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摘要 

 
在無線隨意網路中，廣播是其中一個最基礎的網路操作方法。他被廣泛使用

在發現網路拓蹼、傳輸路徑與監視網路的完整性。而其中一個簡單的機制，稱為

氾濫式演算法，它的方法是當節點收到第一份訊息時，這個節點會傳送這個訊息

給它所有的鄰居。儘管它很簡單，氾濫式演算法傾向去產生大量多餘的重傳。因

此氾濫式演算法可能會引起廣播風暴問題，而且在電源和頻寬上也沒有效率。為

了減輕廣播風暴問題，當某個節點需要廣播時，這個節點只選擇部分的鄰居，稱

為前傳集合來幫它重送訊息，而不是所有鄰居都來傳送訊息。在前傳集合內的所

有節點會覆蓋住所有 2-hop 鄰居，所以可以確定所有網路上的節點都會收到這廣

播訊息。 
 

在同質性網路中，根據 1-hop 鄰居的覆蓋範圍，可以計算出前傳集合。這個

節點的前傳集合的覆蓋範圍跟所有鄰居的覆蓋範圍是一樣的。而被提出的演算法

是區域性且分散式的演算法，而且具有最佳的時間複雜度。 
 

在這篇論文中，我們提出一個機制以最小區域圓覆蓋集作為前傳集合在異質

性網路中(各個節點有不同的傳輸半徑)。對每個節點來說，如果它的鄰居的子集

合有最少的個數而且它們的覆蓋範圍和所有鄰居的覆蓋範圍是一樣的，則這個子

集合稱作最小區域圓覆蓋集合。首先我們證明找它的最小區域性的圓盤覆蓋集合

與找它的輪廓線集合是相等的。我們提出一個各個擊破的演算法來局部地計算此

輪廓線集合，而證明它有最佳的時間複雜度 O(nlogn)。 
 
關鍵字：最小區域圓覆蓋集合、廣播、無線隨意網路、前傳集合 
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ABSTRACT 

 

In wireless ad hoc networks, broadcasting is one of the fundamental networking 
operations. It is widely and frequently used to explore the network topology, find 
routing paths, and monitor network integrity. A simple broadcasting mechanism, 
known as flooding, is to let every node relay messages to all its 1-hop neighbors when 
it receives the messages the first time. Despite its simplicity, flooding tends to 
generate too many redundant retransmissions. It may cause the broadcast storm 
problem and is neither power nor bandwidth efficient. To relieve the problem, when a 
node does broadcasting, it selects a subset of neighbors called forwarding set to relay 
messages instead of all neighbors. Nodes in the forwarding set of a node would cover 
all its 2-hop neighbors, so it ensures that messages can reach all nodes in the network. 

In homogeneous networks, it has been proposed computing the forwarding set 
based on the coverage area of 1-hop neighbors. The nodes in the forwarding set of a 
node can cover the same area as its all 1-hop neighbors. The proposed algorithm is 
localized, distributed, and with the optimal time complexity O(nlogn). In this paper, 
we propose to use the minimum local disk cover set as forwarding set in 
heterogeneous networks, where nodes may have different transmission radii. A 
minimum local disk cover set of a node is a subset of 1-hop neighbors and the number 
of set is smallest. The nodes in the minimum local disk cover set cover the same area 
of all 1-hop neighbors. We show that the minimum local disk cover set of a node is 
equivalent to its skyline set. We propose a divide-and-conquer algorithm with the 
optimal time complexity O(nlogn) to compute the skyline set locally. 

 

Keywords: minimum local disk cover sets, broadcasting, wireless ad hoc networks, 
forwarding set 
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Chapter 1

Introduction

1.1 Wireless Ad Hoc Networks

Wireless ad hoc networks consist of a collection of wireless devices sharing a

common channel without the need of centralized controls or fixed infrastruc-

tures. Each node is equipped with an omnidirectional antenna to access the

common channel and usually applies the CSMA/CA(carrier sense multiple ac-

cess with collision avoidance) [20] protocol. A communication session is built

either through a single-hop radio transmission if the communication parties

are close enough, or through relaying by intermediate nodes. Wireless ad hoc

networks can be flexibly and quickly deployed for many applications such as

personal area networks, smart home environment, environmental monitoring,

battlefield surveillance, and emergency disaster relief.

Wireless ad hoc networks still have some challenges, including [18]

(1) Energy conservation: Because the devices in wireless ad hoc networks

are typically battery equipped, one of the design goals is to use the limited

energy as efficiently as possible.

(2)Resource constrained computation: The energy and network bandwidth
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are limited in wireless ad hoc network. Protocols must provide the good per-

formance although the few available resource.

1.2 Broadcast Storm Problem

Broadcasting is one of the fundamental operations in wireless ad hoc networks.

A source node sends messages to their 1-hop neighbors, and 1-hop neighbors

relay messages to their neighbors, and so on so forth, until all nodes receive

one copy of messages. It is widely and frequently used to explore the network

topology, find routing paths, and monitor network integrity. Flooding, the

most known broadcasting mechanism, is to let every node relay messages to

all its 1-hop neighbors when it receives the messages the first time.

Despite its simplicity, flooding has a serious drawback, known as the broad-

cast storm problem [1]. First, because the radio propagation is omnidirec-

tional and a physical location may be covered by the transmission ranges

of several hosts, many rebroadcasts are considered to be redundant. Sec-

ond, heavy contention could exist because rebroadcasting hosts are probably

close to each other. Third, collisions are more likely to occur because the

RTS/CTS dialogue is inapplicable and the timing of rebroadcasts is highly cor-

related. Since every node retransmits messages without considering whether

their neighbors have received messages, unnecessary transmission occurs fre-

quently. That results in shortening lifetime of battery-driven devices, and

boosting network traffic and bandwidth contention. So, flooding is neither

power-efficient nor bandwidth-efficient. Instead, many alternative broadcast-

ing algorithms [1] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] have been

discussed in literature.
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1.3 Motivations and Research Methods

In most works, to relieve the broadcast storm problem, when a node receives

a broadcast, it selects a subset of neighbors to relay messages instead of all

neighbors. Such subset is referred as forwarding set [7] or multipoint relays

(MPRs) [15]. Basically, each node needs to maintain a local network topology

of its 1-hop or even 2-hop neighborhood. To ensure that a broadcast can reach

all nodes in the network, nodes in the forwarding set of a node should cover all

its 2-hop neighbors. At the same time, to better relieve the broadcast storm

problem, the forwarding set should be kept as small as possible.

In [5], Sun et al. proposed constructing the forwarding set based on the

coverage area of 1-hop neighbors. The idea is to ensure nodes in the forward-

ing set of a node to cover the same area as all its 1-hop neighbors. However,

the algorithm works only when all nodes in the network have the same trans-

mission radius. In this paper, we extend the work to heterogeneous networks

in which nodes may have different transmission radii. The network topology is

represented by disk graphs with bidirectional link. In other words, each node

is associated with a transmission radius. A link exists between two nodes if

the distance between them is not larger than the minimum radius of them.

