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Application Classification in Real Traffic:
Using Packet Size Distribution and Ports Association

Student: Wei-Hao Peng Advisor: Dr. Ying-Dar Lin
Department of Computer Science and Engineering

National Chiao Tung University

Abstract

Signature based classification methodology has been used for a long time, but it
can't be applied to encrypted protocol message. Some researches try to find out useful
characteristics of separate applications from their transport layer behaviors that can be
divided into two kinds: social netwerk behaviers and statistical behaviors. Most of
them are time-consuming due to a huge amount.of information needed. In our work,
we use Packet Size Distribution and Ports Association to achieve our goal. Every
succeeded connection would be transformed into one vector in the multi-dimensional
coordinate spaces and classified into some specified application or other unknown
ones. Besides, the Euclidean distances of every connection between all individual
centers, the representatives of the applications, will also be computed. Once a
connection is identified and classified into some certain session, we can use ports
association algorithm to associate and accelerate other connections in the same
session. Using the proposed method, we can reach high classification accuracy rate,
96% on average, and low false positive and false negative rate, 4%~5%, after the
preparation process of 100~200 packets. Lastly, we present an basic on-line
architecture to show the correctness and simplicity.
Keywords: Traffic classification, Transport layer behaviors, Packet size distribution,

Ports association, peer-to-peer
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Chapter 1. Introduction

Classifying traffic flows according to the applications behaviors is essential to real
traffic analysis. The Internet service providers can design the network and determine
the management policy from the statistics of application protocols. Therefore, traffic
identification and classification are the basis of traffic analyzing research, especially
for network intrusion detection mechanisms.. Network intrusion detection relies on
the classification to help extracting high-level semantic context from traffic.

Traditional classification methodology based on identifying packet payload
signatures and their related port numbers was effective[1,2], but this kind of method is
no longer works as well with growing P2P traffic, which intends to disguise
themselves. Because many non-standard P2P protocols exist, and most of them are
using payload encryption and port randomization, the difficulty in classification gets
even higher. Therefore, it is impatient-to find-new characteristics other than packet
payload information.

By the reasons above, we start to find application characteristics without
information in payload. Previous works have shown that classification methods
using transport-layer behavior of applications have been proposed in the literature.
They can be categorized into two classes: (i) Statistical properties, which use flow
statistical analysis to classify network traffic or at least describe the behaviors. [3, 4, 5]
This approach employs the information of packet sizes, packet inter-arrival time and
packet arrival order to determine which classes of application that the traffic belongs
to, such as interactive, bulk transfer and streaming or transactional ones. (ii)
Socialized network behaviors, which the first one proposed by T. Karagiannis et al. is
observing connection patterns between source and destination IP pairs, then

examining the flow history to reveal the different parts of P2P protocols [6, 7]. Later,
1



he proposed a new method called BlinC which is a topology-based classification
method that associates Internet hosts with applications into three socialized levels, and
used the difference between these levels as characteristics to classify the flows [8].
These approaches can provide rich information and give the highly accurate results at
the expense of complex analysis. However, it has low performance and cannot be
applied to an on-line architecture.

In this paper, we propose a novel approach to classify traffic flows, which based
on the characteristics of packet size distribution (PSD) per application flow. And use
port locality per session of an application to associate the connections. There may be
one or lots packets in one connection. We characterize the PSD of connections as
vectors in a multi-dimensional vector space.. The entries of a vector are defined as
following: (1) Change Cycle (CC), to represents if the PSD of a flow changes
dramatically. In general, it always happens to. P2P or streaming protocols, (2)
Dominating Sizes (DS), to represents:the-Sizes-that appear most frequent in a flow, (3)
Dominating Sizes Proportion (DSP) and (4). VVariance of Dominating Sizes. In the first
phase of our method, we locate the representative centers of the specialized
applications. In the second one, we use our clustering algorithm to classify the vectors
of all connections into applications.

