

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

真實網路流量分類演算法:

利用封包大小分佈與連接埠關聯性之流量辨識

Application Classification in Real Traffic:

Using Packet Size Distribution and Ports Association

研 究 生：彭偉豪

指導教授：林盈達 教授

中 華 民 國 九 十 六 年 六 月

II

真實網路流量分類演算法:

利用封包分佈與連接埠關聯性之流量辨識

Application Classification in Real Traffic:
 Using Packet Size Distribution and Ports Association

研 究 生：彭偉豪 Student: Wei-Hao Peng

指導教授：林盈達 Advisor: Dr. Ying-Dar Lin

國立交通大學

網路工程研究所

碩士論文

A Thesis

Submitted to Institutes of Network Engineering
College of Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

In

Computer Science and Engineering

June 2007

HsinChu, Taiwan, Republic of China

中華民國九十六年六月

III

真實流量分類演算法:

利用封包分佈與連接埠關聯性之流量辨識

學生: 彭偉豪 指導教授: 林盈達

國立交通大學網路工程研究所

摘要

傳統的藉由封包特徵來辨識流量的方法已經使用了很長的一段時間，但是遇

到應用程式使用加密通訊協定的狀況下便無法使用。相關的研究中發現可以從應

用程式在網路傳輸層中展現的特性作為可被辨識的依據。這類方法可分為網路中

主機的社交關係與行為統計兩大類型，但是其方法卻有準度不足或是辨識耗時而

無法在即時的網路環境中運用。本篇提出了使用應用程式在傳輸層中的封包大小

分布特徵加上埠關聯特性的辨識方法。在真實流量中的每條連線皆會經由特徵值

運算後變成多維空間中的一個向量，並且藉由計算先前分析出的各應用程式在空

間中的代表點之差異即可辨識出該連線屬於何種應用程式，若在加上利用埠關聯

之特性，對於應用程式連線的辨識正確率平均可高達 96%以上，且擁有平均 4% 的

誤判率及 5% 的漏判率，這樣的誤判主要發生於即時通訊軟體中。最後，我們提

出一個簡單的即時的線上架構，證明我們的方法平均可以在一百到三百個封包內

辨識出一條連線，且可用於線上的閘道器中。

關鍵字: 流量辨識、傳輸層行為、封包大小分佈、埠關聯、點對點

IV

Application Classification in Real Traffic:
Using Packet Size Distribution and Ports Association

Student: Wei-Hao Peng Advisor: Dr. Ying-Dar Lin

Department of Computer Science and Engineering

National Chiao Tung University

Abstract

Signature based classification methodology has been used for a long time, but it

can't be applied to encrypted protocol message. Some researches try to find out useful

characteristics of separate applications from their transport layer behaviors that can be

divided into two kinds: social network behaviors and statistical behaviors. Most of

them are time-consuming due to a huge amount of information needed. In our work,

we use Packet Size Distribution and Ports Association to achieve our goal. Every

succeeded connection would be transformed into one vector in the multi-dimensional

coordinate spaces and classified into some specified application or other unknown

ones. Besides, the Euclidean distances of every connection between all individual

centers, the representatives of the applications, will also be computed. Once a

connection is identified and classified into some certain session, we can use ports

association algorithm to associate and accelerate other connections in the same

session. Using the proposed method, we can reach high classification accuracy rate,

96% on average, and low false positive and false negative rate, 4%~5%, after the

preparation process of 100~200 packets. Lastly, we present an basic on-line

architecture to show the correctness and simplicity.

Keywords: Traffic classification, Transport layer behaviors, Packet size distribution,

