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適用於可信賴 SIP 代理伺服器群之 

高效率負載平衡策略 

 

學生：鄭允榕     指導教授：王國禎 博士 

 

國立交通大學網路工程研究所 

 

摘 要 

因為 VoIP 與多媒體服務的興起， SIP 協定被用來為網路使用者建立

雙方對談或是多方視訊會議的連線。在建立連線的過程中， SIP 代理伺服

器為雙方使用者轉交訊息，故為極重要的角色。隨著 VoIP 及多媒體服務

的要求逐漸增加，採用單一 SIP 代理伺服器會產生效能下降及有單一失敗

點的問題。為了解決上述的問題，我們設計一個前端為 n + 1 個 (n 個使用

中與一個備用) 分派器，以控制後端為 m 個 使用中 SIP 代理伺服器群的

架構。但是分派器要如何將使用者傳遞過來的訊息平均分配到後端 SIP 代

理伺服器群，而不會造成單一 SIP 代理伺服器負荷過載或長時間延遲是我

們想要解決的問題。在本論文中，我們設計及實作對於 VoIP / 視訊會議等
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應用提供一個可靠性的 SIP 群組架構，同時也提出一個基於 OpenAIS 的 

SIP 負載平衡策略 (OSLB)，以平衡 SIP 代理伺服器群組間的負載，且當

其中一個分配器或是 SIP 伺服器當機時，能將造成失敗的連線數減低。實

驗的結果顯示 OSLB 比目前的 SIP load balancer 方法有相近的負載平衡值

(1.05 與 1.04)，但是因為 SIP 代理伺服器當機所造成的失敗連線數較之減

少 82%。 

關鍵詞：可信賴, 負載平衡, 分派器, SIP, SIP 代理伺服器。 
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An Efficient Load Balancing Method 

for Dependable SIP Proxy Servers 
Student：Yun-Jung Cheng     Advisor：Dr. Kuochen Wang 

Department of Computer Science 
National Chiao Tung University 

Abstract 

 Because of the arising of VoIP and multimedia services, the Session Initiation 

Protocol (SIP) has been used to establish multimedia sessions which could be a simple 

two-way phone call or a collaborative video conference session between users on the Internet. 

In the procedure of establishing these sessions, a SIP proxy server plays an important role by 

forwarding SIP messages between users. Continued growth in VoIP and multimedia usages, 

using only one SIP proxy server may cause performance degradation, and has a single point 

of failure issue. In order to solve these problems, we design m active SIP proxy servers as a 

cluster in the backend, which are controlled by n + 1 dispatchers (n active dispatchers plus 

one backup dispatcher) in the front end. But how to make a dispatcher distributes requests 

from users to one of the back-end SIP proxy servers without causing overloading or long 

delay is the load balancing issue that we also want to resolve. In this thesis, we have designed 

and implemented a dependable SIP-based clustered architecture for VoIP/Video conferencing 

applications, and also have proposed an efficient OpenAIS-based SIP Load Balancing 

strategy (OSLB) that can balance the proxy servers’ load and reduce the number of failed 

calls when one of the dispatchers or one of the SIP proxy servers crashes Experimental results 

show that our OSLB is comparable to an existing work, SIP load balancer, in terms of load 
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balance metric (1.05 vs. 1.04). However, our OSLB reduces the number of failed calls when a 

proxy server failed by 82% compared to the SIP load balancer. 

Index Terms — dependable, load balancing, dispatcher, SIP (session initiation protocol), SIP 

proxy server. 
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Chapter 1  

Introduction 

 Nowadays people not only get information by surfing on the Internet, 

but also obtain multimedia services through the Internet. The Session 

Initiation Protocol (SIP) is a signaling protocol developed by IETF to set up, 

modify, and tear down sessions between end-users over the Internet [1]. 

 Because of continued growth of VoIP and multimedia services, using 

only one SIP proxy server, which is responsible for multimedia session 

establishments between network end-points, to handle many session set up 

requests at the same time may cause the overloading problem and the setup 

procedure might take too long and result in failures. 

 Several SIP proxy servers can form a cluster in the back-end controlled 

by a dispatchers in the front-end can ease these problems. In the clustered 

architecture, there are three design issues need to be concerned: 

 Single point of failure problem of the dispatcher. 

