R R
s PR

e

B9 - B F ok F AT A-NN @

A\

An Efficient Processing-Method.of k-NN Queries in
Mobile Environments

e A e A A F e k]

WEBEBRY - B T NN R
An Efficient Processing Method of k-NN Queries in
Mobile Environments

I A N 2 Student : Hsin-Han Huang
R R Advisor : Jiun-Long Huang
B o= < < #

EON TR N
oL 2

A Thesis
Submitted to Department of Computer and Information Science
College of Electrical Engineering and Computer Science
National ‘Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

Sep. 2007

Hsinchu, Taiwan, Republic of China

PEARA LA EA

Witz 2 - EBHLAHT 2RI RT TREED

B o> 2 @ + ¥
3 > Y) ,§|.‘, 4 Xt) <
BEARALIwm 2T FIHFEERES
(BEREARTHAIAR/EF LE 2T ¥)
rjE DL A7 2B 0 AR R A BRI BT T
KN % BERSIZRYBFETMRIE 2% o
:ﬁ@ﬁgﬂ PN EEIREY - B RS L AN A 2
HMre [(I7F&
AAEHAFE ARG G EER T F e SR g s
%’%F:fé“?i’etﬁ%ééiﬁ&r?& FI3REIY 2L Aw g g N
Frzpa Bz il ~ 52 5 8mex ggfjbg]%gggg]xqf;ﬁ‘gﬁaﬁ
=3 TEVEE NN S S = Ad Y SR EER e A1
ﬂf%?%ﬁfl?\’ééiﬁ @’ﬁ*%ﬁ?‘%?ﬁffajé?ﬁ’
e Y P B 2 R
AfE oBEEcF iawPrer W YEAR O£ 7 poR
Fooh e v e g B E R & 7 poR

%
T
h

G

PEIR 96 & 10 * 8 2

Wiz o ERALAAGY FERRED
SIS S SRS
BPARLA+rm~ FiEjERiES

(R ATH 2 L IR/BRLTLETY)

AT R B e 0 S AANEE R A BRI BT YT

o 96 FERFIFHPFEMLILE 2% o
WY CNERRREY - BT L AN A R

AAEHRHAFE UL B A RRER QL AF ANHEEFHE T
RMEZ T REIE 2L A BMERFIFTL2LP o B2 A H
> i i 3@

A Aok A e SO ERY B G B A A G L g) e
ﬁi—,égfbw;: »%%%é&i =3

iEz2z RAEREEEMLieEy T3S 2ED

VPR AL THHh% L #ES

1D:6T009456551

AERE TR %Y B R AR TS TN SRR g A
ERIEESEIE TN B SRR
HEALR T EHRE Y - BFord AL NN k3

R A

P LR B F RS 20 (FHR) AR D R HEER
ﬁﬂ%%ﬁ%i“”ﬁ%J

HERS S RIS UES SURLESEIEI TR T

#
o T Y P
3
"'ﬁﬁ}%?fﬁ; Azt «fl]'}i%friff{i wE %?ﬁ —ri\.g\:

KR I P2 e SR SRR AR Sl ¢ i F (TR MR R
BEL IR GE

RELE L
AR 96# 10* 8 p

1 AEEEF LD KA o B - Rz 2 - (BT KA
W FIERRAEL)L AT ¥ - PRI e o d [R Y

e Y RAR G A R C R R bl A L

’fl’??Eﬁﬁ@ ;

AR RV A A F gt R ¢

IR EL

e

Vi = [T
=

(NN

T R R R A

WoE R R BR YO- B OF O F R ®E k- NN S OE

a\g
oy

%r;

£1 % G s

RTINS TR I) =iy I 44

%%“r) g% GPS» A v mwAErp Panpp T A4 HF LBt v niphf g
okt S PRGN PRI IR Y G A F AR A AHEDE X
1t Fa 4~ [(valid region) » -5 2% H 2
”‘“%\7““"%1‘"7#&:‘valldreglonw’#-“";% : =
PR Bk #% i valid region en3 2 EREROL oL o itk
m&%i\ AR P SIS L sl PP A %

- - : :
FREE B AP B BT R e TR
B, o
N~

o
55T
-

=
KT

An Efficient Processing Method of k-NN Queries in
Mobile Environments

student : Hsin-Han Huang Advisors : Dr. Jiun-Long Huang

Institute of Network Engineering College of Computer Science
National Chiao Tung University

ABSTRACT

Using GPS, people can identify:theirlocations and:issue queries whose results
depend on those locations. If clients.cacheand-reuse valid regions in their local
storage, this reduces response time and power consumption. However, servers may
not provide valid regions to mobile clientsfor reasons of expense. Thus, another
method of providing valid regions in proxy between database servers and clients has
been proposed. However, this method still suffers from problems of efficiency. We
propose an optimized proxy method that can learn valid regions faster than the
original method. Moreover, our method can also service k-NN queries that the
original cannot. The simulated results show that our method performs better than the
existing proxy method in terms of response time and database workload.

;i] z Pup)
=1 /B l_
¥

FABE R g G L X R KRR A - B 6 E LA R
e

@’1ﬁﬁﬁ%jﬁ%ﬂﬁﬁﬁﬁé’%ﬂ@é%iﬂgé%ﬁo%ﬁﬁgﬁ_&ii
FY Ll § o

=

FERDOP I FHERER NI AR B Pt s 3 R R4 RA X E
A et R ALTFESOE SRR C FIAPEN A BERFIETRE. L R B B E

R FIEOR RAEREED) > /PO TR EDFE T EREAR D

BT E 7 REF gy A7 LRlemgh Al r B R AR L AR 4 B K
IZ#H BT RE R 41’1%25\1]33;.@'% +ib ST A T EAEF %
T4 g 2R 3 i Age AR A R AR b o

SRIRE &SRS S S8 G EE s SRR RS AN R L

A ERE R - ek B oo

Bfs o WLy vajgk%f\%f@m%‘*ﬂ o

RNy YT

p B

P> ﬁ_@ .. i
e O ii
;%;;j» .. i
E] 4—:‘;- .. [\V]
Fe P AR et i it e tiee ettt e e Vi
-1 IR P P PP Vvii
— S Introduction .. 1
1.1 MOTiVATIOMN #+rerrerrrnrrnsanseneeseeseeseiseseeseasenseiaeieenenns 1