Ports association, peer-to-peer

V

Contents
Chapter 1. Introduction .. 1

Chapter 2. Observing and Characterizing Application Flow Behaviors. 4

2.1 Description of experiment environment ... 4

2.2 Dominating Sizes (DS) and its’ proportion (DSP) ... 7

2.3 Change Cycle .. 8

2.4 Centralized Dominating Size ... 9

2.5 Ports Locality ... 10

2.6 Example of calculating metrics ... 10

Chapter 3. Euclidean Distance Clustering Algorithm ... 12

3.1 Introduction to the classification methodology ... 12

3.2 Transform connections into vectors in spaces ... 12

3.3 Center Training .. 13

3.4 Association of connections to an application ... 14

3.5 Session association by ports association ... 15

Chapter 4. Evaluation .. 18

4.1 Evaluation Environment ... 18

4.2 Connection Recognition Rate(CR) and Accuracy ... 19

4.3 False positive rate and False negative rate .. 21

4.4 On-Line Gateway Architecture analysis .. 22

Chapter 5. Conclusions and Future work .. 25

Reference ... 26

VI

List of Figures
Figure 1 Pure Lab Traffic Analyzing Environment. .. 5

Figure 2 Packet size distribution of each application .. 5

Figure 3. Same application has similar PSD .. 6

Figure 4. Different Applications have different PSD ... 7

Figure 5. Algorithm of how to calculate change cycle of a PSD 9

Figure 6. eMule PSD of a sample from packet 1 to 50 .. 11

Figure 7. 2 phases classification methodology. ... 12

Figure 8. Algorithm of connection recognition .. 14

Figure 9. Algorithm of session association using PAT ... 15

Figure 10. The whole classification algorithm flow .. 16

Figure 11. Connection recognition rate .. 19

Figure 12. Accuracy for session detection ... 21

Figure 13. Algorithm of Change Cycle of a connection. ... 23

VII

List of Tables
Table 1: Applications used in this work. .. 4

Table 2: The average numerical results of five metrics for each application. 7

Table 3. Connections in the collectedtraffic. .. 18

Table 4: False positive/negative rate of each application. ... 21

Table 5: The convergent speed of each metric for each application. 23

1

Chapter 1. Introduction

Classifying traffic flows according to the applications behaviors is essential to real

traffic analysis. The Internet service providers can design the network and determine

the management policy from the statistics of application protocols. Therefore, traffic

identification and classification are the basis of traffic analyzing research, especially

for network intrusion detection mechanisms.. Network intrusion detection relies on

the classification to help extracting high-level semantic context from traffic.

 Traditional classification methodology based on identifying packet payload

signatures and their related port numbers was effective[1,2], but this kind of method is

no longer works as well with growing P2P traffic, which intends to disguise

themselves. Because many non-standard P2P protocols exist, and most of them are

using payload encryption and port randomization, the difficulty in classification gets

even higher. Therefore, it is impatient to find new characteristics other than packet

payload information.

By the reasons above, we start to find application characteristics without

information in payload. Previous works have shown that classification methods

using transport-layer behavior of applications have been proposed in the literature.

They can be categorized into two classes: (i) Statistical properties, which use flow

statistical analysis to classify network traffic or at least describe the behaviors. [3, 4, 5]

This approach employs the information of packet sizes, packet inter-arrival time and

packet arrival order to determine which classes of application that the traffic belongs

to, such as interactive, bulk transfer and streaming or transactional ones. (ii)

Socialized network behaviors, which the first one proposed by T. Karagiannis et al. is

observing connection patterns between source and destination IP pairs, then

examining the flow history to reveal the different parts of P2P protocols [6, 7]. Later,

2

he proposed a new method called BlinC which is a topology-based classification

method that associates Internet hosts with applications into three socialized levels, and

used the difference between these levels as characteristics to classify the flows [8].

These approaches can provide rich information and give the highly accurate results at

the expense of complex analysis. However, it has low performance and cannot be

applied to an on-line architecture.

 In this paper, we propose a novel approach to classify traffic flows, which based

on the characteristics of packet size distribution (PSD) per application flow. And use

port locality per session of an application to associate the connections. There may be

one or lots packets in one connection. We characterize the PSD of connections as

vectors in a multi-dimensional vector space.. The entries of a vector are defined as

following: (1) Change Cycle (CC), to represents if the PSD of a flow changes

dramatically. In general, it always happens to P2P or streaming protocols, (2)

Dominating Sizes (DS), to represents the sizes that appear most frequent in a flow, (3)

Dominating Sizes Proportion (DSP) and (4) Variance of Dominating Sizes. In the first

phase of our method, we locate the representative centers of the specialized

applications. In the second one, we use our clustering algorithm to classify the vectors

of all connections into applications.

 The proposed classification provides a fast, accurate and could be applied into

on-line architecture with features we defined in our work. First, we define the features

of applications without the payload information. The algorithm is based on PSD and

does not have to access any payload patterns as information for classification. This

approach can work even when the traffic is encrypted. Second, different applications

have different types of PSD. For example, the PSD of P2P applications vary violently

but the PSD of Http or FTP ones is even smooth. Third, our approach can classify

traffic in a very short time, say hundreds of packets and still have high accuracy, say

3

up to 90%. Last, unknown applications could also be classified. According to the

vectors of all connections, we can determine what applications those connections

belong to. If one connection is not classified into some application in the end, we

divide it into unknown ones.