 Health condition monitoring of back-end SIP proxy servers.  

 Load balancing strategy for SIP proxy servers. 

To resolve these issues, we propose a dependable system architecture and an 

efficient SIP load balancing strategy based on OpenAIS [2] to prevent 

performance degradation and failure problems.  
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The thesis is organized as follows. Chapter 2 gives overview of SIP, and 

related software including OpenAIS and OpenSER [3]. Chapter 3 reviews 

several existing clustered load balancing methods. Chapter 4 presents the 

proposed system architecture and load balancing strategy in detail. Then 

experimental results are evaluated in Chapter 5. Finally, Chapter 6 concludes 

the thesis with concluding remarks and future work. 
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Chapter 2  

Preliminaries 

2.1 Session Initiation Protocol 

The SIP is an application layer signaling protocol over IP networks.  

Fig. 1 shows a typical SIP-based network configuration [4]. The SIP-based 

network is made up by the following basic components [5][6]. 

1. SIP user agent: A network end-point which initiates or terminates 

multimedia sessions. 

2. SIP registrar: A SIP user agent registers its SIP URI (uniform 

resource identifier), contact information and dynamically updates 

these data via SIP messages to the SIP registrar. 

3. SIP proxy server: It routes the SIP requests from one SIP user agent 

to another. 

Fig. 2 is a SIP call setup procedure. The caller issues an INVITE 

message to initiate the call setup procedure. The SIP proxy server would 

forward message to the callee, and returns the response back to the caller. 

Until the caller receives an OK message and responds an ACK message to the 

callee, a session is established. And issuing a BYE message would end the 

session. 
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SIP proxy server

SIP user agent SIP user agent

SIP signaling SIP signaling

session

SIP registrar

 

Fig. 1. Typical SIP-based network configuration [4]. 
 

INVITE
INVITE

Trying
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OK
OK

ACK
ACK

BYEBYE
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OK

SIP user agent
(caller)

SIP proxy server

Session Established

SIP user agent
(callee)

 

Fig. 2. SIP call setup procedure. 
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2.2 OpenAIS 

 OpenAIS (open application interface specification) [2] is an 

implementation of Service Availability Forums API Specification. The main 

purpose of OpenAIS is to provide high availability and build a dependable 

network. The API consists of several parts, including AMF (Availability 

Management Framework), CKPT (checkpointing) and etc. AMF is the most 

important component, which is in charge of failover between the active and 

the backup servers. It monitors the condition of the active server and informs 

the backup server to become active when the active one fails. CKPT is used 

to backup information from the active server to the backup server. Fig. 3 

shows the architecture of servers using OpenAIS. 

 

Fig. 3. Architecture of servers using OpenAIS. 
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2.3 OpenSER 

OpenSER is a mature and flexible open source SIP server. It can be used 

on systems with limited resources as well as on carrier grade servers, scaling 

to up to thousands call setups per second. And it aims to be a collaborative 

project of its users to develop secure and extensible SIP server to provide 

modern VoIP services [3]. OpenSER can perform not only the function of SIP 

proxy servers and also include the functions of SIP registrars and SIP redirect 

servers. It also has modules to support more functions, such as SNMP and 

high availability functions. The DISPATCHER module is designed to 

dispatch user agents’ requests to SIP proxy servers. That is, it can connect to 

SIP proxy servers that form as a cluster, and dispatch the requests coming 

from SIP user agents to selected SIP proxy servers. 
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Chapter 3  

Related Work 

 Cisco’s architecture [5] used DNS SRV (Service) records [7], which 

associate the name of a service with IP addresses of devices, priority and 

weight, to support server failover and load balancing. Fig. 4 gives an example 

DNS SRV records. The selection algorithm for load balancing could be 

round-robin or weighted random. The system administrator achieves load 

balancing by configuring the priority and weight of static route or DNS SRV 

entries. 

 
 

Fig. 4. DNS SRV records 

 

 A IP telephony architecture was proposed in [8][9], which is also based 

on DNS SRV records [7] and NAPTR (Naming Authority Pointer) [10] to 

support server failover and load sharing [8]. Clients can use weighted 

randomization to achieve the distribution recorded in DNS SRV records. 

