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對深層封包檢測進行字串比對之軟硬體協同設計 

 

 

學生: 劉岱穎                  指導教授: 林盈達 

國立交通大學網路工程研究所 

 

摘要 

 

 在病毒掃描與深層封包檢測中，字串比對為系統瓶頸，而目前為了加速字串

比對的速度大多以硬體來加速整體輸出量，但是目前大多數的研究都著重在字串

比對硬體的加速而忽略了硬體與軟體整合時是否仍然保持高輸出的特性。本論文

整合了軟硬體並探討出其中為何系統整合後無法發揮高輸出的特性，並發現基於

記憶體的字串比對硬體會因為記憶體搬移時間過長導致無法發揮出硬體高輸出

的特性。實驗實作了字串比對 BFAST*硬體，此硬體修改自 BFAST 硬體並使它更

容易讓軟體控制，而且與開放原始碼的掃毒套件 ClamAV 整合後實際在 FPGA 上計

算出輸出量，整合後的掃毒軟體 ClamAV 輸出量為 146.612Mbps 比整合前純軟體

的 ClamAV 增加了約 27.3 倍的速度。而資料從 ClamAV 搬移至 BFAST*的搬移時間

佔了字串比對約 90%的比重，使得資料搬移時間成為字串比對的瓶頸。如果資料

已經在記憶體中，直接使用 DMA 去記憶體搬移資料進 TextRam 可以增加輸出量至

912.7Mbps，此時的 DMA 輸出量為 1.3Gbps，如果 DMA 速度能提昇至原來的 6倍, 

ClamAV 的輸出量甚至可達到 2.176Gbps。 

 

關鍵字: 字串比對，軟硬體協同設計，深層封包檢測 
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String Matching 

 
Student: Tai-Ying Liu    Advisor: Dr. Ying-Dar Lin 

Department of Computer Science 
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Abstract 

String matching is the bottleneck of anti-virus and deep packet inspection. It is a 

promising trend to offload the inspection to a specific hardware engine for high-speed 

applications that demand the throughput up to multi-giga bit rate. Most papers 

emphasized that raising the throughput of hardware engine but not whole system. This 

work integrates string matching hardware with ClamAV, and discusses why it can’t 

stay high throughput when integrating hardware with software. This work also 

discovers that the data moving time is the bottleneck. 

The experiment is implementation of string matching hardware BFAST* which 

make it suitable for software control. We integrate the open source anti-virus package 

ClamAV with BFAST* and implement on Xilinx FPGA. The experiment includes 

benchmark the throughput of ClamAV integrated with BFAST*. The throughput of 

ClamAV with BFAST* is 146.612Mbps and is about 27.3 factors of pure software 

ClamAV. Time of transferring data from ClamAV to BFAST* occupies about 90% of 

string matching. If data is well prepared in RAM, we transfer data from RAM to 

TextRam using DMA, and the throughput of ClamAV is 912.7Mbps. The throughput 

of DMA is 1.3Gbps. If six times of throughput of DMA is possible, then the 

throughput of ClamAV is 2.176Gbps. 

Keywords: string matching, hardware/software co-design, deep packet inspection 
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Chapter 1 Introduction 
Deep packet inspection is essential to network content security applications such 

as intrusion detection systems and anti-virus systems. The inspection searches the 

packet payload for a database of signatures with a string matching algorithm. The 

efficiency of string matching is therefore critical to the system performance. The time 

complexity of a string matching algorithm can be linear or sub-linear time. Linear 

time algorithms such as those that track the text with a Deterministic Finite Automata 

(DFA) must go through every character in the text, so the complexity is O(n), where n 

is the text length. Sub-linear time algorithms such as the Boyer-Moore algorithm [1] 

can skip characters not in a match and search the text in sub-linear time on average. 

It is a promising trend to offload the inspection to a specific hardware engine for 

high-speed applications that demand the throughput up to multi-giga bit rate [2-8]. 

The system requires elegant integration between software and hardware 

implementation for efficient offloading. Most existing research and implementation of 

deep content inspection emphasizes only high throughput [4-8] of the scanning engine, 

but the overall throughput of the system may still be much slower than the raw 

throughput of the scanning engine due to Amdahl’s law. For example, the hardware 

accelerator is getting high performance of scanning but the text loading time is too 

slow to scan. The whole performance is bottlenecked by text loading. 

This work features a software/hardware co-design from an anti-virus package 

ClamAV (www.clamav.net) on Linux to offload virus scanning to a hardware 

scanning engine, which features sub-linear execution time on average by skipping 

characters not in a match and thus inspecting multiple characters at a time in effect. 