This paper is organized as follows. Chapter 2 describes the experimental

environment and the characteristics we found in packet size distribution. In Chapter 3,

we proposed the new classification algorithm using the features in Chapter 2. We

evaluate the accuracy and performance of the algorithm in Chapter 4 and give a

simple on-line architecture. Then we conclude this work and discuss the results with

different background traffic as future works.

4

Chapter 2. Observing and Characterizing Application Flow
Behaviors.

2.1 Description of experiment environment

In our traces, it is necessary to collect pure traffic of applications to analyze the

transport layer behaviors of those applications. We construct an In-Lab Pure Traffic

Recording Environment over Ethernet as figure 1 shows, to dump pure application

traffic samples by using Netlimitter v2.0 [9], which is one kind of traffic management

software used to restrict which application in a host can build connections to other

hosts. Next to Netlimitter, we run the program and then use Wireshark [10] to dump

traffic for four different situations: (1) time duration, there are 30 seconds, 5 minutes,

and the whole session respectively; (2) data sources, for those file-sharing

applications, we give different file sources to collect traffic; (3) host loading; this

information is used to show that no matter how high the host loading is, the PSD of

application wouldn’t be affected; (4) application settings; our purpose is to observe

that whether or not the PSD of application would be affected by the bandwidth

settings, quality settings, or encrypted protocol settings. Table 1 shows applications

and its’ corresponding version we used in our research and the number of traffic

samples we collect.

Table 1: Applications used in this work.
App. Name Class Version Samples Protocol
Bittorrent P2P 0.81 40 TCP

eMule P2P 0.47b 40 TCP/UDP
Skype P2P 3.0 40 TCP/UDP
MSN P2P 8.1 40 TCP

Apache Http 2.2.4 40 TCP
zFTP server FTP 7.4.4 40 TCP
ShoutCast Streaming 1.9.7 40 TCP

WorldofWarcraft Gaming 2.0 40 TCP

5

Figure 1: In-Lab Pure Traffic Recording Environment.

Figure 2: Packet size distribution of each application.

Each PSD of an application could be obtained from all of its’ own connections. We

compute size information of one connection from IP level and ignore connections

which do not belong to TCP or UDP protocols. According to our observations from

dumped traffic, the PSD graph of applications is shown in figure 2. Cross axle means

each application in our experiment, the other axle means its’ size proportion. The

small sizes inside the figure mean that the proportions of these sizes are too small to

represent them in the figure. We find PSD of applications have features such like

(1)Same application has several similar PSDs, as shown in figure 3, (2)Different

applications have different PSDs, as shown in figure 4, which the cross axle means

377

1180

1216
688

84

54

136 1388

41

74

small
sizessmall

sizes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bittorrent eMule Apache zFtpServerSkype‐VoiceSkype‐FileMsn‐Voice MSN‐File ShoutCast WoW

6

packet sequence and vertical axle means packet size that correspond to the sequence.

(3)PSDs of P2P and streaming applications vary more dramatically. We believe that

the reason is because of the different sizes of data structure from distinct

implementation of applications to the kernel buffer size. Therefore, the packed packet

sizes are also different between applications. From the point of view, the variation of

packet size could be a good feature to classify applications. In this work, we use five

metrics to represent each PSD of the applications, and the corresponding values are

shown in Table2.

Bittorrent sample1 Bittorrent sample 2

Figure 3: Same application has similar PSD.

Bittorrent eMule

7

zFTP server(Ftp) Apache (Http)

Figure 4: Different applications have different PSD.

