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Abstract

String matching is the bottleneck of anti-virus and deep packet inspection. It is a
promising trend to offload the inspection to a specific hardware engine for high-speed
applications that demand the throughput up to multi-giga bit rate. Most papers
emphasized that raising the throughput of hardware engine but not whole system. This
work integrates string matching hardware with ClamAV, and discusses why it can’t
stay high throughput when integrating-hardware ‘with software. This work also
discovers that the data moving time is the bottleneck.

The experiment is implementation of string matching hardware BFAST* which
make it suitable for software control. We integrate the open source anti-virus package
ClamAV with BFAST* and implement on Xilinx FPGA. The experiment includes
benchmark the throughput of ClamAV integrated with BFAST*. The throughput of
ClamAV with BFAST* is 146.612Mbps and is about 27.3 factors of pure software
ClamAV. Time of transferring data from ClamAV to BFAST* occupies about 90% of
string matching. If data is well prepared in RAM, we transfer data from RAM to
TextRam using DMA, and the throughput of ClamAYV is 912.7Mbps. The throughput
of DMA is 1.3Gbps. If six times of throughput of DMA is possible, then the
throughput of ClamAYV is 2.176Gbps.

Keywords: string matching, hardware/software co-design, deep packet inspection
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Chapter 1 Introduction

Deep packet inspection is essential to network content security applications such
as intrusion detection systems and anti-virus systems. The inspection searches the
packet payload for a database of signatures with a string matching algorithm. The
efficiency of string matching is therefore critical to the system performance. The time
complexity of a string matching algorithm can be linear or sub-linear time. Linear
time algorithms such as those that track the text with a Deterministic Finite Automata
(DFA) must go through every character in the text, so the complexity is O(n), where n
is the text length. Sub-linear time algorithms such as the Boyer-Moore algorithm [1]
can skip characters not in a match and search the text in sub-linear time on average.

It is a promising trend to offload the.inspection to a specific hardware engine for
high-speed applications that demiand the throughput up to multi-giga bit rate [2-8].
The system requires elegant “integration between software and hardware
implementation for efficient offloading. Most-existing research and implementation of
deep content inspection emphasizes only highthroughput [4-8] of the scanning engine,
but the overall throughput of the system may still be much slower than the raw
throughput of the scanning engine due to Amdahl’s law. For example, the hardware
accelerator is getting high performance of scanning but the text loading time is too
slow to scan. The whole performance is bottlenecked by text loading.

This work features a software/hardware co-design from an anti-virus package
ClamAV (www.clamav.net) on Linux to offload virus scanning to a hardware
scanning engine, which features sub-linear execution time on average by skipping
characters not in a match and thus inspecting multiple characters at a time in effect.
The first thing of designing an offloading scheme is the partition of hardware and

software to evaluate the cost and performance and choose which part should be



implemented in hardware or software. After the partition, we design the interface
between hardware and software. Usually, the interface in Linux is module driver; it
contains the memory address of the hardware engine and the behavior of performing
the hardware. Driver must to be designed flexible and simple, so the application can
simply operate the hardware.

The hardware engine can quickly filter the “no-match” case, since the majority
of network traffic and files in system does not contain viruses. We analyze flow and
finding the bottleneck while integrating with ClamAV.

The rest of this work is organized as follows. Chapter 2 reviews string matching
algorithms and the Bloom Filter Accelerated Sub-linear Time (BFAST) algorithm.
Chapter 3 introduces the offloading scheme, including the partition and
communication between hardwarg-and software.. Chapter 4 discusses the detailed
implementation issues, and presents the .system- architecture as well as each
component. Chapter 5 evaluates the-‘proposed architecture and benchmarks each

offloading step. Chapter 6 concludes this work:

Chapter 2 Related works

2.1 String Matching Algorithms

Deep packet inspection involves scanning the content for a set of patterns
P= {Pl, P2, P“} where r is the number of patterns. We also assume Imin to be the
minimum pattern length and Imax to be the maximum. The time complexity of string
matching algorithms can be linear and sub-linear. A linear-time algorithm
characterizes stable throughput and easy implementation, while a sub-linear time
algorithm reaches high throughput but may be slowed down in the worst case.

