

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

適用於可信賴 SIP 代理伺服器群之

高效率負載平衡策略

An Efficient Load Balancing Method for

Dependable SIP Proxy Servers

研 究 生：鄭允榕

指導教授：王國禎 教授

中 華 民 國 九 十 六 年 六 月

適用於可信賴 SIP 代理伺服器群之高效率負載平衡策略

An Efficient Load Balancing Method for
Dependable SIP Proxy Servers

研 究 生：鄭允榕 Student：Yun-Jung Cheng

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學
網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年六月

 i

適用於可信賴 SIP 代理伺服器群之

高效率負載平衡策略

學生：鄭允榕 指導教授：王國禎 博士

國立交通大學網路工程研究所

摘 要

因為 VoIP 與多媒體服務的興起， SIP 協定被用來為網路使用者建立

雙方對談或是多方視訊會議的連線。在建立連線的過程中， SIP 代理伺服

器為雙方使用者轉交訊息，故為極重要的角色。隨著 VoIP 及多媒體服務

的要求逐漸增加，採用單一 SIP 代理伺服器會產生效能下降及有單一失敗

點的問題。為了解決上述的問題，我們設計一個前端為 n + 1 個 (n 個使用

中與一個備用) 分派器，以控制後端為 m 個 使用中 SIP 代理伺服器群的

架構。但是分派器要如何將使用者傳遞過來的訊息平均分配到後端 SIP 代

理伺服器群，而不會造成單一 SIP 代理伺服器負荷過載或長時間延遲是我

們想要解決的問題。在本論文中，我們設計及實作對於 VoIP / 視訊會議等

 ii

應用提供一個可靠性的 SIP 群組架構，同時也提出一個基於 OpenAIS 的

SIP 負載平衡策略 (OSLB)，以平衡 SIP 代理伺服器群組間的負載，且當

其中一個分配器或是 SIP 伺服器當機時，能將造成失敗的連線數減低。實

驗的結果顯示 OSLB 比目前的 SIP load balancer 方法有相近的負載平衡值

(1.05 與 1.04)，但是因為 SIP 代理伺服器當機所造成的失敗連線數較之減

少 82%。

關鍵詞：可信賴, 負載平衡, 分派器, SIP, SIP 代理伺服器。

 iii

An Efficient Load Balancing Method

for Dependable SIP Proxy Servers
Student：Yun-Jung Cheng Advisor：Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

 Because of the arising of VoIP and multimedia services, the Session Initiation

Protocol (SIP) has been used to establish multimedia sessions which could be a simple

two-way phone call or a collaborative video conference session between users on the Internet.

In the procedure of establishing these sessions, a SIP proxy server plays an important role by

forwarding SIP messages between users. Continued growth in VoIP and multimedia usages,

using only one SIP proxy server may cause performance degradation, and has a single point

of failure issue. In order to solve these problems, we design m active SIP proxy servers as a

cluster in the backend, which are controlled by n + 1 dispatchers (n active dispatchers plus

one backup dispatcher) in the front end. But how to make a dispatcher distributes requests

from users to one of the back-end SIP proxy servers without causing overloading or long

delay is the load balancing issue that we also want to resolve. In this thesis, we have designed

and implemented a dependable SIP-based clustered architecture for VoIP/Video conferencing

applications, and also have proposed an efficient OpenAIS-based SIP Load Balancing

strategy (OSLB) that can balance the proxy servers’ load and reduce the number of failed

calls when one of the dispatchers or one of the SIP proxy servers crashes Experimental results

show that our OSLB is comparable to an existing work, SIP load balancer, in terms of load

 iv

balance metric (1.05 vs. 1.04). However, our OSLB reduces the number of failed calls when a

proxy server failed by 82% compared to the SIP load balancer.

Index Terms — dependable, load balancing, dispatcher, SIP (session initiation protocol), SIP

proxy server.

 v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis advisor, Dr.