We propose to use the minimum local disk cover set as forwarding set. The

minimum local disk cover set of a node is a subset of 1-hop neighbors, and its

coverage is the same as the coverage of all 1-hop neighbors and cardinality is

smallest. Thus, it would better alleviate the broadcast storm problem. We

propose a divide-and-conquer algorithm to construct the minimum local disk

cover set. Our algorithm has the advantage of needing 1-hop information and

being an optimal solution with time complexity O(nlogn).

The remaining of this paper is organized as follows. The related works

are introduced in Chapter 2. In Chapter 3, network model is defined and the
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forwarding set problem is formulated as the minimum local disk cover set

problem. Then the equivalence between minimum local disk cover sets and

skyline sets is build. A divide-and-conquer algorithm is given to find skyline

sets. In Chapter 4, the time complexity of proposed algorithm is derived.

In Chapter 5, simulations are given to compare with other forwarding set

algorithms and concludes this paper.
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Chapter 2

Related Works

Many localized algorithms have been proposed to alleviate the broadcast storm

problem in wireless ad hoc networks. Localized algorithm refers that the nodes

build their view of the network topology by using local information only, that

is, the information regarding up to h-neighbors in the graph, where h is a small

constant (2-3 at most) [18]. We introduce some localized forwarding schemes,

including the multipoint relays (MPRs) [15], selecting forwarding sets [6] and

minimum disk cover sets [5] in the following sections.

2.1 Multipoint Relays

Qayyum et al. [15] introduced the scheme of multipoint relays (MPRs) to for-

ward broadcasting messages in the wireless networks. The idea of multipoint

relays is to reduce the number of redundant retransmissions while broadcast-

ing messages. The mechanism reduces the forwarding set to a small set of

neighbors instead of all neighbors like in flooding.

Qayyum et al. proposed a scheme to select these MPRs in a wireless

environment. The heuristic is adapted from the Chvătal’s greedy algorithm [3]

5



for Set Cover, and gives an approximation ratio of O(log Δ), where Δ is the

maximum number of 1-hop neighbors. The heuristic iteratively chooses a 1-hop

neighbor covering the maximum number of 2-hop neighbors not yet covered as

multipoint relays, and completes when all 2-hop neighbors have been covered.

The information requiring for the multipoint relays is the 1-hop neighbors and

2-hop neighbors’ information of each node. Multipoint relays scheme works in

a distributed manner. Each node calculates its own MPRs, which is completely

independent of other nodes’ selection of their MPRs. In [2], multipoint relays

are used to transmit control messages from a mesh point into the network.

2.2 Selecting Forwarding Sets

Călinescu et al. [6] solved the Minimum Forwarding Set problem for the geo-

metric aspect. The problem is formulated as that given a source node and the

sets of 1-hop and 2-hop neighbors. The idea is to select a minimum subset

of 1-hop neighbors which dominates all 2-hop neighbors. The Minimum For-

warding Set problem is s special case of the Unit-Disk Cover problem known

as NP-hard. The complexity of the Minimum Forwarding Set problem is not

known.

Călinescu et al. proposed several heuristics with constant approximation

ratios based on partition the plane into quadrant and established basic geomet-

ric properties of the 1-hop and 2-hop neighboring sets in wireless networks. A

2-approximation O(nlogn) time algorithm is proposed, when all 2-hop neigh-

bors are in the same quadrant with respect to the source node. First, the algo-

rithm computes the skyline and numbers the skyline disks in counter-clockwise

order. Then, each 2-hop neighbors are constructed the intervals covered by

the skyline disks. Finally, using a simple greedy algorithm picks the disks.

6



The work needs to collect 1-hop and 2-hop information. The algorithms work

only when the network model is homogeneous.

2.3 Minimum Disk Cover Sets

Sun et al. [5] show that the concept of the disk cover set. Given the set of

disks S, the problem of disk cover set is to find a minimum subset of S, say

S′, such that the union of the disks in S′ is equal to the union of the disks in

S. All nodes in wireless ad hoc networks have the same transmission range

in two-dimensional. Constructing the minimum disk cover set is based on

the coverage area of 1-hop neighbors. The nodes in minimum disk cover set

cover the same area as all one-hop neighbors. A node can simply request the

neighbors in the minimum disk cover set to rebroadcast messages.

Sun et al. proved that finding the minimum disk cover set for disks is

equivalent to finding the arcs of disks that make up the boundary. Then, a

divide-and-conquer algorithm is proposed to construct the minimum disk cover

set efficiently in homogeneous networks. The time complexity of construction

the minimum disk cover set is O(nlogn), where n is the number of 1-hop

neighbors. Any algorithm that solves the minimum disk cover set problem

needs at least O(nlogn) time in the worst case. Therefore, based on 1-hop

information, the algorithm is optimal in the aspect of time complexity.
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Chapter 3

Minimum Local Disk Cover Sets

3.1 Network Model

To alleviate the broadcast storm problem, the size of the forwarding set needs

to be reduced. However, at the same time, we need to make sure that messages

may reach all nodes in the network. The selection of the forwarding set at each

node should guarantee that the message will reach all its 2-hop neighbors.

We assume that wireless nodes are distributed in a two-dimensional plane

R2. In what follows, ‖x‖ is the Euclidean norm of a point x ∈ R2, and |A|
is shorthand for the cardinality of a countable set A. For any two points x,

y ∈ R2, ‖x − y‖ is the Euclidean distance between x and y; xy denotes a line

segment between x and y; and −→xy denotes a ray (or called a half line) from x

to y.

The topology of a heterogeneous ad hoc network is modeled by disk graphs

with bidirectional links. Each node ui is associated with a transmission radius

ri. See Figure 3.1(a). A link exists between two nodes if the distance between

them is not larger than their transmission radii. Two nodes ui, uj are said to

be neighbors if and only if the Euclidean distance ‖ui − uj‖ <= min(ri, rj).See

8



(a)

i ui uj
ri

(b)

u

Figure 3.1: The configuration of a node ui.

Figure 3.1(b). For a node ui, its coverage is modeled as a disk with center ui

and radius ri, which is denoted as B(ui, ri). A node uj is said to be covered

by ui if uj ∈ B(ui, ri). The topological boundary of a set S ⊂ R2 is denoted

by ∂S, and thus, ∂B(ui, ri) is the circle centered at ui and with radius ri.

We assume each node knows the information of their 1-hop neighbors, es-

pecially locations and transmission radii. Due to the bidirectional link model,

for any two nodes u, v, if u is the one-hop neighbor of v, then it implies v is

the one-hop neighbor of u. So, the intersection of coverage of 1-hop neighbors

is not empty, i.e.
⋂

ui∈S

B(ui, ri) 
= ∅, where S is 1-hop neighbors.

3.2 Problem Description

We propose a strategy for each node to choose its forwarding set locally and

statelessly based on the coverage of 1-hop neighbors. To make sure all 2-

hop neighbors may receive messages, each node selects its forwarding set that

the coverage of the forwarding set is the same as the coverage of all 1-hop

neighbors.