The Aho-Corasick (AC) algorithm [10] is a typical example of a linear-time

algorithm for string matching. It builds a finite automaton that accepts all the patterns



in the pattern set in preprocessing, and then tracks the text for a match during
scanning. Numerous studies have improved the algorithm recently due to its
popularity. Some of them can track multiple characters at a time with multiple
hardware engines, while others focus on compressing the automaton. However, the
data structure for a large pattern set is still large. Either several hardware engines or a
high operating frequency are needed for high performance.

The Wu-Manber (WM) algorithm [13] is a typical algorithm for multiple-string
matching in sub-linear time. It searches for the patterns by moving a search window
of Imin characters along the text. If the rightmost block in the window does not appear
in any of the patterns, the window can be shifted by Imin-B+1 characters without
missing any pattern, where B is the block size; otherwise, the sift distance is Imin -,
where the rightmost occurrence of.the block in the patterns ends at position j.

2.2 Bloom Filter Accelerated.-Sub-linear Time (BFAST) algorithm

We presented the Bloom filter—Accelerated Sub-linear Time (BFAST)
architecture [9] that can search the textfor the patterns in sub-linear time using Bloom
Filters. The architecture can avoid the large shift table in the WM algorithm [14] and
combine the AC algorithm for verification to reduce the impact from the worst-case
performance. Fig. 1 illustrates how to derive the shift distance from the heuristic using
Bloom filters. Assume {P,,P,,P,} is the pattern set, and the blocks in the patterns are
divided by position. The Group Gy is {efgh,mnop,vuts}, G; is {defg,Imno,wvut}, and
so on. Each group is stored in its respective Bloom filters, e.g., Go in BF(Gg). We set
the block size to be 4, and window size to be 8. The rightmost block in the search
window, “cdef”, hits G, so the shift distance is 2 without missing any pattern. If there

is no hit reported, the shift distance could be 8.



Patterns: Grouping:
P, = abcdefgh G, = {efgh,mnop,vuts} G, = {defg,Imno,wvuts}
P, = ijklmnop G, = {cdef klmn,xwvu} G, = {bcde,jkIm,yxwv}

P, = zyxwvuts G, = {abcd,ijkl,zyxw} G; = {abc,ijk,zyx}
G, = {ab,ij,zy} G, ={aiz}
BF(G,)
BF(G,)
cdef — hit PE |

|

text uvw>f(yzabcdef

. m=8 |
séarch window

BF(G,)

Fig. 1 Implicit shift table using Bloom filters
2.2.1 String matching architecture
Fig. 2 shows the string matching architecture. This architecture includes two
main components: (1) the scanning module that fetches text located by
TextCounterGenerator from TextMemoryFetch; feeds it into Bloom filters, and then
shifts the text according to this query result, and (2) the verification module and
interface that pass the location of a possible match to VerificationJobBuffer, and

verify the text on the location.

Scanning Module
Bloom doa dob
Filter
Query
Text
Memory
Text Fetch ;
ex addra Jaddrb | Verification
Counter 3 Module !
Generator : (Aho-Corasick) |
I ‘
I ‘
— Wea Weh :
Job Addra Verification Addrh_|
Dispatcher -Pina BJc:‘lf) Dinb
Douta utrer Douth _;
Verification interface

Fig. 2 Overview of the string matching architecture

2.2.2 Text memory fetching

,The BFAST architecture cuts the text into four interleaving banks for four-byte



blocks to access four continuous memory bytes in parallel. The block is rotated
according to the byte offset after a block is fetched.
2.2.3 Bloom filter querying

Eight independent Bloom filters stores a group between Gy and G;. The block
fetched by TextMemoryFetch module queries the Bloom filters in parallel to get
membership information. If more than one group is hit, the shift distance is the
number of the smallest number of group in the hitting groups; otherwise, the shift
distance is the pattern length.
2.2.4 Text position controller

If the shift distance is longer than 0, the scanning module will shift the search
window; otherwise it means this block matches some pattern and scanning module
will start to verify the whole search-window. The scanning module verifies the whole
search window by querying the -Bloom filter for every block in the search window.
2.2.5 Verification interface

Two components are in< werification interface: JobDispatcher and
VerificationJobBuffer. If the query result gets corresponding shift distance,
JobDispatcher passes the location of search window to VerificationJobBuffer and then

notifies Verification Module start to verify it is a virus or not.

Chapter 3 Designing the offloading scheme

3.1 Hardware/Software partition

The first and most important step is hardware and software partition. According
to Amdahl’s law—**make the common case fast”, the most critical part should be
implemented in hardware. Because string matching is critical in virus-scanning and
IDS, it is made into a hardware module to accelerate the scanning. We intend to

accelerate the open source software ClamAV to increase the throughput. Fig. 3 shows



the hardware and software partition in ClamAV.