Kuochen Wang, for his intensive advice and instruction. I would like to thank all the

classmates in the Mobile Computing and Broadband Networking Laboratory for their

invaluable assistance and suggestions. The support by the National Science Council under

NSC94-2219-E-009-023 and NSC96-2219-E-009-012 is also grateful acknowledged.

Finally, my family deserves special mention. This thesis is dedicated to them for their

support.

 vi

Contents

Abstract (in Chinese) i

Abstract (in English) iii

Acknowledgements v

Contents vi

List of Figures ..viii

List of Tables ...x

Chapter 1 Introduction ..1

Chapter 2 Preliminaries ...3

2.1 Session Initiation Protocol...3

2.2 OpenAIS ..5

2.3 OpenSER ...6

Chapter 3 Related Work ..7

Chapter 4 Design Approach...12

4.1 Proposed Dependable System Architecture...12

4.2 Efficient SIP Load Balancing Strategy..13

4.3 Implementation..14

Chapter 5 Performance Evaluation ..16

Chapter 6 Conclusions and Future Work...27

6.1 Concluding Remarks ...27

 vii

6.2 Future Work ...28

Bibliography..29

 viii

List of Figures

Fig. 1. Typical SIP-based network configuration [4]...4

Fig. 2. SIP call setup procedure. ..4

Fig. 3. Architecture of servers using OpenAIS..5

Fig. 4. DNS SRV records ...7

Fig. 5. Two-stage reliable and scalable architecture [8][9]..8

Fig. 6. A SIP call center system with directory server [11]. ..9

Fig. 7. Architecture of SIP load balancer. ..10

Fig. 8. Proposed dependable SIP-based clustered architecture. ..14

Fig. 9. The operation flow of a dispatcher in OSLB..15

Fig. 10. Test architecture for OSLB...17

Fig. 11. Case A: CPU loading of OSLB with all servers work well......................................21

Fig. 12. Case A: CPU loading of SIP load balancer with all servers work well....................22

Fig. 13. Case B: CPU loading of OSLB with the failure of one dispatcher.22

Fig. 14. Case C: CPU loading of OSLB with the failure of one SIP proxy server.23

Fig. 15. Case C: CPU loading of SIP load balancer with the failure of one SIP proxy server. .

 ..23

Fig. 16. Case C: Number of failed calls under different call rates with the failure of one SIP

proxy server. ...24

Fig. 17. Case D: CPU loading of OSLB with the failure of one dispatcher and one SIP proxy

server...24

 ix

Fig. 18. Case E: CPU loading of OSLB with one SIP proxy server running a high CPU

loading background application. ..25

Fig. 19. Case E: CPU loading of SIP load balancer with one SIP proxy server running a high

CPU loading background application...25

Fig. 20. Case E: Number of failed calls with one SIP proxy server running a high CPU

loading background application. ..26

 x

List of Tables

Table 1. Table maintained in the directory server. ...9

Table 2. Qualitative comparison of existing approaches.. 11

Table 3. Test environment. ...18

Table 4. Test parameters. ..18

 1

Chapter 1

Introduction

 Nowadays people not only get information by surfing on the Internet,

but also obtain multimedia services through the Internet. The Session

Initiation Protocol (SIP) is a signaling protocol developed by IETF to set up,

modify, and tear down sessions between end-users over the Internet [1].

 Because of continued growth of VoIP and multimedia services, using

only one SIP proxy server, which is responsible for multimedia session

establishments between network end-points, to handle many session set up

requests at the same time may cause the overloading problem and the setup

procedure might take too long and result in failures.

 Several SIP proxy servers can form a cluster in the back-end controlled

by a dispatchers in the front-end can ease these problems. In the clustered

architecture, there are three design issues need to be concerned:

 Single point of failure problem of the dispatcher.

 Health condition monitoring of back-end SIP proxy servers.

 Load balancing strategy for SIP proxy servers.

To resolve these issues, we propose a dependable system architecture and an

efficient SIP load balancing strategy based on OpenAIS [2] to prevent

performance degradation and failure problems.

