
國 立 交 通 大 學

網路工程研究所

碩 士 論 文

一 個 在 工 作 流 程 系 統 管 理 系 統 中 基 於

Task-Role-Based Access Control Model 的

代 理 程 序 框 架

A Delegation Framework Based on the
Task-Role-Based Access Control Model for

Workflow Management Systems

研 究 生：簡 璞

指導教授：王豐堅 教授

中 華 民 國 九 十 六 年 八 月

一個在工作流程系統管理系統中基於 Task-Role-Based Access Control
Model 的代理程序框架

A Delegation Framework Based on the Task-Role-Based Access Control
Model for Workflow Management Systems

研 究 生：簡 璞 Student：Pu Jian

指導教授：王豐堅 Advisor：Feng-Jian Wang

國 立 交 通 大 學
網 路 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Network Engineering

College of Computer Science
National Chiao Tung University

in partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年八月

一個在工作流程系統管理系統中基於

Task-Role-Based Access Control Model 的代理程序

框架

研究生: 簡璞 指導教授: 王豐堅 博士

國立交通大學網路工程研究所

新竹市大學路 1001 號

摘要

 企業使用工作流程管理系統來實行許多的商業流程，當有公司員工無法執

行他們的工作時，工作流程管理系統將這些工作代理給適合的人選，

Task-role-based access control (T-RBAC) model 減少系統管理者在管理工作流程

系統上的成本。然而，在工作流程管理系統中以 T-RBAC 為基礎的代理機制是

需要被探討的。本篇論文提出一個在工作流程系統管理系統中基於 T-RBAC

Model 的代理程序框架，藉由觀察代理程序的行為，本篇論文將代理程序分成

三類，並在這個框架中提出使用者指派迴圈、責任分散以及組織角色衝突等三

個問題，並且根據這三個問題提出相關的分析及解決方法。

關鍵字: 以工作角色為基礎的存取控制模型、工作流程管理系統、代理程序

 I

A Delegation Framework based on the

Task-Role-Based Access Control Model for

Workflow Management Systems

Student: Pu Jian Advisor: Feng-Jian Wang

Institute of Network Engineering National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

 The workflow management system (WfMS) is widely used in performing

business processes among enterprises. When an employee is unavailable to execute

his/her tasks, WfMS delegates the tasks to appropriate users. The task-role-based

access control (T-RBAC) model reduces the administration costs for WfMS.

However, the delegation mechanism in T-RBAC for WfMS is necessary to be

discussed. In this paper, a delegation framework based on the T-RBAC for WfMS is

proposed. By observing the delegation behaviors, three types of delegations are

described respectively. Based on the framework, the issues about user assignment

loop, separation of duty, and organization role conflict are proposed, and their

corresponding analysis methods are also presented.

Keywords: task-role-based access control (T-RBAC) model, delegation, workflow

management system (WfMS).

 II

誌謝

 本篇論文的完成，首先要先謝謝我的指導教授王豐堅教授，在這兩年的諄

諄指教，讓我不論在知識以及觀念上有所精進，對於軟體工程以及工作流程系

統也有相當程度的了解。另外，感謝口試委員朱志平博士、梅興博士以及留忠

賢博士給我的建議，提供了不一樣的觀點及意見，來補足我論文的缺失。

 再者，我要謝謝實驗室的學長姐及同學，博士班的懷中學長不辭辛勞的與

我討論，並且修改我的論文，在口試前一天仍然陪我將論文修飾到隔天早上，

非常感謝，另外還有博士班的靜慧學姊對於我口式技巧的指點，讓我在口試時

得以流暢地對答，對於這些幫助我的學長姐，心中的感激實在難以言語。同學

間的鼓勵，也讓我在困頓的時候，拉了我ㄧ把，也謝謝他們。

 最後，我要感謝我的家人，不論在經濟上以及心理上，都提供我不少的支

持，讓我得以無後顧之憂做我的研究。謝謝你們一路陪我走來，陪我做研究的

歲月。

 III

Table of Contents

摘要.. I

Abstract ... II

誌謝..III

Table of Contents ...IV

List of Figures ..VI

List of Algorithms .. VII

List of Tables.. VII

1. Introduction..1

2. Background ..3

2.1. Role-Based Access Control Model ...3

2.2. Task-Role-Based Access Control Model and Workflow Management

System..4

2.3. Delegation approaches in RBAC ..5

3. A Delegation Framework Based on Task-Role-Based Access Control Model7

3.1. Delegation ...7

3.2. Task-based delegation framework ..8

3.2.1. User and Task repositories ...9

3.2.2. Organization role and process role repositories...11

3.2.3. User-authorized delegation ..14

3.2.4. Fixed delegation...15

3.2.5. Dynamic-selection delegation..16

3.2.5.1. Delegatee user collecting algorithm..17

3.2.6. Dynamic-selection delegation with monitor user ..19

3.2.6.1. Monitor user constraint ...20

 IV

3.2.7. Repeated delegation ...21

3.3. Revocation ..21

3.4. Advantages of the task-based delegation framework..22

3.4.1. Process role repository and organization role repository...............................22

3.4.2. The advantages of the temporal delegatee role..23

4. Analysis Methods for Task-Based Delegation Framework..25

4.1. User Assignment Loop..25

4.1.1. The Marking Method for User Assignment Loop Problem26

4.1.2. Tracing Method for Use Assignment Loop Problem27

4.2. Separation of Duty (SoD) ...29

4.2.1. Analysis method of Weak SoD ..31

4.2.2. Analysis method of Strong SoD...32

4.3. Organization Role Conflict ...34

4.4. Integration of the analysis methods ..38

5. Conclusion and future works ...40

Reference ...41

 V

List of Figures

Fig.2.1 RBAC96 ..3

Fig.2.2 Comparison of RBAC and T-RBAC ...5

Fig.3.1 Task-based delegation framework ...9

Fig.3.2 An example of the organization structure..12

Fig.3.3 User-authorized delegation..14

Fig.3.4 Fix delegation ..15

Fig.3.5 Dynamic-selection delegation ...16

Fig.3.6 Dynamic-selection delegation with monitor user..19

Fig.3.7 Monitor role SoD problem ..20

Fig.3.8 Repeated delegation with a predefined delegatee user schema...................................21