They used two stages architecture to provide scalability, reliability and load 
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sharing. Fig. 5 shows the two-stage reliable and scalable architecture. First 

stage servers act like dispatchers. Clients get their IP addresses from DNS 

SRV records to decide which dispatcher to connect. After dispatchers receive 

requests from SIP user agents and then forward to one of the second stage 

server group based on the destination of user identifier.  

S1.S.com

A*.S.com

B*.S.com

C*.S.com

S2.S.com S3.S.com

SIP user agent
_sip._udp SRV 0 40 S1.S.com

           0 40 S2.S.com
           0 20 S3.S.com

_sip._udp SRV 0 0 A1.S.com
         1 0 A2.S.com 

_sip._udp SRV 0 0 C1.S.com
         1 0 C2.S.com

 

Fig. 5. Two-stage reliable and scalable architecture [8][9]. 
 

In [11], it proposed a strategy for load balancing in SIP networks. It uses 

a directory server to maintain a table of the status of the backend media 

servers. Table 1 shows the table it proposed. The first column shows the URL 

for the media server, and the second column maps the URL to a real IP 

address. Occupation indicates the percentage of the capability being occupied 

and distance is used to express the communication cost. 
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Table 1.  Table maintained in the directory server. 
 

URL of backend 
media servers 

IP  
address 

Occupation Distance Score 

TTS@net 10.0.1.1 40 1 40 
TTS@net 10.0.1.2 20 10 200 

Score = Occupation * distance 
 

 

When a soft switch, which acts as a SIP proxy server, receives a request from 

a SIP user agent, the soft switch would look up the table first, finds the 

matching virtual name of the server, calculates the score, and then forwards 

the request to the server which has the minimum score. Fig. 6 shows the SIP 

call center system with a directory server. 

 

Fig. 6. A SIP call center system with directory server [11]. 
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The SIP load balancer [12][13] receives requests on one port, then 

assigns an ingress SIP proxy server dynamically to each transaction. And the 

traffic load can be balanced over a pool of SIP proxy servers based on the 

real-time demand for services. It uses “Stickyness”, which is computed by 

hashing one of either CallID, To, From or SIP URI. Therefore, the same entry 

of “Stickyness” would be handled by the same SIP proxy server. Fig. 7 shows 

the architecture of SIP load balancer. 

 

Fig. 7. Architecture of SIP load balancer. 
 

We summarize the above existing approaches and make a qualitative 

comparison with our proposed method (OSLB), as shown in Table 2. Both 

Cisco’s architecture [5] and two-stage architecture [8][9] are based on DNS 

SRV. Clients need to obtain these records to handle the dispatcher failover 

problem and achieve the load balancing of proxy servers. The directory 

server [11], SIP load balancer [12][13] and proposed OSLB do not involved 

the DNS SRV records and the client side. The directory server updates the 

table (like Table 1) based on the status information of media servers, which is 
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announced every five minutes. This periodical announcement can also be 

used to determine if the corresponding server is still alive or not. The SIP 

load balancer regularly (around five seconds) issues an OPTION message to 

the SIP proxy servers to check if they are alive or not. The proposed OSLB, 

which will be introduced in detail in the next chapter, gets the health 

condition and CPU loading information of the SIP proxy servers every one 

second. Since that the SIP load balancer and the OSLB are both not 

client-involved and doing regular check every few seconds, which is much 

less than that of the directory server, so we will evaluate these two methods in 

Chapter 5. 

 

Table 2. Qualitative comparison of existing approaches. 
 

Approach 
Cisco’s [5] 
architecture 

Two-stage 
architecture 

[8][9] 

Directory 
server [11] 

SIP Load 
balancer 
[12][13] 

OSLB 
(proposed)

DNS and Client 
involved Yes Yes No No No 

Server failover 
mechanism 

DNS SRV 
or 

VRRP 
DNS SRV Periodically 

announcement
OPTION 
message OpenAIS 

Server failover time Medium to 
long 

Medium to 
long 

Long 
(5 min) 

Medium 
(10-15 sec) 

Short 
( < 5 sec) 

Load balancing 
mechanism 

DNS SRV 
or 

Round-Robin

Hash (user 
identifier) Score Stickyness 

OpenAIS 
and 

OpenSER 
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Chapter 4  

Design Approach 

4.1  Proposed Dependable System Architecture 

 As mentioned in Chapter 1, a clustered architecture needs to address 

three issues, including the single point of failure problem of front-end 

dispatcher, health condition and CPU loading of back-end SIP proxy servers. 