1.9 ChAL1EN@E:-+++rerrrrnrrrnerreenneeeeeiintiiti e 9

1.3 Overview of Proposed Approaches::::-:::-eeeeeereeecececees 3

1. 4 Contributions .. 4

1.5 Thesis Organization:«« ---=seeeeeerremerrmeemminmiiineiiinniin, 4
-~ Related WOTK: ««-reeeeererrrreremeemteeeeieeieeieeieeseesenaannns 5
2.1 System Architecture:« sassmmesseereeeeeneeraeerneiiieiiieiinninn 5

2.9 QUETY ProCESSINg: dtteeersereerssityennnnnneneeneeeeeernennnnn, 5

23 DI SCUSSIONS e vaseesorenbatns shahesineneesearenseneeieseenenes 6
2.4 Voronoi Diagrams :and Valid Regioms:::--:ceeeeeeeeeeeeee 7

25 Prior ApProaches:sss:- s smiimmmmm coumeerrnrrenerinniinnnenns. 8

2.6 k-Nearest Neighbor'Search fer*Moving Query Points:--- 11
2.7 Cache Invalidation and Replacement Strategies for 11

Location-Dependent Data in Mobile Environments------

= Query Processing for NN QuUeries::«+t-teseseseeresemeaeuennnn 13
3.9 The System Model - +reserreeerreeeemonmmmiiniiiniiiiiiin, 14

3. 2 Overview ... 16

3.3 Organization of the Proxy Cache ++-eeeeeeerermmmmmmmmmmnnnns 16

3.4 Cache LOOKUp:--«++w - rrrrrrrrernmerrareraetiieiietiin 16

3. 5 Il’lltlal EVR Update .. 17
3.5.1 Incremental Right-Hand Algorithm:-««----sseeeeeereeeernenenn. 20

3.6 EVR Update:-«ereeerrererseeneenemunmeniiiiiiiiiiii 29

3.7 Cache Replacement -+« r+rrerrrrrrrrnsemnneminriininiinin, 929

3_ 8 EVR fOf Cl ient ... 40

7 EXtGl’lSiOl’lS to k_NN Queries 26
7 Simulation .. 29
5. 1 Simulation Result ... 29

5. 2 Effect Of Fast Start .. 29

v
o1 O1 Ol

DO DN DD
wW DN —

Effect Of proposed EVR Update
Effect Of Using EVR fOI‘ Cllent
Effect Of kNN ...

Conclusion

30
36
37
38

List of Tables

2.1 Cartogram

5.1 Simulation parameters

Vi

10

31

List of Figures

11

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8

41

5.1
5.2
5.3
5.4
5.5
5.6

Classification of mobile services

System architecture

Voronoi diagram

Learning by history

EVR combination

Valid region of 2-NN query

The system model

Flowchart

Organization

Fast start

EVR update

Example of lemma

Example of cache replacement

Example of client’s EVR

k-NN queries

Area ratio for NN query at very start

Proxy hit rate for NN query at very start

Waiting time for NN query at very start

Average sides for EVR in proxy for NN query at very start
Avrea ratio for NN query

Proxy hit rate for NN query

vii

10
10
11

14
15
16
20
22
23
25
26

28

32
32
33
33
34
34

5.7 Waiting time for NN query

5.8 Average sides for EVR in proxy for NN query

5.9 Client cache reuse

5.1 0 Waiting time for KNN query

viii

35
35
36
36

Chapter 1

Introduction

1.1 Motivation

Our daily life has changed because of advances in wireless communication and portable device tech-
nologies. Wherever we are, our mobile deyvicés enable.us to maintain network connections and request
mobile services from mobile service providers.- On the other hand, GPS devices allow us not only to
determine our geometric coordinates-in the plane or'in 3-dimensional space, but also to calculate the
distance to other positions. Unlike traditional internet services, as a result, clients can request objects
or services relative to their location [1].

It will be useful to divide such mobile services into two categories: location-aware services and
context-aware services, classified according to the relationship between the query answer and some
specific location. To take a simple example of a context-aware service, requests such as querying stock
price are time dependent rather than location dependent: information about stock values will be the
same wherever the client is located. Querying a ZIP code is another example. On the other hand,
queries about both the climate and local traffic are dependent on one’s specific location: the result of
this kind query will differ according to the user’s position. This type of query is called a location-
dependent query (abbreviated as LDQ) [12].

Among the queries whose answers depend on specific locations, range query and nearest neighbor
query (abbreviated as NN) are the most popular. A range query can be defied as a request referring to
the data objects within a specific region. For example, a client might ask a database server for a list

of restaurants on the campus at National Chiao Tung University. But this kind of query is irrelevant

Context-aware
Services
Mobile

Services Range Query

Location-aware
Services

Nearest Neighbor Query (NN) and
k-NN Query

Figure 1.1: Classification of mobile services

to our main subject. We define a NN query as a query regarding the data objects nearest to the client.
For example, the user is in a train station, and he wants to know where the nearest restaurant is. In
addition to NN query, there is a similar query type called the k-Nearest neighbor query (abbreviated
as k-NN). K is the number of nearest data objects which the user is interested in. For example, if the
client gets lost while driving downtown, he may request the 3 nearest interchanges that would take him
to the freeway. It is clear that NN and k-NN queries are the kind of queries we find in the real world,
and offer much for discussion. This thesis will thus focus on NN and k-NN queries. Figure 1.1 shows

the classification of mobile services.

1.2 Challenge

The question now arises whether, with the increasing number of mobile users, the database server will
become the bottleneck that holds back mobile system performance for reasons of limited resources.
If so, users will increasingly be the victims of long queues for databases. On the other hand, mobile
services attract people because of the small size of mobile devices and the possibility of using various
wireless services. Mobile devices continue to get smaller, but the power a small battery can provide is
very low; therefore, making maximum use of limited energy is another critical issue.

Region validation is a good solution for such situations [13]. A valid region is a region where
the client’s solution value is the same. If the client caches a valid region, he may have the chance to
reuse this information instead of issuing another query to the server. In this way, the workload of the
database and the power consumption of the client is reduced; as a result, the waiting time for each client

is shorter.

In the real world, database servers do not provide valid regions to clients. But many researchers have
found that the use of proxies to provide valid regions between clients and servers slightly increases the
construction cost and workload of each query, but decreases the total workload of the system; therefore,

proxy is a good way of providing valid regions to clients [5].