Fig.4.1 User assignment loop problem ..26

Fig.4.2 A loan request process ...29

Fig.4.3 Organization role assignment and process role assignment ..35

Fig.4.4 Task assignment with process role ..35

Fig.4.5 The integration of analysis methods ..39

 VI

List of Algorithms

Algorithm 3.1 (Delegatee user collecting algorithm) ..17

Algorithm 4.1 (Analysis of Assignment Loop with Marking Method)27

Algorithm 4.2 (Analysis of Assignment Loop with Tracing Method).....................................28

Algorithm 4.3 (Analysis of Weak SoD Principle) ...31

Algorithm 4.4 (Strong SoD User Collecting Algorithm)...33

Algorithm 4.5 (Organization Role Conflict Checking Algorithm) ..36

Algorithm 4.6 (Inter-Department Organization Role Conflict Checking Algorithm)37

List of Tables

Table 3.1 Three types of delegations ...8

Table 3.2 Task attributes ..10

Table 3.3 User attributes ..11

Table 3.4 Role/Process role/Organization role attributes...12

 VII

1. Introduction

 In modern enterprise, company employees perform tasks in several processes.

Usually, these employees may be sent to abroad to have meetings or technical

supporting. Once a user is not internal, his jobs are still needed to be executed.

Therefore, these tasks are assigned to some other people to execute. This

re-assignment action is called delegation. The delegation concept is very common in

the real world. When a user cannot perform his task, he asks someone to give him a

hand to do this task. After the helper agrees the request, this task is passed to him.

This is an example of task delegation.

 The workflow management system gives the companies a systematic way to

realize business processes. It replaces the traditional paper-work business processes

by using e-forms and the internet. It increases the efficiency of executing processes.

However, like the real world, the tasks in the system process are still performed by

company employees. These task performers might sometimes unavailable. Therefore,

a systematic delegation is needed to implement as the real world.

 Although there are lots of delegation approaches, most of them bases on the

Role-Based Access Control model (RBAC96) [2]. The RBAC model defines the

relationship between the users and permissions through roles. It gives the

administrator a convenient way to management the permissions. Nevertheless, it

only defines relationship the between users and data, not for the task and data. This

model is not totally suitable for the task-based workflow management systems.

Moreover, the subjects of those delegation approaches are permissions. For the

workflow process, the atomic elements are tasks. Delegating permission cannot

totally fit to the workflow process in delegations. Therefore, a task-based viewpoint

is needed.

 1

 This paper proposes a system view of delegation. By observing the delegation

behavior between the system and users, we define three types of delegations. The

observation leads us to develop a task-based delegation framework for the workflow

management system. This framework in introduced in Section3. Section2 presents

the fundamental approaches of our framework. In Section4, some problems in this

framework are stated, and the analysis methods of these problems are introduced.

 2

2. Background

 This section introduces backgrounds about access control models and delegation

models. In section 2.1, role-based access control model and related delegation model

are introduced. Section 2.2 presents the task-role-based access control model.

2.1. Role-Based Access Control Model

 Role-based access control (RBAC96) [2] presents a new relationship between

users and access rights. In this model, permissions are associated with roles, and

roles are assigned to appropriate users. The relationship between user and role is

called “User Assignment (UA)”, and the other one between role and permission is

called “Permission Assignment (PA).” Fig.2.1 displays RBAC96 model. In RBAC,

users get permissions through roles. UA and PA are added constraints to restrict

users to gain permissions.

Fig.2.1 RBAC96

 The primary concept of RBAC96 is to assign roles to users instead of directly

assigning permissions to users. In this model, a role is viewed as a set of permissions.

It is convenient to give administrators to manage permissions. A number of products

 3

support some form of RBAC directly, and others support closely related concepts,

such as user groups, that can be utilized to implement roles. There are lots of

approaches to extend RBAC96 describing below.

 Although role is a powerful concept for simplifying access control, the

implementation is normally restricted to single systems and applications. Enterprise

Role-Based Access Control (ERBAC) [4] enhances RBAC96 to implement the role

concept on different systems and applications by defining Enterprise Roles. Using

this enhanced role with parameters reduces the number of roles dramatically, thereby

minimizing administration and role maintenance costs on different systems and

applications.

 Generalized Temporal Role-Based Access Control Model (GTRBAC) [6, 7] adds

time concept on roles. In practical, users may be restricted to perform roles at

predefined time periods. Moreover, roles may only be invoked on pre-specified time

intervals when certain actions are permitted. In this model, the duration constraints

are added on roles, user-role assignments, and role-permission assignments. The

roles are activated only at the limit period. The role is assigned to the user at

predefined time. Furthermore, the permissions are allocated to the role at specific

time.

2.2. Task-Role-Based Access Control Model and Workflow

Management System

 Task-Role-Based Access Control Model (T-RBAC) [1] modified RBAC96 to

adapt modern enterprise environment. Fig.2.2 [1] shows the comparison of these two

approaches. In RBAC, users get permissions through roles, but users in T-RBAC get

permissions through tasks and perform tasks through roles. The difference between

the two models is that there is a new notion named task in T-RBAC model. The task

 4

is a fundamental unit of business work or business process. In order to reduce

company costs and increase working efficiency, business processes are emulated by

workflow process in workflow management system. A workflow is organized by

tasks. Therefore, the T-RBAC is suitable to model workflow processes.