The proposed dependable system architecture is as shown in Fig. 8. In order 

to provide reliability and scalability, dispatchers adopt an n + 1 redundancy 

model, which means one backup dispatcher for n active dispatchers. Each 

active dispatcher handles requests from regional SIP user agents. SIP proxy 

servers adopt an m + 0 redundancy model. We use the modules provided by 

OpenSER [3] to set up dispatchers and SIP proxy servers. Using at least two 

dispatchers can prevent the single point of failure problem. The frond-end 

dispatcher plays an important role as a monitor and a controller of the 

back-end proxy servers. It needs to monitor the health condition and CPU 

loading of each SIP proxy server. We use an open source called OpenAIS [2], 

which is a middleware for high availability, to do these jobs.  
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4.2  Efficient SIP Load Balancing Strategy 

 The load balancing strategy we propose mainly to prevent performance 

degradation or long connection delay due to proxy server failure or 

overloading. Since each SIP proxy server periodically transmits its heartbeat 

count and CPU loading to a dispatcher through OpenAIS [2], the dispatcher 

can stop sending connection requests to a failed or heavy loading SIP proxy 

server. 

The basic requests distribution method is round-robin. We adjust the 

distribution method by CPU loadings of SIP proxy servers. We set up a fixed 

upper bound α of CPU loading as a threshold. When the CPU loading of the  

SIP proxy server exceeds α, the dispatcher would setup a lower bound β for 

that SIP proxy server and stop forwarding any request to it until its CPU 

loading is below β. β is computed as follows:  

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
∑
=

n

loadingCPUcurrent
n

i
i

1
__

β
 

where n is the number of SIP proxy servers 
 

If the loadings of all SIP proxy servers are above α, the dispatcher starts 

to drop incoming INVITE messages until the CPU loading of at least one SIP 

proxy server is below α. The reason to drop INVITE messages is that users 

can usually tolerate call cancellation due to system busy, but cannot stand that 
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a call session has been canceled in the middle of the call setup procedure.  

 

Fig. 8. Proposed dependable SIP-based clustered architecture. 
 

4.3  Implementation 

In this part, we describe how to implement the above strategy with 

OpenAIS. As mentioned in Chapter 2, AMF is in charge of failover between 

the active and backup servers. When the active dispatcher fails, AMF would 

notify the standby dispatcher to take over the jobs and IP address of the active 

dispatcher. Therefore, the SIP user agents can keep issuing the requests to the 

IP address they knew, and the service will not be interrupted since the backup 

dispatcher takes over the jobs. Between dispatcher and SIP proxy servers, SIP 

proxy servers use CKPT to transmit heartbeat count and CPU loading to the 

dispatcher. The dispatcher checks the data every time it gets, and makes 

decision of keep or stop forwarding data to the SIP proxy servers. Fig. 9 

shows the flow of a dispatcher in OSLB. 
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Begin

SIP proxy serveri alive?

calculate lower bound β
&

Stop forwarding requests to  
SIP proxy serveri

Yes

reset β = 0
&

Start forwarding requests 
to SIP proxy serveri

Yes

No

Remove SIP proxy serveri
from the dispatch list

No

CPU loading of 
SIP proxy serveri > α?

Yes

CPU loading of 
SIP proxy serveri < β?

No

 

 

Fig. 9. The operation flow of a dispatcher in OSLB. 
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Chapter 5  

Performance Evaluation 

 To evaluate the performance of our approach, we set up a test 

architecture, as shown in Fig. 10, which include 1 + 1 dispatchers and two 

active SIP proxy servers (2 + 0).  We also used SIPp [14], which is a free 

open source test tool, as a SIP traffic generator and analyzer. It includes some 

SIP user agent test scenarios, which were provided by SIPStone [15], a 

benchmark tool for evaluating SIP proxy server performance. It establishes 

and releases multiple calls using INVITE and BYE messages. We used 

default UAC (user agent client) and UAS (user agent server) scenarios which 

have already been implemented in SIPp to test the proposed design approach. 

