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Minimum Local Disk Cover Sets for Broadcasting

In Heterogeneous Wireless Ad Hoc Networks

Student: Fang-Chun Liu Advisor: Prof. Chih-Wei Yi

Department of Computer Science
National Chiao-Tung University

ABSTRACT

In wireless ad hoc networks, broadcasting is one of the fundamental networking
operations. It is widely and frequently used to explore the network topology, find
routing paths, and monitor network integrity.sA.simple broadcasting mechanism,
known as flooding, is to let every.node relay.messages to all its 1-hop neighbors when
it receives the messages the first-time. Despite its'simplicity, flooding tends to
generate too many redundant retransmissions. It may cause the broadcast storm
problem and is neither power nor bandwidthiefficient. To relieve the problem, when a
node does broadcasting, it selects a'subset of neighbors called forwarding set to relay
messages instead of all neighbors. Nodes'in the forwarding set of a node would cover
all its 2-hop neighbors, so it ensures that messages can reach all nodes in the network.

In homogeneous networks, it has been proposed computing the forwarding set
based on the coverage area of 1-hop neighbors. The nodes in the forwarding set of a
node can cover the same area as its all 1-hop neighbors. The proposed algorithm is
localized, distributed, and with the optimal time complexity O(nlogn). In this paper,
we propose to use the minimum local disk cover set as forwarding set in
heterogeneous networks, where nodes may have different transmission radii. A
minimum local disk cover set of a node is a subset of 1-hop neighbors and the number
of set is smallest. The nodes in the minimum local disk cover set cover the same area
of all 1-hop neighbors. We show that the minimum local disk cover set of a node is
equivalent to its skyline set. We propose a divide-and-conquer algorithm with the
optimal time complexity O(nlogn) to compute the skyline set locally.

Keywords: minimum local disk cover sets, broadcasting, wireless ad hoc networks,

forwarding set
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Chapter 1

Introduction

1.1 Wireless Ad Hoc Networks

Wireless ad hoc networks consist of a collection of wireless devices sharing a
common channel without the need of eentralized controls or fixed infrastruc-
tures. Each node is equipped with an omnidirectional antenna to access the
common channel and usuallyapplies the CSMA /CA (carrier sense multiple ac-
cess with collision avoidance) [20] protocel. A communication session is built
either through a single-hop radio transmission if the communication parties
are close enough, or through relaying by intermediate nodes. Wireless ad hoc
networks can be flexibly and quickly deployed for many applications such as
personal area networks, smart home environment, environmental monitoring,

battlefield surveillance, and emergency disaster relief.

Wireless ad hoc networks still have some challenges, including [18]

(1) Energy conservation: Because the devices in wireless ad hoc networks
are typically battery equipped, one of the design goals is to use the limited
energy as efficiently as possible.

(2)Resource constrained computation: The energy and network bandwidth



are limited in wireless ad hoc network. Protocols must provide the good per-

formance although the few available resource.

1.2 Broadcast Storm Problem

Broadcasting is one of the fundamental operations in wireless ad hoc networks.
A source node sends messages to their 1-hop neighbors, and 1-hop neighbors
relay messages to their neighbors, and so on so forth, until all nodes receive
one copy of messages. It is widely and frequently used to explore the network
topology, find routing paths, and monitor network integrity. Flooding, the
most known broadcasting mechanism, is to let every node relay messages to

all its 1-hop neighbors when it receives the messages the first time.

Despite its simplicity, flooding has a.sertous drawback, known as the broad-
cast storm problem [1]. First; because the radio propagation is omnidirec-
tional and a physical location may be covered by the transmission ranges
of several hosts, many rebroadecasts.are ‘considered to be redundant. Sec-
ond, heavy contention could exist because rebroadcasting hosts are probably
close to each other. Third, collisions are more likely to occur because the
RTS/CTS dialogue is inapplicable and the timing of rebroadcasts is highly cor-
related. Since every node retransmits messages without considering whether
their neighbors have received messages, unnecessary transmission occurs fre-
quently. That results in shortening lifetime of battery-driven devices, and
boosting network traffic and bandwidth contention. So, flooding is neither
power-efficient nor bandwidth-efficient. Instead, many alternative broadcast-
ing algorithms [1] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] have been

discussed in literature.



1.3 Motivations and Research Methods

In most works, to relieve the broadcast storm problem, when a node receives
a broadcast, it selects a subset of neighbors to relay messages instead of all
neighbors. Such subset is referred as forwarding set [7] or multipoint relays
(MPRs) [15]. Basically, each node needs to maintain a local network topology
of its 1-hop or even 2-hop neighborhood. To ensure that a broadcast can reach
all nodes in the network, nodes in the forwarding set of a node should cover all
its 2-hop neighbors. At the same time, to better relieve the broadcast storm

problem, the forwarding set should be kept as small as possible.

In [5], Sun et al. proposed constructing the forwarding set based on the
coverage area of 1-hop neighbors. The idea is to ensure nodes in the forward-
ing set of a node to cover the saihe area'as all its 1-hop neighbors. However,
the algorithm works only when all nodes in the network have the same trans-
mission radius. In this paper, we extend the work to heterogeneous networks
in which nodes may have different transmission radii. The network topology is
represented by disk graphs with bidirectional link. In other words, each node
is associated with a transmission radius. A link exists between two nodes if
the distance between them is not larger than the minimum radius of them.
We propose to use the minimum local disk cover set as forwarding set. The
minimum local disk cover set of a node is a subset of 1-hop neighbors, and its
coverage is the same as the coverage of all 1-hop neighbors and cardinality is
smallest. Thus, it would better alleviate the broadcast storm problem. We
propose a divide-and-conquer algorithm to construct the minimum local disk
cover set. Our algorithm has the advantage of needing 1-hop information and

being an optimal solution with time complexity O(nlogn).

The remaining of this paper is organized as follows. The related works

are introduced in Chapter 2. In Chapter 3, network model is defined and the



forwarding set problem is formulated as the minimum local disk cover set
problem. Then the equivalence between minimum local disk cover sets and
skyline sets is build. A divide-and-conquer algorithm is given to find skyline
sets. In Chapter 4, the time complexity of proposed algorithm is derived.
In Chapter 5, simulations are given to compare with other forwarding set

algorithms and concludes this paper.