The software part of ClamAV works with BFAST* to quickly filter files without
viruses. ClamAV performs exact string matching and matcher-bfast* calls driver to
enable DMA for transferring data and enable BFAST™* to scan the file. The file is
infected if there is no possible virus, and if BFAST* finds a possible virus, ClamAV

pass the file to matcher-bm for verification.

.............................................................

ClamAV

matcher-bfast’

No Possible Virus

BFAST* 5 N

. v virus
functions '
g Software
matcher-bm : (Linux)
Possible Virus Boyer-moore _._,E Found
algorithm T Virus
Call| Driver 1

| buffer | Driver

Control BHAST®

DMA BEAST* Hardware

v

Fig. 3 Partitioned string matching: hardware scanning and software verification.

3.2 Hardware interface design

BFAST* hardware has five modules: TextPoint, TextRam, HashGenerator,
BloomFilterQuery and TPController. (1) TextPoint stores the address in TextRam
where we want to scan. (2) TextRam stores the text to be scanned. (3) HashGenerator
generates the hash values of the block. (4) BloomFilterQuery is reported the shift
distance, according to the hash value generates from TextHashGenerator. (5)
TPController controls these modules, shifts the window and stores the status into
registers.

We design a five-stage pipeline for BFAST*, so TPController can shift the



window per cycle. Fig. 4 shows the five stages:

(1) TextPosition (TP): it gets an address from TextPoint.

(2)TextRead: TPController gets the text from TextRam.

(3)Hash: TPController gets the hash value of HashGenerator.

(4)ShiftDistance: TPController gets the shift value from BloomFilterQuery.

(5)WB: TPController computes the shit distance and update the address of
TextPosition.

The stages of TextRead and ShiftDistance are memory access, so the memory access

time restricts the clock rate.

TS S S S S-S S SN
TeConollerd | TP | ror Hash| Snif WB | L Hash| Stft
TPControllert | TP ;2:; Hash Diss?;];tce WB TP I-?ree;(ctj Hash
ecomone | TP 15 o0y PH [ Fst e | W8] | TP | o

TPController3 | TP ;-2;(; Hash Diss?ai:ce wB TP

TPControllers - TP ;s;((; Hash Diss?eil:ce WB

Fig. 4 Five stage pipeline.

Five TPControllers are instantiated because there are five pipeline stages. Each
TPController scans 1600 bytes of data in TextRam. We make each TextPoint in
TPController points to the address of TextRam at 0, 1600, 3200, 4800, 6400, and
TPController0 scans data in TextRam addressed from 0 to 1599 and TPControllerl
scans the data in TextRam from addressed 1600 to 3200 and so on.

Fig. 5 shows the state machine of TPController. There are four states: INIT,
SCAN, CHECK and HOLD.

1. Inthe beginning, TPController stay in the state INIT until BFAST* is enabled, and
then current state transits to SCAN state.

2. In SCAN state, TPController gets the shift distance, if the shift distance is zero, it



means that the text should be additional checking, and then current state transits to
CHECK state. Otherwise, if the shift distance is not zero then TPController update
TextPoint by adding shift distance and stay in SCAN state until all data in
TextRam is scanned finished.

3. While state transits to CHECK state, TPController check that every blocks in
window is hit. If every blocks is hit with corresponding position then current state
transits to HOLD and reports that there is a possible match

4. The HOLD state keeps the TPController status.

BFAST* disable

Mbi
i i 1=
BFAST* enable Shift distance!=0
BFAST* disable BFAST™ enable
HOLD [« . o
TextPoint > length TextRoint+=shift distance

shift distance==0

MbitVector i no hit
TextPoint--
i++

MbitVector i hit

Fig. 5 The state transition diagram of TPController
There are two TextRams. When one TextRam is being scanned, BFAST* stores
data into another TextRam. The two TextRam act alternately.
3.3 Software interface design
Two mechanisms for ClamAV gets information from BFAST*: interrupt and
polling. If BFAST™* finds a possible virus for ClamAV to verify, BFAST* interrupts
the CPU and reports ClamAV that a virus needs to be verified, this kind mechanism of
getting information from BFAST™* calls interrupt. The benefit of interrupting is CPU

may do other tasks, while BFAST* quickly filters no-match cases until BFAST* finds



a possible virus or the scan is finished. If an interrupt occurs, the CPU should switch
to ClamAV, and context switch adds the overheads of scanning. If many possible
viruses appear, the context switch overhead is huge.

