) is a simple example of combining two identical nets showed in

Figure 3.1 (a). The O-graph of the result net is presented in Figure 3.2 (b). Instead of built

from the result net (Figure 3.2 (a)), this O-graph can be built as a matrix graph from original

O-graphs directly. For the matrix graph, each row corresponds to the O-graph of subnet 1

while each column presents subnet 2. As shown in Figure 3.2 (b), the two subnets have no

mutual intersection, so the variety of marking on the nets can be handled as two isolated parts,

denoted by left and right. In the matrix graph, each node with a left/right symbol represents

the marking variety of subnet 1 and 2 separately. For example, the node denoted as “1/1”

represents the marking that puts a token on p1-1 and a token on p2-1; the node denoted as “1/2”

represents the marking that puts a token on p1-1 and a token on p2-2. Different with the

markings, each arc is denoted by the corresponding transition that is associated with two

numbers, which the first represents the subnet it belongs and the second separates the

transition from others in the same subnet. For example, if the transition t2-1 is fired on the

marking denoted as “1/1”, a token moves from p2-1 to p2-2 while another is still placed on p1-1

and the marking of the result net is transformed from “1/1” to “1/2”.

 12

(a) t1-1 t1-2 t1-3

t2-1 t2-2 t2-3

p1-1 p1-2 p1-3 p1-4

p2-1 p2-2 p2-3 p2-4

t1-1

t1-1

t1-1

t1-1

t1-2

t1-2

t1-2

t1-2 t1-3

t1-3

t1-3

t1-3
t2-1 t2-1 t2-1 t2-1

t2-2 t2-2 t2-2 t2-2

t2-3 t2-3 t2-3 t2-3

1/1 2/1 3/1 4/1

1/2 2/2 3/2 4/2

1/3 2/3 3/3 4/3

1/4 2/4 3/4 4/4

(b)

marking change of subnet 1

marking change of
subnet 2

subnet 1

subnet 2

Figure 3.2 (a) The Petri net generated by combining two Petri nets in Figure 3.1 (a); (b) the
O-graph of (a)

Since the above two subnets are distinct, a transition belonging to a subnet firing

represents a marking change on the direction of the subnet.

 We give a formal definition for “combine” as below.

 13

Definition 3.1: Two distinct Petri nets PN1 = (P1, T1, F1, m0,1) and PN2 = (P2, T2,
F2, m0,2) are combined to a new Petri net PN = (P, T, F, m0), where
(1) P = P1 ∪ P2;
(2) T = T1 ∪ T2;
(3) F = F1 ∪ F2;
(4) ∀p ∈ P1: m0(p) = m0,1(p);
(5) ∀p ∈ P2: m0(p) = m0,2(p).

PN can be called as the combination of PN1 and PN2.

With the example (Figure 3.2) mentioned above, the combination functions are

(1) P = {p1-1, p1-2, p1-3, p1-4} ∪ { p2-1, p2-2, p2-3, p2-4}

(2) T = {t1-1, t1-2, t1-3} ∪ { t2-1, t2-2, t2-3}

(3) F is the union of all the arcs that connect places and transitions in subnet 1 and subnet 2.

(4) The token numbers on these places p1-1, p1-2, p1-3, p1-4 about m0 (the initial marking of the

net combined from the two subnet) are the same as those about m0,1 (the initial marking

of subnet 1).

(5) The token numbers on these places p2-1, p2-2, p2-3, p2-4 about m0 are the same as those

about m0,2 (the initial marking of subnet 2). Items (4) and (5) indicate that m0 is merged

from m0,1 and m0,2 without other modifications.

 The relationship between the O-graphs of PN1, PN2 and PN can be discussed now.

 14

Definition 3.2: Let two Petri nets PN1 = (P1, T1, F1, m0,1) and PN2 = (P2, T2, F2,
m0,2) be distinct, the O-graphs OG1 = (V1, A1) and OG2 = (V2, A2) belong to PN1
and PN2 separately, and M be the set of all markings of P1 ∪ P2. The marking
mapping function MPN1,PN2 which is a function defined from V1 × V2 into M ,
and ∀ vi ∈ V1 and vj ∈ V2:
(1) ∀ p ∈ P1: MPN1,PN2(vi, vj)(p) = vi(p);
(2) ∀ p ∈ P2: MPN1,PN2(vi, vj)(p) = vj(p).

 Although this definition uses the notations vi and vj to denote the nodes in OG1 and OG2,

the two notations still denote the markings of PN1 and PN2, that is, the functions defined from

a set of places (P1 or P2) to the set of nonnegative integer. The reason for using v instead of m

to denote a marking here is that the markings in this definition are treated as the nodes of the

O-graphs. In the rest, using v to denote a marking only means that the marking is treated as a

node in an O-graph while the definition of v has nothing different with the definition of a

marking.

 MPN1,PN2 is a function which merges two reachable markings of PN1 and PN2 separately

together. For example, while using the marking (1, 0, 0, 0) (node “1” in Figure 3.1 (b)) of the

subnet 1 in Figure 3.2 (a) and the marking (0, 1, 0, 0) (node “2” in Figure 3.1 (b)) of the

subnet 2 as inputs, the function M of the two subnets outputs the marking (1, 0, 0, 0, 0, 1, 0, 0)

(the numbers in the array specify the numbers of tokens of the places in this order (p1-1, p1-2,

p1-3, p1-4, p2-1, p2-2, p2-3, p2-4)) (node “1/2” in Figure 3.2 (b)).

Proposition 3.1: If PN = (P, T, F, m0) is the combination of PN1 = (P1, T1, F1,
m0,1) and PN2 = (P2, T2, F2, m0,2) and the O-graphs OG = (V, A), OG1 = (V1, A1),
and OG2 = (V2, A2) belong to PN, PN1, and PN2 separately, MPN1,PN2 is a
one-to-one and onto function defined from V1 × V2 into V

 15

 Because PN1 and PN2 are distinct, their O-graphs are orthogonal. When PN is only the

combination of PN1 and PN2 without other modifications, its reachable markings can be

generated by combining two reachable markings of PN1 and PN2 separately, that is, MPN1,PN2.

(2) ∀ v ∈ V2, a1 = (v1, t, v2) ∈ A1: RPN1,PN2(a, v) = (MPN1,PN2(v1, v), t,
MPN1,PN2(v2, v)).

Definition 3.3: Let two Petri nets PN1 = (P1, T1, F1, m0,1) and PN2 = (P2, T2, F2,
m0,2) be distinct, the O-graphs OG1 = (V1, A1) and OG2 = (V2, A2) belong to PN1
and PN2 separately, and M be the set of all markings of P1 ∪ P2. The arc
mapping function RPN1,PN2 is a function defined from (A1 × V2) ∪ (A2 × V1) into
M × (T1 ∪ T2) ×M , and
(1) ∀ v ∈ V1, a = (v1, t, v2) ∈ A2: RPN1,PN2(a, v) = (MPN1,PN2(v, v1), t,

MPN1,PN2(v, v2));

 The function RPN1,PN2 maps the behaviors (arcs in the O-graph) of the nets PN1 and PN2

to the behaviors of the combination of PN1 and PN2.

Proposition 3.2: If PN = (P, T, F, m0) is the combination of PN1 = (P1, T1, F1,
m0,1) and PN2 = (P2, T2, F2, m0,2) and the O-graphs OG = (V, A), OG1 = (V1, A1),
and OG2 = (V2, A2) belong to PN, PN1, and PN2 separately, RPN1,PN2 is a
one-to-one and onto function defined from (A1 × V2) ∪ (A2 × V1) into A.

 Because the behaviors in OG1 are not influenced by what state (marking) PN2 is at since

PN1 and PN2 are distinct from each other and each marking in OG1 can be combined with

every markings in OG2 (i.e. each marking in OG1 can be mapped to n markings in OG by

 16

MPN1,PN2, where n is the number of markings in OG2), the markings in OG mapped to the

same marking in OG1 must have those arcs which start from that marking in OG1 (i.e. each

arc a1 in A1 has the corresponding arcs (a1 × V2) in A). For example, because transition t1 is

enabled by marking “1” in Figure 3.1, transition t1-1 is enabled by “1/1”, “1/2”, “1/3”, and

“1/4” in Figure 3.2. The arcs in OG2 have the same property as those in OG1, too. Except

those arcs in A which have the relations with A1 or A2 (those arcs in the set RPN1,PN2((A1 × V2)

∪ (A2 × V1))), there are no other arcs being made in A since PN1 and PN2 have no change (i.e.

there are no new markings or transitions to create new behaviors). So RPN1,PN2 is a one-to-one

and onto function defined from (A1 × V2) ∪ (A2 × V1) into A.

 These two definitions and two propositions indicate a way of building the O-graph for

the net combined from two distinct nets. Because the two functions M and R are onto function,

it can be guaranteed that the O-graph created by them is complete.

3.2 The Algorithm of Combining Two Petri Nets

 These are some structures about Petri net used in the algorithm of Petri net combination:

 17

Structure PetriNet {
 Place[] p;
 Transition[] t;
 FlowRelation[] f;
 Ograph OG;
}

Structure Place {
 int initialMarking;
 FlowRelation[] fIn;
 FlowRelation[] fOut;
}

Structure Transition {
 FlowRelation[] fIn;
 FlowRelation[] fOut;
}

Structure FlowRelation {
 Null* start; // point to Place or Transition
 Null* end; // point to Transition or Place
}

Although FlowRelation.start and FlowRelation.end are null pointers, they only point to

Place or Transition and do not both point to Place or Transition at the same time to satisfy the

definition of Petri net that one directed arc does not connect the same kind of nodes (place or

transition).

 These are some structures about O-graph:

 18

Structure Ograph {
 Vertex[] v;
 Arc[] a;
 Vertex[] pointerTable1D; // pointer to the vertex by ID
 Vertex[][] pointerTable2D; // pointer to the vertex by tmpID1 and 2
}

Structure Vertex {
 Marking m;
 Arc[] arcOut;
 Arc[] arcIn;
 // the three kinds of ID will be used in the algorithm
 int ID; // All vertexes have the different ID from 0 to size – 1.
 // The vertex with the ID “0” is the initial marking.
 // The two kinds of tmpID will map this vertex to the two original markings
 // like an inverse function of M.
 int tmpID1;
 int tmpID2;
}

Structure Arc {
 Vertex vStart;
 Vertex vEnd;
 Transition t;
}

 Vertex.ID gives each vertex a unique integer ID in an O-graph while Vertex.tmpID1 and

Verex.tmpID2 map each vertex (node) to its original vertexes (like an inverse function of M)

in two subnets. Ograph.pointerTable1D and Ograph.pointerTable2D point to the vertexes by

the three kinds of ID, so they can be used to find the vertexes that are needed in the

algorithms without doing unnecessary search.