Chapter 2

Related Works

Many localized algorithms have been proposed to alleviate the broadcast storm
problem in wireless ad hoc networks. Localized algorithm refers that the nodes
build their view of the network topélogy by using local information only, that
is, the information regarding.ip to hAsnéighbors'in the graph, where h is a small
constant (2-3 at most) [18].=We introduce some localized forwarding schemes,
including the multipoint relays (MPRs)-J15], selecting forwarding sets [6] and

minimum disk cover sets [5] in.the following sections.

2.1 Multipoint Relays

Qayyum et al. [15] introduced the scheme of multipoint relays (MPRs) to for-
ward broadcasting messages in the wireless networks. The idea of multipoint
relays is to reduce the number of redundant retransmissions while broadcast-
ing messages. The mechanism reduces the forwarding set to a small set of

neighbors instead of all neighbors like in flooding.

Qayyum et al. proposed a scheme to select these MPRs in a wireless

environment. The heuristic is adapted from the Chvatal’s greedy algorithm [3]

5



for Set Cover, and gives an approximation ratio of O(log A), where A is the
maximum number of 1-hop neighbors. The heuristic iteratively chooses a 1-hop
neighbor covering the maximum number of 2-hop neighbors not yet covered as
multipoint relays, and completes when all 2-hop neighbors have been covered.
The information requiring for the multipoint relays is the 1-hop neighbors and
2-hop neighbors’ information of each node. Multipoint relays scheme works in
a distributed manner. Each node calculates its own MPRs, which is completely
independent of other nodes’ selection of their MPRs. In [2], multipoint relays

are used to transmit control messages from a mesh point into the network.

2.2 Selecting Forwarding Sets

Calinescu et al. [6] solved theMinimum Forwarding Set problem for the geo-
metric aspect. The problemeis formulated as that given a source node and the
sets of 1-hop and 2-hop neighbers.“The idea jis to select a minimum subset
of 1-hop neighbors which dominates all 2-hop-neighbors. The Minimum For-
warding Set problem is s special case of the Unit-Disk Cover problem known
as NP-hard. The complexity of the Minimum Forwarding Set problem is not

known.

Calinescu et al. proposed several heuristics with constant approximation
ratios based on partition the plane into quadrant and established basic geomet-
ric properties of the 1-hop and 2-hop neighboring sets in wireless networks. A
2-approximation O(nlogn) time algorithm is proposed, when all 2-hop neigh-
bors are in the same quadrant with respect to the source node. First, the algo-
rithm computes the skyline and numbers the skyline disks in counter-clockwise
order. Then, each 2-hop neighbors are constructed the intervals covered by

the skyline disks. Finally, using a simple greedy algorithm picks the disks.



The work needs to collect 1-hop and 2-hop information. The algorithms work

only when the network model is homogeneous.

2.3 Minimum Disk Cover Sets

Sun et al. [5] show that the concept of the disk cover set. Given the set of
disks S, the problem of disk cover set is to find a minimum subset of S, say
S1, such that the union of the disks in S’ is equal to the union of the disks in
S. All nodes in wireless ad hoc networks have the same transmission range
in two-dimensional. Constructing the minimum disk cover set is based on
the coverage area of 1-hop neighbors. The nodes in minimum disk cover set
cover the same area as all one-hop.neighbors. A node can simply request the

neighbors in the minimum disk coveg-set.to rebroadcast messages.

Sun et al. proved that: finding the minimum disk cover set for disks is
equivalent to finding the ares of disks-that make up the boundary. Then, a
divide-and-conquer algorithm is‘propesed to construct the minimum disk cover
set efficiently in homogeneous networks. The time complexity of construction
the minimum disk cover set is O(nlogn), where n is the number of 1-hop
neighbors. Any algorithm that solves the minimum disk cover set problem
needs at least O(nlogn) time in the worst case. Therefore, based on 1-hop

information, the algorithm is optimal in the aspect of time complexity.



Chapter 3

Minimum Local Disk Cover Sets

3.1 Network Model

To alleviate the broadcast storm problem, the. size of the forwarding set needs
to be reduced. However, at the same time, we need to make sure that messages
may reach all nodes in the network. The selection of the forwarding set at each

node should guarantee that the message-will reach all its 2-hop neighbors.

We assume that wireless nodes are distributed in a two-dimensional plane
R%. In what follows, ||z|| is the Euclidean norm of a point x € R? and |A]
is shorthand for the cardinality of a countable set A. For any two points x,
y € R?, ||x — y]| is the Euclidean distance between x and y; Ty denotes a line
segment between z and y; and zy denotes a ray (or called a half line) from z

to y.

The topology of a heterogeneous ad hoc network is modeled by disk graphs
with bidirectional links. Each node wu; is associated with a transmission radius
;. See Figure 3.1(a). A link exists between two nodes if the distance between
them is not larger than their transmission radii. Two nodes u;, u; are said to

be neighbors if and only if the Euclidean distance |u; — u;|| <= min(r;,r;).See

8
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Figure 3.1: The configuration of a node u;.

Figure 3.1(b). For a node u;, its coverage is modeled as a disk with center w;
and radius r;, which is denoted as B(u;,7;). A node u; is said to be covered
by w; if u; € B(u;, ;). The topological boundary of a set S C R? is denoted
by 0S5, and thus, 0B(u;, ;) is the circle centered at u; and with radius r;.

We assume each node knows the information of their 1-hop neighbors,; es-
pecially locations and transmission radii. Due to the bidirectional link model,
for any two nodes wu, v, if u=s the ome-hop neighbor of v, then it implies v is
the one-hop neighbor of u. So, the intersection of coverage of 1-hop neighbors

is not empty, i.e. (| B(u;,15):# @, where Siis 1-hop neighbors.
u; €S

3.2 Problem Description

We propose a strategy for each node to choose its forwarding set locally and
statelessly based on the coverage of 1-hop neighbors. To make sure all 2-
hop neighbors may receive messages, each node selects its forwarding set that
the coverage of the forwarding set is the same as the coverage of all 1-hop
neighbors.