1.3 Overview of Proposed Approaches

The proxy server consists of four units: cache hit detector, valid region processor, cache manager and
transmitter. When the proxy server receives queries, the cache hit detector first determines which can
be solved locally and which should be transmitted to database servers. If the query can be answered by
proxy server itself, it is passed to the valid region processor; otherwise, the proxy passes the query to the
transmitter. The transmitter encases k-NN queries as (k+1)-NN queries, and transmits these new queries
to the database servers. On receiving a solution from the database servers, the transmitter decomposes
the solution into answers to the original LDQ, queries and their corresponding valid regions. Finally,
the transmitter gives the answers and valid regions to the valid region processor and cache manager.
The cache manager manages cache replacement and updates the cache. The transmitter relays the
LDQ answers and the valid regions to-the query-issuers via-base stations. The merge algorithms in our
cache manager merge EVR valid regions efficiently and avoid preliminary cache misses. The cache
replacement policy algorithm also dell space control. Mobile devices are becoming ever smaller and
are powered by batteries which can only deliver a limited amount of power for a limited period. Thus,
mobile users do not want a query method which consumes too much energy. The behavior type which
costs most in terms of energy for mobile devices is communication with database servers. If a cache is
added to the mobile device, the cache stores query answers and valid regions for each query. If users
stay within the same valid region area, answers to queries will also remain the same. When further
queries are issued, the mobile device checks its cache to determine whether or not it can answer the
query locally. In this way, some queries will be answered locally, response time is short, and energy
consumption is relatively low. Hence, the problem of designing mobile devices is reduced to finding a
way to generate a high cache hit rate without consuming too much resources in terms of computation

power and storage capacity.

1.4 Contributions

The contributions of our thesis may be summarized as follows:

1. We propose a method that avoids the slow start of previous methods. Thus, our method will be

superior to existing methods at the very start.

2. We propose a suboptimal way of merging circle valid regions and polygon valid region in the

cache. This allows faster convergence than was previously possible.

3. We also propose methods that are well suited to k-NN query situations.

1.5 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we first describe the system architecture.
Then, we present an overview of the existing.works.related to our thesis. We also classify these works
according to their attributes. Chapter 3 presents-the algorithms for combination of valid regions, cache
replacement policy on the proxy and ealeulation ofvalid region for client. Chapter 4 describes exten-
sions to k-NN queries. We evaluate our system’s performance in Chapter 5. Chapter 6 concludes this

thesis.

Chapter 2

Related Work

2.1 System Architecture

Figure 2.1 shows the mobile service system architecture which can provide NN and k-NN query ser-
vices. We divide the mobile service system.into service providers and service users. Service providers
consist of base stations and database servers.; Database servers answer NN and k-NN queries deliv-
ered from users. Base stations transmit users’ queries to database servers, and also transmit answers to
queries from servers to users. The base stations-and-data base servers are connected by fixed lines.
Mobile users issue queries which aré€ transmitted from their mobile devices to database servers via

wireless channels in the air. The answers to their queries are delivered in the reverse order.

2.2 Query Processing

When a mobile user makes a query, the mobile device searches its cache to determine whether the query
can be answered locally. If the query location is the same as the one stored in its cache, the device will
give the user a direct answer based on the data value of this cached location. Otherwise, this query will
be transmitted from mobile device to database servers via wireless channels in the air. Then mobile
user get his answers in the reverse way. After receiving answers, mobile device will update its cache if

there is still free space in its cache. Otherwise, the device will take steps to replace the cache.

Database Servers

Fixed Wire

Base stations

Wireless Channel

ﬂ Mobile Clients

Figure 2.1: System architecture
2.3 Discussions

design issue (1) responsiveness timeliness server latency (2) energy constrain power management en-
ergy consumtion For mobile clients, there are three critical issues which should be considered in order
to design a good mobile service system: tésponse time, energy consumption and cache replacement.
Response time is the time from whenthe mobile client issues a query to the time when s/he receives
an answer to this query from the database servers:" Mobile clients need shorter response times in the
mobile service system, as any delay in the query response may mean the answer given to the client is
already obsolete. Mobile devices are powered by batteries, so each query must not consume too much
energy. The sort of behavior with the highest energy consumption for mobile devices is communication
with database servers. Mobile devices may be fitted with a cache which stores the query answer and its
location. If the user’s query location is the same as any of the cached locations, the answer to the query
will also be the same as before. When we issue another query, the mobile device checks its cache to
determine whether it can answer this query locally. In this way, some queries will be answered locally,
response time is short, and energy consumption is low. The problem of cache replacement stems from
the fact that mobile devices are smaller than database servers, so we have to find a way to obtain a high
cache hit rate without taking up too much storage resources Servers receive queries from mobile users
and calculate answers to those queries. Servers relay answers to mobile users via wireless channels.
From the view point of servers, the servers hope to serve more mobile users in the finite resource of

calculation and storage. Another important issue is how efficiently servers use limited wireless chan-

nels. In addition to LDQ answers, the servers can send additional information to mobile users, e.g. the
valid region. Mobile users can use this additional information as a basis to process some future queries

locally.

2.4 Voronoi Diagrams and Valid Regions

Using valid regions is a good way of resolving questions concerning low link quality, low power use and
user mobility. We will discuss valid regions from two different view points. For identical users, [13]
says that the answers may be invalid for moving users as the servers are too slow to respond to questions
in time. If we can use the valid region, and if users are still in the valid region, users can directly answer
these questions by themselves. Only when users move out of the valid region do they need to reissue
questions. The second problem is that if the server responds slowly and user changes position, then
the solution may be invalid. If the user uses valid regions, it can still be determined whether or not the
answer is valid by referring to the valid region; ;Otherwise, it is necessary to reissue the query to the
server. Different users may also benefit.by using,valid regions, as some places have hot” queries such
that when the system caches valid regions for these queries, users can get answers directly from the
cache. For example, a train station is-a ~hot” place where many people issue queries about the nearest
hotels or restaurants. The answers to these queries are often the same, so if the system caches them,
other users can access the cache directly without requiring the server to recalculate answers. In this
way, response time is faster and system performance is better. There are three ways to provide valid
region data. One is to use a pre-calculated Voronoi diagram, the second is to use a valid region online,
and the last is to use a proxy to learn valid regions. We will discuss these ways in more detail in the
following sections. A Voronoi diagram is a set of polygons, called Voronoi cells, generated by data
objects. A Voronoi cell is a collection of points whose nearest neighbor is the generator data object.
Thus, Voronoi cells partition total space. Figure 2.2, below, is an example of a Voronoi diagram, where
each hospital is an object of interest and is contained by a valid region. Servers must calculate the valid
regions of the objects and store them, thus providing service for valid regions. When a server receives
query, it maps it onto a valid region of some object, then relays the data for this object to the user. This
is very fast, as servers must calculate the valid regions for any object only once and can then use them

many times. But valid regions are often irregular polygons and storing their data takes up a lot of space,

oo oo HOSPITAL B

HOSPITAL A

HOSPITAL C

Figure 2.2: Voronoi diagram

so this method is only suitable for NN queries, and not for k-NN queries.