 This is the algorithm of the Petri net combination:

 19

1 // Creat a new empty net then combine PN1 and PN2 to it.
2 PetriNet PN = new PetriNet;
3
4 // merge the Petri net part
5 PN.p = clone(PN1.p + PN2.p); // initial marking (token number in the place) can
 also be copy in this stage.
6 PN.t = clone(PN1.t + PN2.t);
7 PN.f = clone(PN1.f + PN2.f);
8
9 // merge the O-graph part
10 int newID = 0;
11 // create the vertexes;
12 PN.OG.pointerTable2D = new Vertex[PN1.Ograph.v.size][PN2.Ograph.v.size];
13 FOR i from 0 to PN1.OG.pointerTable1D.size - 1
14 vx = PN1.OG.pointerTable1D[i];
15 FOR j from 0 to PN1.OG.pointerTable1D.size - 1
16 vy = PN2.OG.pointerTable1D[j];
17 Vertex v = new Vertex;
18 v.m = vx.m + vy.m;
19 v.tmpID1 = i;
20 v.tmpID2 = j;
21 v.ID = newID;
22 PN.OG.v += v;
23 PN.OG.pointerTable1D[newID] = v;
24 PN.OG.pointerTable2D[i][j] = v;
25 newID++;
26 END
27 END
28

Algorithm 3.1: PNCombining(PetriNet PN1, PetriNet PN2) – combines two
Petri nets PN1 and PN2 and returns the result net.

 20

54 RETURN PN;
53
52 END
51 END
50 PN.OG.a += a;
49 a.t = ax.t;

41
42 FOR ALL ay ∈ PN2.OG.a
43 FOR ALL vx ∈ PN1.OG.v
44 Arc a = new Arc;
45 a.vStart = pointerTable2D[vx.ID][ay.vStart.ID];
46 PN.OG.pointerTable2D[vx.ID][ay.vStart.ID].arcOut += a;
47 a.vEnd = pointerTable2D[vx.ID][ay.vEnd.ID];
48 PN.OG.pointerTable2D[vx.ID][ay.vEnd.ID].arcIn += a;

40 END
39 END
38 PN.OG.a += a;
37 a.t = ax.t;

29 // create the arcs
30 FOR ALL ax ∈ PN1.OG.a
31 FOR ALL vy ∈ PN2.OG.v
32 Arc a = new Arc;
33 a.vStart = pointerTable2D[ax.vStart.ID][vy.ID];
34 PN.OG.pointerTable2D[ax.vStart.ID][vy.ID].arcOut += a;
35 a.vEnd = pointerTable2D[ax.vEnd.ID][vy.ID];
36 PN.OG.pointerTable2D[ax.vEnd.ID][vy.ID].arcIn += a;

 Lines 4 to 7 in the algorithm unite the places, transitions and flow relations together

separately in two input nets to the result net. Lines 11 to 27, like the marking mapping

function M, create new vertexes from the original O-graphs. It also builds the vertex IDs and

the pointer tables. Lines 29 to 52, like the arc mapping function R, create the arcs from the

original O-graphs. The codes between line 30 and line 40 correspond to (A1 × V2) in

Definition 3.3 while the codes between line 42 and line 52 correspond to (A2 × V1).

3.3 Merging Petri Net Transitions

 21

tm(a)

(b)

p1-1 p1-2 p1-3 p1-4

p2-1 p2-2 p2-3 p2-4

t1-1 t1-3

t2-1 t2-3

tm

1/1

1/2

2/1

2/2

3/3 4/3

3/4 4/4

t1-1

t1-1

t2-1 t2-1

t1-3

t1-3

t2-3 t2-3

Figure 3.3 (a) Merge two transitions between two nets from Figure 3.1 (a); (b) the O-graph of
(a)

 Merging two transitions represents inserting synchronization for them. Figure 3.3 (a) is a

simple example of merging two transitions in Figure 3.2 (a), where the dashed transitions are

merged as a new transition tm. Figure 3.3 (b) is the O-graph of Figure 3.3 (a) where the node

“1/1” with double circle is the initial marking. This O-graph can be generated from the

O-graph in Figure 3.2 (b) by removing the dashed nodes and arcs and adding the arc of double

black (“2/2”, tm, “3/3”). When the two dashed transitions are merged, the arcs corresponding

to them (the dashed double black arcs in Figure 3.3 (b)) must be removed. Because the node

 22

“2/2” enables the two dashed transitions (the node is the starting point of two arcs

corresponding to these two transitions separately), a new arc (the arc of double black in

Figure 3.3 (b)) corresponding to the new transition tm and starting from this node must be

added. Node “3/3” are the end of a path that starts from “2/2” and passes through two arcs

corresponding to the two dashed transitions separately, so it is the end point of the new arc of

double black. Other dashed nodes and arcs are removed since they are not reachable from the

initial marking “1/1” after removing the dashed double black arcs and adding the arc of

double black.

 Above example indicates a rough sketch of the method that generates the new O-graph.

Before the discussion of the algorithm generating the new net for merging transitions and its

O-graph, we first define the differences between two original subnets and the new net.

Definition 3.4 (merging relation): Let two distinct sets of transitions T1 and T2 be
held by two distinct Petri nets PN1 and PN2 respectively. For a merging relation
MR from T1 to T2, MR ⊆ T1 ×T2, and ∀(ta1, ta2), (tb1, tb2) ∈ MR: if (ta1, ta2) ≠
(tb1, tb2) then ta1 ≠ tb1 and ta2 ≠ tb2.

 A merging relation is a relation from the set of all transitions in a net to that in another.

All elements in a merging relation are distinct. A transition mergence which is defined in

Definition 3.5 merges transitions between two nets according a merging relation.

 23

Definition 3.5 (transition mergence): Let PN1 = (P1, T1, F1, m0,1) and PN2 = (P2,
T2, F2, m0,2) be two Petri nets. A Petri net PN = (P, T, F, m0) generated by a
transition mergence according to a merging relation MR from T1 to T2, where
(1) P = P1 ∪ P2;
(2) T = (T1 ∪ T2 ∪ MR) – T’, where T’ = {t | ∃(t1, t2) ∈ MR: t1 = t or t2 = t};
(3) F = (F1 ∪ F2 ∪ F1’’ ∪ F2’’) – (F1’ ∪ F2’), where

F1’ = {f | ∃(t1, t2) ∈ MR: (p1, t1) = f ∈ F1 or (t1, p1) = f ∈ F1},
F2’ = {f | ∃(t1, t2) ∈ MR: (p2, t2) = f ∈ F2 or (t2, p2) = f ∈ F2},
F1’’ = {f | (∃(ta1, ta2) = ta ∈ MR and ∃(pa1, ta1) ∈ F1; f = (pa1, t)) or
 (∃(tb1, tb2) = tb ∈ MR and ∃(tb1, pb1) ∈ F1; f = (t, pb1))}, and
F2’’ = {f | (∃(ta1, ta2) = ta ∈ MR and ∃(pa2, ta2) ∈ F2; f = (pa2, t)) or
 (∃(tb1, tb2) = tb ∈ MR and ∃(tb2, pb2) ∈ F2; f = (t, pb2))};

(4) ∀p ∈ P1: m0(p) = m0,1(p);
(5) ∀p ∈ P2: m0(p) = m0,2(p).

 In this definition, both original transitions to be merged are deleted and a corresponding

transition is generated as follows. Let two transitions t1 and t2 be merged as a transition t in a

transition mergence, and then all of t1 and t2 are transferred to input/output places of t. A pair

of transitions to be merged can not appear inside any of both original nets. There might be

more than one pair of transitions to be merged, and the merged transitions in any two pairs

must be distinct. Item (4) and (5) indicate that the initial marking of P is the same as P1 and

P2’s initial marking correspondingly.

 The content of the box shown below is the data structures about merging relation used in

the following algorithm of transition mergence.

 24

Structure MergingRelation {
 TransitionPair[] tp;
}

Structure TransitionPair {
 Transition t1;
 Transition t2
}

Algorithm 3.2: PNTransitionMergenceV1(PetriNet PN1, PetriNet PN2,
MergingRelation MR)

1 PetriNet PN = PNCombining(PetriNet PN1, PetriNet PN2);

2
3 FOR i from 0 to (MR.tp.size - 1)
4 // make new transition in PN
5 Transition t = mergeTransition(PN, MR.tp[i]);
6 // remove or make the arcs
7 FOR ALL (arc1 ∈ PN.OG.a) && (arc1.t == MR.tp[i].t1)
8 IF (∃arc2 ∈ arc1.vStart.arcOut, arc2.t == MR.tp[i].t2)
9 Arc a = new Arc;
10 a.t = t;
11 a.vStart = arc1.vStart;
12 arc1.vStart.arcOut += a;
13 a.vEnd = PN.OG.pointerTable2D[arc1.vEnd.tmpID1][arc2.vEnd.tmpID2];
14 PN.OG.pointerTable2D[arc1.vEnd.tmpID1][arc2.vEnd.tmpID2].arcIn+= a;
15 PN.OG.a += a;
16 END
17 removePath(PN.OG, arc1);
18 END
19 FOR ALL (arc2 ∈ PN.OG.a) && (arc2.t == MR.tp[i].t2)
20 removePath(PN.OG, arc2);
21 END
22 END
23 regenerateID(PN.OG);
24
25 RETURN PN;

 25

 This algorithm does a transition mergence according to the merging relation MR between

two Petri nets PN1 and PN2 by a deletion-based way and returns the result Petri net. All the

inputs of it must conform to the definitions about transition mergences.

 This algorithm based on Algorithm 3.1 modifies the result O-graph returned from

Algorithm 3.1 like the example mentioned at the beginning of this section. Line 1 in this

algorithm calls Algorithm 3.1 and gets its result Petri net. The loop from line 3 to line 22 deals

one transition pair (MR.tp[i]) a time. Line 5 calls the function mergeTransition (Algorithm

3.2.1) to delete the old transitions to be merged (i.e. in the transition pair MR.tp[i]), add the

new transition generated from merging the transition pair, and redirect the flow relations in

the nets that connect with them (for example, modify from the net in Figure 3.2 (a) to that in

Figure 3.3 (a)). Among the loop, two small loops from line 7 to line 21 remove the arcs

corresponding to the old transitions in the transition pair MR.tp[i] and add new arcs on the

markings that enable the two old transitions (For example, add the arc tm in Figure 3.3 (b)).