We define the disk cover set of a set of nodes V as S ⊆ V such that⋃
ui∈S

B(ui, ri) =
⋃

ui∈V

B(ui, ri). For a set of nodes V , if there exists a node in V

such that all other nodes in V are neighbors to that node, then V is called the

9



local set and the corresponding disk set, {B (u1, r1) , ..., B (un, rn)}, is called

the local disk set. For a local set, its cover set is called a local disk cover set.

Obviously, the closed neighbor set of a relay node n0 is a local set.

To alleviate the broadcast storm problem and ensure the reachability of

broadcast messages, we propose to use the minimum local disk cover set

(MLDCS) as the forwarding set. The problem of the minimum local disk

cover set is formally stated as follows.

Minimum Local Disk Cover Set (MLDCS) Problems

Input: A local disk set {B (u0, r0) , B (u1, r1) , ..., B (un, rn)}
such that for all 1 ≤ i ≤ n, ‖u0 − ui‖ ≤ min (r0, ri),

i.e. ui ∈ B(u0, r0) and u0 ∈ B(ui, ri).

Let V = {u0, u1,..., un} be the set of disk centers.

Output: A subset S of V such that
⋃

ui∈S

B(ui, ri) =
⋃

ui∈V

B(ui, ri).

Measure: |S| is minimal.

Figure 3.2 illustrates the minimum local disk cover set. Assume source node

is o. Node o has five one-hop neighbors u1, u2,...u5 and five two-hop neighbors

u6, u7,..., u10. We find the union of B(u1, r1), B(u2, r2), B(u4, r4), B(u5, r5) =

(
5⋃

i=0

B(ui, ri)). B(u3, r3) is covered by (
5⋃

i=0

B(ui, ri)), so B(u3, r3) isn’t in the

minimum local disk cover set. The collection of these disks is minimum local

disk cover set. The coverage of MLDCS is equal to the coverage of all one-hop

neighbors, and the cardinality of MLDCS is 4.

We assume that each node learns the locations and radii of its neighbors

through the exchanges of beacons. In addition, we define the skyline for a

disk set as the boundary of the union of disks in the set. Hence, the skyline of

the local disk set {B(u0, r0), B(u1, r1), . . . , B(un, rn)} is ∂(
n⋃

i=0

B(ui, ri)). Ob-

viously, a skyline is composed of arcs of disks. The collection of origins of

disks that contribute arcs to a skyline is called the skyline set. In the next

10



o

7

u8

u10 u6

u2

u5

u1

u3u9

u4

u

Figure 3.2: The source node o relays the message to MLDCS.

section, we will show that the MLDCS of a local set is the skyline set of the

corresponding local disk set, and thus, we can solve the MLDCS problem for

a given local disk set by computing the corresponding skyline.

3.3 The Geometry of Skyline Sets

In this section, we give properties of skylines and build the relation between

the MLDCS for a given local set and the skyline set for the corresponding

local disk set. We then propose a divide-and-conquer algorithm to compute

the skyline set.

The following geometric lemma and corollary are used to build the relation

between MLDCS for a local set V = {u0, u1, . . . , un} and the skyline set for

the corresponding local disk set {B(u0, r0), B(u1, r1), . . . , B(un, rn)}. Without

loss of generality, in the following discussion we assume n0 = o.

Lemma 1 For any point a ∈ ∂B (ui, ri), the line segment oa ⊂ B (ui, ri).

11



o

i

ri

a

u

Figure 3.3: oa is contained in B(ui, ri).

Proof. Note that o ∈ B (ui, ri) since ‖o − ui‖ ≤ ri. Since B (ui, ri) is convex

and o, a ∈ B (ui, ri), the line segment oa ⊂ B (ui, ri). See Figure 3.3.

Then, we have the following corollary.

Corollary 2 For any ray from o, it intersects the skyline at exactly one point.

Proof. Obviously, any ray from o intersects the skyline. We only need to show

the uniqueness of the intersection point. We can prove this by contradiction.

Assume there exists a ray that intersects the skyline at two points a and b.

Without loss of generality, we also assume a is farther from o than b. Since

a is in the skyline, a is in ∂B (ui, ri) for some i. According to Lemma 1, we

have oa ⊂ B (ui, ri). This implies that b is inside of B (ui, ri), and b can’t be

in the skyline. It is a contradiction, and thus the corollary is proved.

According to the corollary, we can know that a skyline is composed of a

sequence of arcs surrounding the origin from 0 to 2π. An arc can be repre-

sented by four parameters
(
αi, uj, ruj

, αi+1

)
. Here uj and rj respectively are

the center and radius of the disk contributing the arc, and αi and αi+1 with

αi < αi+1 are two angles corresponding to two endpoints of the arc measured at

o in counterclockwise direction from the x-axis. See Figure 3.4. Note that the

12



j

α i

α i+1

b

o

Y

X

u a

Figure 3.4: An arc ab is represented by 4 parameters
(
αi, uj, ruj

, αi+1

)
.

reference point to measure αi and αi+1 is o, not ui. For convenience, if an arc

crosses the x-axis in the positive direction then it is splitting by the x-axis into

two arcs, i.e. an arc
(
αi, uj, ruj

, αi+1

)
with αi < 360

◦
and αi+1 > 360

◦
, then we

split this arc into 2 arcs (αi, uj, ruj
, 360

◦
) and

(
0
◦
, uj, ruj

, αi+1

)
. Without loss of

generality, we could assume that there are no arcs exceeding 360
◦
. Thus, a sky-

line consisting n arcs can be represented as (α0, us0, rs0, α1, us1, rs1, α2, ..., αn),

where 0 = α0 < α1 < ... < αn = 2π and for any 0 ≤ i ≤ n−1, (αi, usi
, rsi

, αi+1)

is an arc in the skyline.

Now, we give the following theorem that builds the relation between a

skyline set and the corresponding minimum local disk cover set.

Theorem 3 For a given local set V = {u0, u1,..., un}, its minimum lo-

cal disk cover set is the skyline set for the corresponding local disk set

{B (u0, r0) , B (u1, r1) , ..., B (un, rn)}.

Proof. To prove that the skyline set is the minimum local disk cover

set of a local set, we first prove that a skyline set is a local disk cover

set. Assume the skyline is composed of arcs a1b1, a2b2, . . . , akbk belonging

to B (ui1, ri1) , B (ui2 , ri2) , . . . , B (uik , rik), respectively. Let �oajbj denote the
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Figure 3.5: B (a, r) ∩ B (ui, ri) is exclusively covered by B(ui, ri).

sector area surrounded by line segments oaj , obj , and arc ajbj . Each sector

has no intersection with others. The covered area
⋃n

i=0 B (ui, ri) is equal to

the union of sectors
⋃k

j=1 �oajbj . According to Lemma 1, for each skyline arc

ajbj , we have �oajbj ⊆ B
(
uij , rij

)
. Thus,

⋃n
i=0 B (ui, ri) ⊆ ⋃k

j=1 B
(
uij , rij

)
.