Table 2: The average numerical results of five metrics for each application.
Application DS DSP CC CDS
Bittorrent 377 79% 13.3 1080

eMule 1180 51% 3.61 512
Skype-File 54 92% 1.51 54

Skype-Voice 84 33% 2.46 704
Msn-File 1388 45% 1.22 48

Msn-Voice 136 48% 1.74 488
Apache(Http) 1216 97% 230.41 1216
zFTP server 688 87% 14.494 688
ShoutCast 41 4% 1.48 688

WorldofWarCraft 74 32% 1.30 1312

2.2 Dominating Sizes (DS) and its’ proportion (DSP)

Every PSD graph represents the size distribution information of a connection. In

addition to the well-known full payload (1500 bytes) and acked packet (40 bytes),

there are other various sizes in PSD. We pay our attention to those packets with bigger

proportion in a connection. We named these packet sizes as “Dominating Sizes” (DS)

of a connection. In our experiment, each application has quite different dominating

sizes and the dominating size proportions (DSP). DS and DSP are computed as

follows: Assume there are x sizes in one PSD of a connection, say

8

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

)(

)(
)(
)(

33

22

11

xx PproP

PproP
PproP
PproP

P
MM

 (1)

Where Pi means the i-th size, pro(Pi) means the proportion of Pi, and

pro(Pi-1)≥pro(Pi), ∀i = 1~x.

1. Define a Bound such that the Dominating Sizes vector will be

},,...,,,{ 321 nPPPPDS = PPDSP jj ∈∈∀ , (2)

where Pj is the first size such that ∑
=

>
jn

n boundppro
~1

)(, and the bound is set to

90% by default.
3. The DSP = {pro(P1), pro(P2), … , pro(Pj)}.

From the calculation, by assumption of all above, we also find every proportion of

dominating size has almost a fixed range of variation for each application.

2.3 Change Cycle

From the analysis of PSD graph, the size variation of P2P and streaming protocols

are very dramatic than other applications. Since P2P and streaming protocols are

various and different. It is helpful to decide what applications a connection is

belonged to by quantifying this size variation. We called it as “Change Cycle” of a

PSD.

By equation (1), every PSD has its’ size bound DS. We define a “size bound change”

which is a size variation from one size bound in P to another. The distance of every

packet but without acked packets would be calculated between every Pi in DS. What

size bound that a packet belonged to is decided by the shortest distance between

them. Then a change cycle of a PSD is defined by the average number of packets

9

that a size bound change happens. Figure 5 shows the algorithm that describes how

to calculate the change cycle.

tChangeCoun
ack without PacketsofNumber

Figure 5: Algorithm of how to calculate change cycle of a PSD

2.4 Centralized Dominating Size

In addition to the size variation, we also analyze the status of size distribution degree

of size distribution and use variance of size that based on the expected value of PSD

and dominating size. By the equation (2), we can define a equation that represents

what size of dominating sizes that all sizes in equation (1) are closest to it. We call it

as the Centralized Dominating Size(CDS), as equation (3)

DSPPproPPCDS
ii DS

n

i
iDSi ∈∀−= ∑

=

,)}(*)(min{
1

2 , (3)

The CDS provides a way to describe that which dominating size are closest to the

most of all packet sizes in size distribution. Table 2 lists a comparison between CDS

10

and Main Dominating Size (MDS), which means the dominating size in DS that has

the largest proportion.

 CDS of a PSD would help us to describe the status of size distribution of a

connection. Also, it can represent size distribution behaviors of an application,

especially for P2P/streaming services and Skype voice chat..

2.5 Ports Locality

 In IPv4 structure, every host has 65536 ports to use. In general, when a session of

an application needs to build multi-connections, kernel assigns continuous ports range

for every application, even for applications using randomized port numbers. Once

some port number is binded to the first connection, the remainder connections will use

continuous port numbers. This feature is not willing to use for signature based

classification methodology. The reason is because it only needs to verify a few bytes

in packet payloads to make a decision. For the method utilizing the transport layer

behaviors, the feature will be very useful if a connection is recognized to a specific

application, the port information can be used for associating other connections. The

details of how to use this feature is described in section 3.3.

2.6 Example of calculating metrics

W

conn

In th

3.33

we

info

We’ll then g

nection. Fig

his sample,

3. The reaso

analyzed

ormation.

Figure

give a simp

gure 6 show

 we have D

on why the

is because

6: eMule PS

lified exam

ws the PSD

DS = {1180,

change cyc

this simp

11

SD of a sam

mple that ho

of fifty pac

, 410, 730},

cle of this P

plified samp

mple from p

ow to calcul

ckets of an

, DSP = {56

PSD is not

ple is too

packet 1 to 5

late metrics

eMule conn

6%, 18%, 1

close to the

short to

50

s of an eMu

nection sam

18%} and C

e original v

collect eno

ule’s

mple.