The proposed classification provides a fast, accurate and could be applied into
on-line architecture with features we defined in our work. First, we define the features
of applications without the payload information. The algorithm is based on PSD and
does not have to access any payload patterns as information for classification. This
approach can work even when the traffic is encrypted. Second, different applications
have different types of PSD. For example, the PSD of P2P applications vary violently
but the PSD of Http or FTP ones is even smooth. Third, our approach can classify

traffic in a very short time, say hundreds of packets and still have high accuracy, say
2



up to 90%. Last, unknown applications could also be classified. According to the
vectors of all connections, we can determine what applications those connections
belong to. If one connection is not classified into some application in the end, we
divide it into unknown ones.

This paper is organized as follows. Chapter 2 describes the experimental
environment and the characteristics we found in packet size distribution. In Chapter 3,
we proposed the new classification algorithm using the features in Chapter 2. We
evaluate the accuracy and performance of the algorithm in Chapter 4 and give a
simple on-line architecture. Then we conclude this work and discuss the results with

different background traffic as future works.



Chapter 2. Observing and Characterizing Application Flow
Behaviors.

2.1 Description of experiment environment

In our traces, it is necessary to collect pure traffic of applications to analyze the
transport layer behaviors of those applications. We construct an In-Lab Pure Traffic
Recording Environment over Ethernet as figure 1 shows, to dump pure application
traffic samples by using Netlimitter v2.0 [9], which is one kind of traffic management
software used to restrict which application in a host can build connections to other
hosts. Next to Netlimitter, we run the program and then use Wireshark [10] to dump
traffic for four different situations: (1) time duration, there are 30 seconds, 5 minutes,
and the whole session respectively; (2) data sources, for those file-sharing
applications, we give different file'sources to cellect traffic; (3) host loading; this
information is used to show that no ' matter-how high the host loading is, the PSD of
application wouldn’t be affected; (4) ‘application settings; our purpose is to observe
that whether or not the PSD of application.would be affected by the bandwidth
settings, quality settings, or encrypted protocol settings. Table 1 shows applications
and its’ corresponding version we used in our research and the number of traffic

samples we collect.

Table 1: Applications used in this work.

App. Name Class \ersion Samples Protocol

Bittorrent P2P 0.81 40 TCP

eMule P2P 0.47b 40 TCP/UDP

Skype P2P 3.0 40 TCP/UDP
MSN P2P 8.1 40 TCP
Apache Http 2.2.4 40 TCP
ZFTP server FTP 74.4 40 TCP
ShoutCast Streaming 1.9.7 40 TCP
WorldofWarcraft Gaming 2.0 40 TCP




e P2P application
e Http server Traf
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Figure 1: In-Lab Pure Traffic Recording Environment.
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Figure 2: Packet size distribution of each application.

Each PSD of an application could be obtained from all of its” own connections. We
compute size information of one connection from IP level and ignore connections
which do not belong to TCP or UDP protocols. According to our observations from
dumped traffic, the PSD graph of applications is shown in figure 2. Cross axle means
each application in our experiment, the other axle means its’ size proportion. The
small sizes inside the figure mean that the proportions of these sizes are too small to
represent them in the figure. We find PSD of applications have features such like
(1)Same application has several similar PSDs, as shown in figure 3, (2)Different

applications have different PSDs, as shown in figure 4, which the cross axle means



packet sequence and vertical axle means packet size that correspond to the sequence.
(3)PSDs of P2P and streaming applications vary more dramatically. We believe that
the reason is because of the different sizes of data structure from distinct
implementation of applications to the kernel buffer size. Therefore, the packed packet
sizes are also different between applications. From the point of view, the variation of
packet size could be a good feature to classify applications. In this work, we use five
metrics to represent each PSD of the applications, and the corresponding values are

shown in Table2.

|

Bittorrent samplel Bittorrent sample 2

Figure 3: Same application has similar PSD.

Bittorrent eMule



ZFTP server(Ftp)

Figure 4: Different applications have different PSD.

Apache (Http)

Table 2: The average numerical results of five metrics for each application.