 2

The thesis is organized as follows. Chapter 2 gives overview of SIP, and

related software including OpenAIS and OpenSER [3]. Chapter 3 reviews

several existing clustered load balancing methods. Chapter 4 presents the

proposed system architecture and load balancing strategy in detail. Then

experimental results are evaluated in Chapter 5. Finally, Chapter 6 concludes

the thesis with concluding remarks and future work.

 3

Chapter 2

Preliminaries

2.1 Session Initiation Protocol

The SIP is an application layer signaling protocol over IP networks.

Fig. 1 shows a typical SIP-based network configuration [4]. The SIP-based

network is made up by the following basic components [5][6].

1. SIP user agent: A network end-point which initiates or terminates

multimedia sessions.

2. SIP registrar: A SIP user agent registers its SIP URI (uniform

resource identifier), contact information and dynamically updates

these data via SIP messages to the SIP registrar.

3. SIP proxy server: It routes the SIP requests from one SIP user agent

to another.

Fig. 2 is a SIP call setup procedure. The caller issues an INVITE

message to initiate the call setup procedure. The SIP proxy server would

forward message to the callee, and returns the response back to the caller.

Until the caller receives an OK message and responds an ACK message to the

callee, a session is established. And issuing a BYE message would end the

session.

 4

SIP proxy server

SIP user agent SIP user agent

SIP signaling SIP signaling

session

SIP registrar

Fig. 1. Typical SIP-based network configuration [4].

INVITE
INVITE

Trying
Trying

Ringing
Ringing

OK
OK

ACK
ACK

BYEBYE

OK
OK

SIP user agent
(caller)

SIP proxy server

Session Established

SIP user agent
(callee)

Fig. 2. SIP call setup procedure.

 5

2.2 OpenAIS

 OpenAIS (open application interface specification) [2] is an

implementation of Service Availability Forums API Specification. The main

purpose of OpenAIS is to provide high availability and build a dependable

network. The API consists of several parts, including AMF (Availability

Management Framework), CKPT (checkpointing) and etc. AMF is the most

important component, which is in charge of failover between the active and

the backup servers. It monitors the condition of the active server and informs

the backup server to become active when the active one fails. CKPT is used

to backup information from the active server to the backup server. Fig. 3

shows the architecture of servers using OpenAIS.

Fig. 3. Architecture of servers using OpenAIS.

 6

2.3 OpenSER

OpenSER is a mature and flexible open source SIP server. It can be used

on systems with limited resources as well as on carrier grade servers, scaling

to up to thousands call setups per second. And it aims to be a collaborative

project of its users to develop secure and extensible SIP server to provide

modern VoIP services [3]. OpenSER can perform not only the function of SIP

proxy servers and also include the functions of SIP registrars and SIP redirect

servers. It also has modules to support more functions, such as SNMP and

high availability functions. The DISPATCHER module is designed to

dispatch user agents’ requests to SIP proxy servers. That is, it can connect to

SIP proxy servers that form as a cluster, and dispatch the requests coming

from SIP user agents to selected SIP proxy servers.

 7

Chapter 3

Related Work

 Cisco’s architecture [5] used DNS SRV (Service) records [7], which

associate the name of a service with IP addresses of devices, priority and

weight, to support server failover and load balancing. Fig. 4 gives an example

DNS SRV records. The selection algorithm for load balancing could be

round-robin or weighted random. The system administrator achieves load

balancing by configuring the priority and weight of static route or DNS SRV

entries.

Fig. 4. DNS SRV records

 A IP telephony architecture was proposed in [8][9], which is also based

on DNS SRV records [7] and NAPTR (Naming Authority Pointer) [10] to

support server failover and load sharing [8]. Clients can use weighted

randomization to achieve the distribution recorded in DNS SRV records.