We define the disk cover set of a set of nodes V as S C V such that
U B(ui, ) = U B(u,ri). For aset of nodes V', if there exists a node in V'

U €S u; €V
such that all other nodes in V' are neighbors to that node, then V' is called the

9



local set and the corresponding disk set, {B (u1,71), ..., B (tun,7,)}, is called
the local disk set. For a local set, its cover set is called a local disk cover set.
Obviously, the closed neighbor set of a relay node ng is a local set.

To alleviate the broadcast storm problem and ensure the reachability of
broadcast messages, we propose to use the minimum local disk cover set
(MLDCS) as the forwarding set. The problem of the minimum local disk

cover set is formally stated as follows.

Minimum Local Disk Cover Set (MLDCS) Problems
Input: A local disk set {B (ug, o), B (u1,71) ..., B (tn, )}
such that for all 1 <i <mn, ||ug — ;|| < min (rg,7;),
i.e. u; € B(ug,m9) and ug € B(u;,1;).
Let V' = {ug, uy...., u, } be the set of disk centers.
Output: A subset Siof V such that (J B(u;, )= |J Blu;,ri).

;€S u; EV

Measure: |S| is minimal.

Figure 3.2 illustrates theminimum-Jocal-disk cover set. Assume source node
is 0. Node o has five one-hop neighbors w3 ...us and five two-hop neighbors
Ug, Uz,..., u19. We find the union of B(uy,r1), B(ug,m2), B(u4,74), B(us, r5) =
(G B(uj,ri)). Bl(us,rs) is covered by (G B(uj,ri)), so B(ug,rs) isn’t in the
ng:i?limum local disk cover set. The collezc:t(;on of these disks is minimum local

disk cover set. The coverage of MLDCS is equal to the coverage of all one-hop
neighbors, and the cardinality of MLDCS is 4.

We assume that each node learns the locations and radii of its neighbors
through the exchanges of beacons. In addition, we define the skyline for a
disk set as the boundary of the union of disks in the set. Hence, the skyline of
the local disk set {B(ug,ro), B(ui,r1), ..., B(tun, )} is 8(0 B(ug,r;)). Ob-
viously, a skyline is composed of arcs of disks. The colle?c?on of origins of

disks that contribute arcs to a skyline is called the skyline set. In the next

10



Figure 3.2: The source node o relays the message to MLDCS.

section, we will show that the MLDCS of a local set is the skyline set of the
corresponding local disk set, and thus, we can solve the MLDCS problem for

a given local disk set by computing the ecorresponding skyline.

3.3 The Geometry of Skyline Sets

In this section, we give properties of skylines and build the relation between
the MLDCS for a given local set and the skyline set for the corresponding
local disk set. We then propose a divide-and-conquer algorithm to compute

the skyline set.

The following geometric lemma and corollary are used to build the relation
between MLDCS for a local set V' = {ug, us,...,u,} and the skyline set for
the corresponding local disk set { B(uq,r0), B(u1,71), ..., B(tn, 7,)}. Without

loss of generality, in the following discussion we assume ny = o.

Lemma 1 For any point a € OB (u;,1;), the line segment 6a C B (u;, ;).

11



Figure 3.3: 0a is contained in B(u;, ;).

Proof. Note that o € B (u;, ;) since ||o — u;|| < r;. Since B (u;, ;) is convex

and o,a € B (u;,1;), the line segment oa C B (u;, ;). See Figure 3.3. m

Then, we have the following corollary.

Corollary 2 For any ray from o,it interseets.the skyline at exactly one point.

Proof. Obviously, any ray from e intersects theskyline. We only need to show
the uniqueness of the intersection point. We.can prove this by contradiction.
Assume there exists a ray that intersects the skyline at two points a and b.
Without loss of generality, we also assume a is farther from o than b. Since
a is in the skyline, a is in 0B (u;,r;) for some i. According to Lemma 1, we
have 6a C B (u;, ;). This implies that b is inside of B (u;,7;), and b can’t be

in the skyline. It is a contradiction, and thus the corollary is proved. m

According to the corollary, we can know that a skyline is composed of a
sequence of arcs surrounding the origin from 0 to 27. An arc can be repre-
sented by four parameters (&i,uj,ruj, 04i+1). Here u; and r; respectively are
the center and radius of the disk contributing the arc, and «; and ;.1 with
a; < a1 are two angles corresponding to two endpoints of the arc measured at

o in counterclockwise direction from the z-axis. See Figure 3.4. Note that the

12



Figure 3.4: An arc ab is represented by 4 parameters (&i, Uy Ty 04i+1)-

reference point to measure a; and a1 is 0, not u;. For convenience, if an arc
crosses the x-axis in the positive direction then it is splitting by the x-axis into
two arcs, i.e. an arc (ozz-, Ujy T ozi+1) with a; < 360° and a;4; > 360", then we
split this arc into 2 arcs (o, ;% 360°) and (00, Ujy T ozi+1). Without loss of
generality, we could assume that there ae no.arcs exceeding 360°. Thus, a sky-
line consisting n arcs can be represented as (ag,tis,, sy, 1, Usy s Tsyy Xy oeny Oy ),
where 0 = ap < a1 < ... < .= 2pandforany 0 < i <n—1, (a;, us;, s, Xit1)

is an arc in the skyline.

Now, we give the following theorem that builds the relation between a

skyline set and the corresponding minimum local disk cover set.