Application DS DSP CcC CDS
Bittorrent 377 79% 13.3 1080
eMule 1180 51% 3.61 512
Skype-File 54 92% 1.51 54
Skype-Voice 84 33% 2.46 704
Msn-File 1388 45% 1.22 48
Msn-\oice 136 48% 1.74 488
Apache(Http) 1216 97% 230.41 1216
ZFTP server 688 87% 14.494 688
ShoutCast 41 4% 1.48 688
WorldofWarCraft 74 32% 1.30 1312

2.2 Dominating Sizes (DS) and its’ proportion (DSP)

Every PSD graph represents the size distribution information of a connection. In
addition to the well-known full payload (1500 bytes) and acked packet (40 bytes),
there are other various sizes in PSD. We pay our attention to those packets with bigger
proportion in a connection. We named these packet sizes as “Dominating Sizes” (DS)
of a connection. In our experiment, each application has quite different dominating
sizes and the dominating size proportions (DSP). DS and DSP are computed as

follows: Assume there are x sizes in one PSD of a connection, say
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P, pro(R)
P, pro(P,)

P=<P, pro(R) 1)

P, pro(P,)

Where P; means the i-th size, pro(Pi) means the proportion of Pi, and
pro(Pi.1)>pro( Pi), Vi = 1~x.
1. Define a Bound such that the Dominating Sizes vector will be

DS ={P,,P,,P,,..P,}, VP,eDS,P eP @)

where Pj is the first size such that Z pro(p,) >bound, and the bound is set to

n=l1~j
90% by default.
3. The DSP = {pro(P1), pro(P2), ..+5 pro(P;)}:
From the calculation, by assumption of all above; we also find every proportion of

dominating size has almost a fixed range.of variation for each application.

2.3 Change Cycle

From the analysis of PSD graph, the size variation of P2P and streaming protocols
are very dramatic than other applications. Since P2P and streaming protocols are
various and different. It is helpful to decide what applications a connection is
belonged to by quantifying this size variation. We called it as “Change Cycle” of a
PSD.

By equation (1), every PSD has its’ size bound DS. We define a “size bound change”
which is a size variation from one size bound in P to another. The distance of every
packet but without acked packets would be calculated between every Pi in DS. What
size bound that a packet belonged to is decided by the shortest distance between
them. Then a change cycle of a PSD is defined by the average number of packets

8



that a size bound change happens. Figure 5 shows the algorithm that describes how

to calculate the change cycle.

Procedure ChangeCycle
int Distance = int. MaxValue
Para0 = -1;
Paral = -1;
While the connection is not scanned over
{
for(int 1=0; 1<S1zeBound.Count; 1++)
{
int tmpDist] = math.abs(CurrentSize - pr)
int tmpDist2 = math.abs(LastSize -p7)
1f(tmpDist < Distance)
Para0 =1
1f(tmpDist2<Distance)
Paral =1
}
1f(Para0 = Paral)
ChangeCount = ChangeCount1

J Numberof Packetswvithoutick
ChangeCycle = ChangeCoun

Figure 5: Algorithm of'how to calculate change cycle of a PSD
2.4 Centralized Dominating Size

In addition to the size variation, we also analyze the status of size distribution degree
of size distribution and use variance of size that based on the expected value of PSD
and dominating size. By the equation (2), we can define a equation that represents
what size of dominating sizes that all sizes in equation (1) are closest to it. We call it

as the Centralized Dominating Size(CDS), as equation (3)
CDS=min{) (R, — Py )* * pro(R)} VR, €DS | ©)
i=1

The CDS provides a way to describe that which dominating size are closest to the

most of all packet sizes in size distribution. Table 2 lists a comparison between CDS



and Main Dominating Size (MDS), which means the dominating size in DS that has
the largest proportion.

CDS of a PSD would help us to describe the status of size distribution of a
connection. Also, it can represent size distribution behaviors of an application,

especially for P2P/streaming services and Skype voice chat..

2.5 Ports Locality

In IPv4 structure, every host has 65536 ports to use. In general, when a session of
an application needs to build multi-connections, kernel assigns continuous ports range
for every application, even for applications using randomized port numbers. Once
some port number is binded to the first connection, the remainder connections will use
continuous port numbers. This feature is not-willing to use for signature based
classification methodology. The-reason-isbecause it only needs to verify a few bytes
in packet payloads to make a decision,-For the method utilizing the transport layer
behaviors, the feature will be very useful if a.connection is recognized to a specific
application, the port information can be used for associating other connections. The

details of how to use this feature is described in section 3.3.