The first thing of designing an offloading scheme is the partition of hardware and 

software to evaluate the cost and performance and choose which part should be 
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implemented in hardware or software. After the partition, we design the interface 

between hardware and software. Usually, the interface in Linux is module driver; it 

contains the memory address of the hardware engine and the behavior of performing 

the hardware. Driver must to be designed flexible and simple, so the application can 

simply operate the hardware. 

The hardware engine can quickly filter the “no-match” case, since the majority 

of network traffic and files in system does not contain viruses. We analyze flow and 

finding the bottleneck while integrating with ClamAV. 

The rest of this work is organized as follows. Chapter 2 reviews string matching 

algorithms and the Bloom Filter Accelerated Sub-linear Time (BFAST) algorithm. 

Chapter 3 introduces the offloading scheme, including the partition and 

communication between hardware and software. Chapter 4 discusses the detailed 

implementation issues, and presents the system architecture as well as each 

component. Chapter 5 evaluates the proposed architecture and benchmarks each 

offloading step. Chapter 6 concludes this work. 

Chapter 2 Related works 

2.1 String Matching Algorithms 

Deep packet inspection involves scanning the content for a set of patterns 

{ }rPPPP L,, 21=  where r is the number of patterns. We also assume lmin to be the 

minimum pattern length and lmax to be the maximum. The time complexity of string 

matching algorithms can be linear and sub-linear. A linear-time algorithm 

characterizes stable throughput and easy implementation, while a sub-linear time 

algorithm reaches high throughput but may be slowed down in the worst case. 

The Aho-Corasick (AC) algorithm [10] is a typical example of a linear-time 

algorithm for string matching. It builds a finite automaton that accepts all the patterns 
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in the pattern set in preprocessing, and then tracks the text for a match during 

scanning. Numerous studies have improved the algorithm recently due to its 

popularity. Some of them can track multiple characters at a time with multiple 

hardware engines, while others focus on compressing the automaton. However, the 

data structure for a large pattern set is still large. Either several hardware engines or a 

high operating frequency are needed for high performance. 

The Wu-Manber (WM) algorithm [13] is a typical algorithm for multiple-string 

matching in sub-linear time. It searches for the patterns by moving a search window 

of lmin characters along the text. If the rightmost block in the window does not appear 

in any of the patterns, the window can be shifted by lmin-B+1 characters without 

missing any pattern, where B is the block size; otherwise, the sift distance is lmin -j, 

where the rightmost occurrence of the block in the patterns ends at position j.  

2.2 Bloom Filter Accelerated Sub-linear Time (BFAST) algorithm 

We presented the Bloom filter Accelerated Sub-linear Time (BFAST) 

architecture [9] that can search the text for the patterns in sub-linear time using Bloom 

Filters. The architecture can avoid the large shift table in the WM algorithm [14] and 

combine the AC algorithm for verification to reduce the impact from the worst-case 

performance. Fig. 1 illustrates how to derive the shift distance from the heuristic using 

Bloom filters. Assume { }321 ,, PPP  is the pattern set, and the blocks in the patterns are 

divided by position. The Group G0 is {efgh,mnop,vuts}, G1 is {defg,lmno,wvut}, and 

so on. Each group is stored in its respective Bloom filters, e.g., G0 in BF(G0). We set 

the block size to be 4, and window size to be 8. The rightmost block in the search 

window, “cdef”, hits G2, so the shift distance is 2 without missing any pattern. If there 

is no hit reported, the shift distance could be 8.  
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uvwxyzabcdef
m=8

search window

cdef

text

BF(G0)

BF(G1)

BF(G2)

BF(G7)

…
PEhit

Patterns: Grouping:
P1 = abcdefgh G0 = {efgh,mnop,vuts} G1 = {defg,lmno,wvuts}
P2 = ijklmnop G2 = {cdef,klmn,xwvu} G3 = {bcde,jklm,yxwv}
P3 = zyxwvuts G4 = {abcd,ijkl,zyxw} G5 = {abc,ijk,zyx}

G6 = {ab,ij,zy} G7 = {a,i,z}

 

Fig. 1 Implicit shift table using Bloom filters 

2.2.1 String matching architecture 

Fig. 2 shows the string matching architecture. This architecture includes two 

main components: (1) the scanning module that fetches text located by 

TextCounterGenerator from TextMemoryFetch, feeds it into Bloom filters, and then 

shifts the text according to this query result, and (2) the verification module and 

interface that pass the location of a possible match to VerificationJobBuffer, and 

verify the text on the location. 