Theorem 3 For a given local set V. = {ug,uy, ..., u,}, its minimum lo-

cal disk cover set is the skyline set for the corresponding local disk set

{B (ug,m0), B (u1,71) ..., B (tn, )}

Proof. To prove that the skyline set is the minimum local disk cover
set of a local set, we first prove that a skyline set is a local disk cover
set. Assume the skyline is composed of arcs aiby,asbs,. .., aib, belonging

to B (wi,,7i,), B (wiy,7i,) 5. .., B (us,,7i,), respectively. Let <oa;b; denote the

13



Figure 3.5: B (a,r) N B (u;,1;) is exclusively covered by B(u;,7;).

sector area surrounded by line segments oa;, o—bj, and arc a;b;. Each sector
has no intersection with others. The covered area |J;_, B (u;, ;) is equal to
the union of sectors U?:l <oa;b;. According to Lemma 1, for each skyline arc
a;bj, we have <oa;b; C B (uij,rz-].). Thus, (i, B (u;, ;) C Ule B (ui].,rij).
This means {B (u;,, 7i,) , B (Wi, i) ox 28 B (wig i, )} is a disk cover set.
Next, we prove that if ‘B (u;,r;) s in the skyline set, B (u;,7;) must be
in any disk cover set. To prove this, we are goéing to show there exists some
area belonging to B (u;,r;) but netihelonging to any other disk. Assume a
is a point in the internal of the skyline arc contributed by B (u;,7;). For any
B (u;, 1), j # i, we have the distance between u; and a is larger than r;, i.e.
|u; —al| > r;. Let r = 3 (minj |lu; — al| — 7;). We may draw a disk which

is with center located at a and whose radius is r. For any point « € B (a,r)

and j # i, see Figure 3.5.

14



luj =2l = flu; — al| = [lz —all
> | |~ (min] I
u; —all — = ( min |ju; —al| —r;
= 1% o \ ez 1Y J

> |luy = all = (lu; = all = 7))

=Tj.

Then we have ||u; — z|| > r;. Thus, for any j # i, B (a,7) N B (uj,1;) = @.
This implies that B (a,r) N B (u;, ;) belongs to B (u;, ;) but does not belong
to any other disk, thus B (a,r) N B (u;, ;) is exclusively covered by B(u;,r;).

So the theorem is proved. m

3.4 A Divide-and-Conquer Algorithm

According to Theorem 3, computing‘the MLDCS of a local set is the same as
finding the skyline set of thesorresponding local disk set. In this subsection,

a divide-and-conquer algorithm is proposed to find the skyline set.

In the algorithm, the disk set is divided into 2 subsets of disks DS1 and
DS?2 recursively. If the disk set is small enough (i.e. the size of disk set is 1),
then the skyline returns the skyline of the disk. The skyline of each subset
is discovered by recursive techniques, and then two skylines are merged to
find the skyline of all disks. Eventually, Skyline returns a new skyline list.
Without loss of generality, we may assume that the position of ng (i.e., 0) and

the value 7 are stored in the algorithms.

15



1 procedure Skyline (DS = {(u1,71) , ..., (Un,7n)})

2 // (u;,r;) represents the center and radius of a disk.

3  begin

4 if |[DS| = 1 return the skyline of {B (uy,r1)}

5 else //if |IDS|>1

6 begin

7 DS1 = {(U1,7’u1),m, <UL%J’T“L%J)}

SR (O et
Skylinel = Skyline (DS1)

10 Skyline2 = Skyline (DS2)

11 return Merge (Skylinel, Skyline2)

12 end

13 end

1 procedure Merge(SLL, SL2)

2 // SL1 and SL2 are skylines.

3 begin

4 Step 1: Refine SL1 and SL2 to align arcs in skylines.

5 Then, we may assume SL1 = (g, U1, Tuy, Q1 ..y Q)

6 and SL2 = (qg, V1, Ty, Q1 vy Qi)

7  Step 2: For each 0 <7 < m, decide new skyline arcs from

8 (v, Wiy Ty, 1) and (o, v, T,y Qig)

9 with the same angle span.

10 Step 3: Combine neighboring skyline arcs from the same disk.

11 Return the new skyline.

12 end

Skyline is a classical divide-and-conquer procedure, and most works

are done in the procedure Merge. There are three steps in Merge.
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First, two skylines are aligned by splitting arcs such that two sky-
lines have the same angle sequences. For example, assume SL1 =
(Bos uh, Tys Brs 10, Boy vy Br) and SL2 = (7o, v), 7, V15 V], T, s Y25 -y 1) ATE
two skylines. Let (g, 1, -, ;) be a monotonic sequence of angles such
that {ag, a1, am} = {080, b1y -y B} U {70, 7, -7} Then, SL1 and SL2
are refined according to angles «q, oy, -+, a,,. After refinement, both lists
should have the same angles sequence and the same number of arcs, and we
may assume SL1 = (qg, U1, Ty, A1, -y Q) and SL2 = (qig, U1, Tay s Q15 oevy Q).

For instance, there are two skyline lists,

SL1 = (0°,up, vl , 40", uy, 7l , 100°, uh, 7!, , 150°)
SL2 = (007 067 7'2;07 600: Ui, 7“;)1, 1200)

We split the skyline lists into smaller arcs. After the step 1 in procedure
Merge, they will be refined to

SL1 = (0", up, 7, 40", dh, vl 607 whet, 1007, uh, ), , 1207, ub, 1), , 1507)

uy?
SL2 = (07, v, ), 40", vhyrl, 460704 7 1007, vf, 7, ,120°, vi, 7, , 150°)
In the second step, for each 0. < i < wn, new skyline arcs are decided
from (av, ws, 7y, ip1) and (o, vi, 7y, aiy1). Given two arcs (o, u, 1y, 3) and
(v, v, 7y, B) with the same angle span, we have following three cases to decide

the new skyline arc.

Case 1: arc(a,u,r,, 3) and arc(a, v, 1y, 3) have no intersection. One arc
is closer to o than the other, and the arc closer to o will be removed from the
skyline. The outer arc remains on the skyline. For instance, in Figure 3.6(a),
arc ab and cd have no intersection point. Arc ab are the new skyline arc of

arcs ab and cd.