2.6 Example of calculating metrics

10
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Figure 6: eMule PSD of a sample from packet 1 to 50

We’ll then give a simplified example that how to calculate metrics of an eMule’s
connection. Figure 6 shows the P}_Sf)x:é)% filftypackets of an eMule connection sample.
In this sample, we have DS = {1180415‘730}DSP = {56%, 18%, 18%} and CC =
3.33. The reason why the chan;g;é cygieaéf—thls-PSD |s not close to the original value

we analyzed is because this si{'rﬁbl‘iﬁ'ed-samp‘{éJ is too short to collect enough

information.
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Chapter 3. Euclidean Distance Clustering Algorithm

3.1 Introduction to the classification methodology

In the classification methodology we proposed, every connection in real traffic will
be transformed to a vector in a multi-dimensional vector space. And each application
implementation will have a vector to represent it. The whole methodology flow can be
divided into 2 phases as Figure 7. The first phase is to decide the cluster centers for
the applications. The second one parses all the connections in real traffic into vectors,
and compares entries in Ports Association Table (PAT). If the corresponding pairs
<SrclP, SrcPort>, <DstIP, DstPort> do not appear in PAT, we would compute the
Euclidean distances between the vectors and all the cluster centers and then decide

which applications the connections are belonging to

Phase I: Center Training Phase I]: Classification Algorithm
o 1:<SrclP,SrcPort>,<DstIP, DstPort>
Cgllect Gy > Parsing Real Traffic .
Traffic Samples of an 2:normalized vector <DS,DSP,CC>
application

Calculate the center of gravity

v

App‘A App B Unknown

Center of this Sets of Sets of Sets of
application Vectors Vectors Vectors

Figure 7: Two phases of classification methodology.

3.2 Transform connections into vectors in spaces

Four metrics are defined in Chapter 2: Dominating Sizes (DS), Proportions of
Dominating Sizes (DSP), Size Bound Count (SBC), and Change Cycle (CC). Every

connection can be transformed to a vector in the form <DS, DSP, CC>. Since entries

12



in the vector are not in the same standard, it’s better to normalize them in the same
range, say 0~1, for the purpose of balancing the weight of each entry. The

normalization equation of each entry is as follows:

normalized DS = DS -
- Max Frame Size (5)
normalized _ DSP = DSP (6)
. 1
normalized _CC =—
cc (7)

Besides, in our traces, we find that well-known protocol applications, such as
apache server and zFTP server, and P2P applications such as Bittorrent and eMule
have less number of SBCs. Streaming applications have a large number of SBCs.
Therefore, we can separate well-known protocol applications and P2P/Streaming
applications into the different vector spaces. And streaming applications will be
separated in another one. We will automatically expand the lower dimensional vector

to have an identical dimension to thethigher-one-in the following vector operations.

3.3 Center Training
In this phase, our experiment collects 50 pure traffic samples for each application.

Assume the vectors of all connections for an application A;’s 50 samples are V = {v,

k

2V

Va,..., Vi}. Then the center of A; is defined as C, = iZL , Vv, eV

The accuracy of our algorithm depends on choosing the appropriate application
samples. For those applications that have various implementations on different
platforms, it is necessary to choose the most famous ones to calculate their metrics as
centers. For example, eMule client (http://www.eMule-Project.net) has windows and
Linux based editions, and the official site always supplies the newest version, that is,

0.47c. The statistical analysis reveals that the 0.47c windows version on
13



SourceForge.net (http://sourceforge.net/) has 15,000 downloads in average for each
day, and is the most popular implementation of eMule clients. So, the 0.47c windows
version would be the best choice to calculate eMule’s center.

We also find that different implementation of application may have different center.
Like eMule, which we mentioned above, the Windows version and Linux version

have really different center.

3.4 Association of connections to an application

Procedure ConnectionClassification
Vector[4] = Transform(Connection)
Space = WhichSpace(Vector.SC)
E_dist = double.maximum
for(int =0; i<centers.count; i++)
{
double tmpDist = Dist(Veetor, Centers|i};Space)
if(tmpDist<E_dist)
then E_dist = tmpDist
mark the last center:satisfy this'condition
H
if Vector.DS < Threshold
then this connection belongs to speeific application
else
then this connection belongs to unknown class

Figure 8: Algorithm of connection classification.