The function removePath (Algorithm 3.2.2) removes the input arc from the input O-graph and

if the marking following this arc is not pointed by other arcs, it will be removed and its output

arcs will be removed by using removePath function recursively. The function regenerateID

(Algorithm 3.2.3) in line 23 can reconstruct an ID for each vertex for later use. This can

prevent any unconnection (if a vertex with ID = i exists in OG then a vertex with ID = i – 1

also exists for all i ≥ 1) in the ID system to make sure that another algorithm using this Petri

net as its input to work correctly.

 These are the three algorithms used in Algorithm 3.2

 26

Transition t = new Transition;
FOR ALL fin ∈ tp.t1.fIn
 fin.end = t;
 t.fIn += fin;
END
FOR ALL fout ∈ tp.t1.fOut
 fout.start = t;
 t.fOut += fout;
END
PN.t[] -= tp.t1;
FOR ALL fin ∈ tp.t2.fIn
 fin.end = t;
 t.fIn += fin;
END
FOR ALL fout ∈ tp.t2.fOut
 fout.end = t;
 t.fOut += fout;
END
PN.t -= tp.t2;
PN.t += t
RETURN t;

Algorithm 3.2.1: mergeTransition(PetriNet PN, TransitionPair tp)

 END
 OG.v -= arc.vEnd;
 OG.pointerTable1D[arc.vEnd.ID] = null;
END

Algorithm 3.2.2: removePath(Ograph OG, Arc arc)

arc.vEnd.arcIn -= arc;
OG.a -= arc;
IF (arc.vEnd.arcIn == ∅)
 FOR ALL a ∈ arc.vEnd.arcOut
 removePath(OG, a);

 27

END
 i++;

int i = 0;
FOR j from 0 to OG.pointerTable1D.size - 1

v = OG.pointerTable1D[j];
 v.ID = i;
 OG.pointerTable1D[i] = v;

Algorithm 3.2.3: regenerateID(Ograph OG)

 This proposition shows the relation and difference between Petri net combination and a

transition mergence. Actually, the difference is only at the merging relation MR. A transition

mergence merges one or more pair of transitions between two Petri nets while a combination

only deems two distinct Petri nets as one.

Definition 3.6:
 Let PN be generated by a transition mergence between PN1 and PN2

according to a merging relation MR and PNb be generated by combining
PN1 and PN2, then PN is also deemed as the Petri net after doing a
transition mergence according to the merging relation MR from PN1 to PN2,
and PNb is also deemed as the Petri net before doing this transition
mergence.

 With above MR, PN, PNb, PN1, PN2, OG, the O-graph of PN, is deemed as
the O-graph after doing a transition mergence according to the merging
relation MR from PN1 to PN2, and OGb, the O-graph of PNb, is deemed the
O-graph before doing this transition mergence.

Proposition 3.3: If PN is generated by a transition mergence between PN1 and
PN2 according to a merging relation MR where MR = ∅, then PN is the
combination of PN1 and PN2.

 28

 This definition defines other denominations of PN, PNb, OG, and OGb that will be used

later for easy understanding.

Proposition 3.4: Let PN = (P, T, F, v0) be the Petri net after doing transition
mergence according to the merging relation MR from PN1 to PN2, PNb = (Pb, Tb,
Fb, vb0) be the Petri net before doing this transition mergence, OG = (V, A) be the
O-graph of PN, and OGb = (Vb, Ab) be the O-graph of PNb.
(1) v0 = vb0;
(2) V ⊆ Vb;
(3) ∀ a = (v1, t, v2) ∈ A: if t ∉ MR, then a ∈ Ab;
(4) ∀ a = (v1, t, v2) ∈ A: if t ∈ MR, then a ∉ Ab;
(5) ∀ ab = (v1, tb, v2) ∈ Ab: if (∃ (t1, t2) ∈ MR: t1 = tb or t2 = tb), then ab ∉ A;
(6) vb0 ∈ V;
(7) ∀ vb ∈ Vb: if (∄ (v1, t, vb) ∈ A) and vb ≠vb0, then vb ∉ V;
(8) ∀ ab = (v1, t, v2) ∈ Ab: if v1 ∉ V, then ab ∉ A;
(9) ∀ v1 = MPN1,PN2(va1, va2) ∈ V, (t1, t2) ∈ MR: iff (∃ v3 = MPN1,PN2(vb1, va2) ∈

Vb: (v1, t1, v3) ∈ Ab) and (∃ v4 = MPN1,PN2(va1, vb2) ∈ Vb: (v1, t2, v4) ∈ Ab), ∃
(v1, (t1, t2), v2) ∈ A where v2 = MPN1,PN2(vb1, vb2);

(10) ∀ ab = (v1, t, v2) ∈ Ab: if v1 ∈ V and (∄ (t1, t2) ∈ MR: t1 = t or t2 = t), then ab
∈ A;

(11) ∀ vb ∈ Vb: if ∃ (v1, t, vb) ∈ A, then vb ∈ V.

Proof:

(1) Because the definitions of the initial markings of PN and PNb are the same (see

Definition 3.1 and Definition 3.5), v0 = vb0.

(2) Since the firing behavior of each new transition t is the same as the behavior of firing the

two original transitions merged as t one by one, the action of merging transitions does

not produce new reachable markings. So, V is the subset of Vb.

 29

(3) Because V is the subset of Vb, all the arcs starting at the markings belonging to V but not

corresponding to the new transitions can be found in Ab.

(4) Because the transitions belonging to MR are new transitions that can not be found in Tb,

the arcs corresponding to them can not be found in Ab.

(5) The transitions that are merged must be removed after the transition mergence, thus each

arc corresponding to them does not exist in the O-graph after the transition mergence.

(6) v0 ∈ V and vb0 = v0, therefore vb0 ∈ V.

(7) Since there is no arc pointing to the marking vb in OG, such markings do not exist in OG

but the initial marking.

(8) If v1 does not exist in the new O-graph OG, the arcs starting from it to v2 can not occur in

OG.

(9) The new transition (t1, t2) can be enabled by a marking only when both original

transitions t1 and t2 are enabled by the marking. Each this kind of marking v1 must add an

output arc a corresponding to (t1, t2) and no other arc corresponding to (t1, t2) must be

added in OG. Since the firing behavior of (t1, t2) is the same as the behavior of firing t1

and t2 one by one, the output marking of arc a is MPN1,PN2(vb1, vb2) when the input

marking of arc a is MPN1,PN2(va1, va2), firing t1 on va1 in PN1 changes the marking to vb1,

and firing t2 at va2 in PN2 changes the marking to vb2.

(10) Because v1 is still a reachable marking of PN and t is still the transition in PN with the

same input and output places, when t can be fired at v1 and changes the marking to v2 in

PNb, the same behavior can occur in PN.

(11) This is straightforward in the definition of graph.

 To help understand the proposition, we made the items that mapping the notations in this

proposition to the targets in the example shown at the beginning of the section.

 30

 PN: the net showed in Figure 3.3 (a)

 OG: the O-graph showed in Figure 3.3 (b)

 PNb: the net showed in Figure 3.2 (a)

 OGb: the O-graph showed in Figure 3.2 (b)

 MR: {(t1-2, t2-2)} (note that tm = (t1-2, t2-2))

 In item (3), a can be (“1/1”, t1-1, “2/1”), (“1/2”, t1-1, “2/2”), (“1/1”, t2-1, “1/2”),

(“2/1”, t2-1, “2/2”), (“3/3”, t1-3, “4/3”), (“3/4”, t1-3, “4/4”), (“3/3”, t2-3, “3/4”), or

(“4/3”, t2-3, “4/4”)

 In item (4), a can be (“3/3”, tm, “3/4”)

 In item (5), ab can be (“2/1”, t1-2, “3/1”), (“2/2”, t1-2, “3/2”), (“2/3”, t1-2, “3/3”),

(“2/4”, t1-2, “3/4”), (“1/2”, t2-2, “1/3”), (“2/2”, t2-2, “2/3”), (“3/2”, t2-2, “3/3”), or

(“4/2”, t2-2, “4/3”)

 In item (7), vb which satisfies the “if” condition can be “1/3”, “1/4”, “2/3”, “2/4”,

“3/1”, “3/2”, “4/1”, or “4/2”

 In item (8), ab which satisfies the “if” condition can be (“1/3”, t1-1, “2/3”), (“1/4”,

t1-1, “2/4”), (“2/3”, t1-2, “3/3”), (“2/4”, t1-2, “3/4”), (“1/3”, t2-3, “2/4”), (“2/3”, t2-3,

“2/4”), (“3/1”, t1-3, “4/1”), (“3/2”, t1-3, “4/2”), (“3/1”, t2-1, “3/2”), (“4/1”, t2-1, “4/2”),

(“3/2”, t2-2, “3/3”), or (“4/2”, t2-2, “4/3”)

 In item (9), for the mapping from (v1, (t1, t2), v2) to (“2/2”, (t1-2, t2-2), “3/3”), va1 is

the marking (0, 1, 0, 0) in subnet 1 and va2 is the marking (0, 1, 0, 0) in subnet 2.

When vb1 is the marking (0, 0, 1, 0) in subnet 1 and vb2 is the marking (0, 0, 1, 0) in

subnet 2, the “if” condition can be satisfied, so (“2/2”, (t1-2, t2-2), “3/3”) ∈ A

 In item (10), using the mapping from ab to (“2/1”, t2-1, “2/2”) as an example, when

“2/1” ∈ V and t2-1 is not belonging to any pair in MR, (“2/1”, t2-1, “2/2”) ∈ A

 31

 In item (11), using the mapping from vb to “2/2” as an example, when (“2/1”, t2-1,

“2/2”) ∈ A, “2/2” ∈ V

 In Proposition 3.4 (2) ~ (4), it can be observed that V can be built by removing some

markings in Vb and A can be built by removing some arcs in Ab and adding some arcs

corresponding to the new transitions. Items (5) and (8) detect the arcs to be removed, while

item (10) certifies the removes with (5) and (8) are complete. Item (7) detects the markings to

be removed, while (11) certifies the removes with (7) are complete. Item (9) can show the arcs

to be added for a new transition between two markings.

 Proposition 3.4 can prove the correctness of the deletion-based algorithm of transition

mergence (Algorithm 3.2). Line 8 to line 16, in this algorithm, adds the arcs corresponding to

the new transition discussed in item (9) of this proposition. Line 17 and line 20 use Algorithm

3.2.2 to remove the arcs and the markings for items (5), (7), and (8) in this proposition when

the O-graph before the transition mergence contains no loop. In the algorithm, if all arcs

pointing to a marking are removed then it is removed; if the input marking of an arc is

removed then the arc is removed. So, if the O-graphs containing loops, all markings and arcs

in these loops are unable to be removed even when they are unreachable from the initial

marking. Although some methods which can check the reachability of the nodes can deal with

the problem, they are not needed to be added in the technique since the problem does not exist

in another construction-based algorithm discussed in Section 3.4.