Fig.2.2 Comparison of RBAC and T-RBAC

 One disadvantage in RBAC model is that RBAC didn’t define the permissions

between task and data. For example, the project budget data is not allowed for an

engineer role to access. But someone performing the engineer role may get this data

through the budget request task. This scenario expresses a security fraud in RBAC

model which a role can access an unauthorized data through the authorized task.

 T-RBAC simplifies the permission between tasks and data by binding permissions

on the tasks. The role cannot directly access the data. Only when the role has the

task can it access the data. For example, the access right of budget data is on the task

of budget request, not on the engineer role. Therefore, an engineer role cannot

access the budget data directly if the budget request task is not assigned to him.

2.3. Delegation approaches in RBAC

 The other disadvantage of RBAC is that it only defines a fixed assignment

between permissions, roles and users. If a user wants to access an unauthorized data,

he must ask the system administrator to grant the permission to him manually. This

 5

increases the maintenance cost of the administrator. Delegation provides a flexible

way to grant permissions and roles systematically. When the user wants to access the

unauthorized data, the system follows some delegation rules to grant the access

rights to him. By using delegations, the administration cost is decreased. There are

lost of approaches of delegation based on RBAC.

 RBDM1 [10] is a role-based delegation model. It bases on the RBAC model and

extends the RBDM0, which was a delegation model using flat roles. This model

considers the hierarchical role. By identifying different semantics of can-delegate

relation, it presents the role to role delegation.

 A user to user delegation is presented in [11]. The essence of this delegation

model is that a user delegates a particular right to another user. Unlike RBDM1, this

model not only delegates roles to users but also delegates the single permission to

users. Therefore, users get some particular permission without receiving a whole

role. This model also gives an algorithm for accepting the delegation.

 The role graph model [16] gives the visualization of permission and role

assignments. The delegation in role graph [13] shows a simple way to delegate

privileges to users by creating a delegatee role. This special role provides a

convenient way to delegate a whole role or some particular permissions.

 However, all these delegation approaches delegate the privileges. In workflow

management system, tasks are the basic elements of the workflow process.

Therefore, delegating rights to user is insufficient to support the task-based

workflow. In our framework, the idea of delegation is added to provide the task

delegation. And the T-RBAC gives the fundamental basis of the framework.

 6

3. A Delegation Framework Based on Task-Role-Based

Access Control Model

 This section presents a delegation framework in the workflow management

systems. The three types of delegations are described in Section 3.1. Section 3.2

shows the basic delegation framework. Revocation process is presented in section

3.3. Section 3.4 describes the advantage of this framework.

3.1. Delegation

 In modern enterprises, company employees usually have some business travels.

When they go abroad to have meetings, their jobs still need to be done. Thus, their

jobs have to be delegated to others properly. This scenario can be corresponded to

workflow management system. In a workflow process, if a user is unable to do his

task, he can delegate his task to someone who can perform it. Moreover, if a user is

accidentally unavailable to his task, the workflow engine may perform such

delegation actively.

 The user who delegates his task out is called the delegator user, and the user who

is delegated the task is called the delegatee user. By observing the delegation

behaviors, delegations can be divided into three types: user-authorized delegation,

fixed delegation, and dynamic delegation. Table 3.1 shows this observation.

Delegation Requestor Delegatee User Selection Types of Delegation

Human User-Authorized Delegation Human or System

Selected by the system

through a predefined

delegatee user list

Fixed Delegation

 7

Selected by the system

from a delegatee user set

constructed by a

collection algorithm

Dynamic-Selection Delegation

Table 3.1 Three types of delegations

 Users delegate their tasks to others manually are called user-authorized

delegations. Fixed delegations mean that tasks are delegated by the system following

the predefined delegation delegatee user list. A dynamic-selection delegation is

triggered under some unexpected circumstances. For example, a manager is

accidentally unable to attend an important meeting. The system needs to

automatically select an appropriate user to the meeting in time. However, such an

accident is unpredictable, and the replaced person cannot be chosen through a

pre-defined delegatee user list. Thus, an algorithm must be defined for each

dynamical selection of appropriate replaced users.

3.2. Task-based delegation framework

Fig.3.1 presents the task-based delegation framework. The process role repository

stores the information of process roles in one process, and the organization role

repository stores the organization role information. When a dynamic-selection

delegation starts, the workflow engine executes the delegatee user collecting

algorithm to collect users from the process role repository. The set of collected users

is called the candidate user set. The collecting algorithm is described in Section

3.2.4.2. After generating the candidate user set, the analysis methods are executed to

prevent some problems in delegations. These methods are described in Chapter4.

After the analysis, a delegatee user set is constructed, and the delegatee user is

selected from this set following the delegatee user decision rules. However, there

 8

are some special tasks that cannot be delegated by using the collecting algorithm.

The monitor users are introduced to deal with this kind of tasks. The monitor users

are stored in the monitor user repository. These special users are defined by the

process designers and described in Section 3.2.6.

Fig.3.1 Task-based delegation framework

 The delegation handler takes care of fixed delegation and user-authorized

delegation. When a fixed delegation happens, the handler chooses a delegatee user

from the predefined delegatee user schema. The delegatee user of user-authorized

delegation is decided by the delegator user. Thus, the function of the delegation

handler in user-authorized delegation is to pass the delegated task to the delegatee

user.

3.2.1. User and Task repositories

The user and task attributes are stored in the user and task repositories module

respectively. Table 3.2 lists the attributes of tasks. The contents of attributes are

defined by process designers at design phase. The attributes in Table3.1 are essential.