In the classification stage, the Euclidean distance (E_Dist) between two vectors is

defined as

E _ Dist = |/ Dist(DS,, DS,) + Dist(DSR, DSR,) + (CC, —CC,)? @®

where Dist(A,B) is the Euclidean distance between two same dimensional vectors A
and B. Since vectors of the same application are quite similar, the Euclidean distance
between the vectors of an application would be short. A connection is claimed to

belong to a certain application if it has the shortest distance to the center of that

14



application.

The false positives may occur when an application’s center is not in our defined
space. This case may exist in real traffic analysis, and if we use the algorithm to
recognize it, those connections will be recognized as other applications. A simple way
to address this problem is to find as many application centers as possible, but the
effectiveness to reduce false positives is not guaranteed. From the analysis of our
experiment, we define a threshold range for each center. If a vector V; is calculated
and decided belonging to certain center C; by the classification methodology, it’s DS

compared to Ci’s DS exceeds =+ 50 bytes, and DSP exceeded + 20%. , and then this
connection should belong to a certain unknown application instead. And it would also
be classified into the unknown class. The entire connection recognition algorithm is as
Figure 8. The function of transform function:for connection is to extract this

connection’s metric tuples.

3.5 Session association by ports association

Procedure PortsAssociation
SrcPair = Connection,SrcIP+Connection.SrcPort
DstPair = Connection.DstIP+Connection.DstPort
Bool hit = false
For(int 1=0; 1<PAT.count; 1++)
{
if SrcPair.host 18 in PAT
then 1f SrcPair.Port 1s continuous or same in PAT
then this connection belongs to application in PAT
hit = true
if DstPair.host 1s in PAT
then 1f DstPair.Port 1s continuous or same in PAT
then this connection belongs to application in PAT
hit = true
return hit;

}

Figure 9: Algorithm of session association using PAT

15



The PSDs of the same application may be different due to the variety of the

implementation. Hence false negatives may occur in our classification algorithm. To

solve this problem, we propose a method called “Ports Association” by using the port

locality described in chapter 2. Once a connection is recognized to be from some

application’s session, we could obtain a 4-tuple pair <SrclP, SrcPort, DstIP, DstPort>,

which means the two hosts run an instance of certain implementation of application

with SrcPort and DstPort. These information will be recorded in the Ports Association

Table (PAT) with the form <SrclIP, SrcPort, AppName> and <DstIP, DstPort,

AppName>. For other connections, if one of their hosts is already in the PAT, and the

port number in the pair <SrclP, SrcPort> or <DstlIP, DstPort> is continuous compared

with one entry of PAT. We can say this connection belongs to the same session of one

application. The association algorithm is as Figure:9.

Connection table

Procedure TrafficClassification
If(PortsAssociation == hit)

No. SrclP DstlP  SrcPort DstPort A then add host pairs to PAT
else
- A B A B run ConnectionRecognition
2 B C Bp+a Cp 9 if connection is recognized
then add host pair to PAT
n G K Gp Kp :]:il "\
. \ O \
Add hosts pair ° & ©
Ports Association Table Yes 4 ©
Q>
> IP Port A
< PP I Vg
g A Ap 9 ,
fal . ~a
£ B Bp+1 9 . Dé
S No
b\
¢ Cr E) ) <DSs.,DSP.,CCa> _4
Add hosts pair . P
ves Recognized? >

Figure 10: The whole classification algorithm flow

The whole classification algorithm is organized in two steps: Every connection in

the connection table will first run the Port Association algorithm. If the result is hit,

16



the connection would belongs to a certain application, and its’ SrcPair, DstPair will
be added to the PAT. If not, the connection will run the Connection Recognition
algorithm to classify the connection. The host pair of recognized connection will then

also be added to PAT. The complete classification algorithm is shown in Figure 10.
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Chapter 4. Evaluation

4.1 Evaluation Environment

The traffic for evaluating our methodology is recorded from NCTU High Speed
Network Lab and NCTU CSCC department. In the traffic recording environment, d,
we select 4 "victim" PCs, say host A, B, C, D to run specified applications on them.
The host "A" plays the role of server; it supplies the seed of P2P file sharing
applications, and runs as Apache servers, zFTP servers and ShoutCast servers. Other
interactive applications without our intervention are executed on host "B", like
WorldfoWarCraft, MSN chatting, Skype chatting. The rests "C","D" play the role of
receivers. For these victims, the purpose of tracing every connection that come from

what applications, we run Netlimitter inside ‘victims to log all information of

connections passed through.