This means {B (ui1, ri1) , B (ui2 , ri2) , . . . , B (uik , rik)} is a disk cover set.

Next, we prove that if B (ui, ri) is in the skyline set, B (ui, ri) must be

in any disk cover set. To prove this, we are going to show there exists some

area belonging to B (ui, ri) but not belonging to any other disk. Assume a

is a point in the internal of the skyline arc contributed by B (ui, ri). For any

B (ui, ri), j 
= i, we have the distance between uj and a is larger than rj , i.e.

‖uj − a‖ > rj . Let r = 1
2
(minj �=i ‖uj − a‖ − rj). We may draw a disk which

is with center located at a and whose radius is r. For any point x ∈ B (a, r)

and j 
= i, see Figure 3.5.
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‖uj − x‖ ≥ ‖uj − a‖ − ‖x − a‖

≥ ‖uj − a‖ − 1

2

(
min
j �=i

‖uj − a‖ − rj

)

> ‖uj − a‖ − (‖uj − a‖ − rj)

= rj.

Then we have ‖uj − x‖ ≥ rj . Thus, for any j 
= i, B (a, r) ∩ B (uj, rj) = ∅.

This implies that B (a, r)∩B (ui, ri) belongs to B (ui, ri) but does not belong

to any other disk, thus B (a, r) ∩ B (ui, ri) is exclusively covered by B(ui, ri).

So the theorem is proved.

3.4 A Divide-and-Conquer Algorithm

According to Theorem 3, computing the MLDCS of a local set is the same as

finding the skyline set of the corresponding local disk set. In this subsection,

a divide-and-conquer algorithm is proposed to find the skyline set.

In the algorithm, the disk set is divided into 2 subsets of disks DS1 and

DS2 recursively. If the disk set is small enough (i.e. the size of disk set is 1),

then the skyline returns the skyline of the disk. The skyline of each subset

is discovered by recursive techniques, and then two skylines are merged to

find the skyline of all disks. Eventually, Skyline returns a new skyline list.

Without loss of generality, we may assume that the position of n0 (i.e., o) and

the value r0 are stored in the algorithms.
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1 procedure Skyline (DS = {(u1, r1) , ..., (un, rn)})
2 // (ui, ri) represents the center and radius of a disk.

3 begin

4 if |DS| = 1 return the skyline of {B (u1, r1)}
5 else // if |DS| > 1

6 begin

7 DS1 =

{
(u1, ru1) , ...,

(
u�n

2 �
, ru�n

2 �

)}
8 DS2 =

{(
u�n

2 
+1, ru�n
2 �+1

)
, ..,
(
un, run

)}
9 Skyline1 = Skyline (DS1)

10 Skyline2 = Skyline (DS2)

11 return Merge (Skyline1, Skyline2)

12 end

13 end

1 procedure Merge (SL1, SL2)

2 // SL1 and SL2 are skylines.

3 begin

4 Step 1: Refine SL1 and SL2 to align arcs in skylines.

5 Then, we may assume SL1 = (α0, u1, ru1 , α1, ..., αm)

6 and SL2 = (α0, v1, rv1 , α1, ..., αm)

7 Step 2: For each 0 ≤ i ≤ m, decide new skyline arcs from

8 (αi, ui, rui
, αi+1) and (αi, vi, rvi

, αi+1)

9 with the same angle span.

10 Step 3: Combine neighboring skyline arcs from the same disk.

11 Return the new skyline.

12 end

Skyline is a classical divide-and-conquer procedure, and most works

are done in the procedure Merge. There are three steps in Merge.
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First, two skylines are aligned by splitting arcs such that two sky-

lines have the same angle sequences. For example, assume SL1 =(
β0, u

′
0, r

′
u0

, β1, u
′
1, r

′
u1

, β2, ..., βk

)
and SL2 =

(
γ0, v

′
0, r

′
v0

, γ1, v
′
1, r

′
v1

, γ2, ..., γl

)
are

two skylines. Let (α0, α1, · · · , αm) be a monotonic sequence of angles such

that {α0, α1, · · · , αm} = {β0, β1, ..., βk} ∪ {γ0, γ1, ..., γl}. Then, SL1 and SL2

are refined according to angles α0, α1, · · · , αm. After refinement, both lists

should have the same angles sequence and the same number of arcs, and we

may assume SL1 = (α0, u1, ru1 , α1, ..., αm) and SL2 = (α0, v1, rv1 , α1, ..., αm).

For instance, there are two skyline lists,⎧⎨
⎩ SL1 =

(
0
◦
, u′

0, r
′
u0

, 40
◦
, u′

1, r
′
u1

, 100
◦
, u′

2, r
′
u2

, 150
◦)

SL2 =
(
0
◦
, v′

0, r
′
v0

, 60
◦
, v′

1, r
′
v1

, 120
◦)

We split the skyline lists into smaller arcs. After the step 1 in procedure

Merge, they will be refined to⎧⎨
⎩ SL1 =

(
0
◦
, u′

0, r
′
u0

, 40
◦
, u′

1, r
′
u1

, 60
◦
, u′

1, r
′
u1

, 100
◦
, u′

2, r
′
u2

, 120
◦
, u′

2, r
′
u2

, 150
◦)

SL2 =
(
0
◦
, v′

0, r
′
v0

, 40
◦
, v′

0, r
′
v0

, 60
◦
, v′

1, r
′
v1

, 100
◦
, v′

1, r
′
v1

, 120
◦
, v′

1, r
′
v1

, 150
◦)

In the second step, for each 0 ≤ i ≤ m, new skyline arcs are decided

from (αi, ui, rui
, αi+1) and (αi, vi, rvi

, αi+1). Given two arcs (α, u, ru, β) and

(α, v, rv, β) with the same angle span, we have following three cases to decide

the new skyline arc.

Case 1: arc(α, u, ru, β) and arc(α, v, rv, β) have no intersection. One arc

is closer to o than the other, and the arc closer to o will be removed from the

skyline. The outer arc remains on the skyline. For instance, in Figure 3.6(a),

arc ab and cd have no intersection point. Arc ab are the new skyline arc of

arcs ab and cd.

Case 2: arc(α, u, ru, β) and arc(α, v, rv, β) intersect at one point e. Let

γ be the angle corresponding to the intersection point. Applying the principle
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Figure 3.6: Merge two arcs with the same corresponding angles.

used in Case 1, new skyline arcs can be decided from arc(α, u, ru, γ) and

arc(α, v, rv, γ); and arc(γ, u, ru, β) and arc(γ, v, rv, β). For instance, in Figure

3.6(b), e is the intersection point of arcs ab and cd. Arcs ae and ed are the

new skyline arcs of arcs ab and cd.

Case 3: arc(α, u, ru, β) and arc(α, v, rv, β) intersect at two points e, f .

Let γ1 and γ2(γ1 < γ2) be the angles corresponding to the intersection points.