They used two stages architecture to provide scalability, reliability and load

 8

sharing. Fig. 5 shows the two-stage reliable and scalable architecture. First

stage servers act like dispatchers. Clients get their IP addresses from DNS

SRV records to decide which dispatcher to connect. After dispatchers receive

requests from SIP user agents and then forward to one of the second stage

server group based on the destination of user identifier.

S1.S.com

A*.S.com

B*.S.com

C*.S.com

S2.S.com S3.S.com

SIP user agent
_sip._udp SRV 0 40 S1.S.com

 0 40 S2.S.com
 0 20 S3.S.com

_sip._udp SRV 0 0 A1.S.com
 1 0 A2.S.com

_sip._udp SRV 0 0 C1.S.com
 1 0 C2.S.com

Fig. 5. Two-stage reliable and scalable architecture [8][9].

In [11], it proposed a strategy for load balancing in SIP networks. It uses

a directory server to maintain a table of the status of the backend media

servers. Table 1 shows the table it proposed. The first column shows the URL

for the media server, and the second column maps the URL to a real IP

address. Occupation indicates the percentage of the capability being occupied

and distance is used to express the communication cost.

 9

Table 1. Table maintained in the directory server.

URL of backend
media servers

IP
address

Occupation Distance Score

TTS@net 10.0.1.1 40 1 40
TTS@net 10.0.1.2 20 10 200

Score = Occupation * distance

When a soft switch, which acts as a SIP proxy server, receives a request from

a SIP user agent, the soft switch would look up the table first, finds the

matching virtual name of the server, calculates the score, and then forwards

the request to the server which has the minimum score. Fig. 6 shows the SIP

call center system with a directory server.

Fig. 6. A SIP call center system with directory server [11].

 10

The SIP load balancer [12][13] receives requests on one port, then

assigns an ingress SIP proxy server dynamically to each transaction. And the

traffic load can be balanced over a pool of SIP proxy servers based on the

real-time demand for services. It uses “Stickyness”, which is computed by

hashing one of either CallID, To, From or SIP URI. Therefore, the same entry

of “Stickyness” would be handled by the same SIP proxy server. Fig. 7 shows

the architecture of SIP load balancer.

Fig. 7. Architecture of SIP load balancer.

We summarize the above existing approaches and make a qualitative

comparison with our proposed method (OSLB), as shown in Table 2. Both

Cisco’s architecture [5] and two-stage architecture [8][9] are based on DNS

SRV. Clients need to obtain these records to handle the dispatcher failover

problem and achieve the load balancing of proxy servers. The directory

server [11], SIP load balancer [12][13] and proposed OSLB do not involved

the DNS SRV records and the client side. The directory server updates the

table (like Table 1) based on the status information of media servers, which is

 11

announced every five minutes. This periodical announcement can also be

used to determine if the corresponding server is still alive or not. The SIP

load balancer regularly (around five seconds) issues an OPTION message to

the SIP proxy servers to check if they are alive or not. The proposed OSLB,

which will be introduced in detail in the next chapter, gets the health

condition and CPU loading information of the SIP proxy servers every one

second. Since that the SIP load balancer and the OSLB are both not

client-involved and doing regular check every few seconds, which is much

less than that of the directory server, so we will evaluate these two methods in

Chapter 5.

Table 2. Qualitative comparison of existing approaches.

Approach
Cisco’s [5]
architecture

Two-stage
architecture

[8][9]

Directory
server [11]

SIP Load
balancer
[12][13]

OSLB
(proposed)

DNS and Client
involved Yes Yes No No No

Server failover
mechanism

DNS SRV
or

VRRP
DNS SRV Periodically

announcement
OPTION
message OpenAIS

Server failover time Medium to
long

Medium to
long

Long
(5 min)

Medium
(10-15 sec)

Short
(< 5 sec)

Load balancing
mechanism

DNS SRV
or

Round-Robin

Hash (user
identifier) Score Stickyness

OpenAIS
and

OpenSER

 12

Chapter 4

Design Approach

4.1 Proposed Dependable System Architecture

 As mentioned in Chapter 1, a clustered architecture needs to address

three issues, including the single point of failure problem of front-end

dispatcher, health condition and CPU loading of back-end SIP proxy servers.