Table 3. Connections in the collected traffic.

Applications A B C D Sum
eMule 1865 0 744 1381 2125
BitTorrent 1675 0 785 890 335
MSN-File 0 0 250 250 500
Skype-File 0 0 250 250 500
MSN-Voice 0 0 250 250 500
Skype-Voice 0 0 250 250 500
Apache 500 0 250 250 500
zFtp Server 740 0 360 380 740
ShoutCast 500 0 250 250 500
WorldofWarCraft 0 250 0 0 250
Background Traffic 2210
Sum of all connections 10000
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We collect traffic 50 samples total, and each complete one is defined by satisfying
all the three following conditions: (1) the data from the seeds could be completely
received by all peers; (2) a request from client is served by server side. For example, a
download request from a client to the apache server is served; (3) Streaming services,
such as a whole song has been played by ShoutCast server. As Table 3 shows that
77.9% connections are from the victims and 22.1% are from the background traffic of

Speed Network Lab and CSCC department of NCTU..

4.2 Connection Recognition Rate (CR) and Accuracy
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Figure 11: Connection Recognition rate

We compare the completeness of session association between our classification
algorithms on the basis of the logs recorded from NetLimitter. The definition of one
session for each application is defined as following (1) for P2P applications, one
program executes continuously until stopping intentionally. (2) A client’s request is
served completely by server. (3) A voice session runs without breaking off from
beginning to end. The higher the connection recognition (CR) rate is, the more
completeness of session association. The results are shown as Figure 11, and we can
observe that, the recognition rate of applications use multi-connections are improved
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1.2 ~ 2 times. For those rates of evaluated applications are equal before and after
using ports association algorithm (PAT) , there are two reasons. First, the applications
use single connection like MSN-file transferring, MSN-voice chatting, Sky-file
transferring, Skype-voice chatting and ShoutCast voice streaming. The second, the
port number used is not continuous, like the command and data transferring of zFTP
servers. We also can infer that the improvement via ports association algorithm
depends on two factors, (1) how fast can we recognize a connection? (2) how accurate
can we do it?

For the accuracy testing, an event “hit” occurred if a session is recognized correctly
using our method. Therefore, we can define a metric, accuracy, the percentage of
sessions recognized over all sessions recorded by NetLimitter. Figure 12 shows the
accuracy for every application .in our evaluation. It is significant that e p2p
applications and well-known pratocol applications such like Apache and zFTP server
have very high accuracy, say 98% on.average.-But for Skype and MSN-voice chatting,
it’s hard to be recognized by only PSDs due to they aren’t always similar.

The accuracy testing also reveals the quality of a center. If we choose a center by an
un-popular implementation of the application, the accuracy may be worse due to the

characteristics of less adoption..
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Accuracy for Session Recognition
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Figure 12: Accuracy for session detection

4.3 False positive rate and False negativesrate

Table 4: False poéit'ive/néﬁailti:\'(é-?aite‘ "ojleach application.
zF : l, & 3
Bitto | eM | Apa | TP | Msn- - Msn- | 'SKkype | Skype- | Shout | Worldof | Unkn
rrent | ule | che | ser | File | Voice -File" “\loice | Cast | WarCraft | own

ver

0% | 0% | 0% | 1% | 0% 9% 0% 2% 1% 0% 7%

4% | 7% | 0% | 1% | 0% | 17% 0% 18% 3% 4% 0%

As described in Section 3, the decision of classification is based on the Euclidean
distance between vectors and centers. The reason that why our algorithm makes
wrong decision of identifying traffic can be separated into 2 kinds of problems; the
first one is if the two different application’s centers are too close in the space, it may
causes the ambiguous decisions; the second one is if the number of packets in a

connection is too less to calculate enough information and to classify it into the
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appropriate center that represent certain application. The first problem can be avoided
by choosing appropriate centers that the distance between them is not too close. The
other one can be done by collecting enough packets, and we will describe in next
section in detail.