Applying the principle used in Case 1, new skyline arcs can be decided from

arc(α, u, ru, γ1) and arc(α, v, rv, γ1); arc(γ1, u, ru, γ2) and arc(γ1, v, rv, γ2); and

arc(γ2, u, ru, β) and arc(γ2, v, rv, β). For instance, in Figure 3.6(c), e, f is the

intersection points of arcs ab and cd. Arcs ae, ef and fb are the new skyline

arcs of arcs ab and cd.

In the first and second steps, one arc may be split into several pieces. So, in

the last step, before returning the new skyline, we try to combine neighboring

skyline arcs if they are from the same disk. This step could reduce the overhead

in splitting skyline lists, if there are many small arcs in the refined skyline lists.
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Chapter 4

Time Complexity Analysis

In this chapter, we show that the time complexity of the proposed algorithm

is O (n lnn). In [5], it has been shown that the time complexity of the al-

gorithm that computes the minimum local disk cover set for homogeneous

networks (i.e., all nodes have the same radius) is bounded by O (n ln n). Since

homogeneous networks are special cases of heterogeneous networks, the time

complexity for the algorithm that computes the minimum local disk cover set

for heterogeneous networks is at least O (n ln n). Hence, the proposed algo-

rithm is with the optimal time complexity.

Skyline is a divide-and-conquer algorithm. The time complexity can be

formulated by a recursive equation⎧⎨
⎩ T (n) = O (1) if n = 1,

T (n) = 2T
(

n
2

)
+ f (n) otherwise.

Here T (n) is the time complexity of Skyline. f (n) is the time complexity

of Merge. f (n) is linear with respect to the number of arcs. If we may have

f (n) = O (n), according to the master theorem [22], then we have T (n) =

O (n log n). In Lemma 8, we will show that the number of arcs in a skyline is

upper bounded by 2n.
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Figure 4.1: The configuration B(u4, r4) contributes 3 arcs in the skyline.

First we present the geometric arguments and related lemmas to support

the proof in the following section. Then we give the time complexity of the

algorithm.

4.1 Geometric Property of Disks

We would like to show that the number of arcs in a skyline can not be more

than 2n. This can be proved that if we can show that adding a disk into a disk

set increases the number of skyline arcs by at most 2. However, this is not true

in the general case. For a positive integer k ≥ 3, let ui =
(

1
2
cos 2πi

k
, 1

2
sin 2πi

k

)
for

any i = 0, 1, · · · , k−1, the center of these disks averagely located on ∂B
(
o, 1

2

)
.

In Figure 4.1(a), p is an intersection point of ∂B (ui, 1) and ∂B (ui+1, 1) outside

B (o, 1), and x is the intersection point of uiui+1 and op. We have ‖ui − x‖ =

1
2
sin π

k
, ‖x − p‖ =

√
1 − (1

2
sin π

k
)2, and ‖o − p‖ = 1

2
cos π

k
+
√

1 − (1
2
sin π

k
)2.

Let r ∈ (‖o − p‖ , 1 + 1
2

)
be a constant. If we add B (o, r) to the disk set

{B (o, 1) , B(u1, r2), B(u2, r2), ..., B(uk, rk)}, then B (o, r) contributes k dis-

joint arcs to the skyline and doesn’t fully cover any previous skyline arc. Thus,

adding B (o, r) increases the number of skyline arcs by k. Figure 4.1(b) illus-

trates the configuration, for k = 3, B(u4, r4) contributes 3 arcs in the skyline,
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where u4 = o and r4 ∈
(∥∥∥1

2
cos π

3
+
√

1 − (1
2
sin π

3
)2

∥∥∥ , 1 + 1
2

)
.

However, if the disk is added into the disk set follows the decreasing order

of radius, the claim will be true. Since the order to add disks into the disk set

doesn’t change the final skyline, we change the arrangement of disks added.

Therefore, in what follows, we assume disks are added according to their radii

in the decreasing order of radius.

In the following, we introduce some lemmas about the geometry of disks.

Lemma 4 In the skyline of B1, B2, . . . , Bn, if Bn contributes at least 3 arcs,

then we can pick Bi, Bj, Bk from B1, B2, . . . , Bn−1 such that Bn contributes 3

arcs in the skyline of Bi, Bj, Bk, Bn.

Proof. First, we claim that if Bn contributes at least 3 arcs in the skyline of

Bi, Bj, Bk, Bn, then Bn contributes exactly 3 arcs in the skyline. Assume there

are more than 3 arcs contributed by Bn. Since each arc is with 2 endpoints,

there are at least 8 intersection points in ∂Bn. But ∂Bi, ∂Bj , ∂Bk have at

most 6 intersection points with ∂Bn. This is a contradiction. Thus, our claim

is true. So, to prove the lemma, it is enough to show that Bn contributes at

least 3 arcs in the skyline of Bi, Bj , Bk, Bn.

Choose 3 arcs contributed by Bn in the skyline of B1, B2, . . . , Bn, and

consider those disks whose boundaries intersect with ∂Bn at endpoints of the

3 arcs. These 6 endpoints are from intersection points of Bn with another 3,

4, 5, or 6 disks since the boundary of each disk can contribute either 1 or 2

intersection points with ∂Bn in the skyline. If there are 3 disks, the lemma

is proved. So, we consider the case that there are more than 3 disks. By

counting the endpoints, if there are more than 3 disks, at lease one intersects

with ∂Bn exactly at 1 point in the skyline. If we remove a disk which intersects

∂Bn at exact 1 point in the skyline, the number of arcs contributed by Bn
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does not decrease. Thus, in the skyline of remaining disks, Bn contributes at

least 3 arcs, but the number of disks decrease by 1. Figure 4.2(a) illustrates

the configuration in which the skyline contains 4 disks B1, B2, B3, B4 and Bn

contributes 3 arcs. The arcs of Bn are presented in dotted line. We remove the

(b)

B

3B

2B

4B

(a)

1B

3B

2B

1

Figure 4.2: Proof of Lemma 4.

disk B4 which intersects ∂Bn at exact 1 point in the skyline, and the number

of arcs contributed by Bn doesn’t decrease, see Figure 4.2(b). Then, we repeat

the process until there remains 3 disks, and then the lemma is proved.

Lemma 5 Assume two circle ∂B1 and ∂B2 have two intersection points a and

d. Let ac′ (and ab′, respectively) be a diameters of B1 (and B2, respectively),

and c (and b, respectively) is a point in arc c′d (b′d respectively). See Figure

4.3. If the angle ∠cab is obtuse, we have

‖b − c‖ > 2 min (r1, r2) .