Scanning Module

doa

addra

Verification interface

Bloom 
Filter
Query

Text
Counter

Generator

Verification
Job

Buffer

Job
Dispatcher

Wea

Addra

Dina

Douta

dob

Text
Memory

Fetch
addrb

Web

Addrb

Dinb

Doutb

Verification
Module

(Aho-Corasick)

 

Fig. 2 Overview of the string matching architecture 

2.2.2 Text memory fetching 

,The BFAST architecture cuts the text into four interleaving banks for four-byte 
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blocks to access four continuous memory bytes in parallel. The block is rotated 

according to the byte offset after a block is fetched. 

2.2.3 Bloom filter querying 

Eight independent Bloom filters stores a group between G0 and G7. The block 

fetched by TextMemoryFetch module queries the Bloom filters in parallel to get 

membership information. If more than one group is hit, the shift distance is the 

number of the smallest number of group in the hitting groups; otherwise, the shift 

distance is the pattern length. 

2.2.4 Text position controller 

If the shift distance is longer than 0, the scanning module will shift the search 

window; otherwise it means this block matches some pattern and scanning module 

will start to verify the whole search window. The scanning module verifies the whole 

search window by querying the Bloom filter for every block in the search window.  

2.2.5 Verification interface 

Two components are in verification interface: JobDispatcher and 

VerificationJobBuffer. If the query result gets corresponding shift distance, 

JobDispatcher passes the location of search window to VerificationJobBuffer and then 

notifies Verification Module start to verify it is a virus or not. 

Chapter 3 Designing the offloading scheme 

3.1 Hardware/Software partition 

The first and most important step is hardware and software partition. According 

to Amdahl’s law—“make the common case fast”, the most critical part should be 

implemented in hardware. Because string matching is critical in virus-scanning and 

IDS, it is made into a hardware module to accelerate the scanning. We intend to 

accelerate the open source software ClamAV to increase the throughput. Fig. 3 shows 
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the hardware and software partition in ClamAV.  

The software part of ClamAV works with BFAST* to quickly filter files without 

viruses. ClamAV performs exact string matching and matcher-bfast* calls driver to 

enable DMA for transferring data and enable BFAST* to scan the file. The file is 

infected if there is no possible virus, and if BFAST* finds a possible virus, ClamAV 

pass the file to matcher-bm for verification. 

ClamAV

Software
(Linux)

Hardware

Driver

BFAST*

No
virus

Found
virus

matcher-bm

Boyer-moore
algorithm

matcher-bfast’

BFAST*
functions

Call Driver

Possible Virus

No Possible Virus

Control BFAST’

buffer

DMA
 

Fig. 3 Partitioned string matching: hardware scanning and software verification. 

3.2 Hardware interface design 

BFAST* hardware has five modules: TextPoint, TextRam, HashGenerator, 

BloomFilterQuery and TPController. (1) TextPoint stores the address in TextRam 

where we want to scan. (2) TextRam stores the text to be scanned. (3) HashGenerator 

generates the hash values of the block. (4) BloomFilterQuery is reported the shift 

distance, according to the hash value generates from TextHashGenerator. (5) 

TPController controls these modules, shifts the window and stores the status into 

registers. 

We design a five-stage pipeline for BFAST*, so TPController can shift the 
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window per cycle. Fig. 4 shows the five stages: 

(1)TextPosition (TP): it gets an address from TextPoint. 

(2)TextRead: TPController gets the text from TextRam. 

(3)Hash: TPController gets the hash value of HashGenerator.  

(4)ShiftDistance: TPController gets the shift value from BloomFilterQuery. 

(5)WB: TPController computes the shit distance and update the address of 

TextPosition.  

The stages of TextRead and ShiftDistance are memory access, so the memory access 

time restricts the clock rate. 
1 2 3 4 5 6

TP Hash Shift
Distance WB

Hash Shift
Distance WB

Text
ReadTP Hash Shift

Distance WB

70

Text
Read

TP

Text
ReadTP Hash Shift

Distance WB

Text
ReadTP Hash Shift

Distance WB

Text
Read

8

TPController0

TPController1

TPController2

TPController3

TPController4

Text
ReadTP Hash Shift

Distance

Text
ReadTP Hash

Text
ReadTP

TP

 

Fig. 4 Five stage pipeline. 

Five TPControllers are instantiated because there are five pipeline stages. Each 

TPController scans 1600 bytes of data in TextRam. We make each TextPoint in 

TPController points to the address of TextRam at 0, 1600, 3200, 4800, 6400, and 

TPController0 scans data in TextRam addressed from 0 to 1599 and TPController1 

scans the data in TextRam from addressed 1600 to 3200 and so on. 