The p_id represents the id of the process this task belongs to, and the type shows

the type of the task. The p_role field stores the process role to which to this task is

 9

assigned. The d_role field stores the id of the delegatee role which is created in

delegation. Prior is the priority of a task in a process. The primary use of priority

is that if there are lots of tasks in a user’s task queue, he executes them from high

priority task to low one. The m_flag is a boolean variable. If m_flag is true, it

means that this task needs a monitor user to decide the delegatee user. Otherwise, if

the task is delegated, the delegatee user is automatically chosen by the system from

the delegatee role constructed by the selection algorithm. The state shows the

current state of this task. There are three states of one task: ready, running, and

submit. When a process is initiated, all the tasks are set to ready. The running state

reflects the task is executing. After the completion of the task, the state is set to

submit. There are three constraint fields needed by the system. The sod_flag is

used to label if this task needs the separation of duty principle. There are three

settings of this attribute: Stong_SoD, Weak_SoD, and none. The

org_conflict_flag is a boolean variable used to mark the allowance of the

organization role conflict. The max_d_cnt defines the maximum amount of

delegating this task.

Task attributes

1. id: task id
2. p_id: process id
3. p_role: process role id
4. d_role: delegatee role id
5. type: type of this task
6. state: the task state
7. prior: priority
8. m_flag: monitor user flag
9. sod_flag: separation of duty constraint
10. org_conflict_flag: organization role constraint
11. max_d_cnt:the maximum amount of delegation

Table 3.2 Task attributes

 10

 The user attributes defined here are listed in Table 3.3. The information of user

performing tasks is stored in the process role repository. The org_role is used for

recording the user’s job position in this enterprise. The id and p_role represent

user’s id and process role. The role_cnt stores the amount of assigned role(s).

The w_cnt attribute increases one when a task is added into user’s task queue.

There are two user constraints. The max_load field contains the user’s restriction

of maximum workload, and the max_role_assign field gives the maximum

amount of role assignment.

User attributes

1. id: user id
2. p_role: process roles
3. org_role: organization roles
4. role_cnt: the amount of assigned role(s)
5. w_cnt: current work count
6. max_load: maximum workload
7. max_role_assign: maximum amount role assignment

Table 3.3 User attributes

3.2.2. Organization role and process role repositories

As implied by the name, the organization role repository stores the structure of

organization role, including job position, levels of organization roles…etc. Table 3.4

lists the attributes of roles. The id is the id of the role, and the pf field stores the

performers of the role. The process and organization role attributes extend the role

attributes. The o_t field in process role defines all the tasks belonging to this

process role. The org_level field stores the level of the organization role.

Role attributes

1. id: the id of the role

2. pf: performers

 11

Process role attributes

1. o_t: own tasks

Organization role attributes

1. org_level: the level of this role in organization

Table 3.4 Role/Process role/Organization role attributes

Normally, the organization role structure is represents as a tree structure. By using

tree structure, organization role hierarchy is easily presented, and the relationships

between roles are described clearly. The relation in tree structure is classed into two

types: vertical and horizontal. The vertical relation gives a level-view of

organization roles. The horizontal relation gives an up-and-down concept of

organization roles. These relations between organization roles are defined below.

Fig.3.2 An example of the organization structure

 The organization role repository stores the information of organization structures.

Fig.3.2 gives an example of organization structure. It contains job position, the rank

of each employee, and the hierarchies of organization roles…etc. The “lower than”

relationship between two organization roles is defined in Definition 3.1. For

example, Tom plays CEO role in company, and Joe is one of his successors. It says

that Joe is “lower than” Tom and denotes “Joe ∠ Tom.” Similarly, Ella is Rose’s

grand successor, and Ella ∠ Rose.

 12

Definition 3.1 (lower than): A is B’s successor, and B is on the A’s path to the

root of organization tree. It says that A’s organization role is lower than B’s. This

relationship is denoted by “∠”.

 Definition 3.2 defines another vertical relation in tree structure. If the level of one

organization role is larger than another with different path to the root of organization

tree, the relation between these two is called “cross-lower than.” For example,

Elva’s level is lager than Emily, but Emily is not on Elva’s path to the root.

Therefore, Elva’s organization role is cross-lower than Emily’s, and it is denoted by

“Elva ⊿ Emily”.

Definition 3.2 (cross-lower than): A’s level is lager than B’s, and their path to

the root of organization tree are not totally the same. It is said that A’s

organization role is cross-lower than B’s. This relationship is denoted by “⊿”.

Two organization roles of two users have the same parents is called “equal to”

defined in Definition 3.3. For instance, Joe and Rose are both managers. In the

organization role tree, they have the same parent, CEO Tom. It says that Joe is

“equal to” Rose and is denoted by “Joe ≣ Rose.”

Definition 3.3 (equal to): A and B have the same parent iff that A’s organization

role is equal to B’s. This relationship is denoted by “≣”.

 The other horizontal relation “cross- equal to” is defined in Definition 3.4. The

difference of “equal to” relation is that the “equal to” relation has the same parent,

but the cross-equal to not. For example, Eric and Steve are at the same level, level 3,

but their parents are different. This is called Eric is “cross-equal to” Steve. And it is

denoted by “Eric ≒ Steve”.

Definition 3.4 (cross-equal to): A’s level and B’s level are the same with

different parent iff that A’s organization role is cross-equal to B’s. This

 13

relationship is denoted by “≒”.

3.2.3. User-authorized delegation

 Delegating the task by user himself is called a user-authorized delegation. When a

user wants to delegate his task to a designate user, he asks the workflow engine to

create a temporal process role called the delegatee role in the beginning. After

creating the delegatee role, the system assigns this task to this temporal role. Then

the designate user is allocated, and the delegatee role is assigned to him. Fig.3.3 is

an example.

Fig.3.3 User-authorized delegation

 Once User1 is too busy to perform Task1, he requires a delegation for Task1 from

the system. When the workflow engine accepts such a request, it creates a temporal

delegatee role immediately and assigns Task1 to this role. Then, the system assigns

temporal delegatee role to User2 authorized by User1 directly. After these three

steps, Task1 is delegated from User1 to User2. Obviously, this is a user-authorized

delegation.

 14

3.2.4. Fixed delegation

 In case of interrupting the execution of a process, the process designer defines

some delegatee users for each task to prevent the user unavailable problem. If

someone cannot perform his task when executing this process, the system delegates

this task to the predefined delegatee user. This kind of delegation is called fixed

delegation. Fig.3.4 is an example.