Case 2: arc(a,u,ry, ) and arc(a,v,r,, 3) intersect at one point e. Let

~ be the angle corresponding to the intersection point. Applying the principle

17
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Figure 3.6: Merge two arcs with the same corresponding angles.

used in Case 1, new skyline arcs can be decided from arc(o,u,r,,7v) and
arc(a, v, ry,7); and arc(y,u, ry, 3) and arc(y, v, r,, 3). For instance, in Figure
3.6(b), e is the intersection point of arcs ab and cd. Arcs ae and ed are the

new skyline arcs of arcs ab and cd.

Case 3: arc(a,u,ry, ) and.are(ego, r,, 5) intersect at two points e, f.
Let 71 and y2(1 < 72) be thé-angleseorrésponding to the intersection points.
Applying the principle usediinnCase 1, new skyline arcs can be decided from
arc(a, w, ry, 1) and arc(a, U1, y)earc(ys u, ry, v2) and arc(yy, v, 7y, 72); and
arc(yg, u, ry, 3) and arc(yz, vy50). For instance, in Figure 3.6(c), e, f is the
intersection points of arcs ab and cd. ‘Arcs ae, ef and fb are the new skyline

arcs of arcs ab and cd.

In the first and second steps, one arc may be split into several pieces. So, in
the last step, before returning the new skyline, we try to combine neighboring
skyline arcs if they are from the same disk. This step could reduce the overhead

in splitting skyline lists, if there are many small arcs in the refined skyline lists.
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Chapter 4

Time Complexity Analysis

In this chapter, we show that the time complexity of the proposed algorithm
is O (nlnn). In [5], it has been shown that the time complexity of the al-
gorithm that computes the minimum local:disk cover set for homogeneous
networks (i.e., all nodes have the same radius) is bounded by O (nlnn). Since
homogeneous networks are:special cases of heterogeneous networks, the time
complexity for the algorithmythat computes the minimum local disk cover set
for heterogeneous networks is at/least7O.(n1lnn). Hence, the proposed algo-

rithm is with the optimal time complexity.

Skyline is a divide-and-conquer algorithm. The time complexity can be

formulated by a recursive equation

T(n)=0(1) ifn=1,

T (n)=2T (%) + f(n) otherwise.
Here T (n) is the time complexity of Skyline. f(n) is the time complexity
of Merge. f(n) is linear with respect to the number of arcs. If we may have
f(n) = O(n), according to the master theorem [22], then we have T (n) =
O (nlogn). In Lemma 8, we will show that the number of arcs in a skyline is

upper bounded by 2n.
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Figure 4.1: The configuration B(u4,74) contributes 3 arcs in the skyline.

First we present the geometric arguments and related lemmas to support
the proof in the following section. Then we give the time complexity of the

algorithm.

4.1 Geometric Property of Disks

We would like to show that“the mumber-of arcs in a skyline can not be more
than 2n. This can be proved that if we-ecan show that adding a disk into a disk

set increases the number of skyline arcs by at most 2. However, this is not true

in the general case. For a positive integer k > 3, let u; = (% coS %, % sin %) for
any i = 0,1, -+, k—1, the center of these disks averagely located on 0B (0, %)

In Figure 4.1(a), p is an intersection point of 9B (u;, 1) and 0B (u;11, 1) outside
B (0,1), and z is the intersection point of w;u;+1 and op. We have |lu; — x| =
ssinZ, [z —pl| = /1 —(5sin%)?, and Jlo—p|| = Fcos T + (/1 — (§sin )2
Let r € (o—p|l,1+3) be a constant. If we add B (o,r) to the disk set
{B(o0,1), B(uy,rs), B(ua,72), ..., B(ug, %)}, then B(o,r) contributes k dis-
joint arcs to the skyline and doesn’t fully cover any previous skyline arc. Thus,
adding B (o, ) increases the number of skyline arcs by k. Figure 4.1(b) illus-

trates the configuration, for k = 3, B(u4,74) contributes 3 arcs in the skyline,
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$cosE + /1 —(3sin%)?

Whereu4:0andr46< ,1+%>.

However, if the disk is added into the disk set follows the decreasing order
of radius, the claim will be true. Since the order to add disks into the disk set
doesn’t change the final skyline, we change the arrangement of disks added.
Therefore, in what follows, we assume disks are added according to their radii
in the decreasing order of radius.

In the following, we introduce some lemmas about the geometry of disks.

Lemma 4 In the skyline of By, Bs, ..., B,, if B, contributes at least 3 arcs,
then we can pick B;, B;, B, from By, B, ..., B,_1 such that B,, contributes 3
arcs in the skyline of B;, B;, By, B,,.

Proof. First, we claim that if By contributes at least 3 arcs in the skyline of
B, Bj, By, B, then B,, contributes exactly 8 arcs in the skyline. Assume there
are more than 3 arcs contributed by B,. Since each arc is with 2 endpoints,
there are at least 8 interseetion points=int0B,. But 0B;,0B;,dB;, have at
most 6 intersection points with:@B,,. Thisis a contradiction. Thus, our claim
is true. So, to prove the lemma, it is enough to show that B, contributes at
least 3 arcs in the skyline of B;, B;, By, B,.

Choose 3 arcs contributed by B, in the skyline of By, Bs,..., B,, and
consider those disks whose boundaries intersect with 0B,, at endpoints of the
3 arcs. These 6 endpoints are from intersection points of B, with another 3,
4, 5, or 6 disks since the boundary of each disk can contribute either 1 or 2
intersection points with 0B, in the skyline. If there are 3 disks, the lemma
is proved. So, we consider the case that there are more than 3 disks. By
counting the endpoints, if there are more than 3 disks, at lease one intersects
with 0B, exactly at 1 point in the skyline. If we remove a disk which intersects

0B, at exact 1 point in the skyline, the number of arcs contributed by B,
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does not decrease. Thus, in the skyline of remaining disks, B,, contributes at
least 3 arcs, but the number of disks decrease by 1. Figure 4.2(a) illustrates
the configuration in which the skyline contains 4 disks B, By, Bs, B4 and B,

contributes 3 arcs. The arcs of B,, are presented in dotted line. We remove the

@ (b)

Figure 4.2: Proof of Lemma 4.

disk B, which intersects 0B, atexact 1 point in the skyline, and the number
of arcs contributed by B, doésn’t décrease; see Figure 4.2(b). Then, we repeat

the process until there remains 3 disks; and then the lemma is proved. m

Lemma 5 Assume two circle OBy and-0Bg have two intersection points a and
d. Let ac (and ab', respectively) be a diameters of By (and B, respectively),
and ¢ (and b, respectively) is a point in arc 'd (b'd respectively). See Figure
4.8. If the angle Zcab is obtuse, we have

|6 —¢|| > 2min (ry,ry) .