3.4 Transition Mergence Algorithm

 32

 The construction-based algorithm for transition mergence is discussed in this section,

where the two algorithms discussed in last two sections are used to explain the concept of

transition mergences.

Algorithm 3.3: PNTransitionMergenceV2(PetriNet PN , PetriNet PN1 2,
MergingRelation MR)

1 generate result Petri net PN;
2 s1pool = {∅} is a set of marking;
3 s2pool = {∅} is a set of marking;
4 add MPN1,PN2(m1, m2) into O-graph OG and s1pool where m1 is the initial marking of PN1 and
 m2 is the initial marking of PN2;
5 WHILE (s1pool or s2pool is not empty)
6 WHILE (s1pool is not empty)
7 remove a marking v = MPN1,PN2(v1, v2) from s1pool;
8 FOR ALL (a1 = (v1, t1, w1) ∈ the set of output arcs of v1 in PN1)
9 IF (t1 is to be merged)
10 label a1 on v;
11 ELSE
12 add arc RPN1,PN2(a1, v2) into OG;
13 IF (MPN1,PN2(w , v1 2) does not exist in OG)
14 add MPN1,PN2(w1, v2) into OG and s1pool;
15 END
16 END
17 END
18 add v into s2pool;
19 END

 33

35 remove all labels on v;
36 END
37 END
38 return PN and OG

29 add arc RPN1,PN2(a2, v1) into OG;
30 IF (MPN1,PN2(v1, w2) does not exist in OG)
31 add MPN1,PN2(v1, w2) into OG and s1pool;
32 END
33 END
34 END

24 IF (MPN1,PN2(w1, w2) does not exist in OG)
25 add MPN1,PN2(w1, w2) into OG and s1pool;
26 END
27 END
28 ELSE

20 WHILE (s2pool is not empty)
21 remove a marking v = MPN1,PN2(v1, v2) from s2pool;
20 FOR ALL (a2 = (v2, t2, w2) ∈ the set of output arcs of v2 in PN2)
21 IF (t2 is to be merged)
22 IF (v has been labeled by an arc a1 = (v1, t1, w1) where (t1, t2) ∈ MR)
23 add arc (v, (t1, t2), MPN1,PN2(w1, w2)) into OG;

 This algorithm does a transition mergence according to the merging relation MR between

two Petri nets PN1 and PN2 and returns the result Petri net and its O-graph, which is built by

a construction-based way in this algorithm. All inputs must conform to the definitions about

transition mergences. The detail of this algorithm is shown in the appendix Algorithm A.

 This algorithm builds the new O-graph OG starting from the initial marking and

continuing generating the arcs and the markings that can reach from the markings in OG (i.e.

the arcs conforming with Proposition 3.4 (9) or (10) and the markings conforming with

Proposition 3.4 (14)). It has not the problem about loops existing in Algorithm 3.2 because the

unreachable markings are never put into OG to build unreachable paths to them self.

 Line 1 in the algorithm constructs places, transitions, and the flow relations of PN while

the rest of the Lines generate OG, the O-graph of PN. Lines 2 and 3 initial two pools used in

 34

the rest of this algorithm. s1pool records the markings that have not been examined with the

O-graph belonging to PN1 while s2pool records the markings that have not been examined

with the O-graph belonging to PN2 but have already been examined with that belonging to

PN1. Line 4 creates the initial marking merged from the two initial markings in two original

nets then put it into s1pool. Lines 5 to 37 describe a loop which jumps out when s1pool and

s2pool are both empty, which indicates that all current markings in OG are already examined

with two original nets and OG has been completely built.

 The loop from line 6 to line 19 is executed if any marking exists in s1pool. It removes a

marking v = MPN1,PN2(v1, v2) from s1pool at line 7 and deals with this marking at a time. The

loop from line 8 to line 17 checks an arc a1 that starts at v1 in PN1 corresponding to v at a time.

If a1 is corresponding to a transition to be merged, line 10 labels a1 on v sets a related flag

recording this transition pair and the arc RPN1,PN2(a1, v) is not created (by Proposition 3.4 (5),

the arc does not exist in the new O-graph). If a1 is corresponding to a transition that is not to

be merged (the arc satisfies the conditions of Proposition 3.4 (10)), a related new arc

RPN1,PN2(a1, v) is generated and put into OG at line 12. If the marking pointed by RPN1,PN2(a1, v)

(the marking satisfies the conditions of Proposition 3.4 (11)) does not exist in OG, it is

generated and added into OG and s1pool at line 14. v is added into s2pool at line 18 after the

examining mentioned above is done.

 The loop from line 20 to line 35 is executed if any marking exists in s2pool. It removes a

marking v = MPN1,PN2(v1, v2) from s2pool and deals with this marking at a time. Although this

loop is like that from line 6 to line 19 but to check with PN2, there are still some different

points. Lines 21 and 22 check that if the transition t2 corresponded by a2 must be merged with

t1 and there is an arc (v1, t1, w1) labeled on v (this situation satisfies the conditions of

Proposition 3.4 (9) where v1 = v). If so, line 23 creates a new arc (v, (t1, t2), MPN1,PN2(w1, w2))

 35

where w2 is the marking pointed by a2 in PN2. If MPN1,PN2(w1, w2) does not exist in OG, it is

generated and added into OG and s1pool at line 25.

 Since only v1 belongs to V in Proposition 3.4 items (9) and (10) and (v1, t, vb) belongs to

A in item (11), all other conditions in these items only relate with the elements in the O-graph

before the transition mergence (which can create from the two original O-graphs by functions

M and R), the current state of the new O-graph under the algorithm operated does not

influence the examination of a marking corresponding to v1 according to the three items. So,

each marking only needs to be checked with the two original nets one time. This algorithm

uses the two pools to make sure that each marking in new O-graph is checked exactly one

time by two original nets. Since all markings in an O-graph are reachable from its initial

marking, there is no marking or arc being lost by the algorithm.

 Now, Algorithm 3.3 can be compared with the original algorithm ([2]) that constructs the

O-graph directly from its corresponding Petri net.

10 END

9 Waiting = Waiting – {v1};
8 END
7 Arc(v1, t, v2);

1 Waiting = ∅;
2 Node(m0);
3 WHILE (Waiting ≠ ∅)
4 select a node v1 ∈ Waiting;
5 FOR ALL (t, v2) ∈ Next(v1)
6 Node(v2);

Algorithm 3.4

 input: a Petri net
 output: its O-graph

 Node(v) is a procedure that creates a new node (marking) v and adds v into Waiting, a set

 36

of markings, and the new O-graph. If v exists in the O-graph already, the procedure does

nothing. Next(v1) is used to denote the set of all possible “next moves” from v1. I.e., Next(v1)

= {(t, v2) ∈ T × V | v2 is the marking after firing t on v1}. Arc(v1, t, v2) is a procedure that

creates a new arc (v1, t, v2) and adds it to the new O-graph.

 Let n be the number of nodes in the result O-graph. The loop from line 3 to line 10

repeats n times because each node contained in the result O-graph should be added into

Waiting and examined one time in this loop. Let t be the number of transitions in the Petri net.

Since the set Next(v1) must be known at line 5, each transition in the result net must be

examined whether it is enabled by v1 or not. This indicates that the complexity of finding the

set Next(v1) is O(t). Because Node(v) does nothing if v exists in the result O-graph already,

the procedure Node(v) checks if v is already in O-graph and the complexity of this search is

O(n). So, the complexity of this algorithm is O(n * t * n). This complexity is also shown in

[16].

 Now, check the complexity of Algorithm 3.3. Since all markings that must be added into

the result O-graph should be checked one time with two subnets, the loop from line 6 to 19

and that from 20 to 36 will run n * 2 times totally when considering the loop from 5 to 37. Let

t1 be the number of transitions in PN1 and t2 be the number of transitions in PN2. The loop

from line 8 to line 17 runs t1 times at most because each marking in the O-graph of PN1 can

have t1 arcs as output at most. With similar reason, the loop from line 20 to line 34 runs t2

times at most. While t1, t2 ≤ t, the complexity of the two loops are O(t). Note that each

marking usually enables a small part of all the transitions only, so the running times of the two

loops usually are much fewer than t. The complexity of Algorithm 3.3 is O(n * t).

 37

 Although the complexity of Algorithm 3.3 is smaller than the complexity of the original

algorithm, there are still situations which influence the time of generating the final result Petri

net by merging a set of nets while applying a transition mergence have some differences with

applying the original algorithm. These situations are discussed in Section 4.2.

 38

Chapter 4. More about Transition Mergence

 This chapter introduces two kinds of extension about transition mergences and discusses

two significant applications can be applied with transition mergences. Section 4.1 indicates

that the O-graph can also be generated by Algorithm 3.3 with a modification when merging

places with a restriction. Section 4.2 shows how to build a Petri net from merging more than

two nets using transition mergences and the influences of the merging sequence. Section 4.3

discusses two significant applications can be applied with the technique for transition

mergence.

4.1 Merging Places and Transitions

 Place mergence between two Petri nets is not as easy as transition mergence. For

example, the new markings unreachable in the combination net might become reachable after

place mergence. Since these markings must be found, the condition is more complex. On the

other hand, a restriction for the input/output transitions in a place mergence might makes the

O-graph of the result net extremely like the O-graph built by a transition mergence according

to these pairs of transitions.

 Figure 4.1 (a) is the result net of merging two pairs of transitions between two subnets in

Figure 3.2 (a) while Figure 4.1 (b) is the net after merging a pair of places in Figure 4.1 (a).

The shapes of O-graphs of these two Petri nets are the same, as in Figure 4.1 (c). In Figure 4.1

(a), the input transitions of places p1 and p2 are merged together. So are their output transitions.

 39

The numbers of tokens on both two places in the initial marking are zero. So, the token

numbers in p1 and p2 are the same no matter what series of transitions are fired. Since both

places have the same token number in each reachable marking in the O-graph, they can be

merged together and the result place has the same token number with them in each marking.

So, the difference between the two O-graphs of the two nets in (a) and (b) is only the content

of each marking. The O-graph of the net in (b) can be built by removing the token numbers

corresponding to p1 and p2 in each marking in the O-graph of the net in (a), and adding the

same number for p to the marking.

 40

(a)

(b)

(c)

tm1

tm2

tm1 tm2

p1

p2

tm1 tm2

p

p1-1 t1-1 p1-2 p1-4

p2-1 t2-1 p2-2 p2-4

Figure 4.1 (a) The result net of merging two pairs of transitions between two subnets from
Figure 3.2 (a); (b) merging two places in (a); (c) the O-graph of (a) and (b)

 The definitions about merging pairs of places and transitions are shown below.