On the other hand, the mechanism that ClamAV keeps detecting the status of
BFAST™* is called polling. Because polling lets ClamAV know a possible virus
immediately and the CPU does not need to do context switch, it performs better than
interrupting. Polling increases the throughput of virus scanning but decreases the
performance of whole system unless CPU does not need to do any other tasks. We
adapt the polling mechanism for higher throughput.

ClamAV scans a file using Boyer-Moore algorithm and Aho-Croasick algorithm,
Boyer-Moore algorithm is implemented as matcher-bm library and it performs exact
string match. Aho-Croasick algorithm is implemented as matcher-ac library, and it
performs regular expression string match.

In our design, BFAST* performs- exact-string matching and filers the no-match
cases first. If a possible virus is detected. by BEAST* then matcher-bm is invoked for
verification. On the other hand, if there is no possible virus is detected, it means the
file is not infected. Most of network traffic and files in system belongs to the
no-match case, so it scans quickly.

3.4 Hardware/Software interface design

The driver functions include memory writing, scanning module behavior and
getting status. The data structure in the memory of BFAST* is memory mapped, so
we just write data to corresponding memory address. Several data structures should be
written: (1) the hash functions (2) blocks in the patterns and (3) the text to be scanned.
After the data are well prepared, TPController in BFAST* will start to scan the text
and write the status to registers.

Direct Memory Access (DMA), it transfer data from physical memory address to

9



TextRam in BFAST*. The problem is that data from user space can’t declare a
continued physical memory space, so driver create a continued physical memory
space and copy the data from ClamAV into this continued physical memory. This
continued physical memory space can’t be cached, because if DMA transfer data and

the memory didn’t update yet, then DMA transfers the old data into TextRam.

Chaper 4 Implementation Details

We modify the ClamAV to co-work with BFAST smoothly. ClamAV scans the
files for the patterns to recognize infected ones. ClamAV implements two libraries for
string matching: matcher-bom for Boyer-Moore algorithm and matcher-ac for
Aho-Croasick algorithm. It reads a file in batch into a buffer of 131,072 bytes. The
library in matcher-bfast* stores the buffer. into driver and enables DMA to transfer the
buffer into TextRam in BFAST*..The TPController'then scans the data in TextRam. If
no virus is possible in the data, BFAST* loads the next batch of text into TextRam;
otherwise, TPController reportsthe possible virus, and matcher-bm verifies the buffer
contains a virus or not.

Fig 6 shows the entire system architecture. We attach BFAST* on PLB Bus. The
OPB Bus and PLB Bus operates at 100MHz, but the maximum data width of PLB is
64bits, twice the width of OPB. DMA in BFAST* transfers the data from DDR
SDRAM to BFAST*. PPC405 is 300Mhz

To simplify observation and analysis the bottleneck, we discard the regular
expression case. If regular expression is necessary in whole system, the pattern which
is regular expression form should be cut off. Take a pattern “abcdefg{-10}hijkl” for
example, the pattern is divided into two parts, “abcdefg” and “hijkl”, then add these
two parts as two patterns into BFAST*. BFAST™ filters the no-match case and library

matcher-ac verifies the match case.

10



OPB
Bus

PLB
Bus

Other
Peripherals

OPB2PLB
Bridge
| DDR
SDRAM
PLB20OPB
Bridge
DMA
PPC405 —
— BFAST*
OCM

| Cache |

Fig. 6 System architecture

4.1 Overview of the co-design platform

The system is implemented on MontaVista Linux 2.4.20-8 and ClamAV 0.88 on

Xilinx ML310 VirtexIl Pro Board. We illustrate the scan flow and explain the function

of each module. Before starting scanning the files, ClamAV programs the signatures

from ClamAV database files into the BloomFilterQuery module of BFAST* and

matcher-bm. After the data structure is.well prepared and loaded, ClamAV reads the

file and the matcher-bfast* library invokes the driver in BFAST™* to scan the content.

If BFAST* does not find any virus, it reports the file is not infected; otherwise,

ClamAV will pass this file to matcher-bm for verification.

4.2 Hardware Implementation

Figure 7. shows the five modules in BFAST™.