The test scenario for call setup has been shown in Fig. 2. And in order to 

obtain the number of failed calls, we turned off the retransmission mechanism 

in SIPp while doing the following tests.  

The flowing five test cases are evaluated:  

Case A All dispatchers and SIP proxy servers work well. 

Case B One dispatcher fails. 

Case C One SIP proxy server fails. 

Case D One dispatcher and one proxy server fail. 

Case E Run a background application with high CPU loading in a 

    selected SIP proxy server. 
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The first four cases are used to evaluate if dispatcher and/or proxy server 

failures affect load balancing. And the last case is to see if the OSLB can 

handle a surging load.  

 

Fig. 10. Test architecture for OSLB. 
 

We used a metric, Load Balance Metric (LBM) [16], as follows, to 

analyze the performance of our load balancing method: 

∑∑
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∑∑
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= =
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where  

jiload ,  is the load of server i at the jth sampling point; 

jloadpeak _  is the highest load on any server at the jth sampling point; 

n  is the number of SIP proxy servers. 
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We compare the proposed OSLB with the SIP load balancer [12][13], 

which is also not client and DNS involved, and its failover detection time is 

much less than that of the directory server [11]. Table 3 shows the test 

environment and Table 4 is related test parameters. 

 

Table 3. Test environment. 
 

Environment Value 
CPU  
(of Virtual machines) 

AMD Athlon 64 3000+ 

Memory  
(of Virtual machines) 

2 Gigabyte 

CPU (of SIPp) Intel Core 2 T5500 
Memory (of SIPp) 512 Megabyte 

 
 

 

Table 4. Test parameters. 

Parameter Value 
Call rate (default) 100 calls per second 
Call rate (failover) 50, 100, 150, 200 calls per second 
Call duration 3 minutes 
Call limit 10000 calls 
Parameters in SIP load 
balancer 

Value 

Sticky table size 100000 
Sticky expire time 32 seconds 
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In the following, the experimental results of each case are discussed: 

Case A: All dispatchers and SIP proxy servers work well.  

Fig. 11 shows CPU loading of both SIP proxy servers of OSLB for case 

A, and Fig. 12 shows CPU loading of both SIP proxy servers of the SIP load 

balancer for case A. We can see that CPU loading of SIP proxy servers of the 

OSLB is a little higher than the SIP load balancer. The reason is that AMF, 

provided by OpenAIS, periodical transmits messages between each server to 

see if any server is down. And we also used CKPT to transmit data to the 

dispatcher. However, LBM of OSLB and SIP load balancer are pretty close, 

LBM of OSLB is 1.05 and LBM of SIP load balancer is 1.04. 

 

Case B: One dispatcher fails 

Fig. 13 shows the CPU loading of both SIP proxy servers of OSLB for 

case B. The active dispatcher failed at the 60th second of the testing period 

and both SIP proxy servers are not affected by the failure of the active 

dispatcher. LBM of OSLB remains 1.05 as case A. We cannot evaluate the 

SIP load balancer in this case since it does not support dispatcher redundancy, 

and it needs a router or gateway to resolve this problem. 

 

Case C: One SIP proxy server fails. 

Fig. 14 shows the CPU loading of both SIP proxy servers of OSLB for 

case C, and Fig. 15 shows the CPU loading of both SIP proxy servers of the 
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SIP load balancer for case C as well. SIP proxy server 1 failed at the 120th 

second of the testing duration. From Fig. 14, we found that the CPU loading 

of SIP proxy server 2 has sudden decreasing after SIP proxy server 1 failed. 

The reason is that after the dispatcher detects the failure of SIP proxy server 1, 

it takes few seconds to remove the failed SIP proxy server from the dispatch 

list. During this short duration, some requests are still forwarded to the failed 

SIP proxy server 1 and causing call blocking and call failure problems. After 

the dispatcher removes failed SIP proxy server from the list, CPU loading of 

SIP proxy server 2 would arise and successful processing incoming requests. 