CC =

value

ough

12

Chapter 3. Euclidean Distance Clustering Algorithm

3.1 Introduction to the classification methodology

In the classification methodology we proposed, every connection in real traffic will

be transformed to a vector in a multi-dimensional vector space. And each application

implementation will have a vector to represent it. The whole methodology flow can be

divided into 2 phases as Figure 7. The first phase is to decide the cluster centers for

the applications. The second one parses all the connections in real traffic into vectors,

and compares entries in Ports Association Table (PAT). If the corresponding pairs

<SrcIP, SrcPort>, <DstIP, DstPort> do not appear in PAT, we would compute the

Euclidean distances between the vectors and all the cluster centers and then decide

which applications the connections are belonging to

Collect a many
Traffic Samples of an

application

Vector Vector Vector

Calculate the center of gravity

Center of this
application

Parsing Real Traffic

Connection Connection Connection

...

...

Ports Association Algorithm

App A App B Unknown

Vector Vector Vector...

Classification Algorithm

Sets of
Vectors

Sets of
Vectors

Sets of
Vectors

1:<SrcIP,SrcPort>,<DstIP, DstPort>

2:normalized vector <DS,DSP,CC>

Figure 7: Two phases of classification methodology.

3.2 Transform connections into vectors in spaces

Four metrics are defined in Chapter 2: Dominating Sizes (DS), Proportions of

Dominating Sizes (DSP), Size Bound Count (SBC), and Change Cycle (CC). Every

connection can be transformed to a vector in the form <DS, DSP, CC>. Since entries

13

in the vector are not in the same standard, it’s better to normalize them in the same

range, say 0~1, for the purpose of balancing the weight of each entry. The

normalization equation of each entry is as follows:

SizeMax Frame
_ DSDSnormalized =

 , (5)

DSPDSPnormalized =_ , (6)

CC
CCnormalized 1_ =

 , (7)

Besides, in our traces, we find that well-known protocol applications, such as

apache server and zFTP server, and P2P applications such as Bittorrent and eMule

have less number of SBCs. Streaming applications have a large number of SBCs.

Therefore, we can separate well-known protocol applications and P2P/Streaming

applications into the different vector spaces. And streaming applications will be

separated in another one. We will automatically expand the lower dimensional vector

to have an identical dimension to the higher one in the following vector operations.

3.3 Center Training

In this phase, our experiment collects 50 pure traffic samples for each application.

Assume the vectors of all connections for an application Ai’s 50 samples are V = {v1,

v2,…, vk}. Then the center of Ai is defined as Vv
k

v
C i

k

i
i

i ∈∀=
∑
= ,1

.

The accuracy of our algorithm depends on choosing the appropriate application

samples. For those applications that have various implementations on different

platforms, it is necessary to choose the most famous ones to calculate their metrics as

centers. For example, eMule client (http://www.eMule-Project.net) has windows and

Linux based editions, and the official site always supplies the newest version, that is,

0.47c. The statistical analysis reveals that the 0.47c windows version on

14

SourceForge.net (http://sourceforge.net/) has 15,000 downloads in average for each

day, and is the most popular implementation of eMule clients. So, the 0.47c windows

version would be the best choice to calculate eMule’s center.

We also find that different implementation of application may have different center.

Like eMule, which we mentioned above, the Windows version and Linux version

have really different center.

3.4 Association of connections to an application

Figure 8: Algorithm of connection classification.

In the classification stage, the Euclidean distance (E_Dist) between two vectors is

defined as

2
212121)(),(),(_ CCCCDSPDSPDistDSDSDistDistE −++= , (8)

 where Dist(A,B) is the Euclidean distance between two same dimensional vectors A

and B. Since vectors of the same application are quite similar, the Euclidean distance

between the vectors of an application would be short. A connection is claimed to

belong to a certain application if it has the shortest distance to the center of that

15

application.

 The false positives may occur when an application’s center is not in our defined

space. This case may exist in real traffic analysis, and if we use the algorithm to

recognize it, those connections will be recognized as other applications. A simple way

to address this problem is to find as many application centers as possible, but the

effectiveness to reduce false positives is not guaranteed. From the analysis of our

experiment, we define a threshold range for each center. If a vector Vi is calculated

and decided belonging to certain center Ci by the classification methodology, it’s DS

compared to Ci’s DS exceeds ± 50 bytes, and DSP exceeded ± 20%. , and then this

connection should belong to a certain unknown application instead. And it would also

be classified into the unknown class. The entire connection recognition algorithm is as

Figure 8. The function of transform function for connection is to extract this

connection’s metric tuples.