 41

(1) MRP ⊆ (P1 ∪ T1) × (P2 ∪ T2);
(2) ∀(e1, e2) ∈ MRP: if e1 ∈ P1, then e2 ∈ P2;
(3) ∀(e1, e2) ∈ MRP: if e1 ∈ T1, then e2 ∈ T2;
(4) ∀(a1, a2), (b1, b2) ∈ MRP: if (a1, a2) ≠ (b1, b2), then a1 ≠ b1 and a2 ≠ b2;
(5) ∀p1 ∈ P1, p2 ∈ P2: if (p1, p2) ∈ MRP, then m0,1(p1) = m0,2(p2);
(6) ∀p1 ∈ P1, p2 ∈ P2, t1 ∈ T1: if (p1, p2) ∈ MRP and (t1, p1) ∈ F1, then ∃| t2

∈ T2: (t2, p2) ∈ F2 and (t1, t2) ∈ MRP;
(7) ∀p1 ∈ P1, p2 ∈ P2, t1 ∈ T1: if (p1, p2) ∈ MRP and (p1, t1) ∈ F1, then ∃| t2

∈ T2: (p2, t2) ∈ F2 and (t1, t2) ∈ MRP;
(8) ∀p1 ∈ P1, p2 ∈ P2, t2 ∈ T2: if (p1, p2) ∈ MRP and (t2, p2) ∈ F2, then ∃| t1

∈ T1: (t1, p1) ∈ F1 and (t1, t2) ∈ MRP;
(9) ∀p1 ∈ P1, p2 ∈ P2, t2 ∈ T2: if (p1, p2) ∈ MRP and (p2, t2) ∈ F2, then ∃| t1

∈ T1: (p1, t1) ∈ F1 and (t1, t2) ∈ MRP.

Definition 4.1 (merging relation of Petri net): Let PN1 = (P1, T1, F1, m0,1) and
PN2 = (P2, T2, F2, m0,2) be two distinct Petri nets. For a merging relation of Petri
net MRP from PN1 to PN2, where

 This definition is modified from the definition of merging relation (Definition 3.4). It

extends to the places while merging relation contains the relationships between transitions

only. Besides the restriction that all elements in the relation are distinct (item (4)), there are

several restrictions added as follows. The components in the relation are of the same type

(items (2) and (3)). Two places contained in the relation have the same token number in the

initial marking (item (5)). An input and output transitions of two places have the relation if the

two places have the relation (items (6) to (9)).

 42

(1) P = (P1 ∪ P2 ∪ P’’) – P’, where P’ = {p | (p ∈ P1 and ∃p’ ∈ P2: (p, p’) ∈
MRP) or (p ∈ P2 and ∃p’ ∈ P1: (p’, p) ∈ MRP)} and P’’ = {p | p = (p1, p2) ∈
MRP where p1 ∈ P1 and p2 ∈ P2};

(2) T = (T1 ∪ T2 ∪ T’’) – T’, where T’ = {t | (t ∈ T1 and ∃t’ ∈ T2: (t, t’) ∈ MRP) or
(t ∈ T2 and ∃t’ ∈ T1: (t’, t) ∈ MRP)} and T’’ = {t | t = (t1, t2) ∈ MRP where t1
∈ T1 and t2 ∈ T2};

(3) F = (F1 ∪ F2 ∪ FT1’ ∪ FT2’ ∪ FT1’’ ∪ FT2’’ ∪ FP’ ∪ FP’’) – (F1’ ∪ F2’),
where
F1’ = {f | ∃(a1, a2) ∈ MRP: (a1, b1) = f ∈ F1 or (b1, a1) = f ∈ F1},
F2’ = {f | ∃(a1, a2) ∈ MRP: (a2, b2) = f ∈ F2 or (b2, a2) = f ∈ F2},
FT1’ = {(p1, t) | ∃ t1 ∈ T1, t2 ∈ T2, (t1, t2) = t ∈ MRP, and (p1, t1) ∈ F1 and
 ∄ (p1, p2) ∈ MRP},
FT2’ = {(p2, t) | ∃ t1 ∈ T1, t2 ∈ T2, (t1, t2) = t ∈ MRP, and (p2, t2) ∈ F2 and
 ∄ (p1, p2) ∈ MRP},
FT1’’ = {(t, p1) | ∃ t1 ∈ T1, t2 ∈ T2, (t1, t2) = t ∈ MRP, and (t1, p1) ∈ F1 and
 ∄ (p1, p2) ∈ MRP},
FT2’’ = {(t, p2) | ∃ t1 ∈ T1, t2 ∈ T2, (t1, t2) = t ∈ MRP, and (t2, p2) ∈ F2 and
 ∄ (p1, p2) ∈ MRP},
FP’ = {(t, p) | ∃ p1 ∈ P1, p2 ∈ P2, (p1, p2) = p ∈ MRP, and (t1, t2) = t ∈ MRP:
 (t1, p1) ∈ F1 and (t2, p2) ∈ F2},
FP’’ = {(p, t) | ∃ p1 ∈ P1, p2 ∈ P2, (p1, p2) = p ∈ MRP, and (t1, t2) = t ∈ MRP:
 (p1, t1) ∈ F1 and (p2, t2) ∈ F2};

(4) ∀p1 ∈ P1: if (∄p2 ∈ P2: (p1, p2) ∈ MRP), then m0(p1) = m0,1(p1);
(5) ∀p2 ∈ P2: if (∄p1 ∈ P1: (p1, p2) ∈ MRP), then m0(p2) = m0,2(p2);
(6) ∀ (p1, p2) = p ∈ MRP: if p1 ∈ P1 and p2 ∈ P2, then m0(p) = m0,1(p1) = m0,2(p2).

Definition 4.2 (transition and place mergence): Let PN1 = (P1, T1, F1, m0,1) and PN2
= (P2, T2, F2, m0,2) be two distinct Petri nets. A Petri net PN = (P, T, F, m0) generated
by a transition and place mergence (T&P mergence) according to a merging relation
of Petri net MRP from PN1 to PN2, where

 Like a transition mergence, all transitions to be merged (contained in a pair of transitions

in the MRP) must be removed and the new transitions generated by merging a pair of

transitions must be added (item (2)). All places to be merged (contained in a pair of places in

 43

the MRP) must be removed and the new places generated by merging a pair of places must be

added (item (1)). All the arcs connected with an old place or transition to be merged must be

reconnected to the new place or transition generated by merging this old place or transition

with another (item (3)). After a T&P mergence, the token number of every place not merged

in the initial marking is not changed (items (4) and (5)) while the token number of a new

place generated by merging a pair of old places is the same as the token number of an old

place (item (6)) (note that the token numbers about the two places to be merged are the same

by the definition of T&P mergence).

 As the example net in Figure 4.1 (b) generated by a T&P mergence according to a

merging relation of Petri net MRP = {p = (p1-3, p2-3), tm1 = (t1-2, t2-2), tm2 = (t1-3, t2-3)} from

subnet 1 to subnet 2 in Figure 3.2 (a), P’ = {p1-3, p2-3}; P’’ = {p}; T’ = {t1-2, t2-2, t1-3, t2-3}; T’’ =

{tm1, tm2}; F1’ = {(p1-2, t1-2), (t1-2, p1-3), (p1-3, t1-3), (t1-3, p1-4)}; F2’ = {(p2-2, t2-2), (t2-2, p2-3), (p2-3,

t2-3), (t2-3, p2-4)}; FT1’ = {(p1-2, tm1)}; FT2’ = {(p2-2, tm1)}; FT1’’ = {(tm2, p1-4)}; FT2’’ = {(tm2,

p2-4)}; FP’ = {(tm1, p)}; FP’’ = {(p, tm2)}.

Definition 4.3: Let PN1 = (P1, T1, F1, m0,1) and PN2 = (P2, T2, F2, m0,2) be two
distinct Petri nets, MR is a merging relation from T1 to T2, and MRP is a merging
relation of Petri net from PN1 to PN2. MR is called the pre-merging relation of
MRP if and only if (∀ (t1, t2) ∈ MR: (t1, t2) ∈ MRP) and (∀ (t1, t2) ∈ MRP: if t1
∈ T1 and t2 ∈ T2, then (t1, t2) ∈ MR).

 If a merging relation MR is a pre-merging relation of a merging relation of Petri net MRP,

MR is the same as the set of all pairs of transitions in MRP.

 44

(2) AF is a one to one and onto function defined from Ap into A.
(1) VF is a one to one and onto function defined from Vp into V and

and AF be a function defined from Ap into A where ∀ ap = (v1, t, v2) ∈ Ap:
AF(ap) = (VF(v1), t, VF(v2)), then

Let VF be a function defined from Vp into V where ∀ vp ∈ Vp:
 ∀ p ∈ P1 ∪ P2: if (∄(p1, p2) ∈ MRP: p1 = p or p2 = p), then VF(vp)(p) = vp(p);
 ∀ (p1, p2) ∈ MRP: if (p1 ∈ P1 and p2 ∈ P2), then VF(vp)((p1, p2)) = vp(p1) =

vp(p2)

Proposition 4.1: Let PN1 = (P1, T1, F1, m0,1) and PN2 = (P2, T2, F2, m0,2) be two
distinct Petri nets, MRP be a merging relation of Petri net from PN1 to PN2, MR be
the pre-merging relation of MRP, PNp be the Petri net generated by the transition
mergence according to MR, PN be the Petri net generated by the T&P mergence
according to MRP, OGp = (Vp, Ap) be the O-graph of PNp, and OG = (V, A) be the
O-graph of PN.

 The difference between PN and PNp is only at those pairs of places in MRP. Since the

input and output transitions of two places in each pair of places in MRP are the same

(Definition 4.1 items (6) ~ (9)) and the token numbers of them have not difference in the

initial marking (Definition 4.1 item (5)), the token numbers of the two places in each

reachable marking of PNp (i.e. each marking in Vp) are the same. The mergence of the two

places does not change the whole behavior. So, when merging the pairs of places in MRP, the

only change from OGp to OG is that each node should be transform by VF and each arc

should be reconnected to the new node by AF.

 From Proposition 4.1, it can be known that OG can be generated from OGp by VF and

AF. Since OGp can be generated from the O-graphs of PN1 and PN2 by Algorithm 3.3, the

technique of generating OG from PN1 and PN2 is found.

 45

4.2 Merging Policy

 Since a T&P mergence merges two Petri nets to one, the final result net of a sequence of

T&P mergences is a node, i.e., the root of the binary tree according to the mergences. The

nodes including those generated in the mergences, and their binary relationships can be

deemed as a merging tree.