Fig. 5 shows the state machine of TPController. There are four states: INIT, 

SCAN, CHECK and HOLD. 

1. In the beginning, TPController stay in the state INIT until BFAST* is enabled, and 

then current state transits to SCAN state. 

2. In SCAN state, TPController gets the shift distance, if the shift distance is zero, it 
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means that the text should be additional checking, and then current state transits to 

CHECK state. Otherwise, if the shift distance is not zero then TPController update 

TextPoint by adding shift distance and stay in SCAN state until all data in 

TextRam is scanned finished. 

3. While state transits to CHECK state, TPController check that every blocks in 

window is hit. If every blocks is hit with corresponding position then current state 

transits to HOLD and reports that there is a possible match 

4. The HOLD state keeps the TPController status. 

MbitVector i hit

BFAST* enable

BFAST* disable

shift distance==0

Shift distance!=0

MbitVector i hit

TextPoint > length

MbitVector i no hit

i >= 8

BFAST* disable

BFAST* enable

HOLD

CHECK
TextPoint--

i++

SCAN
TextPoint+=shift distance

INIT

 

Fig. 5 The state transition diagram of TPController 

There are two TextRams. When one TextRam is being scanned, BFAST* stores 

data into another TextRam. The two TextRam act alternately. 

3.3 Software interface design 

Two mechanisms for ClamAV gets information from BFAST*: interrupt and 

polling. If BFAST* finds a possible virus for ClamAV to verify, BFAST* interrupts 

the CPU and reports ClamAV that a virus needs to be verified, this kind mechanism of 

getting information from BFAST* calls interrupt. The benefit of interrupting is CPU 

may do other tasks, while BFAST* quickly filters no-match cases until BFAST* finds 
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a possible virus or the scan is finished. If an interrupt occurs, the CPU should switch 

to ClamAV, and context switch adds the overheads of scanning. If many possible 

viruses appear, the context switch overhead is huge. 

On the other hand, the mechanism that ClamAV keeps detecting the status of 

BFAST* is called polling. Because polling lets ClamAV know a possible virus 

immediately and the CPU does not need to do context switch, it performs better than 

interrupting. Polling increases the throughput of virus scanning but decreases the 

performance of whole system unless CPU does not need to do any other tasks. We 

adapt the polling mechanism for higher throughput. 

ClamAV scans a file using Boyer-Moore algorithm and Aho-Croasick algorithm, 

Boyer-Moore algorithm is implemented as matcher-bm library and it performs exact 

string match. Aho-Croasick algorithm is implemented as matcher-ac library, and it 

performs regular expression string match. 

In our design, BFAST* performs exact string matching and filers the no-match 

cases first. If a possible virus is detected by BFAST* then matcher-bm is invoked for 

verification. On the other hand, if there is no possible virus is detected, it means the 

file is not infected. Most of network traffic and files in system belongs to the 

no-match case, so it scans quickly. 

3.4 Hardware/Software interface design 

The driver functions include memory writing, scanning module behavior and 

getting status. The data structure in the memory of BFAST* is memory mapped, so 

we just write data to corresponding memory address. Several data structures should be 

written: (1) the hash functions (2) blocks in the patterns and (3) the text to be scanned. 

After the data are well prepared, TPController in BFAST* will start to scan the text 

and write the status to registers. 

Direct Memory Access (DMA), it transfer data from physical memory address to 
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TextRam in BFAST*. The problem is that data from user space can’t declare a 

continued physical memory space, so driver create a continued physical memory 

space and copy the data from ClamAV into this continued physical memory. This 

continued physical memory space can’t be cached, because if DMA transfer data and 

the memory didn’t update yet, then DMA transfers the old data into TextRam. 

Chaper 4 Implementation Details 
We modify the ClamAV to co-work with BFAST smoothly. ClamAV scans the 

files for the patterns to recognize infected ones. ClamAV implements two libraries for 

string matching: matcher-bm for Boyer-Moore algorithm and matcher-ac for 

Aho-Croasick algorithm. It reads a file in batch into a buffer of 131,072 bytes. The 

library in matcher-bfast* stores the buffer into driver and enables DMA to transfer the 

buffer into TextRam in BFAST*. The TPController then scans the data in TextRam. If 

no virus is possible in the data, BFAST* loads the next batch of text into TextRam; 

otherwise, TPController reports the possible virus, and matcher-bm verifies the buffer 

contains a virus or not. 