Proof. First, we explore an extreme case in which 0B; and 0B, are tangent,

ie. d,a,b are in a line and a,d are overlapping and £cab is Z. See Figure

2
4.4. Since ac’ (al/ respectively) is the diameter of B; (B, respectively), £c'ca

(LV'ba respectively) is right angle. Aac’ and Aabb’ are similar. If r; < ro,
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Figure 4.3: The structure in Lemma 5.

since £c’ca and £b'ba are also right angles, we have

b —cll* > lla —¢ll” + la— o

2
2 T2
~ o=l + (21 -

=Ha—dF+Hd—cW%-<<%)2—1>Hd—cW
= @2r)*+ ((:—j)? E 1) e < ¢l)" = (2r1)% = (2min (r1, 2))°.

Similarly, if o < rq, we alsothave

lo—cll® > lla —cl* + lla = b]"

2
—fla —bl* + (| — b
T2

2
:Ha—mﬁ+uv—mﬁ+((ﬂ)-=qu—mf
T2
2
= (2r2)2 + ((:—1) — 1) Hb’ — bH2 > (2r2)2 = (2min (7“1,7“2))2.
2

Thus ||b — ¢|| > 2min (r1,72) . The lemma is correct for this extreme case.
The inequality can be extended for general cases by the following simple

observation. Rotate B; and/or By by a to let £c’ab’ become smaller but

don’t let ac’ across ac and ab’ across ab. Let ¢’ denote the intersection of

the ray ac and dB; and b” denote the intersection of the ray ab and 0Bs.
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Figure 4.4: A extreme case when 0B; and 0B, are tangent.

See Figure 4.5. We have |ja — V'|| > |la — b|| and |ja — || > |la — ¢||. Thus,

6" = "|| > ||b —¢||. So, the proof is complete.

Figure 4.5: Rotate By and By hy @, ‘and then ||V — || > ||b — ]|

Lemma 6 Given an acute triangle, for each edge of the triangle, draw a circle
with the edge as a chord whose center is outside the triangle and radius is equal

to the circumradius. Then, three circles intersect at the orthocenter.

Proof. Let Aabc be an acute triangle, C be the circumcircle of Aabe, and Cy
(respectively, C3 and Cy) be a circle with the circumradius of Aabe as its
radius, and edge ab (respectively, bc and @c) as a chord, and its center outside

Aabe. See Figure 4.6(a). To prove this lemma, it is enough to show that Cj,
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Figure 4.6: The configuration of Lemma 6.

C3, Cy contain the orthocenter of Aabe. Figure 4.6(b) illustrates the relation
between C; and C5, and we want to prove Cy contains the orthocenter.

Let f denote the perpendicular foot on ab. Let h denote the intersection
point of C; and line ¢f, and e(respectively, d) denote the intersection points
of Cy and line cf outside (respegctively, inside) Aabc. Let g be the intersection
point of lines bd and ac. If wé can show.g is.the:perpendicular foot on ac, then
d is the orthocenter. Since € and C5 have the same radius, and ab and ce are
perpendicular, acbe is a rhombus:Instherhombus, Zaef = Zacf. Since Zaed
and Zabd correspond to the same-arc ad.and they are inscribed angles on Cy,
Zaed = Zabd. Thus, Zabd = Zacf. In Adbf and Adcg, Zdbf = Zdcg and
Zbdf = Zedg, so Zbfd = Zegd. Since Zbfd = 90°, Zegd = 90°. bgLac and
cf Lab, therefore d is the orthocenter of Aabe.

Similarly, we can prove C'5, Cy also contain the orthocenter. So, the lemma

is proved. m

Then, we have the following corollary.

Corollary 7 Given an acute or right triangle, for each edge of the triangle,
draw a circle with the edge as a chord whose center is outside the triangle and

radius is larger than the circumradius. Then, three circles have no intersection.
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We apply simple counting techniques. Since each arc has two endpoints,
each endpoint is an intersection point of two disks, and two disks have at most

2 intersection points.

Lemma 8 The number of arcs in a skyline of n disks is upper bounded by 2n.

Proof. We prove this by mathematical induction on n. Without loss of gen-
erality, we may assume all n nodes have arcs in the skyline and By, Bs,--- , B,
have been sorted according to their radii in decreasing ordering.

If n = 1, there is only one disk, and thus, the skyline consists of one arc.
If n = 2, two disks intersect at 2 points. There are at most 2 arcs in the
skyline. See Figure 4.7(a). If n = 3, the topology can be categorized into 2
configurations, like Figure 4.7(b) and Figure 4.7(c). Figure 4.7(b) illustrates
one configuration in which each’disk containsone intersection point of the other
two disks, and the skyline is composed-of 3'ares. Figure 4.7(c) illustrates the
other configuration in which one disk ¢ontains two intersection points of the
other two disks. In addition,3:disks is“allowed.to have a common intersection
point like Figure 4.8. The skyline'is eomposed of 3 or 4 arcs. No matter how,
the number of arcs is no more than 2n.

Now, assume that as n = k, the skyline contains at most 2k arcs. If we can
show that after a disk By is added into the set, the number of arcs in the
skyline increases at most by two, then the new skyline contains no more than
2 (k4 1) arcs, and the proof is complete. Without loss of generality, we may
assume By is the disk with the smallest radius among By, By, Ba, ..., Bri1
since it doesn’t change the skyline. We denote the number of arcs in the sky-
line of By, By, ..., By as Sky(By, Bs, . .., Bi). Now, we are going to prove this
by contradiction. Assume By,; can contribute at least 3 arcs. According to

Lemma 4, without loss of generality, we may assume that By, contributes 3
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arcs in the skyline of By, By, B3, Biy1. According to the two possible configu-
rations of By, By, Bs like Figure 4.7(b) or Figure 4.7(c), we discuss the problem

in the two cases.