TP

Controller0

TP
Controllerl

TP
Controller2

TP
Controller3

TP
Controller4

Read/\rite
Registers

TextPoint

(Read{Write TextRam)

TextRamO

13 TextRam1 32

Read/Write
Hash furjction

HashGenerator]|

Shift distance

BloomFilterQuery
MbitVector0

MbitVectorl

(] |®

MbitVector2
MbitVector3

MbitVector4

MbitVector5

[ MbitVector6 |

MbitVector?
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Fig. 7 Components in the BFAST* architecture.

1. TextRamO and TextRam1 modules

Each TextRam has 8KB, indexed by 13 bits address line and 8 bits data line.
Four bytes can be fetched from TextRAM each time for the heuristics. ClamAV scans
the file content in TextRam.
2. HashGenerator module

HashGenerator module includes four Hash function: HO, H1, H2, and H3. The
data in TextRam is fetched, then the data will be hashed by these four hash function
and gets 4 14bits hash values.
3. BloomFilterQuery module

BloomFilterQuery module includes eight Mbit\Vectors. Each MbitVector is 4KB
with 14bits address line and 1bit-data line-sMbit\Vector stores the Bloom filter data.
Mbit\Vector0 stores the BF(GO) and MbitVector stores BF(G1) and so on. When
Mbit\Vector n is hit, then TPController shift'n. For example, if MbitVector3 is hit, so
we shift window 3 bytes.
4. TPController module

Five TPController is instantiated corresponding five pipeline stages. Each
TPController scans 1,600bytes of data in TextRam. For example, TPControllerO scan
the data address from 0 to 1,599 and TPControllerl scans the data from address 1,600
to 3,199.
5. Registers

There are two register for enable the BFAST™* and 1 register stores the status of
BFAST™. Fig. 8 shows the format of these register. Register EnableTextRamO enables
TPController scans TextRam0O with start address and the size of length and

EnableTextRam1 enables TPController scans TextRam1 with start address and the size

12



of length. Register2 stores the status of BFAST*.

The information stores in register StatusRegister is describe here. The
BFAST*enable single means that TextRamO0 or TextRaml s scanning,
TextRamOfinished and TextRamlfinished means which TextRam scans completely,
TextRamOscanning and TextRamlscanning means which TextRam is scanning and
TextRamOError and TextRamlError means which TextRam is error while reading or
writing. VirusAddress reports which TPController finds a possible virus. TextPointer
stores the value that point to the address of TextRam. FoundVirus reports it finds a

possible virus in TextRam.

31 30 1312 0
TextRamQ Start address length
enable
EnableTextRamO
31 30 1312 0
TextRam] Start address length
enable
EnableTextRam1
24 23 22 21 20 19 18+ 17 1312 1 0
BFAST’| TextRamO| TextRam1| TextRamO| TextRam1| TextRamO| TextRam1l Virus Text Found
enable | finished | finished | scanning | scanning | Error Error Address Pointer Virus

StatusRegister

Fig. 8 The format of registers.

4.3 Driver Implementation

We implement the driver on Linux for BFAST* controlling. ClamAV invokes
matcher-bfast*, and then matcher- matcher-bfast * calls driver to get the status of
BFAST™* by accessing StatusRegister register, or enable BFAST* to scan data in
TextRam. Driver also provides the function of accesses the data in TextRamoO,
TextRam1, HashGenerator and Mbit\Vectors in BloomFilterQuery modules.

Driver has several functions to perform behavior of BFAST*. (1) TEXTRAM

loads the data from ClamAV and copy these data into DMA buffer which is a physical
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continue memory space and then enables DMA to transfer data from DMA buffer to
TextRam in BFAST*. (2) REG_SELECT selects which register to operate, there are 3
register in BFAST*. (3) REG_IOC _IN reads data from register where REG_SELECT
points to and (4) REG_IOC_OUT writes data into registers. (5) AR_SELECT selects
which memory to operate, the memory is TextRamO, TextRaml, HO to H3, and
MbitVector0 to MbitVector7 in BFAST*. (6) AR_LSEEK selects the address of
memory. (7) AR_IOC_IN reads data from memory, and the final function (8)
AR_IOC_OUT writes data into memory. For example, if we want to enable BFAST*
start to scan TextRamO and the length is 0x1000, so we needs to use the function ioctl
and pass it the parameter REG_SELECT and data of 0, then driver will transform to
operate the EnableTextRamO and then pass the parameter REG_IOC_OUT and the
data of 0x80001000, then it start ta'scan TextRamO.with length 0x1000.
4.4 Software Implementation