3.5 Session association by ports association

Figure 9: Algorithm of session association using PAT

16

The PSDs of the same application may be different due to the variety of the

implementation. Hence false negatives may occur in our classification algorithm. To

solve this problem, we propose a method called “Ports Association” by using the port

locality described in chapter 2. Once a connection is recognized to be from some

application’s session, we could obtain a 4-tuple pair <SrcIP, SrcPort, DstIP, DstPort>,

which means the two hosts run an instance of certain implementation of application

with SrcPort and DstPort. These information will be recorded in the Ports Association

Table (PAT) with the form <SrcIP, SrcPort, AppName> and <DstIP, DstPort,

AppName>. For other connections, if one of their hosts is already in the PAT, and the

port number in the pair <SrcIP, SrcPort> or <DstIP, DstPort> is continuous compared

with one entry of PAT. We can say this connection belongs to the same session of one

application. The association algorithm is as Figure 9.

PortsAssociation Table

IP Port App

A Ap 9

B Bp+1 9

C Cp 9

Connection table

No. SrcIP DstIP SrcPort DstPort A

1 A B Ap Bp 9

2 B C Bp+1 Cp 9

…

n G K Gp Kp

<DS1,DSP1,CC1>1

1

7

8

9

Figure 10: The whole classification algorithm flow

The whole classification algorithm is organized in two steps: Every connection in

the connection table will first run the Port Association algorithm. If the result is hit,

17

the connection would belongs to a certain application, and its’ SrcPair, DstPair will

be added to the PAT. If not, the connection will run the Connection Recognition

algorithm to classify the connection. The host pair of recognized connection will then

also be added to PAT. The complete classification algorithm is shown in Figure 10.

18

Chapter 4. Evaluation

4.1 Evaluation Environment

 The traffic for evaluating our methodology is recorded from NCTU High Speed

Network Lab and NCTU CSCC department. In the traffic recording environment, d,

we select 4 "victim" PCs, say host A, B, C, D to run specified applications on them.

The host "A" plays the role of server; it supplies the seed of P2P file sharing

applications, and runs as Apache servers, zFTP servers and ShoutCast servers. Other

interactive applications without our intervention are executed on host "B", like

WorldfoWarCraft, MSN chatting, Skype chatting. The rests "C","D" play the role of

receivers. For these victims, the purpose of tracing every connection that come from

what applications, we run Netlimitter inside victims to log all information of

connections passed through.

Table 3. Connections in the collected traffic.
Applications A B C D Sum
eMule 1865 0 744 1381 2125
BitTorrent 1675 0 785 890 335
MSN-File 0 0 250 250 500
Skype-File 0 0 250 250 500
MSN-Voice 0 0 250 250 500
Skype-Voice 0 0 250 250 500
Apache 500 0 250 250 500
zFtp Server 740 0 360 380 740
ShoutCast 500 0 250 250 500
WorldofWarCraft 0 250 0 0 250
Background Traffic 2210

Sum of all connections 10000

19

 We collect traffic 50 samples total, and each complete one is defined by satisfying

all the three following conditions: (1) the data from the seeds could be completely

received by all peers; (2) a request from client is served by server side. For example, a

download request from a client to the apache server is served; (3) Streaming services,

such as a whole song has been played by ShoutCast server. As Table 3 shows that

77.9% connections are from the victims and 22.1% are from the background traffic of

Speed Network Lab and CSCC department of NCTU..

4.2 Connection Recognition Rate (CR) and Accuracy

Figure 11: Connection Recognition rate

 We compare the completeness of session association between our classification

algorithms on the basis of the logs recorded from NetLimitter. The definition of one

session for each application is defined as following (1) for P2P applications, one

program executes continuously until stopping intentionally. (2) A client’s request is

served completely by server. (3) A voice session runs without breaking off from

beginning to end. The higher the connection recognition (CR) rate is, the more

completeness of session association. The results are shown as Figure 11, and we can

observe that, the recognition rate of applications use multi-connections are improved

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Co
nn

ec
ti
on

 R
ec
og
ni
ti
on

 R
at
e

CR

with PAT

20

1.2 ~ 2 times. For those rates of evaluated applications are equal before and after

using ports association algorithm (PAT) , there are two reasons. First, the applications

use single connection like MSN-file transferring, MSN-voice chatting, Sky-file

transferring, Skype-voice chatting and ShoutCast voice streaming. The second, the

port number used is not continuous, like the command and data transferring of zFTP

servers. We also can infer that the improvement via ports association algorithm

depends on two factors, (1) how fast can we recognize a connection? (2) how accurate

can we do it?