Oy

(€) (b) (©

Figure 4.7: n < 3, the skyline contains 2n arcs at most.

Figure 4.8: 3 disks have a'¢ommon intersection point.

First, we consider the configuration like Figure 4.7(b). Let a be the inter-
section point of By and B, not in Bs; b be the intersection point of By and Bj
not in Bsy; and ¢ be the intersecting point of By and B3 not in By. In order to
contribute 3 arcs, Bp,; must intersect with 3 disks and contain a,b,c. Now,
the problem is discussed by following two cases: (1) Aabc is an acute or right
triangle; and (2) Aabc is an obtuse triangle.

Case 1: Aabc is an acute or right triangle. Let r. be the circumradius
of Aabc. Since Aabe is an acute or right triangle and By, contains a, b, c,
we have rj; is larger than r.. In addition, since By, is the smallest among

By, By, B, ..., Bgy1. So, we have r. < 11 < ry,ry,r3. But according to
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Corollary 7, if ry,ry,r3 are larger than r., By, By, B3 have no intersection.
This is a contradict to the fact that the intersection of By, By, B3 is not empty.

Case 2: Aabc is an obtuse triangle. It doesn’t affect the correctness of
following argument if we assume Zcab is obtuse. Since By, contribute three
arcs in the skyline of By, By, Bs, Bry1 and 11 < r1, 79,13, degree of each arc
in the skyline of Bj, By, B3 must be larger than «. If ac’ is a diameter of B,
and ab’ is a diameter of By, ¢ and b are in the skyline of By, By, Bs. ¢ is in
the arc ac intersected by arc ab’ and not contained in By and b is in the arc
al/ intersected by arc ac¢’ and not contained in B,. According to Lemma 5, if
Zcab is obtuse, we have ||b — ¢|| > 2min (r1,72). On the other hand, since By
contains Aabe, we have rj1 > 3 ||b — ||, and 2rp41 > [|b—¢| > 2min (ry,72).
Thus, we have a contradiction.

Next, we consider the configurationlike Figure 4.7(c). Without affecting
the correctness of following arguments;-we assume Bj is the one containing
two intersection point of the boundary-of ether two disk. Let b,e denote
intersection points of B; and Bj..and e, f denote intersection points of By
and B3. To contribute three arcs to the skyline of By, By, B3, Bry1, Bri1
should cover at least 3 intersection points. According to the number of covered
intersection points, there are two cases.

Case 3: If By cover exactly 3 intersection points, like Figure 4.9(a), then
Bj1+1 must have 3 intersection points with B3. This is not possible to happen,
since 2 disks have at most 2 intersection points.

Case 4: If By cover exactly 4 intersection points, like Fig. 4.9(b), let
e, f denote the two intersection points covered by the same arc of By, and
a is a intersection point of By and By that is closer to the arc covering e, f.
Since By is smaller than By, By, Bs, arcs bc of B3 outside By, By, arc be of
By outside Bs, and arc c¢f of By outside Bj are larger than 7. So, the angle

£bac > m/2, the diameter of B; with one endpoint at a is outside of B, and
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Figure 4.9: In the configuration, By, doesn’t contribute 3 arcs.

the diameter of By with one endpoint at a is outside of B;. According to
Lemma 5, just like Case 2, we have 2ry, > ||b— ¢|| > 2min (r1,72). This is
a contradiction.

According to previous discussion, By, can’t contribute 3 arcs to the sky-
line of By, Bsy,---, Bry1, and therefore, the number of arcs in the skyline
By, By, -+, By is at most-2(k +11). - Bysmathematical induction, we con-
clude that the number of ares'in the skyline of n disks is upper bounded by

2n. m

Now we show that our algorithm'has time complexity O (nlogn).

4.2 Time Complexity of Algorithm

Theorem 9 The time complexity of Skyline is O (nlogn), where n is the

number of disks.

Proof. The running time 7' (n), of Skyline has the recursive equation

T(n)=0(1) ifn=1,
T (n) =2T (2) + f (n) otherwise.
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If n =1, we have T'(n) = O(1). If n > 2, Skyline executes Skyline twice
but with half problem size and then executes Merge once. According to
Lemma 8, the time complexity of Merge is O (n). Hence, according the master
theorem [22], T'(n) = O (n). The proposed algorithm has the time complexity
O (nlogn). m
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Chapter 5

Simulations and Conclusions

5.1 Simulations

Simulations are done to compare the performance of forwarding set algorithms,
including the blind flooding; skyline algorithm, selecting forwarding set [6],
greedy algorithm, and optimal algorithm. In the simulation, nodes are de-

ployed over a 12.5 x 12.5 square. "Assouree'node u is placed at the center of the

12.52
2

deployment region. If n is the average mumber of neighbors, n nodes are
generated with uniform distribution over the deployment region, where r is
the transmission radius of a node. Two types of networks, homogeneous net-
works and heterogeneous networks, are considered. In homogeneous networks,
all nodes are with the same transmission radius 1. In heterogeneous networks,
every node may have different transmission radius that is generated by a func-
tion which produces randomly a real number between 1 and 2, including the
source node. Bidirectional links are considered. 200 random point sets are
generated in the simulation. For each random point set, the forwarding sets
of node u are calculated by each algorithm. For each algorithm, we calculate

the average size of forwarding set and the distribution of the size of forwarding

sets.
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Since it is still open that whether the minimum forwarding set problem
of disk graphs is NP-Complete or not, we use brute force algorithm to find
the minimum forwarding set. In the blind flooding, all 1-hop neighbors relay
messages, so the number of forwarding nodes is equal to the number of 1-
hop neighbors. In the skyline algorithm, each node chooses a subset of one-
hop neighbors that contribute arcs to the skyline as its forwarding set. The
selecting forwarding set algorithm introduced in [6] for homogeneous networks
is with constant approximation ratios. In the greedy algorithm is that each
node iteratively chooses a 1-hop neighbor covering the maximum number of
2-hop neighbors not yet covered, and completes when all 2-hop neighbors have

been covered.