Fig 6 shows the entire system architecture. We attach BFAST* on PLB Bus. The 

OPB Bus and PLB Bus operates at 100MHz, but the maximum data width of PLB is 

64bits, twice the width of OPB. DMA in BFAST* transfers the data from DDR 

SDRAM to BFAST*. PPC405 is 300Mhz 

To simplify observation and analysis the bottleneck, we discard the regular 

expression case. If regular expression is necessary in whole system, the pattern which 

is regular expression form should be cut off. Take a pattern “abcdefg{-10}hijkl” for 

example, the pattern is divided into two parts, “abcdefg” and “hijkl”, then add these 

two parts as two patterns into BFAST*. BFAST* filters the no-match case and library 

matcher-ac verifies the match case. 
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Fig. 6 System architecture 

4.1 Overview of the co-design platform 

The system is implemented on MontaVista Linux 2.4.20-8 and ClamAV 0.88 on 

Xilinx ML310 VirtexII Pro Board. We illustrate the scan flow and explain the function 

of each module. Before starting scanning the files, ClamAV programs the signatures 

from ClamAV database files into the BloomFilterQuery module of BFAST* and 

matcher-bm. After the data structure is well prepared and loaded, ClamAV reads the 

file and the matcher-bfast* library invokes the driver in BFAST* to scan the content. 

If BFAST* does not find any virus, it reports the file is not infected; otherwise, 

ClamAV will pass this file to matcher-bm for verification.  

4.2 Hardware Implementation 

Figure 7. shows the five modules in BFAST*. 
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Fig. 7 Components in the BFAST* architecture. 

1. TextRam0 and TextRam1 modules 

Each TextRam has 8KB, indexed by 13 bits address line and 8 bits data line. 

Four bytes can be fetched from TextRAM each time for the heuristics. ClamAV scans 

the file content in TextRam. 

2. HashGenerator module 

HashGenerator module includes four Hash function: H0, H1, H2, and H3. The 

data in TextRam is fetched, then the data will be hashed by these four hash function 

and gets 4 14bits hash values. 

3. BloomFilterQuery module 

BloomFilterQuery module includes eight MbitVectors. Each MbitVector is 4KB 

with 14bits address line and 1bit data line. MbitVector stores the Bloom filter data. 

MbitVector0 stores the BF(G0) and MbitVector stores BF(G1) and so on. When 

MbitVector n is hit, then TPController shift n. For example, if MbitVector3 is hit, so 

we shift window 3 bytes. 

4. TPController module 

Five TPController is instantiated corresponding five pipeline stages. Each 

TPController scans 1,600bytes of data in TextRam. For example, TPController0 scan 

the data address from 0 to 1,599 and TPController1 scans the data from address 1,600 

to 3,199. 

5. Registers 

There are two register for enable the BFAST* and 1 register stores the status of 

BFAST*. Fig. 8 shows the format of these register. Register EnableTextRam0 enables 

TPController scans TextRam0 with start address and the size of length and 

EnableTextRam1 enables TPController scans TextRam1 with start address and the size 
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of length. Register2 stores the status of BFAST*. 

The information stores in register StatusRegister is describe here. The 

BFAST*enable single means that TextRam0 or TextRam1 is scanning, 

TextRam0finished and TextRam1finished means which TextRam scans completely, 

TextRam0scanning and TextRam1scanning means which TextRam is scanning and 

TextRam0Error and TextRam1Error means which TextRam is error while reading or 

writing. VirusAddress reports which TPController finds a possible virus. TextPointer 

stores the value that point to the address of TextRam. FoundVirus reports it finds a 

possible virus in TextRam. 

TextRam0
enable Start address length

TextRam1
enable Start address length

013 1231             30

013 1231             30

BFAST’
enable

TextRam0
finished

TextRam1
finished

TextRam0
scanning

TextRam1
scanning

TextRam0
Error

TextRam1
Error

Virus
Address

Text
Pointer

Found
Virus

24             23              22              21             20 19              18      17                        13 12            1        0     

EnableTextRam0 

EnableTextRam1

StatusRegister  

Fig. 8 The format of registers. 

4.3 Driver Implementation 

We implement the driver on Linux for BFAST* controlling. ClamAV invokes 

matcher-bfast*, and then matcher- matcher-bfast * calls driver to get the status of 

BFAST* by accessing StatusRegister register, or enable BFAST* to scan data in 

TextRam. Driver also provides the function of accesses the data in TextRam0, 

TextRam1, HashGenerator and MbitVectors in BloomFilterQuery modules. 