1

4 5

2 3

N345N12

N45

N12345

Figure 4.2 An example of a merging tree

 Figure 4.2 is an example of a merging tree. Each node in the tree is a Petri net and each

non-leaf node is generated by a T&P mergence between its two branching nodes. For example,

net (node) N12 is generated by a T&P mergence between net 1 and net 2 while net N345 is

generated by a T&P mergence between net 3 and net N45. The root (net N12345) is the final

result net. The numbers following “N” indicates this node is merged from what leaf nodes.

 46

(1) TMR ⊆ (T ∪ P) × (T ∪ P);
(2) ∀ t ∈ T, p ∈ P: (t, p) ∉ TMR and (p, t) ∉ TMR;
(3) If (e1, e2) ∈ TMR, then (e2, e1) ∈ TMR;
(4) If (e1, e2) ∈ TMR and (e2, e3) ∈ TMR, then (e1, e3) ∈ TMR;
(5) ∀ t1, t2 ∈ T: if t1 belongs to the same Petri net with t2, then (t1, t2) ∉ TMR.
(6) ∀ p1, p2 ∈ P: if p1 belongs to the same Petri net with p2, then (p1, p2) ∉ TMR.
(7) ∀p1, p2 ∈ P, t1 ∈ T: if (p1, p2) ∈ TMR and (t1, p1) ∈ F, then ∃| t2 ∈ T: (t2,

p2) ∈ F and (t1, t2) ∈ TMR;
(8) ∀p1, p2 ∈ P, t1 ∈ T: if (p1, p2) ∈ TMR and (p1, t1) ∈ F, then ∃| t2 ∈ T: (p2,

t2) ∈ F and (t1, t2) ∈ TMR;

Definition 4.4: Let PNS be a set of distinct Petri nets, T be the union of all sets of
transitions in the Petri nets belonging to PNS, P be the union of all sets of places
in the Petri nets belonging to PNS, and F be the union of all sets of directed arcs in
the Petri nets belonging to PNS. A total merging relation for PNS denoted as TMR
where

 When merging a set of distinct Petri nets into one net using a series of T&P mergences, a

total merging relation for this set of nets can be used to define which pairs of transitions and

places must be merged together in each T&P mergence.

 all elements belonging to S1 × S2 belong to TMR, where S1 and S2 are the
subset of S.

 MRP is a merging relation of Petri net from PN1 to PN2 where PN1 and PN2
are merged by two distinct subsets of PNS separately;

MRP is a merging relation of Petri net following TMR, where

Definition 4.5: Let PNS and TMR be as above, S be the set of all transitions and
places in PNS.

Note: In this definition, if PN1 ∈ PNS, S1 = {e1}; if PN2 ∈ PNS, S2 = {e2}.

 47

 ∀ NLPN ∈ the set of all non-leaf nodes of MT: NLPN is generated by a T&P
mergence according to a merging relation of Petri net following TMR

 the set of all leaves of MT is equal to PNS;
 MT is a merging tree;

MT is a merging tree constructed based on TMR, where
Definition 4.6: Let PNS and TMR be as above.

Definition 4.7: Let TMR be as above and PN be a Petri net. PN is generated
according to TMR, where PN is the root of a merging tree constructed based on
TMR.

 Above three definitions show how to generate a Petri net by merging a set of distinct nets

according to a total merging relation for the set of nets. Note that there is one or more trees

constructed based on the same total merging relation. This indicates that the sequence of T&P

mergence can be changed under above definitions. Figure 4.3 is a merging tree representing

different sequences of T&P mergence from those in Figure 4.2. If both trees are constructed

based on the same total merging relation, the two roots (both denoted by “N12345”) in the two

figure are the same.

 48

1 4

5

2 3

N34N12

N1234

N12345

Figure 4.3 Another example of merging tree

 An interesting characteristic can be observed from this example. In Figure 4.2, if net 5 is

modified, nets N45, N345, and N12345 and their O-graphs must be reconstructed when the

O-graph of the final result net (N12345) is used. In Figure 4.3, once net 5 is modified, only net

N12345 and its O-graph have to be re-constructed when they are needed. Once a net is modified

and the root and its O-graph are needed, the closer the net modified is to the root, the fewer of

the nets need be reconstructed. So, a merging tree containing the modified net closer to the

root needs less reconstructing time.

4.3 Possible Applications

 In the application layer, there are two significant directions that the technique for T&P

mergence can be applied to: merging components into one and dividing a Petri net into a set

of nets for incremental analysis.

 49

4.3.1 The Analysis Following the Component Mergence

 When a system is composed by several components, these components may have several

synchronizations between them. Since a T&P mergence between two nets is a kind of

synchronization and Petri nets can be used to model and analyze many kinds of systems ([4],

[5], [8]), T&P mergences can be used to model some kinds of relationships between two

components. When the generating time of the O-graph of a Petri net can be reduce, the times

of many Petri net analysis methods using O-graphs ([2], [3]) might be reduced. As presented

previously, it can reduce the generation time of the O-graph of a Petri net PN by merging the

O-graphs of the original subnets together, instead of using PN directly. On the other hand,

such mergences might be used to help to analyze the system.

 Figure 4.4 shows an application. When two transitions t1 and t2 in two WorkFlow nets

(WF-net) (defined in [10], WF-net is a kind of Petri net) are merged, whether all reachable

markings can reach the end marking (only each “out” place has a token) of the whole net must

be checked. In Figure 4.5, the O-graph of the whole net generated by applying Algorithm 3.3

is displayed. With some graphical algorithms ([19]) (in this case, search according to the

reverse arcs), the six reachable markings (marked with two gray oval) which can not reach the

end marking can be found. Since the generation time of the O-graph can be reduced, the total

analyzing time can be reduced. Similarly, the time of various analyses can be reduced.

 50

WF-net 1

WF-net 2

in

in

out

out

tm

t1

t2

Figure 4.4 Merging two transitions between two WorkFlow nets

initial marking

end marking

Figure 4.5 The O-graph of the whole net shown in Figure 4.4

 51

4.3.2 Incremental Analysis for Edition in a Petri Net

 During edition of a Petri net, the net can be deemed as the mergence of its subnets. In the

merging tree corresponding to the Petri net, the O-graphs of each node can be generated by

the technique for T&P mergence. When a change is happened in one or more subnets during

edition, the O-graphs of these nets related to each modification must be re-constructed while

the rest are not.

a Petri net

Transform

Modify some

components

Reconstruct

Get needed O-graphs

and analyze

Modify some

components

the modified tree

a merging tree

Figure 4.6 A method for incremental analyzing a Petri net

 Figure 4.6 shows a method for incremental analysis using the technique for T&P

mergence. Let an oval in the figure be a state. The related activities associated with the arcs

are:

 Transform: transform the input Petri net into a merging tree;

 52

 Modify some components: modify, add, or delete some nets in the tree without

reconstructing their O-graphs;

 Reconstruct: reconstruct the O-graphs of the modified nets;

 Get needed O-graphs and analyze: get the O-graphs needed and analyze them.

 First, a Petri net PN edited and analyzed is transformed into a merging tree whose root is

PN. According to the definition of T&P mergence, each concurrent flow can be split as an

isolated component. In other words, the “And Split” and “And Join” components can be

divided as in Figure 4.7. When the problem of infinite markings can be dealt with, a

“Sequence” can be divided as Figure 4.8 because its second half can generate infinite tokens.

On the other hand, if the technique for place mergence is found, the division can be applied on

places.

(a) (b)

Figure 4.7 (a) “And Split” division; (b) “And Join” division

 53

Figure 4.8 “Sequence” division

 When a change happens in the structure of PN, it is necessary to perform “Modify some

components” in Figure 4.6. Thus, the corresponding components in the merging tree are

modified. Note that it is not necessary to reconstruct the O-graphs of the nodes of the merging

tree here.

 When an analysis applying O-graphs occurs, if the state is “the modified tree” in Figure

4.6, i.e., the tree has been modified but its O-graphs have not been renewed, activity

“Reconstruct” is performed to rebuild the O-graphs of the modified component. This activity

applies the technique for T&P mergence discussed previously and then the state becomes “a

merging tree”, where activity “Get needed O-graphs and analyze” can be executed to analyze

the properties of PN using the O-graphs in the merging tree.

 Since not all O-graphs must be reconstructed when “Reconstruct” is executed, the

O-graphs not to be renewed can be preserved. This characteristic has been discussed in

Section 4.2.

 A simple example of the method is shown below. Figure 4.9 (a) is a Petri net PN. First, it

 54

is divided into two subnets as in Figure 4.10 (a). A merging tree with two leaves

corresponding to these two nets and a root for PN can be constructed. When PN is modified

as in Figure 4.12 (a), by add a loop on top half, and it is denoted as PN’ and the corresponding

component, subnet 1, is modified as subnet 1’ in Figure 4.11 (a). When an analysis applying

O-graph of PN’ occurs, this O-graph can be generated by reconstructing the O-graph of

subnet 1’ (Figure 4.11 (b)) and merging the O-graphs of the two subnets into one (Figure 4.12

(b)) with the technique for T&P mergence.

(a) (b)

Figure 4.9 (a) A Petri net PN; (b) the O-graph of PN

 55

(a) (b)

subnet 1

subnet 2

Figure 4.10 (a) Two subnets after dividing PN; (b) their O-graphs

(a) (b)

subnet 1’

Figure 4.11 (a) The net modified from subnet 1; (b) its O-graph

 56

(a) (b)

Figure 4.12 (a) The Petri net PN’ merged from subnets 1’ and subnets 2; its O-graph

 Since the complexity of generating the final O-graph by the technique for T&P mergence

has linear relation with the O-graph’s marking number and quadratic relation with the

reachable marking number of subnet 1’, it is smaller than the complexity of generating the

O-graph directly from PN’ which has the quadratic relation with the O-graph’s marking

number.

 57

process P1 process P2

R1

R2

R3

Figure 4.13 A resource allocating system

 Figure 4.13 is a more complicated example. This Petri net models a resource allocating

system with two concurrent processes (P1 and P2) and three resources (R1, R2, and R3). By

the method, a merging tree using the five nets shown in Figure 4.14 as its leaves and the

resource allocating system as its root can be generated at “Divide” activity and the technique

for T&P mergence can be applied to.

 58

P1 P2

R1

R2

R3

Figure 4.14 Five parts of the resource allocation system in Figure 4.13

 59

Chapter 5. Example

 In this chapter, another example which is more complex than that in Chapter 3 is used to

go through Algorithm 3.3. Figure 5.1 shows a Petri net modified from the net in Figure 3.1 (a)

(an extra token is added into p1) and its corresponding O-graph. Figure 5.2 shows an example

combination of the two nets in Figure 5.1 (a) and Figure 3.1 (a) and the O-graph of combining

result. Figure 5.3 shows the net after doing a transition mergence according to the merging

relation {(t1-2, t2-2)} and its O-graph.