Proof. First, we explore an extreme case in which ∂B1 and ∂B2 are tangent,

i.e. c′, a, b′ are in a line and a, d are overlapping and �cab is π
2
. See Figure

4.4. Since ac′ (ab′ respectively) is the diameter of B1 (B2 respectively), �c′ca

(�b′ba respectively) is right angle. Δacc′ and Δabb′ are similar. If r1 ≤ r2,
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Figure 4.3: The structure in Lemma 5.

since �c′ca and �b′ba are also right angles, we have

‖b − c‖2 > ‖a − c‖2 + ‖a − b‖2

= ‖a − c‖2 +

(
r2

r1
‖c′ − c‖

)2

= ‖a − c‖2 + ‖c′ − c‖2
+

((
r2

r1

)2

− 1

)
‖c′ − c‖2

= (2r1)
2 +

((
r2

r1

)2

− 1

)
‖c′ − c‖2 ≥ (2r1)

2 = (2 min (r1, r2))
2 .

Similarly, if r2 ≤ r1, we also have

‖b − c‖2 > ‖a − c‖2 + ‖a − b‖2

= ‖a − b‖2 +

(
r1

r2
‖b′ − b‖

)2

= ‖a − b‖2 + ‖b′ − b‖2
+

((
r1

r2

)2

− 1

)
‖b′ − b‖2

= (2r2)
2 +

((
r1

r2

)2

− 1

)
‖b′ − b‖2 ≥ (2r2)

2 = (2 min (r1, r2))
2 .

Thus ‖b − c‖ > 2 min (r1, r2) . The lemma is correct for this extreme case.

The inequality can be extended for general cases by the following simple

observation. Rotate B1 and/or B2 by a to let �c′ab′ become smaller but

don’t let ac′ across ac and ab′ across ab. Let c′′ denote the intersection of

the ray ac and ∂B1 and b′′ denote the intersection of the ray ab and ∂B2.
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Figure 4.4: A extreme case when ∂B1 and ∂B2 are tangent.

See Figure 4.5. We have ‖a − b′′‖ ≥ ‖a − b‖ and ‖a − c′′‖ ≥ ‖a − c‖. Thus,

‖b′′ − c′′‖ ≥ ‖b − c‖. So, the proof is complete.

b’’
2

1B

a

c’

c

b
b’

c’’

B

Figure 4.5: Rotate B1 and B2 by a, and then ‖b′′ − c′′‖ ≥ ‖b − c‖.

Lemma 6 Given an acute triangle, for each edge of the triangle, draw a circle

with the edge as a chord whose center is outside the triangle and radius is equal

to the circumradius. Then, three circles intersect at the orthocenter.

Proof. Let Δabc be an acute triangle, C1 be the circumcircle of Δabc, and C2

(respectively, C3 and C4) be a circle with the circumradius of Δabc as its

radius, and edge ab (respectively, bc and ac) as a chord, and its center outside

Δabc. See Figure 4.6(a). To prove this lemma, it is enough to show that C2,
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Figure 4.6: The configuration of Lemma 6.

C3, C4 contain the orthocenter of Δabc. Figure 4.6(b) illustrates the relation

between C1 and C2, and we want to prove C2 contains the orthocenter.

Let f denote the perpendicular foot on ab. Let h denote the intersection

point of C1 and line cf , and e(respectively, d) denote the intersection points

of C2 and line cf outside (respectively, inside) Δabc. Let g be the intersection

point of lines bd and ac. If we can show g is the perpendicular foot on ac, then

d is the orthocenter. Since C1 and C2 have the same radius, and ab and ce are

perpendicular, acbe is a rhombus. In the rhombus, ∠aef = ∠acf . Since ∠aed

and ∠abd correspond to the same arc ad and they are inscribed angles on C2,

∠aed = ∠abd. Thus, ∠abd = ∠acf . In Δdbf and Δdcg, ∠dbf = ∠dcg and

∠bdf = ∠cdg, so ∠bfd = ∠cgd. Since ∠bfd = 90◦, ∠cgd = 90◦. bg⊥ac and

cf⊥ab, therefore d is the orthocenter of Δabc.

Similarly, we can prove C3, C4 also contain the orthocenter. So, the lemma

is proved.

Then, we have the following corollary.

Corollary 7 Given an acute or right triangle, for each edge of the triangle,

draw a circle with the edge as a chord whose center is outside the triangle and

radius is larger than the circumradius. Then, three circles have no intersection.
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We apply simple counting techniques. Since each arc has two endpoints,

each endpoint is an intersection point of two disks, and two disks have at most

2 intersection points.

Lemma 8 The number of arcs in a skyline of n disks is upper bounded by 2n.

Proof. We prove this by mathematical induction on n. Without loss of gen-

erality, we may assume all n nodes have arcs in the skyline and B1, B2, · · · , Bn

have been sorted according to their radii in decreasing ordering.

If n = 1, there is only one disk, and thus, the skyline consists of one arc.

If n = 2, two disks intersect at 2 points. There are at most 2 arcs in the

skyline. See Figure 4.7(a). If n = 3, the topology can be categorized into 2

configurations, like Figure 4.7(b) and Figure 4.7(c). Figure 4.7(b) illustrates

one configuration in which each disk contains one intersection point of the other

two disks, and the skyline is composed of 3 arcs. Figure 4.7(c) illustrates the

other configuration in which one disk contains two intersection points of the

other two disks. In addition, 3 disks is allowed to have a common intersection

point like Figure 4.8. The skyline is composed of 3 or 4 arcs. No matter how,

the number of arcs is no more than 2n.

Now, assume that as n = k, the skyline contains at most 2k arcs. If we can

show that after a disk Bk+1 is added into the set, the number of arcs in the

skyline increases at most by two, then the new skyline contains no more than

2 (k + 1) arcs, and the proof is complete. Without loss of generality, we may

assume Bk+1 is the disk with the smallest radius among B0, B1, B2, . . . , Bk+1

since it doesn’t change the skyline. We denote the number of arcs in the sky-

line of B1, B2, . . . , Bk as Sky(B1, B2, . . . , Bk). Now, we are going to prove this

by contradiction. Assume Bk+1 can contribute at least 3 arcs. According to

Lemma 4, without loss of generality, we may assume that Bk+1 contributes 3
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arcs in the skyline of B1, B2, B3, Bk+1. According to the two possible configu-

rations of B1, B2, B3 like Figure 4.7(b) or Figure 4.7(c), we discuss the problem

in the two cases.

(c)(a) (b)

Figure 4.7: n ≤ 3, the skyline contains 2n arcs at most.

Figure 4.8: 3 disks have a common intersection point.

First, we consider the configuration like Figure 4.7(b). Let a be the inter-

section point of B1 and B2 not in B3; b be the intersection point of B1 and B3

not in B2; and c be the intersecting point of B2 and B3 not in B1. In order to

contribute 3 arcs, Bk+1 must intersect with 3 disks and contain a, b, c. Now,

the problem is discussed by following two cases: (1) Δabc is an acute or right

triangle; and (2) Δabc is an obtuse triangle.

Case 1: Δabc is an acute or right triangle. Let rc be the circumradius

of Δabc. Since Δabc is an acute or right triangle and Bk+1 contains a, b, c,

we have rk+1 is larger than rc. In addition, since Bk+1 is the smallest among

B0, B1, B2, . . . , Bk+1. So, we have rc < rk+1 ≤ r1, r2, r3. But according to
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Corollary 7, if r1, r2, r3 are larger than rc, B1, B2, B3 have no intersection.