The proposed dependable system architecture is as shown in Fig. 8. In order

to provide reliability and scalability, dispatchers adopt an n + 1 redundancy

model, which means one backup dispatcher for n active dispatchers. Each

active dispatcher handles requests from regional SIP user agents. SIP proxy

servers adopt an m + 0 redundancy model. We use the modules provided by

OpenSER [3] to set up dispatchers and SIP proxy servers. Using at least two

dispatchers can prevent the single point of failure problem. The frond-end

dispatcher plays an important role as a monitor and a controller of the

back-end proxy servers. It needs to monitor the health condition and CPU

loading of each SIP proxy server. We use an open source called OpenAIS [2],

which is a middleware for high availability, to do these jobs.

 13

4.2 Efficient SIP Load Balancing Strategy

 The load balancing strategy we propose mainly to prevent performance

degradation or long connection delay due to proxy server failure or

overloading. Since each SIP proxy server periodically transmits its heartbeat

count and CPU loading to a dispatcher through OpenAIS [2], the dispatcher

can stop sending connection requests to a failed or heavy loading SIP proxy

server.

The basic requests distribution method is round-robin. We adjust the

distribution method by CPU loadings of SIP proxy servers. We set up a fixed

upper bound α of CPU loading as a threshold. When the CPU loading of the

SIP proxy server exceeds α, the dispatcher would setup a lower bound β for

that SIP proxy server and stop forwarding any request to it until its CPU

loading is below β. β is computed as follows:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

n

loadingCPUcurrent
n

i
i

1
__

β

where n is the number of SIP proxy servers

If the loadings of all SIP proxy servers are above α, the dispatcher starts

to drop incoming INVITE messages until the CPU loading of at least one SIP

proxy server is below α. The reason to drop INVITE messages is that users

can usually tolerate call cancellation due to system busy, but cannot stand that

 14

a call session has been canceled in the middle of the call setup procedure.

Fig. 8. Proposed dependable SIP-based clustered architecture.

4.3 Implementation

In this part, we describe how to implement the above strategy with

OpenAIS. As mentioned in Chapter 2, AMF is in charge of failover between

the active and backup servers. When the active dispatcher fails, AMF would

notify the standby dispatcher to take over the jobs and IP address of the active

dispatcher. Therefore, the SIP user agents can keep issuing the requests to the

IP address they knew, and the service will not be interrupted since the backup

dispatcher takes over the jobs. Between dispatcher and SIP proxy servers, SIP

proxy servers use CKPT to transmit heartbeat count and CPU loading to the

dispatcher. The dispatcher checks the data every time it gets, and makes

decision of keep or stop forwarding data to the SIP proxy servers. Fig. 9

shows the flow of a dispatcher in OSLB.

 15

Begin

SIP proxy serveri alive?

calculate lower bound β
&

Stop forwarding requests to
SIP proxy serveri

Yes

reset β = 0
&

Start forwarding requests
to SIP proxy serveri

Yes

No

Remove SIP proxy serveri
from the dispatch list

No

CPU loading of
SIP proxy serveri > α?

Yes

CPU loading of
SIP proxy serveri < β?

No

Fig. 9. The operation flow of a dispatcher in OSLB.

 16

Chapter 5

Performance Evaluation

 To evaluate the performance of our approach, we set up a test

architecture, as shown in Fig. 10, which include 1 + 1 dispatchers and two

active SIP proxy servers (2 + 0). We also used SIPp [14], which is a free

open source test tool, as a SIP traffic generator and analyzer. It includes some

SIP user agent test scenarios, which were provided by SIPStone [15], a

benchmark tool for evaluating SIP proxy server performance. It establishes

and releases multiple calls using INVITE and BYE messages. We used

default UAC (user agent client) and UAS (user agent server) scenarios which

have already been implemented in SIPp to test the proposed design approach.