Driver has several functions to perform behavior of BFAST*. (1) TEXTRAM 

loads the data from ClamAV and copy these data into DMA buffer which is a physical 
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continue memory space and then enables DMA to transfer data from DMA buffer to 

TextRam in BFAST*. (2) REG_SELECT selects which register to operate, there are 3 

register in BFAST*. (3) REG_IOC_IN reads data from register where REG_SELECT 

points to and (4) REG_IOC_OUT writes data into registers. (5) AR_SELECT selects 

which memory to operate, the memory is TextRam0, TextRam1, H0 to H3, and 

MbitVector0 to MbitVector7 in BFAST*. (6) AR_LSEEK selects the address of 

memory. (7) AR_IOC_IN reads data from memory, and the final function (8) 

AR_IOC_OUT writes data into memory. For example, if we want to enable BFAST* 

start to scan TextRam0 and the length is 0x1000, so we needs to use the function ioctl 

and pass it the parameter REG_SELECT and data of 0, then driver will transform to 

operate the EnableTextRam0 and then pass the parameter REG_IOC_OUT and the 

data of 0x80001000, then it start to scan TextRam0 with length 0x1000. 

4.4 Software Implementation 

We implement ClamAV 0.88 on MontaVista Linux 2.4.20-8. In order to enable 

the hardware for scanning files, we modify the ClamAV library. We modify two 

modules readdb, matcher and add a new library matcher-bfast*. The library readdb 

reads patterns (signatures) from ClamAV database files, so we need to modify it and 

transform the signature into BFAST* data structure and store into MbitVectors. We 

modify the library matcher for BFAST* scanning virus. We add four function in 

matcher-bfast* to operate BFAST*. The First function is bfast*_init, this function 

opens the device and return the file descriptor of BFAST*. Second function is 

bfast*_addpatt, this function reads signatures which library readdb reads from 

ClamAV database files and stores the pattern into MbitVectors. The third function is 

bfast*_scanbuff, this function scans the buffer where the library matcher reads from 

files. BFAST* has two TextRam with capacity of 8KB, so we can scanning the 

TextRam and store the buffer into another TextRam at the same time, Fig. 9 shows the 
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Pseudocode of loading text into MbitVectors while BFAST* scanning virus. 

These two TextRam interleaving acts, so the buffer have to keep 10 bytes to 

prevent that the virus from cutting off between the two TextRam. 

Disable TextRam0; 
Disable TextRam1; 
Current TextRam = TextRam0; 
do{ 
 if(buffer size > (TextRamMaxSize+scanned)) 
  Copy the TextRamMaxSize of data from buffer into text; 
 else 
  Copy the size of (buffer size –scanned) of data from buffer into text; 
 scanned+=the size of text; 
 load buffer into Current TextRam; 
 Wait for another TextRam until it scans completely or finds a possible match; 
 If(Another TextRam finds a possible match) { 
  Disable another TextRam; 
  Return Found a virus; 
 } 
 else{ 
  if(buffer size > scanned) { 
   scanned-=10; 
   Disable another TextRam; 
   Current TextRam = another TextRam; 
  } 
 Enable Current TextRam; 
 } 
} while(buffer size > scanned) 
Wait for current TextRam until scans completely or finds a possible match; 
If(Currrent TextRam finds a possible match) { 

Disable Current TextRam; 
Return Found a virus; 

} 
Else { 

Disable Current TextRam; 
Return No virus; 

} 

Fig. 9 Pseudocode of loading text while BFAST* scanning virus 
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Finally, the library matcher reads every 131072 bytes from files into buffer and 

then calls bfast*_scanbuff and matcher-bm to scan the buffer, we also have to keep 

the last 10 bytes to prevent the virus from cutting off. 

If bfast*_scanbuff found a virus, bfast*_scanbuff report a the address of virus, 

and matcher-bm start to scan the data after the address.  

Chapter 5 Experiment results 
We benchmark the performance in various environments: ClamAV on ML310 

board, BFAST* hardware simulation, BFAST* hardware implementation on ML310 

board and ClamAV with BFAST* 

BFAST* is attached on Process Local Bus ( PLB), whose data width is twice that 

of On-Chip Peripheral Bus(OPB). 

5.1 Pure Software 

We implement ClamAV 0.88 with MontaVista Linux 2.4.20-8 on Xilinx ML310 

Vertex II Pro Board. In this experiment, the number of signatures is 42108, We scan 

the data of 1KB and 1MB with and without viruses. ClamAV scans files with 

matcher-bm implements Boyer-Moore. 

The matcher-bm reports whether a file is infected or not. If matcher-bm reports 

that this file is not inflected then ClamAV passes the file to matcher-ac for scanning 

multi-part signatures. Because we just program exact string, so only matcher-bm is 

concerned. Table. 1 shows the time of ClamAV scans files of 1KB and 1MB. If 

matcher-bm found a virus, it reported the file is infected and stops to scan the file. So 

ClamAV scans a 1KB file with virus which virus at the position 359, it needs 539 

microseconds, because ClamAV found a virus and then it stops to scan data after that. 