If a connection could not be divided into a given application correctly, it exhibits
false positives. If it could not identify all connections of a given application correctly,
it exhibits false negatives respectively.. Table 4 shows the false positive/negative rate
in our traces. For zFTP server, the false positive occurs when we evaluate its’
command connection, and for streaming services, it happens when the PSD changes

more violently than usual.

4.4 On-Line Gateway Architecture analysis

The key point of implementing our algorithm into on-line gateway architecture is
on how many packets we should evaluate at least'to obtain enough information to
compute the connection vector. By thealgorithm we mentioned above, we find that it
will take at least one hundred of packets of a connection to obtain the stable
connection vector. In our analysis, we calculate each entry of the connection vector in
every 100 packets, and see if the value will converge to + 5% to the representative
values of the whole connection vector. Table 5 shows the convergent speed of each
entry for each application. It takes one hundred to four hundred numbers of packets
on average to obtain the stable entry values. For every application, we find that
SizeBound is the key factor because every metric we used needs to complete the

SizeBound evaluation first.

Table 5: The convergent speed of each metric for each application.
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Application SizeBound DS DSP ChangeCycle
BitTorrent 100 100 100 200
eMule 200 100 100 200
Msn-File 100 100 Xj4 100
Msn-Voice 600 100 200 100
Skype-File 200 100 200 300
Skype-Voice 100 100 200 100
Apache 300 100 200 400
zFtp 100 200 100 400
ShoutCast 800 200 600 100
WoW 600 200 300 200

Procedure ChangeCycle

While the connection is not scanned oyer.
{

Para0 = WhcihBound(Pi)

Paral = WhichBound(Pi+1)

1f(Paral \= Paral)

{

ChangeCount = ChangeCount+1
}

} -
ChangeCycle = PktCountWithouAck
ChangeCount

Figure 13: Algorithm of Change Cycle of a connection.

For on-line architecture, we propose a new definition of SizeBound in our
algorithm and use it to count change cycle. We first divide one connection P into

four subsets of equal size, say P, , P, , P, and P, , where
Pi ={P1, P, P}, Vi=1..4. And define a “change” if packetP, e P, , P, € P, ,

where m=n. Then the change cycle of a connection will be defined as the average
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number of packets that a change happened and using an algorithm as Figure 13 to
describe. This approach provides faster decision but the accuracy will be decreased
about 2% on average.

We then give a discussion for simple on-line device overhead evaluation. For
storage overhead, every connection in the connection table needs 400 bytes
(32bits*100) of memory storage, center database storage, and PAT cache storage. For
processing overhead, the time of transforming a connection to a vector and access

PAT cache will be the performance bottleneck .
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Chapter 5. Conclusions and Future work

We observe two characteristics of transport layer behavior of applications from
experiments. First, different implementations of applications produce different packet
size distribution. The second is if an application use multi-connections sessions,
then the port numbers used might be continuous. By utilizing these two features, it’s
easy to distinguish different applications. As long as we can recognize one connection
of the application by packet size distribution, we can use the characteristic of port
locality to recognize other connections of the same application.

In this work, we design a classification algorithm that without accessing any packet
payload information and obtain high accuracy at the expense of low false positive rate
for applications which tend to transfer series data. Additionally, our method also
works for encrypted applications, such as Skype:file-sharing and voice chatting. In
the near future, we’ll evaluate other factors that may affect PSD, like Ethernet link
type. It’s obvious that the size distribution‘of the same connection will be different in
different network link type. For example, the MTU of Ethernet is 1500 bytes and PPP
is 1492 bytes. We may need to evaluate different link types to decide which one is
better to be the representative center of the application. Or we can separate
connections of different link type into different spaces that contains centers which are
pre-defined from different network link type.

Our methodology might be able to be combined with signature based classification
method to get better effects. For example, signature based classification method
works very well for Http applications. Therefore, our classification methodology can
avoid calculating Http traffic but spend more effort on others. It means this method
can be the second guard to classify those traffic that signature based method can’t

recognize.
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