2.5 Prior Approaches

Most existing approaches to providing valid regions:to users are based on servers using pre-computed
Voronoi diagrams or computing valid regions“online, or by proxies learning valid regions from his-
tory records. The first approach requites: pre-computation of the Voronoi diagrams for data objects
and stores them as index structure. During run'time, the server answers a nearest neighbor query q as
follows. First, the server finds the Voronoi cell which contains this query by exploiting the pre-stored
index structure. Then, the server takes the generator data object for this Voronoi cell as the answer
and provides all or a subset of this Voronoi cell as a valid region for the query. This approach has the
advantage that the server constructs the Voronoi diagrams only once and can use them many times;
in this way, users benefit from a fast response time. However, a disadvantage of this approach is that
the server requires in advance a pre-determined value of k in order to pre-compute the corresponding
k-order Voronoi diagrams; but this is impossible for real-world scenarios, since the value of k is deter-
mined during run time. An alternative method would be to pre-compute and store Voronoi diagrams for
all possible values of k, but k-th order Voronoi cells usually have complex shapes and the corresponding
storage overhead would be very high. Traditional approaches assume that the server relays the valid

region to the user directly. But this is impractical in the real world as it consumes excessive calculation

and storage resources. For this reason, in the second approach the server provides the user only with
query results, and not with a valid region.

The second approach uses the novel algorithms proposed by [14] to enable servers to compute the
valid regions in real time. The general way this approach answers a k-nearest neighbor query q is as
follows. First, the server acquires k data objects as a result of q. Then, it recursively issues TPKNN
queries to find other data objects, called influence sets, which contribute the valid region for q. Finally,
it transmits the query answer and influence set to the user. The user’s mobile device can calculate the
valid region by itself by using the influence set. The server thus does not needs to set aside space to store
Voronoi cells; and in addition, this approach can provide k-order Voronoi cells without restrictions. The
drawback of applying this approach to provide valid regions is that the server performs poorly when
queries are dense since it needs extra I/O resources in order to calculate valid regions for each query
in real time. Consequently, users will suffer from long wait and slow response times, and this situation
will deteriorate in instances of huge crowds or burst floods of queries. Moreover, the user’s mobile
device needs additional resources in order to caleulate valid regions, and this situation is aggravated
when k is large. Consider now a third possible.approach which posits a proxy between server and
users. The proxy learns to estimate valid.regions using history records referring to the server and users,
and provides these learned valid regions to users under certain conditions. Figure 2.3 (a) shows the
history records in the proxy cache. Figure 2.3 (b) shows, the actual valid regions (AVR), a Voronoi
diagram and the estimated valid regions (EVR):

But there are still some drawbacks to this approach. First, it is only appropriate for nearest neighbor
queries and does not work properly for k-nearest neighbor queries. Second, it is not efficient enough.
In terms of efficiency, the existing proxy method has two main drawbacks. One is the slow start
phenomenon and the other is overly rapid EVR combination. To contribute a valid region for an object,
the proxy needs at least three different queries whose solutions are this object. This means that most
queries will suffer a cache miss at first: this phenomenon is called the slow start. Next, the proxy faces
the other problem of overly rapid EVR combination. The existing approach assumes that only the query
point and EVR polygon are merged. But if the proxy receives not only a query point but also a circle
valid region, this method does not make good use of all the information. Figure 2.4 shows the current

and optimal ways of merging EVR. We compare these three kinds of methods in Table 2.1.

_
~ g0[ggg|Be
o e
Q oo|888 |00

[]

HOSPITAL C HOSPITAL C

(a) History records in the proxy cache (b) AVR and EVR
Figure 2.3: Learning by history

O L)

a) Target question b)Learning by history

(c) Optimal method

Figure 2.4: EVR combination

] Method \ Server speed \ Space \ Response time \ kNN query
Pre-calculation Fast Large Medium None
Online calculation | Slow Small Medium Support
Learning by history | Medium Medium | Fast None

Table 2.1: Cartogram

10

Distance(NN)

Distance(NN) + 0.5 * [Distance(2NN) - Distance(NN)]

Figure 2.5: Valid region of 2-NN query
2.6 k-Nearest Neighbor Search for Moving Query Points

[10] proposes an idea that can be used for any value-of kK.-When a server receives a k nearest neighbor
query, it evaluates the query and gives (k+1) nearest neighbors to the client. Assume that Distance(k)
and Distance(k+1) are the distances of the k-th-and (k+1)-th:nearest neighbors from the query issuer, re-
spectively. Then the circle whose centef'is.the query point'and whose radius r is half of Distance(k+1)-

Distance(k) is the valid region of k nearest neighbors of q. That is

__ Distance(k+ 1) — Distance(k)
N 2

r

Figure 2.5 shows an example for a nearest neighbor query at position q.

2.7 Cache Invalidation and Replacement Strategies for Location-

Dependent Data in Mobile Environments

[13] proposes two ways of evaluating the values of valid regions in the cache. One is known as PA
and the other PAID. When the cache is exhausted, the server or proxy selects the valid region with

the lowest value as the ”victim”. The PA method considers the access rate and the area of objects:

11

object with higher access rates or larger areas have a larger cache value. PAID considers the distance
between valid regions in the cache and query point more than PA. The shorter the distance, the higher
the probability that the valid region will be reused by clients. Apart from this elimination of victims”,
[13] proposes two further methods for reducing the storage cost of valid regions. First, valid regions
can be degenerated from polygons to inscribed circles. If each point of a polygon costs two bytes and
a polygon has n points, it will cost 2n units in storage. But an inscribed circle costs only 3 units (the
center costs 2 units, and radius costs 1 unit). The drawback of this method is that in some cases it
is insufficiently accurate. A second method reduces points in the valid region, usually by selecting
the points which contributes less to the area than others. The benefit of this approach is its increased

accuracy; but the cost of evaluation is higher.