We implement ClamAV 0.88 on-MontaVista Linux 2.4.20-8. In order to enable
the hardware for scanning files, we modify-the ClamAV library. We modify two
modules readdb, matcher and add a new library matcher-bfast*. The library readdb
reads patterns (signatures) from ClamAV database files, so we need to modify it and
transform the signature into BFAST* data structure and store into MbitVectors. We
modify the library matcher for BFAST* scanning virus. We add four function in
matcher-bfast* to operate BFAST*. The First function is bfast*_init, this function
opens the device and return the file descriptor of BFAST*. Second function is
bfast* addpatt, this function reads signatures which library readdb reads from
ClamAV database files and stores the pattern into Mbit\Vectors. The third function is
bfast* scanbuff, this function scans the buffer where the library matcher reads from
files. BFAST* has two TextRam with capacity of 8KB, so we can scanning the

TextRam and store the buffer into another TextRam at the same time, Fig. 9 shows the
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Pseudocode of loading text into MbitVectors while BFAST* scanning virus.
These two TextRam interleaving acts, so the buffer have to keep 10 bytes to

prevent that the virus from cutting off between the two TextRam.

Disable TextRamo;
Disable TextRam1;
Current TextRam = TextRamo;
do{
if(buffer size > (TextRamMaxSize+scanned))
Copy the TextRamMaxSize of data from buffer into text;
else
Copy the size of (buffer size —scanned) of data from buffer into text;
scanned+=the size of text;
load buffer into Current TextRam;
Wait for another TextRam until it scans completely or finds a possible match;
If(Another TextRam finds a possible match) {
Disable another TextRam;
Return Found a virus;
}
else{
if(buffer size > scanned) {
scanned-=10;
Disable another TextRam;
Current TextRam = another TextRam;

¥

Enable Current TextRam;

}
} while(buffer size > scanned)
Wait for current TextRam until scans completely or finds a possible match;
If(Currrent TextRam finds a possible match) {

Disable Current TextRam;

Return Found a virus;

}

Else {
Disable Current TextRam;
Return No virus;

}

Fig. 9 Pseudocode of loading text while BFAST* scanning virus
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Finally, the library matcher reads every 131072 bytes from files into buffer and
then calls bfast*_scanbuff and matcher-bm to scan the buffer, we also have to keep
the last 10 bytes to prevent the virus from cutting off.

If bfast*_scanbuff found a virus, bfast* scanbuff report a the address of virus,

and matcher-bm start to scan the data after the address.

Chapter 5 Experiment results

We benchmark the performance in various environments: ClamAV on ML310
board, BFAST* hardware simulation, BFAST* hardware implementation on ML310
board and ClamAV with BFAST*

BFAST™ is attached on Process Local Bus ( PLB), whose data width is twice that
of On-Chip Peripheral Bus(OPB).

5.1 Pure Software

We implement ClamAV 0.88 ‘with MontaVista Linux 2.4.20-8 on Xilinx ML310
Vertex Il Pro Board. In this experiment, the-number of signatures is 42108, We scan
the data of 1KB and 1MB with and without viruses. ClamAV scans files with
matcher-bm implements Boyer-Moore.

The matcher-bm reports whether a file is infected or not. If matcher-bm reports
that this file is not inflected then ClamAV passes the file to matcher-ac for scanning
multi-part signatures. Because we just program exact string, so only matcher-bm is
concerned. Table. 1 shows the time of ClamAV scans files of 1KB and 1MB. If
matcher-bm found a virus, it reported the file is infected and stops to scan the file. So
ClamAV scans a 1KB file with virus which virus at the position 359, it needs 539
microseconds, because ClamAV found a virus and then it stops to scan data after that.

The throughput of matcher-bm is (8*1,024*1,024)/1,559,306 or 5.37Mbps.