The test scenario for call setup has been shown in Fig. 2. And in order to

obtain the number of failed calls, we turned off the retransmission mechanism

in SIPp while doing the following tests.

The flowing five test cases are evaluated:

Case A All dispatchers and SIP proxy servers work well.

Case B One dispatcher fails.

Case C One SIP proxy server fails.

Case D One dispatcher and one proxy server fail.

Case E Run a background application with high CPU loading in a

 selected SIP proxy server.

 17

The first four cases are used to evaluate if dispatcher and/or proxy server

failures affect load balancing. And the last case is to see if the OSLB can

handle a surging load.

Fig. 10. Test architecture for OSLB.

We used a metric, Load Balance Metric (LBM) [16], as follows, to

analyze the performance of our load balancing method:

∑∑

∑

∑∑

∑

= =

=

= =

=

=

= =
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛ ∑

×
⎟
⎠
⎞⎜

⎝
⎛ ∑

= M

j

n

i

ji

m

j
j

M

j

n

i

ji

m

j

n

i
ji

n

i
ji

j

n
load

loadpeak

n
load

n

load

nload

loadpeak

LBM

1 1

,

1

1 1

,

1

1
,

1
,

_

_

where

jiload , is the load of server i at the jth sampling point;

jloadpeak _ is the highest load on any server at the jth sampling point;

n is the number of SIP proxy servers.

 18

We compare the proposed OSLB with the SIP load balancer [12][13],

which is also not client and DNS involved, and its failover detection time is

much less than that of the directory server [11]. Table 3 shows the test

environment and Table 4 is related test parameters.

Table 3. Test environment.

Environment Value
CPU
(of Virtual machines)

AMD Athlon 64 3000+

Memory
(of Virtual machines)

2 Gigabyte

CPU (of SIPp) Intel Core 2 T5500
Memory (of SIPp) 512 Megabyte

Table 4. Test parameters.

Parameter Value
Call rate (default) 100 calls per second
Call rate (failover) 50, 100, 150, 200 calls per second
Call duration 3 minutes
Call limit 10000 calls
Parameters in SIP load
balancer

Value

Sticky table size 100000
Sticky expire time 32 seconds

 19

In the following, the experimental results of each case are discussed:

Case A: All dispatchers and SIP proxy servers work well.

Fig. 11 shows CPU loading of both SIP proxy servers of OSLB for case

A, and Fig. 12 shows CPU loading of both SIP proxy servers of the SIP load

balancer for case A. We can see that CPU loading of SIP proxy servers of the

OSLB is a little higher than the SIP load balancer. The reason is that AMF,

provided by OpenAIS, periodical transmits messages between each server to

see if any server is down. And we also used CKPT to transmit data to the

dispatcher. However, LBM of OSLB and SIP load balancer are pretty close,

LBM of OSLB is 1.05 and LBM of SIP load balancer is 1.04.

Case B: One dispatcher fails

Fig. 13 shows the CPU loading of both SIP proxy servers of OSLB for

case B. The active dispatcher failed at the 60th second of the testing period

and both SIP proxy servers are not affected by the failure of the active

dispatcher. LBM of OSLB remains 1.05 as case A. We cannot evaluate the

SIP load balancer in this case since it does not support dispatcher redundancy,

and it needs a router or gateway to resolve this problem.

Case C: One SIP proxy server fails.

Fig. 14 shows the CPU loading of both SIP proxy servers of OSLB for

case C, and Fig. 15 shows the CPU loading of both SIP proxy servers of the

 20

SIP load balancer for case C as well. SIP proxy server 1 failed at the 120th

second of the testing duration. From Fig. 14, we found that the CPU loading

of SIP proxy server 2 has sudden decreasing after SIP proxy server 1 failed.