For the accuracy testing, an event “hit” occurred if a session is recognized correctly

using our method. Therefore, we can define a metric, accuracy, the percentage of

sessions recognized over all sessions recorded by NetLimitter. Figure 12 shows the

accuracy for every application in our evaluation. It is significant that e p2p

applications and well-known protocol applications such like Apache and zFTP server

have very high accuracy, say 98% on average. But for Skype and MSN-voice chatting,

it’s hard to be recognized by only PSDs due to they aren’t always similar.

The accuracy testing also reveals the quality of a center. If we choose a center by an

un-popular implementation of the application, the accuracy may be worse due to the

characteristics of less adoption..

4.3

Bitt
rren

0%

4%

 A

dist

wro

first

caus

conn

H
it
Ra

te

False pos

to
nt

eM
ule

A
c

% 0% 0

% 7% 0

As described

ance betwe

ong decision

t one is if th

ses the am

nection is

Accuracy

0%

10%
20%
30%

40%
50%

60%
70%
80%

90%
100%

H
it
 R
at
e

Figu

itive rate a

Table 4: Fa

Apa
che

zF
TP
ser
ver

0% 1%

0% 1%

d in Section

een vectors

n of identif

he two diffe

mbiguous de

too less to

Bittorr
ent

eMul

100% 98%

Accur

ure 12: Acc

and False n

alse positive

Msn-
File

Ms
Voi

0% 9%

0% 17%

n 3, the dec

s and cente

fying traffic

erent applic

ecisions; the

o calculate

e
Skype‐
File

Sk
V

% 96% 8

racy for

21

curacy for se

egative rat

e/negative ra

sn-
ice

Skype
-File

% 0%

% 0%

cision of cla

ers. The rea

c can be sep

cation’s cen

e second o

enough inf

kype‐
Voice

Msn‐
File

80% 100%

r Session

ession detec

e

ate of each

e Skype-
Voice

2%

18%

assification

ason that w

parated into

nters are too

one is if the

formation a

Msn‐
Voice

Apa
e(H

)

74% 100

n Recog

ction

application

Shout
Cast

W
W

1%

3%

is based on

why our al

o 2 kinds o

o close in th

e number o

and to clas

ach
Http
)

zFTP
server

0% 100%

gnition

.

Worldof
WarCraft

U
o

0%

4%

n the Euclid

lgorithm m

f problems;

he space, it

of packets

sify it into

Shout
Cast

Wow

96% 96%

Unkn
own

7%

0%

dean

makes

; the

may

in a

o the

w

%

22

appropriate center that represent certain application. The first problem can be avoided

by choosing appropriate centers that the distance between them is not too close. The

other one can be done by collecting enough packets, and we will describe in next

section in detail.

If a connection could not be divided into a given application correctly, it exhibits

false positives. If it could not identify all connections of a given application correctly,

it exhibits false negatives respectively.. Table 4 shows the false positive/negative rate

in our traces. For zFTP server, the false positive occurs when we evaluate its’

command connection, and for streaming services, it happens when the PSD changes

more violently than usual.

4.4 On-Line Gateway Architecture analysis

 The key point of implementing our algorithm into on-line gateway architecture is

on how many packets we should evaluate at least to obtain enough information to

compute the connection vector. By the algorithm we mentioned above, we find that it

will take at least one hundred of packets of a connection to obtain the stable

connection vector. In our analysis, we calculate each entry of the connection vector in

every 100 packets, and see if the value will converge to ± 5% to the representative

values of the whole connection vector. Table 5 shows the convergent speed of each

entry for each application. It takes one hundred to four hundred numbers of packets

on average to obtain the stable entry values. For every application, we find that

SizeBound is the key factor because every metric we used needs to complete the

SizeBound evaluation first.

Table 5: The convergent speed of each metric for each application.