12

Chapter 3

Query Processing for NN Queries

3.1 The System Model

In this section we describe the applied architecture.We assumes that the coordinate system is a Cartesian
coordinate system, i.e., each position is represented By.two pairs of numbers. The system includes three
components: database servers, proxy, base stations. Mobile clients communicate with the server via
the base station and wireless links. Base ‘stations, proxy servers and database servers intercommunicate
using fixed links. A mobile client can'move randomly: around the map (with restrictions on speed and
direction) without losing the connection. The client can also identify its position using the Global
Positioning System (GPS), and issue queries whose answers depend on its location. Before sending
such requests to servers, the client first checks its local caches. The database servers and proxy servers
provide nearest neighbor or k-nearest neighbor answers to mobile clients. We assume that database
servers do not provide any valid region information with answers, but proxy servers will provide valid
regions using learned histories. We also assume that valid regions are organized in geometric polygons
and stored in databases in the form of link lists of points. We separate the design of the proxy into two
parts: one part determines whether the query cache has been hit, and the other updates the proxy cache.
The first part is responsible for receiving the query and then, on the basis of the location of the query
and the information in the cache, deciding whether the cache has been hit or missed. If the cache has
been missed, the proxy changes the NN query into a 2NN query and relays it to the server. When the
proxy receives the 2NN query solutions, the second part translates the 2NN solutions into NN solutions

and valid regions for NN queries. In addition, the proxy updates the cache with new NN valid regions.

13

N

EXAMPLE Y

#} Fixed Wire

Wireless Channel

Database Servers

Proxy

Base Station

~ % L Mobile Clients
1 J

Figure 3.1: The system model

The performance of first part depends on how fast it'can detect cache hits/misses, and how fast it can
calculate the EVR for the client, because cache detection and EVR calculation are the overheads from
the original system. The performance-of the second part depends on whether it uses storage efficiently,

because storage is also an overhead from the Original

3.2 Overview
Figure 3.2 shows the overview of our method:

1. The INN query, (1, xc, yc), will be transmitted to ”Cache Lookup” of proxy from client at the

position(xc, yc).

2. The ”Cache Lookup” uses Rtree procedure to determine whether this query is cache hit or not.
If cache hit, this query will be passed to "EVR for client”.

If cache miss, this query will be sent to "Encase NN to 2NN Query”. Then, "Encase NN to 2NN

Query” changes original NN query into 2NN query, (2, xc, yc), and request server this new query.
3. After receiving solutions, (datal, x1, yl) and (data2, x2, y2), from server, "Decode 2NN to

14

Server

Proxy
(2, xc, yc) {(datat, x1, y1), (data2, x2, y2)}
Encase NN Decode 2NN
to 2-NN to NN and VR Of Data1
Query VR
' v
Cache
Replacement ~ VR of Datat
v o EVR of Data1
EVR Update
Cache miss ¢
Erc Cache hit EVR £
ache or
ooku Client EVR of Data1
(1, xc, yc)
Client

Figure 3.2: Flowchart

15

NN and VR” decodes these solutions into answers of original query, (datal, x1, y1), and its

corresponding EVR, ”VR of Datal”,.

. ”Cache Replacement” will use Cache-Replacement algorithm to reduce some polygons when

there is not enough space to update it cache.
. "EVR Update” will deal with update of ”VR of Datal” and "EVR of datal” in the proxy cache.

. "EVR for client” will use EVR-for-Client algorithm to reduce n-polygon to 4-polygon. Then, the

answers and its corresponding modified EVR will be returned to client.

3.3 Organization of the Proxy Cache

Traditionally, Voronoi diagrams are structured with D-trees or grid cells. Each polygon is repre-
sented in the form of a series of points or edges, and there is a need for methods which can search
the polygons faster. But the EVRs:in our cache aré.not the same as Voronoi diagrams; therefore,
we do not use the traditional method to organize our EVRs [4] [3] [11] [7]. Instead, we converge
each polygon with an minimum bounding rectangle (abbreviated as MBR), then organize these
MBRs with R-trees or its variations.” “The R=tree.method has been proven to work well in this

situation.

3.4 Cache Lookup

We divide the component for cache hit detection into two parts. One part filters impossible cases,
while the second part determines whether the possible cases are hits or misses. In the case of a
miss, the query is transferred to the server; otherwise, it is transferred to the EVR calculator. We
enclose the EVR with an MBR, then organize them with R-trees. First we determine which MBR
contains the query: if the query has come from someone MBR, this means that the query may
also fall in the EVR. Once it is known that the query belongs to some MBR of some object, then
it must be determined whether the query falls in the EVR. Therefore, we construct a segment

between the location of the query and the location of the object. Determining whether the query

16

falls in the EVR is to the same as detecting whether the segment crosses any edge of any polygon

in the EVR.

3.5 Initial EVR Update

Because we require at least three different points to form an EVR polygon for some object, the
first three queries whose solutions are the same object may be read as cache misses by existing
methods. This is called the phenomenon of the slow start and takes place at the beginning of
proxy service. In order to eliminate this phenomenon, we have designed an algorithm that can
learn EVR polygons after the first cache miss for some object. In our design system, the cache-
missed NN query is converted to a 2-NN query and sent to the database server for computation.
The proxy then splits the solutions for the 2-NN query sent from the database server into an
answer to the original NN query and the corresponding valid region. This information is then
used to update the proxy cache and.relayed to.the mobile client through the base station. When
we update the EVR of some objeet for the first time,we apply a Fast-Start algorithm to construct
the EVR of that object. The input of this dlgorithm is the query point together with its valid
region and object point. In our Fast-Start-algorithm, we search for an inscribed n-regular polygon
in the valid region of the query point and merge this polygon with an object point to form a new
EVR for the object. The inscribed n-regular polygon can be found using De Moiver’s Theorem
or a rotation matrix. This Fast-Start algorithm will use incremental right-hand algorithm to make

a new convex hull, and we describe it in later subsection. Figure 3.3 shows these cases.

Lemma 1. If an n-vertex polygon is n-regular, it will have the largest area within a circumscribed

unit circle.

Proof. Let A be the area of the n-polygon within a circumscribed unit circle, and 6, is the corre-

sponding central angle of edge e, in this polygon. Then,

To maximize A is the same as to maximize

17

or, equivalently, to maximize

By Cauchy Schwarz Inequality,

(Z sin6,)% < nZ(sin 6,)>
Vn Vn

Equality holds if and only if

sinf, =sin6, = ... =sin 6,

This means that regular n-polygons has the largest area within a circumscribed unit circle.

]

Definition 1. We define the cost value as A/C, where A is the total area and C is the vertices of

this area.

Lemma 2. Regular polygon will have the maximum cost value when n is 4.

Proof. By definition of cost value, we know that

1

A/C: ! Zﬂ)

nsin(=*

n

that is,

1 2n

, When

18

has maximum cost value.