(a)

(b)

t1 t2 t3p1 p2 p3 p4

(2,0,0,0) (1,1,0,0)

(1,0,1,0)

(0,2,0,0)

(1,0,0,1)

(0,1,1,0)

(0,1,0,1)

(0,0,2,0)

(0,0,1,1) (0,0,0,2)

t1

t2

t1

t3

t2

t1

t2

t2

t3

t3
t1 t3

Figure 5.1 (a) An example of Petri net; (b) the O-graph of the net shown in (a)

 60

(a)

(b)

t1-1 t1-2 t1-3

t2-1 t2-2 t2-3

p1-1 p1-2 p1-3 p1-4

p2-1 p2-2 p2-3 p2-4

t2-1

t2-2

t2-3

subnet 1

subnet 2

subnet 1

subnet 2

Figure 5.2 (a) A Petri net generated from combining two nets; (b) the O-graph of the net
shown in (a)

 In Figure 5.2 (b), there are two kinds of arcs, a black arc is corresponding to a firing of a

transition in subnet 1 in Figure 5.2 (a) and a gray arc is corresponding to a firing of a

transition in subnet 2. After applying Algorithm 3.1 for combining Petri nets, each marking of

subnet 1 is merged with each marking of subnet 2 to become a marking in the new O-graph.

 61

(a)

(b)

t1-1 t1-3

t2-1 t2-3

p1-1 p1-2 p1-3 p1-4

p2-1 p2-2 p2-3 p2-4

subnet 1

subnet 2

subnet 1

subnet 2
1 2

3

4 5

6

7

8

9 10

11

12

13 14

tm

tm

tm

Figure 5.3 (a) A Petri net generated from doing a transition mergence; (b) the O-graph of the
net showed in (a)

 Figure 5.3 shows the net after merge t1-2 and t2-2 and its O-graph. The nodes in Figure 5.3

 62

(b) are the net’s markings:

“1” = (2, 0, 0, 0, 1, 0, 0, 0); “2” = (1, 1, 0, 0, 1, 0, 0, 0);

“3” = (0, 2, 0, 0, 1, 0, 0, 0); “4” = (2, 0, 0, 0, 0, 1, 0, 0);

“5” = (1, 1, 0, 0, 0, 1, 0, 0); “6” = (0, 2, 0, 0, 0, 1, 0, 0);

“7” = (1, 0, 1, 0, 0, 0, 1, 0); “8” = (0, 1, 1, 0, 0, 0, 1, 0);

“9” = (1, 0, 0, 1, 0, 0, 1, 0); “10” = (0, 1, 0, 1, 0, 0, 1, 0);

“11” = (1, 0, 1, 0, 0, 0, 0, 1); “12” = (0, 1, 1, 0, 0, 0, 0, 1);

“13” = (1, 0, 0, 1, 0, 0, 0, 1); “14” = (0, 1, 0, 1, 0, 0, 0, 1)

(the numbers in the arrays specify the numbers of tokens of the places in this order (p1-1, p1-2,

p1-3, p1-4, p2-1, p2-2, p2-3, p2-4)).

 The O-graph, OG, generating steps are shown below:

(1) Generating the initial marking “1” = (2, 0, 0, 0, 1, 0, 0, 0) refers the two initial marking

(2, 0, 0, 0) and (1, 0, 0, 0) of the two subnets. The result is put into OG and s1pool.

 s1pool = {“1”}, s2pool = {}

(2) Marking “1” = (2, 0, 0, 0, 1, 0, 0, 0) is gotten from s1pool and what arcs starting from (2,

0, 0, 0) in subnet 1 are checked.

a. The arc ((2, 0, 0, 0), t1-1, (1, 1, 0, 0)) is found. When t1-1 is not in the merging

relation and node (1, 1, 0, 0, 1, 0, 0, 0) is not in OG, arc (“1” = (2, 0, 0, 0, 1, 0, 0, 0),

t1-1, “2” = (1, 1, 0, 0, 1, 0, 0, 0)) and node “2” are generated and put into OG. “2” is

put into s1pool.

 s1pool = {“2”}, s2pool = {}

“1” is put into s2pool.

s1pool = {“2”}, s2pool = {“1”}

(3) Marking “2” is gotten from s1pool and what arcs starting from (1, 1, 0, 0) in subnet 1 are

checked.

 63

a. The arc ((1, 1, 0, 0), t1-1, (0, 2, 0, 0)) is found. When t1-1 is not in the merging

relation and node “3” is not in OG, arc (“2”, t1-1, “3”) and node “3” are generated

and put into OG. “3” is put into s1pool.

 s1pool = {“3”}, s2pool = {“1”}

b. The arc ((1, 1, 0, 0), t1-2, (1, 0, 1, 0)) is found. When t1-2 is in the merging relation,

“2” is marked with t1-2 (denoted as “2”m).

“2”m is put into s2pool.

s1pool = {“3”}, s2pool = {“1”, “2”m}

(4) Marking “3” is gotten from s1pool and what arcs starting from (0, 2, 0, 0) in subnet 1 are

checked.

a. The arc ((0, 2, 0, 0), t1-2, (0, 1, 1, 0)) is found. When t1-2 is in the merging relation,

“3” is marked with t1-2.

“3”m is put into s2pool.

s1pool = {}, s2pool = {“1”, “2”m, “3”m}

(5) Marking “1” is gotten from s2pool and what arcs starting from (1, 0, 0, 0) in subnet 2 are

checked.

a. The arc ((1, 0, 0, 0), t2-1, (0, 1, 0, 0)) is found. When t2-1 is not in the merging

relation and node “4” is not in OG, arc (“1”, t2-1, “4”) and node “4” are generated

and put into OG. “4” is put into s1pool.

 s1pool = {“4”}, s2pool = {“2”m, “3”m}

(6) Marking “2” is gotten from s2pool and what arcs starting from (1, 0, 0, 0) in subnet 2 are

checked.

a. The arc ((1, 0, 0, 0), t2-1, (0, 1, 0, 0)) is found. When t2-1 is not in the merging

relation and node “5” is not in OG, arc (“2”, t2-1, “5”) and node “5” are generated

and put into OG. “5” is put into s1pool.

 s1pool = {“4”, “5”}, s2pool = {“3”m}

 64

(7) Marking “3” is gotten from s2pool and what arcs starting from (1, 0, 0, 0) in subnet 2 are

checked.

a. The arc ((1, 0, 0, 0), t2-1, (0, 1, 0, 0)) is found. When t2-1 is not in the merging

relation and node “6” is not in OG, arc (“3”, t2-1, “6”) and node “6” are generated

and put into OG. Puts “6” into s1pool.

 s1pool = {“4”, “5”, “6”}, s2pool = {}

(8) Marking “4” is gotten from s1pool and what arcs starting from (2, 0, 0, 0) in subnet 1 are

checked.

a. The arc ((2, 0, 0, 0), t1-1, (1, 1, 0, 0)) is found. When t1-1 is not in the merging

relation and node “5” is in OG, arc (“4”, t1-1, “5”) is generated and put into OG.

“4” is put into s2pool.

s1pool = {“5”, “6”}, s2pool = {“4”}

(9) Marking “5” is gotten from s1pool and what arcs starting from (1, 1, 0, 0) in subnet 1 are

checked.

a. The arc ((1, 1, 0, 0), t1-1, (0, 2, 0, 0)) is found. When t1-1 is not in the merging

relation and node “6” is in OG, arc (“5”, t1-1, “6”) is generated and put into OG.

b. The arc ((1, 1, 0, 0), t1-2, (1, 0, 1, 0)) is found. When t1-2 is in the merging relation,

“5” is marked with t1-2.

“5”m is put into s2pool.

s1pool = {“6”}, s2pool = {“4”, “5”m}

(10) Marking “6” is gotten from s1pool and what arcs starting from (0, 2, 0, 0) in subnet 1 are

checked.

a. The arc ((0, 2, 0, 0), t1-2, (0, 1, 1, 0)) is found. When t1-2 is in the merging relation,

“6” is marked with t1-2.

“6”m is put into s2pool.

s1pool = {}, s2pool = {“4”, “5”m, “6”m}

 65

(11) Marking “4” is gotten from s2pool and what arcs starting from (0, 1, 0, 0) in subnet 2 are

checked.

a. The arc ((0, 1, 0, 0), t2-2, (0, 0, 1, 0)) is found. When t2-2 is in the merging relation

but “4” is not marked with t1-2, nothing should be done.

s1pool = {}, s2pool = {“5”m, “6”m}

(12) Marking “5” is gotten from s2pool and what arcs starting from (0, 1, 0, 0) in subnet 2 are

checked.

a. The arc ((0, 1, 0, 0), t2-2, (0, 0, 1, 0)) is found. When t2-2 is in the merging relation,

“5” is marked with t1-2, and node “7” is not in OG, arc (“5”, tm, “7”) and node “7”

are generated and put into OG. “7” is put into s1pool.

 s1pool = {“7”}, s2pool = {“6”m}

(13) Marking “6” is gotten from s2pool and what arcs starting from (0, 1, 0, 0) in subnet 2 are

checked.

a. The arc ((0, 1, 0, 0), t2-2, (0, 0, 1, 0)) is found. When t2-2 is in the merging relation,

“6” is marked with t1-2, and node “8” is not in OG, arc (“6”, tm, “8”) and node “8”

are generated and put into OG. “8” is put into s1pool.

 s1pool = {“7”, “8”}, s2pool = {}

... (until s1pool and s2pool are both empty)

Finally, OG becomes the O-graph shown in Figure 5.3 (b).

 66

Chapter 6. Conclusion and Future Works

 The major contribution of this thesis is to introduce a method that reduces the O-graph

building time when merging some pairs of transitions in two Petri nets. The purpose is

achieved by utilizing the O-graph of the two Petri nets directly to generate the new one.

O-graph building time reduction contributes to the analyses to Petri net.

 Besides merging pair of transitions, this thesis also introduces two extensions: The first

one is merging pairs of places when their input and output transitions are merged. The

algorithm of transition mergence can be used in this case. Second, merging tree is introduced

to model merging policy when a sequence of transition mergences happens. What applications

could use the method provided by us is also discussed here. Two examples about merging two

WorkFlow nets and dividing a Petri net for incremental analysis are used to demonstrate the

method.