The throughput of matcher-bm is (8*1,024*1,024)/1,559,306 or 5.37Mbps. 

Table. 1 Scan time of ClamAV on ML310 (microseconds) 
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1KB 

(virus at the position of 359 bytes)
1MB 

(virus at the position of 738,663 bytes)

With 
virus 

matcher-bm: 539 matcher-bm: 1,102,765 

Without 
virus 

matcher-bm: 1,545 matcher-bm: 1,559,306 

5.2 Hardware simulation and synthesis 

We Implement the BFAST* in Verilog and synthesis it. BFAST* consumes 2,749 

Slices out of 13,696 total Slices and 24 BRAMS out of 136 total BRAMS in Xilinx 

board and the maximum clock rate of system operates at 142.507 MHz. We know that 

the average shift distance is 7.71 from [9], so the average throughput is 

142.507*7.71*8 or 8.79Gbps and the maximum throughput is 142.507*8*8 or 

9.12Gbps when TextRam is full. When data size in TextRam is less than 1600 bytes, 

the throughput is fifth of the throughput of data is full with TextRam. And when data 

size in TextRam is larger than 1600 bytes but less than 3200 bytes, the throughput is 

two fifth of the 8.79Gbps and so on.  

5.3 SoC without OS 

We implement the BFAST* on Xilinx ML310 Vertex II Pro Board with firmware 

and benchmark the throughput. Our design is attached on the PLB. Xilinx ML310 

only support 4 different clock rate: 25Mhz, 33Mhz, 50Mhz, 100Mhz. Our design can 

operate at 142Mhz, so we choose 100Mhz as PLB clock rate. Fig. 10 shows the scan 

time for different sizes of data in TextRam. When data size is less than 1,600 bytes, 

TPController 0 is enabled and each shift needs 5 cycles. On other hand, if the size of 

data is more than 1,600 bytes, the scan time is about 1000 clock time, because that 

when TPController0 is scanning the window at address 0, TPController1 is scanning 

the window at address 1,600, TPController2 is scanning the window at address 3,200 

and so on at the same time. The maximum throughput is 8000 bytes/ (1004*10ns) or 

6.37Gbps when data size is 8000 bytes which means the TextRam is full. 
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Scan time for different size of data without virus in TextRam
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Fig. 10 Scan time for different size of data without virus in TextRam. 

We wrote a virus at different of address of TextRam and evaluate the throughput. 

Fig. 11 shows the scan time for different address with virus in TextRam. When the last 

block of window is match, the TPController will enter the verification state, and 

verify all block in window then entering hold state. It costs 55 cycles including 

5cycles for checking the last block is matching or not, 40 cycles for 8 block 

verification each costs 5 cycles, 5 cycles for check these block is all at appropriate 

position and 5 cycles for report it is matched or not. 

 

Scan time for different address with virus in TextRam
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Fig. 11 Scan time for different address with virus in TextRam. 

5.4 SoC with Linux 

We have 3 configurations according to where the data to be scanned is:  
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1. Data to be scanned is located in hard disk. 

Table. 2 shows the throughput of ClamAV with BFAST* scans files which are 

1KB and 1MB with virus and without virus. When ClamAV scans a file without 

virus, only matcher-bfast* is invoked. And if this file is infected, matcher-bm is 

launched for verification. The total throughput of ClamAV is about 146.612Mbps. 

The time of writing data into TextRam occupies about 90% of string matching 

time. 

Table. 2 Scan Time of ClamAV integrated with BFAST* on ML310 (microseconds) 

 
1KB 

(virus at the position of 359 bytes)
1MB 

(virus at the position of 738663 bytes)

matcher-bfast*: 270 
(write data into TextRam: 94) 

matcher- bfast*: 40,810 
(write data into TextRam: 36,656) With 

virus 
matcher-bm: 17 matcher-bm: 26 

Without 
virus 

matcher- bfast*: 273 
(write data into TextRam: 95) 

matcher- bfast*: 55,552 
(write data into TextRam: 49,891) 

The throughput of the integrated design is 146.612Mbps. The significant 

disparity between the pure hardware throughput and the co-design throughput is 

due to the following reasons. Although scanning on the FPGA is fast, ClamAV 

must pass the text to be scanned to the device driver (from ther user space to the 

kernel space), and the driver in turn copies the text to the DMA buffer. The DMA 

then transfers the text in the buffer into TextRam. These steps of data passing 

occupies nearly 90% time of total processing, and slows down the pure hardware 

throughput. Fig.12 shows the time distribution in these steps. The other 10% 

overhead of in the text processing is monitoring the status of BFAST* and 

keeping 10 bytes to prevent missing the virus that spans two contiguous batches 

of text. 