Fig.3.4 Fix delegation

 In Fig.3.4, the delegatee user list is defined by the process designer for Task1.

When User1 is unavailable to perform Task1, User2 is woken up in the delegatee

user schema by the system to perform Task1. After waking User2 up, the temporal

delegatee role is created, and Task1 is assigned to this temporal role. At last step, the

temporal delegatee role is assigned to Uses2.

 15

3.2.5. Dynamic-selection delegation

 There are lots of unexpected events when executing workflow processes. For

example, let the defined delegatee user in fixed delegation be accidentally absent

from an important meeting. The system has to choose another delegatee user to do

this task automatically. However, the process designer didn’t assign the delegatee

user for this meeting. Therefore, some rules or algorithms are needed to select an

appropriate user as a substitute for the meeting dynamically. This kind of delegation

is called the dynamic-selection delegation. Fig.3.5 shows the dynamic-selection

delegation.

Fig.3.5 Dynamic-selection delegation

 When a dynamic-selection delegation starts, the temporal delegatee role is created,

and Task1 is assigned to this role. Then, the algorithm for collecting delegatee users

is executed to generate the delegatee user set. After constructing the delegatee user

set, the system follows the delegatee user decision rules to select the delegatee user.

This approach is named as dynamic-selection delegation.

 16

3.2.5.1. Delegatee user collecting algorithm

 Delegatee user assignment is the most important part in delegation process. In

some cases, numbers of user are collected by the system and one of them is selected

by the monitor role. This case is called dynamic-selection delegation with monitor

user described in Section 3.2.6. For the rest, the delegatee users are automatically

chosen by the workflow engine. The delegatee user is selected from a list called

delegatee user set shown in Fig.3.1. The delegatee user list is constructed in

accordance with a collecting algorithm. This algorithm is executed by the workflow

engine to select users into delegatee user set. Some user and task attributes are

provided to determine whom to choose. These attributes are shown in Table 3.1 and

Table 3.2. The collecting algorithm is presented in Algorithm 3.1.

Algorithm 3.1 (Delegatee user collecting algorithm)

Input:

 The process role repository P

 The delegated task t

Output:

 A candidate user set C

DUCA:

01 Begin

02 For each process role p∈P, do

03 For each user u p.o_t do ∈

04 If u.w_cnt < u.max_load ||

 u.role_cnt < u.max_role_assign

05 Insert u to C

06 EndIf

 17

07 EndFor

08 EndFor

09 If t.prior = HIGH

10 For each user u’∈ C, do

11 For each task t’∈u’.p_role.o_t, do

12 If t’.prior = HIGH

13 Remove u’ from C

14 Break

15 Endif

16 Endfor

17 Endfor

18 Endif

19 End

 Delegatee users are selected from the process role repository. The workflow

engine checks user’s attributes to collect appropriate users as a list of delegatee users.

In Step1 (Line02-08) of Algorithm3.1, the engine chooses the users whose current

work counts are less than their maximum workload. Second, it selects the users

whose assignment numbers are less than their limitation respectively. The function

of the second constraint is to limit the numbers of delegations for each user.

 The Step2 (Line09-18) checks the attributes, in Table3.1, of the delegated task. If

the priority of delegated task is marked as “HIGH”, the system selects users with no

high priority tasks in task queue first from the result of Step1. The priority of task is

defined by process designers. There are two levels of priority: “HIGH” and

“NORMAL”. This is used to give the high execution order to high priority tasks. If

the priority is set to “NORMAL”, there is no change for Step1.

 18

3.2.6. Dynamic-selection delegation with monitor user

 Sometimes delegation process invokes a special role type called a monitor role.

The primary job of a monitor role is to decide the final delegatee user. The user

assigned the monitor role is called a monitor user. Fig.3.6 shows how a monitor

user participates in a dynamic delegation process.

Fig.3.6 Dynamic-selection delegation with monitor user

When a dynamic-selection delegation starts, the workflow engine first checks the

attributes of the task. If the monitor flag is labeled true, the engine creates a monitor

role and assigns it to an appropriate user based on a pre-defined monitor role

assignment policy. When the monitor user is decided, the selection is then executed

to generate the delegatee user set. Unlike dynamic delegation without monitor user,

the final delegatee user is picked from the delegatee user set by the monitor user.

 The other function of monitor user is to appoint the delegatee user when no users

are picked into the delegatee user set. During execution, an existing collecting

 19

algorithm might find no user for the delegatee user set. When this situation happens,

the system asks the monitor user to select the final delegatee user manually.

3.2.6.1. Monitor user constraint

Fig.3.7 Monitor role SoD problem

 There is a constraint for the monitor role assignment. The monitor user of the

delegated task cannot be selected into the delegatee user set. This is used to prevent

the separation of duty problem. Fig.3.7 presents an example of separation of duties.

In the example, the budget request task is assigned to User3. Now a monitor role,

Monitor Role1, is invoked when the budget approval task is delegated. And a

temporal role, Role4, is created by the workflow engine for delegation. When the

monitor role is assigned, User3 is expected to select a delegatee user from delegatee

user set to play Role4. If User3 is in the delegatee user set at the same time, he can

select himself to do this task. Thus, User3 can request the budget and approve it.

This kind of problem is likely to be prevented in enterprises.

 20

3.2.7. Repeated delegation

 The repeated delegation is a phenomenon of the delegation. When the delegatee

user is unable to perform the task delegating to him, this task must be delegated to

another person. The delegation from one delegatee user to another is called a

repeated delegation.

 Fig.3.8 gives an example of a repeated delegation with the fixed delegation. After

User1 delegates Task1 to User2, User2 is accidentally unavailable. Thus, he requests

a fixed delegation to delegate Task1 out. When the system receives this request, it

selects User3 from the predefined delegatee user schema as the delegatee user of

User2 and assigns the temporal delegatee role to User3. This multiple delegation is

called repeated delegation.