We also know that when

Algorithm Fast-Start

1

2:

9]

: Find an inscribed 4-regular polygon of the valid region of this query point
if (The distance between the query point and object point is larger than the radius of the
valid region of the query point) then

Combine this polygon with an object point to make a new polygon using the Incremental

(a) Case 1

Right-Hand Algorithm

end if

Let this polygon be the the EVR of object
return EVR of object

Figure 3.3: Fast start

sin(—) =1

(b) Case 2

Hospital

3.5.1 Incremental Right-Hand Algorithm

Our method of combining EVR polygons frequently uses a convex-hull algorithm. For this rea-
son, we propose a fast incremental convex-hull algorithm (ICHA) that merges an existing convex
hull of a set of n points with a new point outside the section. The newly formed polygon is a
p-vertex convex hull, where p < (n+ 1). This algorithm runs in O(n) time. The input of the
algorithm is an n-vertex convex hull which contains at least three points and a target point p,
outside the polygon. First, it finds a center point p. inside the input polygon; then, it calls the
functions Angle(py, pe , pr) which return the angle formed by the lines p,p. and p.p;,. Instead
of actual angle, the function Angle(py, p. , py) will return the value %. Then, the ICHA
compares these angles to find the points which form the largest angles on the two sides of p,pe.
Finally, it connects the points found on the boundary to the target point and deletes all the points
inside the newly formed polygon. The outcome of this algorithm is a p-vertex convex polygon

that contains the target point on its boundary, where p < (n+ 1). The following are some of the

properties used in the ICHA. And this algorithm Wwill be used in EVR-Update algorithm later.

—_
|PgPrilPgPc] have positive corre-

Lemma 3. The angle between pypeand pgpy and-the value of =——= ==
PqPc PqPr

lation.

Proof. Let 0 be the angle between p;p¢and p,p;.

PqPc - PqDr

cos O =
|PaPrl|PgPel
that is,
_—
0 — arccos LaPec PaPr

|DaDr||Pgpel

—
We know that arccos function is strictly decreasing in [0, 7], and this means that 6 and @-}Hp:qpc_l

PqPc PqPr
have positive correlation.
]
|PgDrl

Definition 2. 7o find the maximal angle is the same as to find the maximal value of ——"—.
PqPc PqPr

20

(a) Before (b) After
Figure 3.4: EVR update

By definition, we can see that we can find the target points at most n times and the time complexity

of ICHA is O(n).

Algorithm Incremental-Right-Hand-Algorithm

1: Find a point p. inside the input convex hull
2: Form a vector p,p.

3: fori«— 1tondo

4: a <« ANGLE(p,p;. pgpe)

5 Find the vertex s, t that have maximal angle on two side of ITpg
6: end for

7: Connect s and p;

8: Connect p; and s

9: Delete all points inside the new formed polygon
10: return Convex hull

Procedure Incremental-Right-Hand-Algorithm

\PqPrl
PqgPc PqPr

1: return

21

3.6 EVR Update

The proxy thus have valid regions for some objects for some time, and these valid regions should
be polygons. Each object, after a query, has a polygonal valid region and a new circle valid region.
We have to merge a polygon and a circle. Figure 3.4 shows these cases. In this algorithm, we
first form a vector u from an object point and a query point. Then we have the direction vector
and norm r of this vector, where r is the EVR radius of the query point. From this results a new

point which can be merged with the polygon from the new vector and object point.

Finally, we apply the right-hand algorithm to merge the point and the polygon. The algorithmic

form of the algorithm is as follows.

Algorithm EVR-Update

I: Ay ¢y —qy

2: Ax —cx—qx

3: 0« tan~! %

4: y' —qy+rsinb

5: X' < gy +rcosb

6: Combine (x',y’) with original EVR toiformi.a néw polygon using the Incremental

Right-Hand Algorithm
Let this polygon be the new EVR of the‘object
return EVR of object

3.7 Cache Replacement

This section will do two things. One is to determine which valid region should be the "victim”.
The other is to decide how to shrink the valid region in order to free up space. When we execute
the cache replacement policy, the system usually runs for a while, and it can be assumed that the
valid region with the smallest area is the least popular. We can also calculate the usage of each

valid region, and the valid region with the smallest usage is also a candidate to be the victim.

Once the victim has been selected, we need to find a way to reduce its valid region in order to
release space. By lemma we know that the polygon with 4 vertices will have the largest cost
value, and we assume that larger areas have a larger number of cache hits. But, it is very difficult

and time consuming to find the quadrangle with the largest area in target n-polygon. An trivial

22

o

Figure 3.5: Example of lemma

way is that we random select four vertices in the target polygon to form an quadrangle. Another
greedy way is that we remove the point Which contributes the least area to target valid region until
it is 4-polygon. Here we propose-an fast.heuristic way to select an quadrangle that will has larger
area in original valid region. We sét the heart of this polygon as original and divide vertices into
four quadrants. We choose 1, 3-or 2,4 quadrants that are not all empty to select vertices which
have larger distances between origin. Then we select another two vertices which also have larger
distances between origin in the other two quadrants. By lemma we can known that this way will

make larger area. Figure 3.6 shows the example of this method.

Lemma 4. Let OA and OB between angle COD, and |OA| > |OB|. The area OCAD will bigger
than area OCBD. Figure 3.5.

Proof. Let 0;; be the angle between edges Oi and Oj. The area of OCAD is the sum of triangles
OCA and OAD.

That is,
1 1
areaOCAD = §|OC| X |OA| X 8in B¢y + §|0A| X |0D| X sin O4p

, equivalently,

23

Figure 3.6: Example of cache replacement

1 .
areaOCAD = 5\2/(|0C\ x |OA|)2 + (|OA| % |OD|)? x sin(6ca + 6p)

For the same reason,

areaOCBD =

or,

1 ‘
areaOCBD = 5\2/(|0C| « |OB|)2 + (|0B| |OD|)? x sin(6¢s + 6pp)

We know that
Oca + 6ap = Ocp + 6pp
and
|OA| > |OB]
Thus,
areaOCAD > areaOCBD

24

Figure 3.7: Example of client’s EVR

Algorithm Cache-Replacement

1: Set heart of this polygon as origin

2: Select 1, 3 or 2, 4 quadrants that all have vertices

3: Find vertices a, b that have longest distances from origin in these two selected quadrants
4: Find other two vertices c, d that hayeldongest distances from origin between a and b

5. return Quadrant with a, b, ¢ ad'd as verticés

i3 AN

t, small storage and power consumption, we pro-
vide an EVR from proxy to client in the form of a quadrant. We will use the information of
client’s movement to provide the benefit of predicting. Figure 3.7 shows the example of this
method.