 The future works are listed as follows:

1. State explosion and infinite states are two critical problems of O-graph. There are many

methods provided ([2], [3]) for solving these problems. Concerning these two factors to

integrate existing methods could increase the ability of our method.

2. The policies of building the merging trees are different in diverse applications. When the

structure of a merging tree has big influence to the analysis time, the researches about

how to build merging trees for applications is needed.

3. There are some actions/conditions not concerned. For example, places merging is not

concerned much. They might be worth while for further study.

 67

4. There are many kinds of high-level Petri nets (For example, coloured Petri nets

introduced in [1], [2], and [4] and timed Petri nets introduced in [4]). One of our future

works is adapting our method to handle these high-level Petri nets.

 68

Reference

[1] Kurt Jensen, “Coloured Petri Nets: Basic Concepts,” Springer, 1992.

[2] Kurt Jensen, “Coloured Petri Nets: Analysis Methods,” Springer, 1995.

[3] W. Reisig and G. Rozenberg, “Lectures on Petri Nets I: Basic Models,” Springer, 1998.

[4] W. Reisig and G. Rozenberg, “Lectures on Petri Nets II: Applications,” Springer, 1998.

[5] Jörg Desel and Gabriel Juhás, “What Is a Petri Net,” Unifying Petri Nets, Lecture Notes

in Computer Science, pp. 1-25, Springer, 2001.

[6] Piotr Chrząstowski-Wachtel, Boualem Benatallah, Rachid Hamadi, Milton O’Dell, and

Adi Susanto, “A Top-Down Petri Net-Based Approach for Dynamic Workflow

Modeling,” International Conference on Business Process Management,

Springer-Verlag Berlin Heidelberg 2003.

[7] C.A. Petri, “Kommunikation mit Automaten,” PhD thesis, University of Bonn, Bonn,

Germany, 1962.

[8] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE,

vol. 77, issue 4, pp. 541 – 580, April 1989.

[9] W.M.P. van der Aalst, “Verification of Workflow Nets,” Application and Theory of Petri

Nets, volume 1248 of Lecture Notes in Computer Science, pages 407–426,

Springer-Verlag, Berlin, 1997.

[10] W.M.P. van der Aalst, “The Application of Petri Nets to Workflow Management,” The

Journal of Circuits, Systems and Computers, vol. 8, no. 1, pp. 21–66, 1998.

[11] W.M.P. van der Aalst and A.H.M ter Hofstede, “Verification of workflow task structures:

A petri-net-based approach,” Information System, Vol. 25, No. 1, pp. 43-69, 2000.

[12] Julia Padberg, Maike Gajewsky, and Kathrin Hoffmann, “Incremental Development of

 69

Safety Properties in Petri Net Transformations,” Lecture Notes in Computer Science, pp.

410-425, Springer-Verlag, 2000.

[13] J. Padberg, M. Gajewsky, and C. Ermel, “Rule-based refinement of high-level nets

preserving safety properties,” Science of Computer Programming, vol. 40, issue 1, pp.

97-118, May 2001.

[14] Julia Padberg, “Categorical Approach to Horizontal Structuring and Refinement of

High-Level Replacement Systems,” Applied Categorical Structures, vol. 7, number 4,

Springer Netherlands, 1999.

[15] J. Padberg, H. Ehrig, and L. Ribeiro, “Algebraic High-Level Net Transformation

Systems,” Mathematical Structures in Computer Science 5, pp. 217–256, 1995.

[16] P. Molinaro, D. Roux, and O. Delfieu, “Improving the calculus of the marking graph of

Petri net with BDD like structure,” IEEE International Conference on Systems, Man

and Cybernetics, vol. 1, pp. 43-48, Oct. 2002.

[17] P. Molinaro and M. Magnin, “Markg”, Available at http://markg.rts-software.org, 2006.

[18] Sheldon B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Computers, vol.

C-27, issue 6, pp. 509-516, Jun. 1978.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,

“Introduction to Algorithms, Second Edition, Chapter 22. Elementary Graph

Algorithms,” The MIT Press, 2001.

 70

http://markg.rts-software.org/

Appendix

 The content of the box shown below contains the additional data structures about two

pools used in the following construction-based algorithm of transition mergence.

}
 Arc[] marc; // the arcs that must be marked
 Vertex v;
Structure UnsolvedMarkingS2 {

}

 Queue(UnsolvedMarkingS2) ums2; // a queue with the element type
 “UnsolvedMarkingS2”

Structure Subnet2Pool {

}
 Queue(Vertex) ums1; // a queue with the element type “Vertex”
Structure Subnet1Pool {

 71

 Algorithm A is the detail of Algorithm 3.3, which is the construction-based algorithm for

transition mergence.

(to be continued)

29
28 add(s1pool.ums1, v);
27 PN.OG.pointerTableD2[v.tmpID1][v.tmpID2] = v;
26 PN.OG.v += v;
25 newID++;
24 PN.OG.pointerTableD1[v.ID] = v;
23 v.ID = newID;
22 v.tmpID2 = vy.ID;
21 v.tmpID1 = vx.ID;
20 v.m = vx.m + vy.m;
19 Vertex v = new Vertex;
18 Vertex vy = PN2.OG.pointerTable1D[0];
17 Vertex vx = PN1.OG.pointerTable1D[0];
16 Subnet2Pool s2pool = new Subnet2Pool;
15 Subnet1Pool s1pool = new Subnet1Pool;
14 int newID = 0;
13 // merge the occurrence graph part
12 END
11 mt[i] = mergeTransition(PN, MR.tp[i]);

8 Transition[] mt = new Transition[MR.tp.size];
9 FOR i from 0 to (MR.tp.size - 1)
10 // make new transition in PN

7 PN.f = clone(PN1.f + PN2.f);
6 PN.t = clone(PN1.t + PN2.t);
5 PN.p = clone(PN1.p + PN2.p);
4 // merge the Petri Net part
3
2 PetriNet PN = new PetriNet;
1 // Creat a new empty Petri Net then add PN1 and PN2 in it.

Algorithm A: PNTransitionMergenceV2(PetriNet PN1, PetriNet PN2,
MergingRelation MR)

 72

68

(to be continued)

67 END
66 add(s2pool.umd2, ums2);
65 END
64 END
63 PN.OG.a += arc;
62 arc.t = originalArc.t;
61 newV.arcIn += arc;
60 arc.vEnd = newV;
59 END
58 Vertex newV = PN.OG.pointerTable[originalArc.vEnd.ID][v.tmpID2]
57 ELSE
56 add(s1pool.ums1, v);
55 PN.OG.pointerTable2D[newV.tmpID1][newV.tmpID2] = newV;
54 PN.OG.v += newV;
53 newID++;
52 PN.OG.pointerTable1D[newV.ID] = newV;
51 newV.ID = newID;
50 newV.tmpID2 = v.tmpID2;
49 newV.tmpID1 = originalArc.vEnd.ID;
48 newV.m = originalArc.vEnd.m + PN2.OG.pointerTable[v.tmpID2].m;
47 Vertex newV = new Vertex;
46 IF PN.OG.pointerTable[originalArc.vEnd.ID][v.tmpID2] == null
45 v.arcOut += arc;
44 arc.vStart = v;
43 Arc arc = new Arc;
42 IF isMT != true
41 END
40 END
39 isMT = true;
38 ums2.marc[i] = originalArc;

33 UnsolvedMarkingS2 ums2 = new UnsolvedMarkingS2(v);
34 FOR ALL (originalArc ∈ PN1.OG.pointerTable[v.tmpID1].arcOut)
35 boolean isMT = false;
36 FOR i from 0 to MR.tp.size – 1
37 IF originalArc.t == TM.tp[i].t1

30 WHILE (s1pool.ums1 ≠ ∅ or s2pool.ums2 ≠ ∅)
31 WHILE (s1pool ≠ ∅)
32 v = remove(s1pool.umd1);

 73

(to be continued)

102 END
101 END
100 END
99 PN.OG.a += arc;
98 arc.t = mt[i];
97 newV.arcIn += arc;
96 Arc.vEnd = newV;
95 END

93 Vertex newV =
94 PN.OG.pointerTable[ums2.marc[i].vEnd.ID][originalArc.vEnd.ID];

92 ELSE
91 add(s1pool.ums1, v);
90 PN.OG.pointerTable2D[newV.tmpID1][newV.tmpID2] = newV;
89 PN.OG.v += newV;
88 newID++;
87 PN.OG.pointerTable1D[newV.ID] = newV;
86 newV.ID = newID;
85 newV.tmpID2 = originalArc.vEnd.ID;
84 newV.tmpID1 = ums2.marc[i].vEnd.ID;
83 newV.m = ums2.marc[i].vEnd.m + originalArc.vEnd.m;
82 Vertex newV = new Vertex;
81 IF PN.OG.pointerTable[umd2.marc[i].vEnd.ID][originalArc.vEnd.ID] == null
80 v.arcOut += arc;
79 arc.vStart = v;
78 Arc arc = new Arc;
77 IF ums2.marc[i] != null
76 isMT = true;

71 v = ums2.v;
72 FOR ALL (originalArc ∈ PN2.OG.pointerTable[v.tmpID2].arcOut)
73 boolean isMT = false;
74 FOR i from 0 to MR.tp.size – 1
75 IF originalArc.t == MR.tp[i].t2;

69 WHILE (s2pool ≠ ∅)
70 ums2 = remove(s2pool.ums2);

 74

130 RETURN PN;

129
128 END
127 END
126 END
125 END
124 PN.OG.a += arc;
123 arc.t = originalArc.t;
122 newV.arcIn += arc;
121 arc.vEnd = newV;
120 END
119 Vertex newV = PN.OG.pointerTable[v.tmpID1][originalArc.vEnd.ID]
118 ELSE
117 add(s1pool.ums1, v);
116 PN.OG.pointerTable2D[newV.tmpID1][newV.tmpID2] = newV;
115 PN.OG.v += newV;
114 newID++;
113 PN.OG.pointerTable1D[newV.ID] = newV;
112 newV.ID = newID;
111 newV.tmpID2 = originalArc.vEnd.ID;
110 newV.tmpID1 = v.tmpID1;
109 newV.m = PN1.OG.pointerTable[v.tmpID1].m + originalArc.vEnd.m;
108 Vertex newV = new Vertex;
107 IF PN.OG.pointerTable[v.tmpID1][originalArc.vEnd.ID] == null
106 v.arcOut += arc;
105 arc.vStart = v;
104 Arc arc = new Arc;
103 IF isMT != true;

 75

	摘要
	Chapter 1. Introduction
	Chapter 2. Background
	Chapter 3. Petri Net Transition Mergence
	Chapter 4. More about Transition Mergence
	Chapter 5. Example
	Chapter 6. Conclusion and Future Works