Table. 1 Scan time of ClamAV on ML310 (microseconds)
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1KB 1MB
(virus at the position of 359 bytes) | (virus at the position of 738,663 bytes)

With

. matcher-bm: 539 matcher-bm: 1,102,765
virus
Without
virus matcher-bm: 1,545 matcher-bm: 1,559,306

5.2 Hardware simulation and synthesis

We Implement the BFAST™* in Verilog and synthesis it. BFAST* consumes 2,749
Slices out of 13,696 total Slices and 24 BRAMS out of 136 total BRAMS in Xilinx
board and the maximum clock rate of system operates at 142.507 MHz. We know that
the average shift distance is 7.71 from [9], so the average throughput is
142.507*7.71*8 or 8.79Gbps and the maximum throughput is 142.507*8*8 or
9.12Gbps when TextRam is full. When data size in TextRam is less than 1600 bytes,
the throughput is fifth of the throughput of data is‘full with TextRam. And when data
size in TextRam is larger than 1600 bytes butless than 3200 bytes, the throughput is

two fifth of the 8.79Gbps and so.on.
5.3 SoC without OS
We implement the BFAST™* on Xilinx ML310 Vertex Il Pro Board with firmware

and benchmark the throughput. Our design is attached on the PLB. Xilinx ML310
only support 4 different clock rate: 25Mhz, 33Mhz, 50Mhz, 100Mhz. Our design can
operate at 142Mhz, so we choose 100Mhz as PLB clock rate. Fig. 10 shows the scan
time for different sizes of data in TextRam. When data size is less than 1,600 bytes,
TPController 0 is enabled and each shift needs 5 cycles. On other hand, if the size of
data is more than 1,600 bytes, the scan time is about 1000 clock time, because that
when TPController0 is scanning the window at address 0, TPControllerl is scanning
the window at address 1,600, TPController2 is scanning the window at address 3,200
and so on at the same time. The maximum throughput is 8000 bytes/ (1004*10ns) or

6.37Gbps when data size is 8000 bytes which means the TextRam is full.
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Scan time for different size of data without virus in TextRam
1200
1000 P56 A gravics: 56 )67 4 1004

800 [

time 600
(10ns/clocks) —— time

400

200 |
0

11 1600 3200 4800 6400 8000
Size of data in TextRam (bytes)

Fig. 10 Scan time for different size of data without virus in TextRam.
We wrote a virus at different of address of TextRam and evaluate the throughput.
Fig. 11 shows the scan time for different address with virus in TextRam. When the last
block of window is match, the TPController will enter the verification state, and
verify all block in window then entering hold state. It costs 55 cycles including
5cycles for checking the last-block-is- matching -or not, 40 cycles for 8 block
verification each costs 5 cycles; 5 cycles for check-these block is all at appropriate

position and 5 cycles for report it 1S matched or.not.

Scan time for different address with virus in TextRam

P 1050 P 1051 P 1052 P 1053 P 1054

time L
(10ns/clocks) ——time

400 |-

/. / / /.
4/55 ®56 *57 ®58 *59

0 it f

0 1600 3200 4800 6400 8000
Virus address (bytes)

Fig. 11 Scan time for different address with virus in TextRam.

5.4 SoC with Linux

We have 3 configurations according to where the data to be scanned is:
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1. Data to be scanned is located in hard disk.

Table. 2 shows the throughput of ClamAV with BFAST* scans files which are
1KB and 1MB with virus and without virus. When ClamAV scans a file without
virus, only matcher-bfast* is invoked. And if this file is infected, matcher-bm is
launched for verification. The total throughput of ClamAV is about 146.612Mbps.
The time of writing data into TextRam occupies about 90% of string matching
time.

Table. 2 Scan Time of ClamAV integrated with BFAST* on ML310 (microseconds)

1KB 1MB
(virus at the position of 359 bytes) | (virus at the position of 738663 bytes)
_ matcher-bfast*: 270 matcher- bfast*: 40,810
Wlth (write data into TextRam: 94) (write data into TextRam: 36,656)
virus
matcher-bm: 17 matcher-bm: 26
Without matcher- bfast*: 273 matcher- bfast*: 55,552
virus (write data into TextRam: 95) (write data into TextRam: 49,891)

The throughput of the“integrated design is 146.612Mbps. The significant
disparity between the pure hardware throughput and the co-design throughput is
due to the following reasons. Although scanning on the FPGA is fast, ClamAV
must pass the text to be scanned to the device driver (from ther user space to the
kernel space), and the driver in turn copies the text to the DMA buffer. The DMA
then transfers the text in the buffer into TextRam. These steps of data passing
occupies nearly 90% time of total processing, and slows down the pure hardware
throughput. Fig.12 shows the time distribution in these steps. The other 10%
overhead of in the text processing is monitoring the status of BFAST* and
keeping 10 bytes to prevent missing the virus that spans two contiguous batches

of text.
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Time distribution when ClamAV transfer
data into TextRam

13%

W21%

B user space to kernel space
21%)