This is a contradict to the fact that the intersection of B1, B2, B3 is not empty.

Case 2: Δabc is an obtuse triangle. It doesn’t affect the correctness of

following argument if we assume ∠cab is obtuse. Since Bk+1 contribute three

arcs in the skyline of B1, B2, B3, Bk+1 and rk+1 ≤ r1, r2, r3, degree of each arc

in the skyline of B1, B2, B3 must be larger than π. If ac′ is a diameter of B2

and ab′ is a diameter of B1, c′ and b′ are in the skyline of B1, B2, B3. c is in

the arc ac′ intersected by arc ab′ and not contained in B1 and b is in the arc

ab′ intersected by arc ac′ and not contained in B2. According to Lemma 5, if

∠cab is obtuse, we have ‖b − c‖ > 2 min (r1, r2). On the other hand, since Bk+1

contains Δabc, we have rk+1 ≥ 1
2
‖b − c‖, and 2rk+1 ≥ ‖b − c‖ > 2 min (r1, r2).

Thus, we have a contradiction.

Next, we consider the configuration like Figure 4.7(c). Without affecting

the correctness of following argument, we assume B3 is the one containing

two intersection point of the boundary of other two disk. Let b, e denote

intersection points of B1 and B3, and c, f denote intersection points of B2

and B3. To contribute three arcs to the skyline of B1, B2, B3, Bk+1, Bk+1

should cover at least 3 intersection points. According to the number of covered

intersection points, there are two cases.

Case 3: If Bk+1 cover exactly 3 intersection points, like Figure 4.9(a), then

Bk+1 must have 3 intersection points with B3. This is not possible to happen,

since 2 disks have at most 2 intersection points.

Case 4: If Bk+1 cover exactly 4 intersection points, like Fig. 4.9(b), let

e, f denote the two intersection points covered by the same arc of Bk+1 and

a is a intersection point of B1 and B2 that is closer to the arc covering e, f .

Since Bk+1 is smaller than B1, B2, B3, arcs bc of B3 outside B1, B2, arc be of

B1 outside B3, and arc cf of B2 outside B3 are larger than π. So, the angle

�bac > π/2, the diameter of B1 with one endpoint at a is outside of B2, and
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Figure 4.9: In the configuration, Bk+1 doesn’t contribute 3 arcs.

the diameter of B2 with one endpoint at a is outside of B1. According to

Lemma 5, just like Case 2, we have 2rk+1 > ‖b − c‖ > 2 min (r1, r2). This is

a contradiction.

According to previous discussion, Bk+1 can’t contribute 3 arcs to the sky-

line of B1, B2, · · · , Bk+1, and therefore, the number of arcs in the skyline

B1, B2, · · · , Bk+1 is at most 2(k + 1). By mathematical induction, we con-

clude that the number of arcs in the skyline of n disks is upper bounded by

2n.

Now we show that our algorithm has time complexity O (n log n) .

4.2 Time Complexity of Algorithm

Theorem 9 The time complexity of Skyline is O (n log n), where n is the

number of disks.

Proof. The running time T (n), of Skyline has the recursive equation⎧⎨
⎩ T (n) = O (1) if n = 1,

T (n) = 2T
(

n
2

)
+ f (n) otherwise.
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If n = 1, we have T (n) = O (1). If n ≥ 2, Skyline executes Skyline twice

but with half problem size and then executes Merge once. According to

Lemma 8, the time complexity of Merge is O (n). Hence, according the master

theorem [22], T (n) = O (n). The proposed algorithm has the time complexity

O (n log n).

30



Chapter 5

Simulations and Conclusions

5.1 Simulations

Simulations are done to compare the performance of forwarding set algorithms,

including the blind flooding, skyline algorithm, selecting forwarding set [6],

greedy algorithm, and optimal algorithm. In the simulation, nodes are de-

ployed over a 12.5×12.5 square. A source node u is placed at the center of the

deployment region. If n is the average number of neighbors, 12.52

πr2 n nodes are

generated with uniform distribution over the deployment region, where r is

the transmission radius of a node. Two types of networks, homogeneous net-

works and heterogeneous networks, are considered. In homogeneous networks,

all nodes are with the same transmission radius 1. In heterogeneous networks,

every node may have different transmission radius that is generated by a func-

tion which produces randomly a real number between 1 and 2, including the

source node. Bidirectional links are considered. 200 random point sets are

generated in the simulation. For each random point set, the forwarding sets

of node u are calculated by each algorithm. For each algorithm, we calculate

the average size of forwarding set and the distribution of the size of forwarding

sets.
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Since it is still open that whether the minimum forwarding set problem

of disk graphs is NP-Complete or not, we use brute force algorithm to find

the minimum forwarding set. In the blind flooding, all 1-hop neighbors relay

messages, so the number of forwarding nodes is equal to the number of 1-

hop neighbors. In the skyline algorithm, each node chooses a subset of one-

hop neighbors that contribute arcs to the skyline as its forwarding set. The

selecting forwarding set algorithm introduced in [6] for homogeneous networks

is with constant approximation ratios. In the greedy algorithm is that each

node iteratively chooses a 1-hop neighbor covering the maximum number of

2-hop neighbors not yet covered, and completes when all 2-hop neighbors have

been covered.

Excepting the skyline algorithm that only needs 1-hop information, the

optimal algorithm, greedy algorithm, and selecting forwarding set algorithm

[6], need one-hop and two-hop information to calculate the forwarding set.

To obtain the information of 1-hop neighbors, each node periodically sent

HELLO messages to report its current status. To obtain information of 2-hop

information, the HELLO messages should contain the sender’s 1-hop neighbor

list are sent periodically.

5.1.1 Homogeneous Networks

In homogeneous networks, all nodes have the same transmission radii 1. We

run simulation for the blind flooding, skyline algorithm, selecting forwarding

set algorithm [6], greedy algorithm, and optimal algorithm. The average num-

ber of forwarding nodes of five algorithms is illustrated in Figure 5.1. The

x-axis denotes the average number of 1-hop neighbors of node u. The y-axis

denotes the average number of forward nodes. The five curves in the figure

form top to down are corresponding to the blind flooding, skyline algorithm,
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selecting forwarding set [6], greedy algorithm and optimal algorithm, respec-

tively.

Figure 5.1: The algorithms are compared in homogeneous networks.

The selecting forwarding set algorithm and greedy algorithm usually gen-

erate smaller forwarding sets than the skyline algorithm. But instead of 2-hop

information, the skyline algorithm needs only 1-hop information. So, the se-

lecting forwarding set algorithm and greedy algorithm demand more resource

than the skyline algorithm. In addition, if nodes have mobility, more efforts

are needed to maintain 2-hop information then the nodes cost a lot of space

and time in collecting two-hop information. Thus, the skyline algorithm is

more easily to implement than the other two algorithms in wireless ad hoc

networks.