Excepting the skyline algorithm that only needs 1-hop information, the
optimal algorithm, greedy algorithm, and selecting forwarding set algorithm
[6], need one-hop and two-hop [information to: calculate the forwarding set.
To obtain the information-of“1-hop mneighbors.: each node periodically sent
HELLO messages to report its cutrént status./To obtain information of 2-hop
information, the HELLO messages should-¢ontain the sender’s 1-hop neighbor

list are sent periodically.

5.1.1 Homogeneous Networks

In homogeneous networks, all nodes have the same transmission radii 1. We
run simulation for the blind flooding, skyline algorithm, selecting forwarding
set algorithm [6], greedy algorithm, and optimal algorithm. The average num-
ber of forwarding nodes of five algorithms is illustrated in Figure 5.1. The
r-axis denotes the average number of 1-hop neighbors of node u. The y-axis
denotes the average number of forward nodes. The five curves in the figure

form top to down are corresponding to the blind flooding, skyline algorithm,
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selecting forwarding set [6], greedy algorithm and optimal algorithm, respec-

tively.

Homogeneous Networks

25

20 -
= —+— flooding
e 15 —— skyline
g = gelect FS
Z 10 + greedy
& )

—o- optimal
50 /
0
0 5 10 15 20 25

Average.l=hep neighbors

Figure 5.1: The algorithms aré-eompared;in homogeneous networks.

The selecting forwarding set algorithm and greedy algorithm usually gen-
erate smaller forwarding sets than the skyline algorithm. But instead of 2-hop
information, the skyline algorithm needs only 1-hop information. So, the se-
lecting forwarding set algorithm and greedy algorithm demand more resource
than the skyline algorithm. In addition, if nodes have mobility, more efforts
are needed to maintain 2-hop information then the nodes cost a lot of space
and time in collecting two-hop information. Thus, the skyline algorithm is
more easily to implement than the other two algorithms in wireless ad hoc

networks.

Figure 5.2 and Figure 5.3 illustrate the distribution of the number of for-

warding nodes. Figure 5.2 is of the network in which nodes have 10 1-hop
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neighbors in average, and Figure 5.3 is of the network in which nodes have
20 1-hop neighbors in average. The z-axis is corresponding to the number of
forwarding nodes, and y-axis is corresponding to the number of random point

sets.

Homogeneous Networks, Average 1-hop = 10
120

100

B flooding
skyline

B selecting FS
O greedy

80 r

M optimal

number of nodes

0 1 2 3 45 [6— =8 9051k 12 13 14 15

the number of forwarding nodes

Figure 5.2: The distribution of forward nodes with 1-hop neighbors = 10.

If an algorithm is with better performance, in most cases, it generates
forwarding sets with small size. So, the distribution is located at the left hand
side in the figures. Without too much surprise, the greedy algorithm and
selecting forwarding set algorithm generate smaller forwarding sets than the
skyline algorithm. Note that in Figure 5.3, since the main part of forwarding
nodes is distributed below 25, for simplicity, we show the main part instead
of all, and there are some nodes with forwarding set larger than 25 nodes

generated by the blind flooding algorithm.
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Homogeneous Networks, Average 1-hop = 20
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Figure 5.3: The distribution of forward nodes with 1-hop neighbors = 20.

5.1.2 Heterogeneous: Networks

Since the selecting forwarding set algorithm [6] doesn’t work for heterogeneous
networks, we don’t consider ‘it:in"the simulation for heterogeneous networks.
We run simulation for the blind flooding algorithm, skyline algorithm, greedy
algorithm, and optimal algorithm. In heterogeneous networks, the transmis-
sion range of each node is randomly assigned between 1 and 2.

Figure 5.4 illustrated the average number of forward nodes. The z-axis
denotes the average number of 1-hop neighbors of node u. The y-axis denotes
the average number of forward nodes. In the figure, there are four curves, form
top to down, corresponding to the blind flooding algorithm, skyline algorithm,
greedy algorithm, and optimal algorithm.

Because we use the bidirectional link, the number of 1-hop of source node

u may less than the average 1-hop neighbors.

Figure 5.5 illustrate the distribution of the number of forwarding nodes in
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Heterogeneous Networks
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Figure 5.4: The algorithms are comparéd. in heterogeneous networks.

networks in which nodes with 10 1-hop neighbers in average. The z-axis is
corresponding to the number of forwarding.nodes, and y-axis is corresponding

to the number of random point sets.

Last, we want to point out a drawback of the skyline algorithm that is due
to the directional links and bidirectional links. In Figure 5.6, node u has three
1-hop neighbors uy, ug, ug and uy, us are 2-hop neighbors. u4 is a neighbor of
uy, and us is a neighbor of us. The transmission range of uz can cover uy and
us, but the transmission range of uy or us can not cover us. So, uy and us
are not neighbors of uz. The optimal forwarding set under the bidirectional
link model is {uy, us}, but the skyline set is {uz}. Since the skyline algorithm
utilizes only 1-hop information, it can’t know the information about 2-hop

neighbors. We leave this problem as our one of our future works.
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Heterogeneous Nwtworks, Average 1-hop = 10
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Figure 5.5: The distribution of forward nodes.with 1-hop neighbors = 10.

Figure 5.6: The special case in heterogeneous networks.

37



5.2 Conclusions

To relieve the broadcast storm problem in wireless ad hoc network, we suggest
using the minimum local disk cover set as forwarding nodes for broadcasting
instead of all 1-hop neighbors. In this work, we have established the equiv-
alence of the MLDCS and the skyline set. We propose a divide-and-conquer
algorithm to find the skyline set with the optimal time complexity O(nlogn).
In heterogeneous wireless networks, the skyline set that is based on 1-hop in-
formation, can’t guarantee the coverage of 2-hop neighbors under bidirectional

links. This drawback will be studied in our future works.
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