Fig.3.8 Repeated delegation with a predefined delegatee user schema

3.3. Revocation

 With the temporal role in the delegation process, the revocation process only

 21

requires only three steps. First, the engine deletes the role assignment between the

delegatee role and the delegatee user. Second, task assignment between the

delegated task and delegatee role is deleted. The temporal role is deleted at the last

step, and the delegated task can be revoked back to the original user. For example, in

Fig.3.1 the workflow engine first deletes the role assignment between the temporal

delegatee role and User2. Then, it deletes the assignment between Task1 and

temporal delegatee role. Last, the temporal delegatee role is delegated, and the

revocation process is finished.

 However, there is a problem in revocation: the delegated task is asked to be

revoked while a delegatee user is performing it. Here presents a solution. According

to the state of the delegated task, the result of the submitted state task is

remained. And the result of the task in running state is discarded. The ready

state task is revoked immediately after the revocation request is sent. The advantage

of this solution is that the workflow engine doesn’t have to halt the delegatee user

while he/she is performing the delegated task. Instead, it only has to re-assign the

task to delegator and re-sends the information before delegating to him.

3.4. Some discussions of the task-based delegation framework

 There are some discussions in our framework. Section 3.4.1 describes the benefit

of using two kinds of role repositories. The advantages of using a temporal delegatee

role are mentioned in Section 3.4.2.

3.4.1. Process role repository and organization role repository

 The primary reason to separate the roles into two types is to clearly distinguish

roles in the processes and organization. When a new project is started, new

processes are created for this new project. Some roles, such as project managers,

 22

quality assurance engineers, and programmers…etc., are created for this project only.

If using the organization role as the performers in the processes, the relationships

between the new project-oriented roles and the existing organization roles must be

defined. Moreover, these project-oriented roles and the relationships must be deleted

after finishing the project. In this scenario, the system administrators may have to

rapidly define and delete the relationships between project roles and organization

roles when new projects are created and finished. It costs some maintenance efforts

for the administrators.

 Separating roles into the process and organization roles makes the administrators

maintain these project-oriented roles easier. When each new process is created in a

new project, a process role repository is allocated to this process. The administrators

focus on managing the relationships of the new created roles in the process role

repository. He doesn’t have to define the relationship between the new roles and the

organization roles. It saves some efforts to manage the roles in the processes and

organization.

3.4.2. The advantages of the temporal delegatee role

 The other distinguished feature of our framework is that using a temporal

delegatee role instead of directly delegating the delegator user’s role to the replaced

person. The work can decrease some administrator’s maintenance efforts too.

 In our framework, users perform tasks through the process roles. A process role

may be assigned multiple tasks. If delegating the delegator role to the delegatee user

directly, the delegatee user can perform all the tasks assigned to the delegator role.

Therefore, in other approaches without the temporal delegatee roles, the

administrators have to define extra delegation constraints between the delegator role

and all the tasks belonging to the delegator roles. In our framework, the

 23

administrator manages the assignment between the delegated task and the temporal

delegatee role. He/she doesn’t have to define the extra delegation constraints

between the delegator role and all the tasks belonging to the delegator role. In

comparison to previous approaches in managing the delegations, our framework

saves some management efforts of defining the extra delegation constraints.

 24

4. Analysis Methods for Task-Based Delegation Framework

 Our framework supports delegation handling in workflow systems. Several issues

are derived from our framework. The issues and corresponding solutions are

discussed in this Chapter. First, user assignment loop problem may occur in the

repeated delegation, and this problem is presented in Section 4.1 In section 4.2, the

separation of duty principle in our framework is introduced. Organization role

conflict problem in Section 4.3 gives a new issue between organization role and

process role.

4.1. User Assignment Loop

 If a delegated task is delegated to its delegator user, user assignment loop problem

happens. Normally, a user doesn’t delegate his task to himself. Therefore, the user

assignment loop only occurs in a repeated delegation.

 Fig.4.1 presents an example of user assignment loop problem. Task1 is assigned

to User1 through Role1. Assume that User1 delegates his task, Task1, to User2, and

delegates Task1 to User3 due to an emergency task. Furthermore, User3 is

accidentally unavailable, after he accepts the delegated task. If Task1 is

automatically now assigned to User1 by the workflow engine, the user assignment

loop problem takes place under this scenario.

 To prevent this problem, the delegator users are needed to be recorded. There are

two ways to record the delegator users of a delegated task. One is marking method,

and the other one is tracing method. The two methods are introduced in following

sections.

 25

Fig.4.1 User assignment loop problem

4.1.1. The Marking Method for User Assignment Loop Problem

 In marking method, the id of the delegated task is stored in a table named d_task

which is associated with the delegator user as an extended attribute. When a

delegation happens, the delegated task id is put into the d_task table associated with

the delegator user. Moreover, while the repeated delegation occurs, the delegated

task id is recorded in all delegator users’ d_task tables respectively. As described in

Chapter 3, when the original user revokes his delegated task or the task completes,

the delegated task id is kick off from those user who has it in his/her d_task.

 Algorithm 4.1 AALMm (Analysis of Assignment Loop with Marking Method)

describes the marking method. This algorithm removes users who might cause the

user assignment loop from the user set generated by the collecting algorithm and

analyzed by other analysis methods. Each candidate user’s d_tasks table is checked

if there is a recorded task id equaled to the delegated one. In case it is true, this user

is deleted from the delegatee user set.