B copy data to DMA buffer
(66%)

DMA transfer data into
TextRam (13%)

W 66%

Fig. 12 Time distribution when ClamAV transfers data into TextRam

2. Data to be scanned is located in memory:
According to the above observati(_)n, pursuing a fast hardware design of a

scanning engine is insufﬁcient.'“ : 4
Two steps are fundameﬁtal and ir%e‘v;i‘taﬁle in 'the design: (1) having the text to
be in the memory someho.wr‘ andl‘(Z)Transfercingl the text from memory into the
FPGA with DMA. Assumi-ng the inc‘oming' text could be somehow directly
stored in the memory without the aforementioned overheads, the other possible
bottlenecks in (1) become the speed of the network interface or the disk 1/O,
depending on where the text is from: packet content or disk files. Step (2) is not
fast enough in the current platform. It's only 1.3 Gbps, and total system
throughput is 912.7Mbps, so the throughput is restricted by the DMA. If the

DMA throughput could be improved, the design could be much faster.
3. Data to be scanned is located in memory and DMA throughput is
improved:

Fig.13 shows that throughput of ClamAV can reach up to 2.176 Gbps, while

the throughput of DMA is 7.8 Gbps and data is well prepared in the memory.
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When ClamAV scans 1MB of data in Ram, it takes 2789 microseconds for
monitor the status of BFAST* and 6402 microseconds for loading data into
TextRam. So the throughput of ClamAV is 8*1024*1024/ (2789+6402) or
912.7Mbps, and if the throughput of DMA is 2.6Gbps, the throughput of

ClamAV is 8*1024*1024/(2789+(6402/2)) or 1.4Gbps, and so on.

ClamAV throughput of various DMA throughput

2500

2175.5
2000 -

1500 -

ClamAV

thoughput —&— throughput
(Mbps) 1000 po

500 -

1.3 2.6 39 5.2 6.5 7.8
DMA throughput (Gbps)

Fig. 13 ClamAV throughput.of-various DMA throughput.

Chapter 6 Conclusions and Future Works

This work implements a hardware BFAST* with ClamAV in MontaVista Linux
on ML310 board. It increases the throughput of ClamAV. The throughput of the
design scans a file is about 146.612 Mbps. We improve about 27.3 factors of original
ClamAV when scanning the large of files.

In hardware simulation, the hardware clock rate reaches 142.507MHz after
synthesis. The average shift distance is 7.71 bytes [9], so the average throughput is
7.71*8*142.507 = 8.79 Gbps. The best case is that the window shift 8 bytes every
cycle, so the best case throughput is 8*8*142.507 = 9.1Gbps.

When we implement the design on the ML310 board, on which the bus clock
rate is up to 100MHz, the best case throughput becomes 8*8*100 = 6.4Gbps and the

average throughput is 7.71*8*100 = 6.17Gbps. The bus clock rate of the ML310
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board lowers the throughput that is possible in a simulation environment.

If the data to be scanned is well prepared in memory, the throughput of ClamAV
is 912.7Mbps, and if DMA throughput is higher then the throughput of ClamAV is
higher too. When DMA throughput reaches 7.8Gbps the throughput of ClamAV is
2.1755 Gbps.

If the ClamAV were implemented in the kernel space, the data passing between
the user space and the kernel space could be removed. Copying the text to the DMA
buffer is heavy, but this step is necessary for two reasons: (1) to ensure the text is
indeed written into the memory, rather than only in the CPU cache, unless the cache is
write-through, and (2) to ensure the text is stored contiguously in the physical
addresses for the DMA to fetch. Note that the addresses of the text may be contiguous
in virtual memory space, but not in‘physical memory space. The DMA must somehow
know the physical addresses, perhaps through-the Memory Management Unit (MMU),
to fetch the text. Therefore, copyingithe text-into the non-cacheable DMA buffer is a
safe solution. If the buffer to store incoming text could be made non-cacheable, and
the DMA can fetch the text in contiguous addresses or through the MMU, for example,
the heavy overhead could be eliminated.

The data transfer from ClamAV into TextRam slows down the overall system
performance. If ClamAV ran in the Linux kernel, dropping the text transfer from the
user space to the kernel space is possible. The text must also be somehow directly
stored in the memory without being cached in the CPU, and the DMA must be able to
derive the physical addresses of the text. If the text to be scanned is well prepared in
RAM, the throughput is restricted by the DMA, and raising the DMA throughput is

critical.
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