23

Application SizeBound DS DSP ChangeCycle

BitTorrent 100 100 100 200

eMule 200 100 100 200

Msn-File 100 100 Xj4 100

Msn-Voice 600 100 200 100

Skype-File 200 100 200 300

Skype-Voice 100 100 200 100

Apache 300 100 200 400

zFtp 100 200 100 400

ShoutCast 800 200 600 100

WoW 600 200 300 200

tChangeCoun
thouAckPktCountWi

Figure 13: Algorithm of Change Cycle of a connection.

 For on-line architecture, we propose a new definition of SizeBound in our

algorithm and use it to count change cycle. We first divide one connection P into

four subsets of equal size, say 1dP , 2dP , 3dP and 4dP , where

4...1},,...,,{ 21 =∀= iPPPP iniidi . And define a “change” if packet dmj PP ∈ , dnj PP ∈+1 ,

where nm ≠ . Then the change cycle of a connection will be defined as the average

24

number of packets that a change happened and using an algorithm as Figure 13 to

describe. This approach provides faster decision but the accuracy will be decreased

about 2% on average.

 We then give a discussion for simple on-line device overhead evaluation. For

storage overhead, every connection in the connection table needs 400 bytes

(32bits*100) of memory storage, center database storage, and PAT cache storage. For

processing overhead, the time of transforming a connection to a vector and access

PAT cache will be the performance bottleneck .

25

Chapter 5. Conclusions and Future work

We observe two characteristics of transport layer behavior of applications from

experiments. First, different implementations of applications produce different packet

size distribution. The second is if an application use multi-connections sessions,

then the port numbers used might be continuous. By utilizing these two features, it’s

easy to distinguish different applications. As long as we can recognize one connection

of the application by packet size distribution, we can use the characteristic of port

locality to recognize other connections of the same application.

In this work, we design a classification algorithm that without accessing any packet

payload information and obtain high accuracy at the expense of low false positive rate

for applications which tend to transfer series data. Additionally, our method also

works for encrypted applications, such as Skype file-sharing and voice chatting. In

the near future, we’ll evaluate other factors that may affect PSD, like Ethernet link

type. It’s obvious that the size distribution of the same connection will be different in

different network link type. For example, the MTU of Ethernet is 1500 bytes and PPP

is 1492 bytes. We may need to evaluate different link types to decide which one is

better to be the representative center of the application. Or we can separate

connections of different link type into different spaces that contains centers which are

pre-defined from different network link type.

 Our methodology might be able to be combined with signature based classification

method to get better effects. For example, signature based classification method

works very well for Http applications. Therefore, our classification methodology can

avoid calculating Http traffic but spend more effort on others. It means this method

can be the second guard to classify those traffic that signature based method can’t

recognize.

26

Reference
[1] S. Sen, O. Spatscheck, and D. Wang. Accurate, Scalable In-Network

Identification of P2P Traffic Using Application Signatures. In Proc. World
Wide Web Conference, 2004.

[2] Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, Dongmei Wang. ACAS:
Automated Construction of Application Signatures. SIGCOMM’05
Workshops, August 22–26, 2005,

[3] Angelo Spognardi, Alessandro Lucarelli, Roberto Di Pietro. A Methodology
for P2P File-Sharing Traffic Detection, HOT-P2P'05 Second International
Workshops

[4] V. Paxson. Empirically derived analytic models of wide-area TCP connections.
IEEE/ACM Trans. Netw., 2(4):316–336, 1994.

[5] Manuel Crotti; Murizio Dusi; Francesco Gringoli; Luca Salgarelli; “Traffic
Classification through Simple Statistical Fingerprinting”, 2007 ACM
SIGCOMM Computer Communication Review on Volume 37, Number 1,
January 2007

[6] Thomas Karagiannis, Andre Brodio, Nevil Brownlee, Michalis Faloutsos; “Is
P2P dying or just hiding” Networking, IEEE/ACM Transactions on Volume
12, Issue 2, April 2004 PP.219 – 232.

[7] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, Kc claffy,
"Identification and classification: Transport layer identification of P2P traffic",
October 2004 Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement.

[8] Thomas Karagiannis, Konstantina Papagiannaki, Michalis Faloutsos, "BLINC:
multilevel traffic classification in the dark", Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols for
computer communications SIGCOMM '05.

[9] Netlimiter, http://www.netlimiter.com.
[10] Wireshark, http://www.wireshark.org
[11] Rfc 1700, http://www.faqs.org/rfcs/rfc1700.html