 26

Algorithm 4.1 (Analysis of Assignment Loop with Marking Method)

Input:

 A user set C

 The delegated task t

Output:

 A delegatee user set D without the user assignment loop problem

AALMm

01 Begin

02 D = C

03 For each user u∈D, do

04 For each task id d_id∈u.d_task do

05 If the d_id is equal to t.id

06 Remove u from D

07 Break

08 EndIf

09 EndFor

10 EndFor

11 End

4.1.2. Tracing Method for Use Assignment Loop Problem

 In tracing method, the id of the delegator user is stored in a table, named r_task,

which is associated with the temporal delegatee role. When a delegation happens,

the delegator user’s id is put into the r_task table associated with the temporal

delegatee role. Furthermore, while the repeated delegation occurs, all ids of the

delegator users are recorded in the r_task table. As described in Chapter 3, when the

original user revokes his delegated task or the task completes, the temporal

 27

delegatee role is removed, and the r_task table on this role is also deleted.

 Algorithm 4.1 AALTm (Analysis of Assignment Loop with Tracing Method)

describes the tracing method. The purpose of this algorithm is the same with the

algorithm AALMm. The r_tasks table binding on the temporal delegatee role related

to the delegated task is checked.

Algorithm 4.2 (Analysis of Assignment Loop with Tracing Method)

Input:

 A user set C

 The delegated task t

Output:

 A delegatee user set D without the user assignment loop problem

AALTm

01 Begin

02 D = C – t.d_role.r_task

03 End

Algorithm 4.2 Tracing method algorithm for user assignment loop problem

The difference between the two methods is where to log the information of

delegator users. The marking method records the information of delegator users in

the user attribute, but the tracing method uses the delegatee role to store the

information of delegator users. Generally speaking, the tracing method is faster than

marking method in checking user assignment loop for one delegated task. This is

because that tracing method only verifies users in the delegator user table. But

marking method has to go through all the users in the delegatee user set to check

whether the delegated task ID is in their d_tasks attributes. Normally, delegator users

in multi-delegations are not more than five people, but the numbers of users in

delegatee user set are. Thus, executing tracing method is usually faster than marking

 28

method in checking loop problem for one task.

The advantage of marking method is that it is easy to know what tasks are

delegated by users. The marking method is better used before the selection algorithm

to help the system to collect delegatee user set. When picking up delegatee users, the

engine checks the d_tasks in users. If the delegated task ID is appeared in this

attribute, this user is not chosen into delegatee user set. The tracing method can also

be used before executing selection algorithm. But in comparison of executing time,

the marking method is faster then tracing. The reason is that tracing method traces

delegator user table every time before a user is picked. The marking method only

has to compare the delegated ID with the d_tasks attribute. Normally, the size of

d_tasks attribute is smaller than the delegator user table. Thus, the marking method

is better than the tracing method to put at the beginning of selection algorithm.

4.2. Separation of Duty (SoD)

 The separation of duty (SoD) is a security principle. When two or more tasks in

the same process are performed by one user, SoD problem might occur.

Fig.4.2 A loan request process

 Fig.4.3 presents a loan process. All the tasks are assigned to different users

through different roles. Suppose that T2 is assigned to User2 through a process role

named account manager. T3 is assigned to User3 through another process role

named department manager. Now User3 is unexpectedly unavailable, and the task

approval task is needed to be executed. If T3 is automatically delegated by the

 29

engine and is assigned to User2, thus, User2 can easily approve any amount of

loans.

 To state the SoD principle in detail, tasks are divided into two types: decision task

and general task. The definition is described below.

Definition 4.1 (Decision Task): A task within the workflow where a single

thread of control makes a decision upon which branch to take when encountered

with at least one alternative workflow branches. This kind of task is called

decision task.

 In definition 4.1, decision tasks decide the execution path of a process. Using Fig

3.5 as an example, T2 and T3 are loan approval tasks. If managers in T2 or T3

disagree with loan requests, these loan requests are dropped. Obviously, T2 and T3

can effect the execution of process. Therefore, T2 and T3 are decision tasks. Check

points and decision making tasks in processes are usually classed as decision tasks.

From workflow viewpoint, XOR-split nodes are classed as decision tasks. T1 and T5

in Fig.4.3 are general tasks. These kinds of tasks are routines or those that never

change process execution path.

Definition 4.2 (General Task): All Tasks which are not classed as decision tasks

are general tasks.

 When constructing the delegatee user set, the workflow engine shall check the

picked users’ SoD constraints. If some ones violate these constraints, they cannot be

selected into delegatee user set. There are two types of separation of duty constraints:

strong SoD and weak SoD.

Definition 4.3 (Strong SoD): Any two tasks in one process, including decision

tasks and general tasks, are not performed by the same person is called Strong

Separation of Duty.

 30

 That the delegations both decision and general tasks cannot violate separation of

duty constraints is called strong SoD. Limiting decision tasks not to violate

separation of duty constraints only is called weak SoD. The benefit of strong SoD

constraint is to prevent that a task in highly secure processes, such as military

processes, are performed by the same user. Usually, the enterprise processes only

require weak SoD constraints.

Definition 4.4 (Weak SoD): That the decision tasks in one process only are

restricted to be performed by different users is called Weak Separation of Duty.

4.2.1. Analysis method of Weak SoD

 The weak SoD principle does not allow two decision tasks to be executed by one

person, since one can easily change the execution path or result when holding two or

more decision tasks in a process. Algorithm 4.3 gives a method filtering the

candidate user set to assure that the delegatee user set violates no weak SoD

principle.

Algorithm 4.3 (Analysis of Weak SoD Principle)

Input:

 The Task repository T

 A user set C

Output:

 A user set D

AWSDP

00 D = C

01 For each task t∈T, do

02 If t.type = decision

 31

03 If t.state = submit

04 If t.d_role != NULL

05 Remove t.d_role.pf from D

06 Else

07 Remove t.p_role.pf from D

08 Endif

09 Else

10 Remove t.d_role.pf from D

11 Remove t.p_role.pf from D

12 Endif

13 Endif

14 Endfor

 Algorithm 4.3, AWSDP (Analysis of Weak SoD Principle), is executed when the

delegated tasks is typed “decision” and under the constraint of weak SoD principle.