In Fig. 15, after SIP proxy server 1 failed, the CPU loading of SIP proxy 

server 2 has higher variation than before. In Fig. 16, we also evaluated the 

number of failed calls with different call rates when one of the SIP proxy 

servers fails for case C. We found that our approach encountered much fewer 

failed calls than the SIP load balancer, and have 82 % improvement. This is 

because that the SIP proxy server failover time of our approach is lower. 

 

Case D: One dispatcher and one proxy server fail. 

The active dispatcher failed at the 60th second, and SIP proxy server 1 

failed at the 120th second of the testing duration. Fig. 17 shows the CPU 

loading of both SIP proxy servers of OSLB for Case D. Its like the 

combination of Case B and Case C, the CPU loading of SIP proxy servers are 

not affected by the failure of the dispatcher but would be affected by the 

failure of SIP proxy server. 
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Case E: Run a background application with high CPU loading in a selected 

SIP proxy server. 

In this case, we ran a background application with high CPU loading in 

SIP proxy server 1 for one minute during the test period. From Fig. 18 and 

Fig. 19, we observed that CPU loading of SIP proxy server 2 of both OSLB 

and the SIP load balancer arising while SIP proxy server 1 has a high CPU 

loading background application. And Fig. 20 shows the number of failed calls 

in this test case for case E. The OSLB stopped sending requests to the 

overloading SIP proxy server before the call-blocking problem became 

serious. Therefore the proposed OSLB has smaller number of failed calls than 

the SIP load balancer, and it has 44 % improvement. 
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Fig. 11. Case A: CPU loading of OSLB with all servers work well. 
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Fig. 12. Case A: CPU loading of SIP load balancer with all servers work 
well. 
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Fig. 13. Case B: CPU loading of OSLB with the failure of one dispatcher. 
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Fig. 14. Case C: CPU loading of OSLB with the failure of one SIP proxy 
server. 
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Fig. 15. Case C: CPU loading of SIP load balancer with the failure of one 
SIP proxy server. 
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Fig. 16. Case C: Number of failed calls under different call rates with the 
failure of one SIP proxy server. 
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Fig. 17. Case D: CPU loading of OSLB with the failure of one dispatcher 
and one SIP proxy server. 
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Fig. 18. Case E: CPU loading of OSLB with one SIP proxy server running a 
high CPU loading background application. 

 
 

 
 

Fig. 19. Case E: CPU loading of SIP load balancer with one SIP proxy 
server running a high CPU loading background application. 
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Fig. 20. Case E: Number of failed calls with one SIP proxy server running a 

high CPU loading background application. 
 
 
 
 
 
 
 
 
 



 

 27

Chapter 6  

Conclusions and Future Work 

6.1  Concluding Remarks 

 In the SIP clustered architecture, how fast a dispatcher can respond to 

the failure of a SIP proxy server and to the heavy CPU loading of SIP proxy 

servers is a very important issue. If the dispatcher takes long time to respond, 

the call blocking problem may occur and result in increased number failed 

calls. In this thesis, we have designed and implemented a dependable 

SIP-based clustered architecture for VoIP/Video conferencing applications. 

We have also designed and implemented an efficient Open-AIS based load 

balancing (OSLB) strategy for this architecture. The experimental results 

have shown that our OSLB is comparable to an existing work, SIP load 

balancer, in terms of load balance metric (1.05 vs. 1.04); however, our 

OSLB reduces number of failed calls when a proxy server failed by 82% 

compared to the SIP load balancer. 
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6.2  Future Work 

Currently, we set α (upper bound value of overloading) as a fixed value. 

In the future, we can dynamically adjust α according to the incoming call 

rate, network condition, and the capacity of the SIP proxy servers. In 

addition, multimedia services provided by media servers will be demanded 

by more and more people, and the connections between the SIP user agents 

and media servers have QoS requirements. Load balancing between 

clustered media servers, which affects the QoS provided to the SIP user 

agents, is a significant research issue. In the future, we can extend our load 

balancing strategy to the clustered back-end media servers controlled by the 

front-end SIP proxy servers. 
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