 

 20

Time distribution when ClamAV transfer
data into TextRam
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66%
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user space to kernel space
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TextRam (13%)

 

Fig. 12 Time distribution when ClamAV transfers data into TextRam 

2. Data to be scanned is located in memory: 

According to the above observation, pursuing a fast hardware design of a 

scanning engine is insufficient.  

Two steps are fundamental and inevitable in the design: (1) having the text to 

be in the memory somehow and (2) transferring the text from memory into the 

FPGA with DMA. Assuming the incoming text could be somehow directly 

stored in the memory without the aforementioned overheads, the other possible 

bottlenecks in (1) become the speed of the network interface or the disk I/O, 

depending on where the text is from: packet content or disk files. Step (2) is not 

fast enough in the current platform. It's only 1.3 Gbps, and total system 

throughput is 912.7Mbps, so the throughput is restricted by the DMA. If the 

DMA throughput could be improved, the design could be much faster. 

3. Data to be scanned is located in memory and DMA throughput is 

improved: 

Fig.13 shows that throughput of ClamAV can reach up to 2.176 Gbps, while 

the throughput of DMA is 7.8 Gbps and data is well prepared in the memory. 
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When ClamAV scans 1MB of data in Ram, it takes 2789 microseconds for 

monitor the status of BFAST* and 6402 microseconds for loading data into 

TextRam. So the throughput of ClamAV is 8*1024*1024/ (2789+6402) or 

912.7Mbps, and if the throughput of DMA is 2.6Gbps, the throughput of 

ClamAV is 8*1024*1024/(2789+(6402/2)) or 1.4Gbps, and so on. 

ClamAV throughput of various DMA throughput
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Fig. 13 ClamAV throughput of various DMA throughput. 

Chapter 6 Conclusions and Future Works 
This work implements a hardware BFAST* with ClamAV in MontaVista Linux 

on ML310 board. It increases the throughput of ClamAV. The throughput of the 

design scans a file is about 146.612 Mbps. We improve about 27.3 factors of original 

ClamAV when scanning the large of files. 

In hardware simulation, the hardware clock rate reaches 142.507MHz after 

synthesis. The average shift distance is 7.71 bytes [9], so the average throughput is   

7.71*8*142.507 = 8.79 Gbps. The best case is that the window shift 8 bytes every 

cycle, so the best case throughput is 8*8*142.507 = 9.1Gbps. 

When we implement the design on the ML310 board, on which the bus clock 

rate is up to 100MHz, the best case throughput becomes 8*8*100 = 6.4Gbps and the 

average throughput is 7.71*8*100 = 6.17Gbps. The bus clock rate of the ML310 
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board lowers the throughput that is possible in a simulation environment. 

If the data to be scanned is well prepared in memory, the throughput of ClamAV 

is 912.7Mbps, and if DMA throughput is higher then the throughput of ClamAV is 

higher too. When DMA throughput reaches 7.8Gbps the throughput of ClamAV is 

2.1755 Gbps. 

If the ClamAV were implemented in the kernel space, the data passing between 

the user space and the kernel space could be removed. Copying the text to the DMA 

buffer is heavy, but this step is necessary for two reasons: (1) to ensure the text is 

indeed written into the memory, rather than only in the CPU cache, unless the cache is 

write-through, and (2) to ensure the text is stored contiguously in the physical 

addresses for the DMA to fetch. Note that the addresses of the text may be contiguous 

in virtual memory space, but not in physical memory space. The DMA must somehow 

know the physical addresses, perhaps through the Memory Management Unit (MMU), 

to fetch the text. Therefore, copying the text into the non-cacheable DMA buffer is a 

safe solution. If the buffer to store incoming text could be made non-cacheable, and 

the DMA can fetch the text in contiguous addresses or through the MMU, for example, 

the heavy overhead could be eliminated. 

The data transfer from ClamAV into TextRam slows down the overall system 

performance. If ClamAV ran in the Linux kernel, dropping the text transfer from the 

user space to the kernel space is possible. The text must also be somehow directly 

stored in the memory without being cached in the CPU, and the DMA must be able to 

derive the physical addresses of the text. If the text to be scanned is well prepared in 

RAM, the throughput is restricted by the DMA, and raising the DMA throughput is 

critical. 
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