Figure 5.2 and Figure 5.3 illustrate the distribution of the number of for-

warding nodes. Figure 5.2 is of the network in which nodes have 10 1-hop
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neighbors in average, and Figure 5.3 is of the network in which nodes have

20 1-hop neighbors in average. The x-axis is corresponding to the number of

forwarding nodes, and y-axis is corresponding to the number of random point

sets.

Figure 5.2: The distribution of forward nodes with 1-hop neighbors = 10.

If an algorithm is with better performance, in most cases, it generates

forwarding sets with small size. So, the distribution is located at the left hand

side in the figures. Without too much surprise, the greedy algorithm and

selecting forwarding set algorithm generate smaller forwarding sets than the

skyline algorithm. Note that in Figure 5.3, since the main part of forwarding

nodes is distributed below 25, for simplicity, we show the main part instead

of all, and there are some nodes with forwarding set larger than 25 nodes

generated by the blind flooding algorithm.
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Figure 5.3: The distribution of forward nodes with 1-hop neighbors = 20.

5.1.2 Heterogeneous Networks

Since the selecting forwarding set algorithm [6] doesn’t work for heterogeneous

networks, we don’t consider it in the simulation for heterogeneous networks.

We run simulation for the blind flooding algorithm, skyline algorithm, greedy

algorithm, and optimal algorithm. In heterogeneous networks, the transmis-

sion range of each node is randomly assigned between 1 and 2.

Figure 5.4 illustrated the average number of forward nodes. The x-axis

denotes the average number of 1-hop neighbors of node u. The y-axis denotes

the average number of forward nodes. In the figure, there are four curves, form

top to down, corresponding to the blind flooding algorithm, skyline algorithm,

greedy algorithm, and optimal algorithm.

Because we use the bidirectional link, the number of 1-hop of source node

u may less than the average 1-hop neighbors.

Figure 5.5 illustrate the distribution of the number of forwarding nodes in
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Figure 5.4: The algorithms are compared in heterogeneous networks.

networks in which nodes with 10 1-hop neighbors in average. The x-axis is

corresponding to the number of forwarding nodes, and y-axis is corresponding

to the number of random point sets.

Last, we want to point out a drawback of the skyline algorithm that is due

to the directional links and bidirectional links. In Figure 5.6, node u has three

1-hop neighbors u1, u2, u3 and u4, u5 are 2-hop neighbors. u4 is a neighbor of

u1, and u5 is a neighbor of u2. The transmission range of u3 can cover u4 and

u5, but the transmission range of u4 or u5 can not cover u3. So, u4 and u5

are not neighbors of u3. The optimal forwarding set under the bidirectional

link model is {u1, u2}, but the skyline set is {u3}. Since the skyline algorithm

utilizes only 1-hop information, it can’t know the information about 2-hop

neighbors. We leave this problem as our one of our future works.
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Figure 5.5: The distribution of forward nodes with 1-hop neighbors = 10.

u

1

u5 u4

u3
u2

u

Figure 5.6: The special case in heterogeneous networks.
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5.2 Conclusions

To relieve the broadcast storm problem in wireless ad hoc network, we suggest

using the minimum local disk cover set as forwarding nodes for broadcasting

instead of all 1-hop neighbors. In this work, we have established the equiv-

alence of the MLDCS and the skyline set. We propose a divide-and-conquer

algorithm to find the skyline set with the optimal time complexity O(nlogn).

In heterogeneous wireless networks, the skyline set that is based on 1-hop in-

formation, can’t guarantee the coverage of 2-hop neighbors under bidirectional

links. This drawback will be studied in our future works.
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[6] G. Călinescu, I. Mandoiu, P.J. Wan, and A. Zelikovsky, “Selecting For-

warding Neighbors in Wireless Ad Hoc Network,” MONET 9(2): 101-111

(2004)

39



[7] P. Sinha, R. Sivakumar and B. Vaduvur, “Enhancing ad hoc routing with

dynamic virtual infrastructures,” in: Proc. of IEEE INFOCOM (2001)

pp. 1763–1772.

[8] K.M. Alzoubi, P.J. Wan, and O. Frieder, “New Distributed Algorithm for

Connected Dominating Set in Wireless Ad Hoc Networks,” Proc. Hawaii

Int’l Conf. System Sciences ’35, 2002.

[9] W. Lou and J. Wu, “On Reducing Broadcast Redundancy in Ad Hoc

Wireless Networks,” IEEE Trans. Mobile Computing, vol. 1, no. 2, pp.

111-123, Apr.-June 2002.

[10] J. Wu and F. Dai, “Broadcasting in Ad Hoc Networks Based on Self-

Pruning,” Proc. IEEE Infocom, Mar.-Apr. 2003.

[11] J. Wu and H. Li. On calculating connected dominating set for efficient

routing in ad hoc wireless networks. In Proc. DIAL M, pages 7–14, August

1999. Seattle, USA.

[12] H. Lim and C. Kim, “Multicast Tree Construction and Flooding in Wire-

less Ad Hoc Networks,” Proc. ACM MSWiM, Aug. 2000.

[13] I. Stojmenovic, S. Seddigh, and J. Zunic, “Dominating Sets and Neighbor

Elimination Based Broadcasting Algorithms in Wireless Networks,” IEEE

Trans. Parallel and Distributed Systems, vol. 13, no. 1, pp. 14-25, Jan.

2002.

[14] J. Sucec and I. Marsic, “An Efficient Distributed Network-Wide Broad-

cast Algorithm for Mobile Ad Hoc Networks,” CAIP Technical Report

248, Rutgers Univ., Sept. 2000.

40



[15] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint Relaying for Flood-

ing Broadcast Message in Mobile Wireless Networks,” Proc. HICSS, vol.

9, p. 298, Jan. 2002.

[16] F. Dai and J. Wu, “Efficient Broadcasting in Ad Hoc Wireless Networks

Using Directional Antennas,” IEEE Trans on Parallel and Distributed

Systems, VOL. 17, NO. 4, APRIL 2006

[17] B.M.E. Moret and H.D. Shapiro, “Algorithms from P to NP, Vol. I: Design

and Efficiency” (Benjamin/Cummings, 1991).

[18] P. Santi, “ Topology Control in Wireless Ad Hoc and Sensor Networks”

(Wiley, 2005).

[19] B.N. Clark, C.J. Colbourn and D.S. Johnson, Unit disk graphs, Discrete

Mathematics 86 (1990) 165–177.

[20] LAN MAN Standards Committee of the IEEE Computer Socity, editor.

IEEE Std 802.11-1997, Wireless LAN Medium Access Control MAC and

Physical Layer (PHY specifications. IEEE, Nov. 1997).

[21] E. Horowitz, S. Sahni, and S. Rajasekaran, “ Computer algorithms ”

(Computer Science Press, 1997).

[22] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “ Introduction

to Algorithms ” (The MIT Press, 2nd edition, 2001)

41


	thesis_cover.pdf
	論文封面.pdf
	Binder1.pdf
	front.pdf
	LOF.pdf


	thesis_main.pdf