Algorithm EVR-for-Client

1: Form a line 1 whose slope is the same as client’s position and its predicted point.
2: Find the two edges which intersect line 1
3: return Quadrant these two edges

25

Chapter 4

Extensions to K-NN Queries

The k-NN situation is more complex Figure exhibits all the cases in the k-NN query. The value
of EVR k is the valid region cached in the proxy, and the query k is the query which interests the

client. We can classify them as cache hits.or misses, as follows.

1. Total cache miss: There is no valid region in the proxy corresponding to the received k-NN
query. In the figure, the client issues a S-NN query, but this query point does not belong to
any valid region cached in-the proxy: Figure: 4.1 (a) shows this case. In total cache miss

case, we will do things the same as.cache miss case in NN situation.

2. Total cache hit: The k-NN query point belongs to some valid region and the value of k is
the same as that of the valid region. In the figure, the client issues a 5-NN query and this
query point belongs to a valid region whose k value is 5. The answers in this valid region
are the results of the query. Figure 4.1 (b) shows this case. In total cache hit case, we will

do things the same as cache hit case in NN situation.

3. Partial cache hit, case 1: The number k of the query is smaller than the number k of the
cached valid region. The query point belongs to some cached valid region whose k value is
larger than the k value of the query. In the figure, the client issues a 3-NN query and this
query point belongs to a valid region whose k value is 5. In this case, the partial data items
for the valid region are the results of the query. The proxy must sort all the data items to

get 3 NN solutions for the client. Figure 4.1 (d) shows this case. The proxy will sort all

26

EVRk=5 EVRk=5

Query k=5

EVRk=3 EVRk=5

(c) (d)

Figure 4.1: k-NN queries

solutions in the cache hit EVR: tofind the.answers. Then, it will reply these answers and

this EVR to client.

4. Partial cache hit, case 2: The number k of the query is larger than the number k of the
cached valid region. The query point.belongs to some cached valid region whose k value is
smaller than the k value of the query. In the figure, the client issues a 7-NN query and this
query point belongs to a valid region whose k value is 5. Figure 4.1 (c) shows this case.
Here, the proxy returns the partial answers in the proxy to client and transfer this cache miss
query to server. After receiving solutions, the proxy replies the other answers and EVR to

client.

We describe these ideas in the following algorithm.

AlgorithmKNN-Cache-Lookup

1: S = Procedure-RTEE(q) /* Procedure-RTEE(q) will return the EVR E that contains q, S is
the set of E */

2: if |S| not empty then

3: if There exists E whose E equals g; then

4: E’ = Alorithm-Client’s-EVR(E)

5 Send E’ and E;, s, to client /* E,;,sion 1S the data item solutions in E */

27

6: else
7: Devide S into " and S by E; /* We assume the E in §’ will have E; larger than k, and
E in §” will have E; smaller than k */
8: if |S| not empty then
9: Find the E’ which has minimual Ej in S’
10: Sort £ g olution A0d Pick up g, numbers as solution Eqgousion
11: Eq = Algorithm-Client’s-EVR(E’)
12: Send Eq and E¢qo1,si0n to client
13: else
14: Find the E” which has maximul Ej, in S”
15: Let E” so1urion as partial solutions Eq ,qrtiatsotution
16: Resend this query to server
17: Send Eq partiatsotution t0 client /* After receiving answers from server, the proxy will
sends Eqgor4rion and Eq to client */
18: end if
19: end if
20: else
21: Resend this query to server /* After receiving answers from server, the proxy will sends
Eqso1ution and Eq to client */
22: end if

28

Chapter 5

Simulation

We use JSIM [15] and Spatial Index Library [16] to build our simulator. The simulator is used
to evaluate the performance of our methods when applied. In the simulation, it is assumed that
the servers only provide answers to clients without valid regions. The results of the simulation
show that our method is superior,to the existing method in terms of response time and database

workload. Moreover, it also shows that our method also works well in k-NN environments.

5.1 Simulation Model

The environment of our simulation is similar to those in [S] [13]. (The system parameters are
listed in Table 5.1.) We model the simulation area in a "wrapped-around” rectangular area whose
size is spaceX * spaceY. The area contains objectNum objects and clientNum clients. It is trivial
that the number of clients and the number of objects in the system are the same. Each mobile
client can issue NN and k-NN queries. When the client receives the answers to the issued query,
it will wait for some time, querylnterval. We assume there is some local storage site whose
size 1is clientCacheSize for each client. Before a client issues a new query, it will first check
its cache. In addition, each client moves in a "random walk” fashion. The speed and direction
of the client are limited by the values of speedinterval and directionlnterval, respectively. Let
DatabaseServiceTime be defined by the time in which the database executes each query. Let

ProxyServiceTime be the time in which the proxy determines whether or not each received query

29

Parameters \ Default Value

spaceX 1000 m
spaceY 1000 m
objectNum 100
clientNum 100
querylnterval 10s
maxSpeed 1 m/s
maxDirection 180 degree
dataBaseServiceTime | 0.14 s
proxyServiceTime 0.0001 s

Table 5.1: Simulation parameters

is a cache hit. The size of the proxy storage is limited by the proxyCacheSize.

5.2 Simulation Results

5.2.1 Effect of Fast Start

Here we will discuss the effect of fast start’at the first in four dimensions. We observe the
simulation results of area ratio 6f valid regions in proXy and AVR, proxy hit rate, waiting time of

each query, and average edges stored. in the proxy.

We first discuss the area ratio of valid regions in proxy and AVR. Larger area ratio means much
valid region area learned by proxy. Figure 5.1 shows that we can get much EVR than [5] at very
start. By this reason, Figure 5.2 shows that the proxy hit rate of our method is superior to [5].
The client in the simulation with fast-start has a lower waiting time. This is because our method
organizes larger EVRs and has larger cache hit rate at the start and fewer clients fall victim to
cache misses via the proxy. Figure 5.3 shows these results. However, the cost of our method is

almost the same as [5], Figure 5.4. That means we succeed in overcoming the slow start of [5].