The reason is that after the dispatcher detects the failure of SIP proxy server 1,

it takes few seconds to remove the failed SIP proxy server from the dispatch

list. During this short duration, some requests are still forwarded to the failed

SIP proxy server 1 and causing call blocking and call failure problems. After

the dispatcher removes failed SIP proxy server from the list, CPU loading of

SIP proxy server 2 would arise and successful processing incoming requests.

In Fig. 15, after SIP proxy server 1 failed, the CPU loading of SIP proxy

server 2 has higher variation than before. In Fig. 16, we also evaluated the

number of failed calls with different call rates when one of the SIP proxy

servers fails for case C. We found that our approach encountered much fewer

failed calls than the SIP load balancer, and have 82 % improvement. This is

because that the SIP proxy server failover time of our approach is lower.

Case D: One dispatcher and one proxy server fail.

The active dispatcher failed at the 60th second, and SIP proxy server 1

failed at the 120th second of the testing duration. Fig. 17 shows the CPU

loading of both SIP proxy servers of OSLB for Case D. Its like the

combination of Case B and Case C, the CPU loading of SIP proxy servers are

not affected by the failure of the dispatcher but would be affected by the

failure of SIP proxy server.

 21

Case E: Run a background application with high CPU loading in a selected

SIP proxy server.

In this case, we ran a background application with high CPU loading in

SIP proxy server 1 for one minute during the test period. From Fig. 18 and

Fig. 19, we observed that CPU loading of SIP proxy server 2 of both OSLB

and the SIP load balancer arising while SIP proxy server 1 has a high CPU

loading background application. And Fig. 20 shows the number of failed calls

in this test case for case E. The OSLB stopped sending requests to the

overloading SIP proxy server before the call-blocking problem became

serious. Therefore the proposed OSLB has smaller number of failed calls than

the SIP load balancer, and it has 44 % improvement.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Duration (sec)

C
P

U
 l

o
ad

in
g

 (
%

)

OSLB_proxy1 OSLB_proxy2

Fig. 11. Case A: CPU loading of OSLB with all servers work well.

 22

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Duration (sec)

C
P

U
 l

o
ad

in
g

 (
%

)
S IP LB_proxy1
SIP LB_proxy2

Fig. 12. Case A: CPU loading of SIP load balancer with all servers work
well.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Duration (sec)

C
P

U
 l

o
ad

in
g

 (
%

)

OSLB_proxy1 OSLB_proxy2

Dispatcher failed

Fig. 13. Case B: CPU loading of OSLB with the failure of one dispatcher.

 23

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Duration (sec)

C
P

U
 l

o
ad

in
g

 (
%

)
OSLB_proxy1 OSLB_proxy2

SIP proxy server 1 failed

Fig. 14. Case C: CPU loading of OSLB with the failure of one SIP proxy
server.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Duration (sec)

C
P

U
 l

o
ad

in
g

 (
%

)

S IP LB_proxy1
SIP LB_proxy2

SIP proxy server 1 failed

Fig. 15. Case C: CPU loading of SIP load balancer with the failure of one
SIP proxy server.

 24

149
282

477 538
665

1882

2358

3849

0

1000

2000

3000

4000

50 100 150 200

call rate

fa
il

ed
 c

al
l

OSLB SIP LB

Fig. 16. Case C: Number of failed calls under different call rates with the
failure of one SIP proxy server.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

Duration (sec)

C
P

U
 l

o
ad

in
g

 (
%

)

OSLB_proxy1 OSLB_proxy2

Dispatcher failed SIP proxy server 1 failed

Fig. 17. Case D: CPU loading of OSLB with the failure of one dispatcher
and one SIP proxy server.

 25

Fig. 18. Case E: CPU loading of OSLB with one SIP proxy server running a
high CPU loading background application.

Fig. 19. Case E: CPU loading of SIP load balancer with one SIP proxy
server running a high CPU loading background application.

 26

0

50

100

150

200

250

300

1 2 3

Duration (min)

fa
il

ed
 c

al
l

OSLB SIP LB

Fig. 20. Case E: Number of failed calls with one SIP proxy server running a

high CPU loading background application.

 27

Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

 In the SIP clustered architecture, how fast a dispatcher can respond to

the failure of a SIP proxy server and to the heavy CPU loading of SIP proxy

servers is a very important issue. If the dispatcher takes long time to respond,

the call blocking problem may occur and result in increased number failed

calls. In this thesis, we have designed and implemented a dependable

SIP-based clustered architecture for VoIP/Video conferencing applications.

We have also designed and implemented an efficient Open-AIS based load

balancing (OSLB) strategy for this architecture. The experimental results

have shown that our OSLB is comparable to an existing work, SIP load

balancer, in terms of load balance metric (1.05 vs. 1.04); however, our

OSLB reduces number of failed calls when a proxy server failed by 82%

compared to the SIP load balancer.

 28

6.2 Future Work

Currently, we set α (upper bound value of overloading) as a fixed value.

In the future, we can dynamically adjust α according to the incoming call

rate, network condition, and the capacity of the SIP proxy servers. In

addition, multimedia services provided by media servers will be demanded

by more and more people, and the connections between the SIP user agents

and media servers have QoS requirements. Load balancing between

clustered media servers, which affects the QoS provided to the SIP user

agents, is a significant research issue. In the future, we can extend our load

balancing strategy to the clustered back-end media servers controlled by the

front-end SIP proxy servers.

 29

Bibliography

[1] A.B. Johnston, SIP: understanding the Session Initiation Protocol. 2nd

edition, Artech House, 2004.

[2] “OpenAIS-standard-based cluster framework,”

http://developer.osdl.org/dev/openais/

[3] “OpenSER-the open source SIP server,” http://www.openser.org/

[4] M. Ohta, “Overload control in a SIP signaling network,” Transactions on

Engineering, Computing and Technology, Volume 12, March 2006.

[5] Cisco Inc., “High availability solutions for SIP enable voice-over-IP

networks,”

http://www.cisco.com/en/US/tech/tk652/tk701/technologies_white_paper

09186a00800a9818.shtml

[6] Y.B. Lin and A.C. Pang, Wireless and mobile All-IP networks. John

Wiley, 2005.

[7] A. Gulbrandsen, P. Vixie and L. Esibov, “A DNS RR for specifying the

location of services (DNS SRV)," RFC 2782, Internet Engineering Task

Force, Feb. 2000.

[8] K. Singh and H. Schulzrinne, “Failover, load sharing and server

architecture in SIP telephony,” Computer Communications, Volume 30,

Issue 5, pp. 927-942, March 2007.

[9] K. Singh and H. Schulzrinne, “Failover and load sharing in SIP

telephony,” Technical Report, Department of Computer Science,

Columbia University.

[10] M. Mealling and R. W. Daniel, “The naming authority pointer (NAPTR)

DNS resource record," RFC 2915, Internet Engineering Task Force, Sept.

2000.

[11] M. Liang, Y. Guo, Y. Guo and L. Zhang; “Cluster service for streaming

media on application layer,” in Proceedings of the 7th International

Conference on Signal Processing, Volume 3, pp. 2494-2497, August

2004.

 30

[12] “SIP load balancer,”

http://www.vovida.org/applications/downloads/loadbalancer/

[13] http://www.xtremenetworks.biz/ip-pbx.htm

[14] “SIPp-a free open source test tool / traffic generator for the SIP

protocol,” http://sipp.sourceforge.net/

[15] “SIPStone-Benchmarking SIP server performance,”

http://www.sipstone.org/

[16] R.B. Bunt, D.L. Eager, G.M. Oster, and C.L. Williamson, “Achieving

load balance and effective caching in clustered Web servers,” in Proc. 4th

International Web Caching Workshop, 1999.I.F. Akyildiz and X. Wang,

“A survey on wireless mesh networks,” in IEEE Communications

Magazine, Volume 43, pp. 23 – 30, Sept. 2005.