5.2.2 Effect of Proposed EVR Update

Here we will discuss the effect of proposed EVR Update in four dimensions. We also observe the

simulation results of area ratio of valid regions in proxy and AVR, proxy hit rate, waiting time of

30

0.9

05 O Proposed Method BX. GAO

07
06
05

1080 1440 1800 2160 2520 2880 3240

Simulation Time (s)

Area Ratio (%)

Figure 5.1:

0.7

O Proposed Method B X. GAO

Proxy Hit Rate (%)

360 720 1080 1440 1800 2160 2520 2880 3240

Simulation Time (s)

Figure 5.2: Proxy hit rate for NN query at very start

31

Average Waiting Time (s/query)

Average Sides per EVR

0.14

0.12

0.1

0.08

0.06

0.04

0.02

O Proposed Method B X. GAO

(11Tt

360 1080 1440 1800 2160 2520 2880 3240

Simulation Time (s)

Figure 5.3: Waiting query at very start

12

10

360 720 1080 1440 1800 2160 2520 2880 3240

Simulation Time (s)

Figure 5.4: Average sides for EVR in proxy for NN query at very start

32

Area Ratio (%)

Proxy Hit Rate(%)

0.95

0.9

0.85

0.8

0.75

O Proposed Method B X. GAO

0.7

1 2 3 4 5 6

Simulation Time (hour)

09

0.8

O Proposed Method BX. GAO

1 2 3 4 5 6

Simulation Time (hour)

Figure 5.6: Proxy hit rate for NN query

33

Average Waiting Time (s/query)

Average Edges per EVR

0.06

O Proposed Method B X. GAO

0.05

0.04

0.03

0.02

0.01

1 2 3 4 5 6

Simulation Time (hour)

e for NN query

16

O Proposed Method BX. GAO
14

1 2 3 4 5 6

Simulation Time (hour)

Figure 5.8: Average sides for EVR in proxy for NN query

34

Client Cache Reuse Rate (%)

Query Ratio (%)

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0.5

1
Client's Moving Speed (m/s)

O Total Cache Hit B Partial Cache Hit O Partial Cache Miss O Total Cache Miss

2 3 4

Simulation Time (hour)

Figure 5.10: Kinds of Queries

35

O Quadrangle M Circle

Average Waiting Time (s/query)

0.16

0.14

0.12

o
=

0.08

0.06

0.04

0.02

—— Proposed Mrthod —®— Only Sever Support

r——s—s—s—s—5—5—5—5—5—5—5 5555555 5 5

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Simulation Time (hour)

Figure 5.11: Waiting time for kNN query

each query, and average edges stored in the proxy.

We first discuss the area ratio of valid regions in proxy and AVR. Larger area ratio means much
valid region area learned by proxy. Figure 5.5 shows that we can get much EVR than [5]. By
this reason, Figure 5.6 shows that the proxy hit rate of our method is superior to [5]. The client
in the simulation with fast-start has a lower waiting time. This is because our method organizes
larger EVRs and has larger cache hit rate and fewer clients fall victim to cache misses via the
proxy. Figure 5.7 shows these results. However, the cost of our method is almost the same as
[5], Figure 5.8. That means we succeed in providing a suboptimal EVR combination method

than [5].

5.2.3 Effect of Using EVR for Client

Here we will compare the relationships between the shapes of EVR for client and their reuse
rates. Larger reuse rate means that client has larger chance to answer request by itself and save
energy of communication with servers. Figure 5.9 shows that quadrangle will better than circle

in terms of reuse rate. The reason may be that quadrangle will have larger area that circle in EVR

36

for client.

5.2.4 Effect of kNN Situation

Here we will discuss situations in kNN query. Figure 5.10 shows the kinds of queries. We can
see that the number of total cache hit, partial cache hit and partial queries are getting more and
more. Figure 5.9 shows that the average waiting time of each query of our method will get less
because we can learn EVR of kNN. But [5] can do this only by server support. Thus the average

waiting time of each query is constant.

37

Chapter 6

Conclusion

In this thesis we study moving NN and k-NN search problems, and propose architecture and
methods for handling these problems. Despite the advantages of valid regions, in a real-world
scenario, servers do not provide valid regions to clients. However, the only existing proxy method
for moving NN queries is still not efficient enough in combination with EVRs at beginning of
queries and partway into the process. We propose an enhanced proxy method that can provide
faster response times and shortér waiting-times for clients. Furthermore, the proposed method of
cache replacement also handles cache space better than previous models. In addition, we extend

these methods to support moving k-NN queries.

The results of the simulation show that our proposed method is superior to existing methods in

response time and database workload. Our method greatly boosts system performance.

38

Bibliography

[1] C. Becker, and F. Durr. On Location Models for Ubiquitous Computing. Personal and
Ubiquitous Computing, 2005.

[2] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad Hoc Network
Research . Wireless Communication and Mobile Computing (WCMC): Special Issue on
Mobile Ad Hoc Networking: Research, Trends and Applications, 2002.

[3] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable Incremental Processing of Con-
tinuous Queries in Spatio-temporal Databases. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, 2004.

[4] V. Gaede and O. Gunther. Multidimensional Acess Methods. ACM Computing Surveys,
1998.

[5] X. Gao, and A. R. Hurson. Location.Dependent Query Proxy. In Proceedings of the 2005
ACM symposium on Applied computing, 2005.

[6] X. Gao, J. Sustersic, and AJR. Hurson:«Window Query Processing with Proxy Cache. In
Proceedings of the 7th IEEE International Conference on Mobile Data Management, 2006.

[7] H. Hu, J. Xu, and D. L. Lee. A Generic Framework for Monitoring Continuous Spatial
Queries over Moving Objects. In<Proceedings: of the ACM International Conference on
Management of Data, 2003,

[8] H. Hu, J. Xu, W. S. Wong, B:Zheng, D, L."Lee, and W. C. Lee. Proactive Caching for
Spatial Queries in Mobile Environments.. In Proceedings of the 21st IEEE International
Conference on Data Engineering, 2003.

[9] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual Partitioning: An Effi-
cient Method for Continuous Nearest Neighbor Monitoring. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2005.

[10] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving Query Point. In
Proceedings of 7th IEEE International Symposium, 2001.

[11] X. Xiong, M. F. Mokbel, and W. G. Aref. SEA-CNN: Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-temporal Databases. In Proceedings of the 21st IEEE
International Conference of Data Engineering, 2005.

[12] B. Zheng and D. L. Lee. Information Dissemination via Wireless Broadcast. Communica-
tions of the ACM, 2005.

[13] B. Zheng, J. Xu, and D. L. Lee. Cache Invalidation and Replacement Strategies for
Location-Dependent Data in Mobile Environments. /EEE Transactions on Computer, 2002.

[14] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based Spatial Queries.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
2003.

[15] JSIM: A Java-based simulation and animation environment.. http://www.cs.uga.edu/
Jjam/jsim/.

[16] Spatial Index Library. http://research.att.com/ marioh/spatialindex/.

39

	An Efficient Processing Method of k-NN Queries in
	Mobile Environments
	