In AWSDP, all the users which potentially perform any decision tasks in the process

are removed from the result set. To achieve the goal, the execution states of tasks are

considered. For a submitted task, if the task is not delegated, the original performer

is considered, otherwise only the delegatee user is considered. To a ready or a

running task, because revocation might take place, both the original performer and

the delegatee user (if any) must be considered.

4.2.2. Analysis method of Strong SoD

 Strong SoD restrict that all tasks in one process must be performed by different

users. Since the collecting algorithm collects users only from the process role

repository, the collecting algorithm find no delegatee users under strong SoD. For

this reason, when delegating one task with strong SoD constraint, a new collecting

 32

algorithm is brought up for fitting strong SoD by using organization role repository.

When one task is set to strong SoD constraint, Algorithm 3.1 is not used to select

the delegatee users of this task in order not to against this constraint. A new selection

algorithm is used to collect candidate users from the organization role repository.

Algorithm 4.4 presents this method.

Algorithm 4.4 (Strong SoD User Collecting Algorithm)

Input:

 The User repository U

 The Process role repository P

 The delegator user d

 The delegated task t

Output:

 The delegatee user set D

SSUCA

00 Begin

01 For each user u∈U, do

02 If d.org_role ∠ u.org_role || d.org_role ≡ u.org_role

03 Insert u to D

04 Endif

05 Endfor

06 For each user u’∈D, do

07 If u’.w_cnt+1 > u’.max_load || u’∈P

08 Remove u’ from D

09 Endif

10 Endfor

 33

11 D = AUALTm(D, t)

12 End

 First, the delegator user’s supervisors in organization are collected. Moreover,

users with the equal organization level to the delegator user are picked. Second, the

system deletes users whose work count is out of their maximum workload or process

role appeared in the process repository of delegated task. This action is used to

achieve the main concept of separation of duty. Third, the user assignment loop

checking algorithm in Section 4.1 is executed to prevent the loop problem. After

executing this algorithm, a delegatee user set based on organization role is

constructed without against the strong SoD principle.

4.3. Organization Role Conflict

 The delegatee role may be assigned to a user whose organization role is lower

than the delegator user. A problem is raised that some decision tasks of a supervisor

may be performed by his subordinate after delegation. Fig.4.5 presents an example

of organization role assignment and process role assignment. In this organization,

Tom is Rose’s supervisor, and Elvis is Rose’s subordinate. In one project of this

organization, the project manager role is played by Tom, and the QA and RD roles

are respectively assigned to Rose and Elvis. It is noticed that the roles are

hierarchical in organization role structure, but those in process roles are not totally

hierarchical. The project manager, QA, and RD roles are project-oriented role.

Therefore, they belong to process roles.

 34

Fig.4.3 Organization role assignment and process role assignment

 Fig.4.6 shows a process of asking leave of absence. If someone in this project

cannot attend scheduled meetings, he starts this process. He sends the form of asking

leave of absence to the project manager to approve this request. In this scenario,

approving absence requests task is assigned to the project manager, Tom. Assume

that someday Tom is accidentally unavailable, and the workflow engine

automatically delegates the approval task to Elvis. A strange situation is brought

about that Rose’s absence request is approved by Elvis, i.e. the supervisor’s absence

request is approved by his subordinate.

Fig.4.4 Task assignment with process role

 The primary reason to cause organization conflict is that tasks are assigned to the

 35

process role instead of being assigned to the organization role. Section 3 has

described the advantages of separating role into these two types. However, the

implicit problem is coming up with this special assignment of role, tasks, and users.

From company ethics viewpoint, an engineer cannot approve the manager’s absence

request. For not to violate such company ethics problem, the delegatee user’s

organization role is needed to be checked when collecting the candidate users.

Considering the type of task, the execution path and result is not changed when

executing general task. This means that no organization role conflict in delegating

general tasks. But the decision type task may change. Thus, in order not to cause the

organization role conflict problem, decision tasks are not allowed to be delegated to

users with lower organization roles. Algorithm 4.5 gives this solution of checking

the organization role conflict.

Algorithm 4.5 (Organization Role Conflict Checking Algorithm)

Input:

 A user set C

 The delegator user d

Output:

 A user set D

ORCCA

00 Begin

01 D = C

02 For each u∈C, do

03 If u.org_role ∠ d.org_role || u.org_role ⊿ d.org_role

04 Remove u from D

05 Endif

 36

06 Endfor

07 End

 The users whose organization roles are lower then the delegator user are deleted.

This step ensures no subordinate of the delegator user is collected into the delegatee

user set. It prevents the primary reason to cause organization role conflicts.

 There are lots of departments in modern enterprises. And the process in this

environment usually requires inter-department cooperation. When delegations

happen in such environment, the organization role conflict problem may apparent

much easier. This conflict is called inter-department organization role conflict.

Using Fig.4.3 as an example, Rose is the supervisor of engineer department, and

Peter is sales department manager. There is a project to be carried out by the two

departments to carry out, but one collaborate process is created. In this project, Rose

is the project leader, and Peter is a member of this project. In process view, Peter’s

absence request is approved by Rose. Rose is accidentally unavailable one day, and

project leader role is delegated to Eric. Peter’s absence request is approved by Eric

in this scenario. This breaks the company ethics, and inter-department organization

role conflict occurrs. This problem is viewed as a special case in organization role

conflict. Decision type tasks bring up this conflict. The solution of this problem is

similar to organization conflict. In order not to let the decision type task delegate to

the subordinate of other departments, the checking condition is modified to check

the level of organization role. Algorithm 4.6 presents inter-department organization

role conflict checking algorithm.

Algorithm 4.6 (Inter-Department Organization Role Conflict Checking

Algorithm)

Input:

 37

 A user set C

 The delegator user d

Output:

 A user set D

IDORCCA

00 Begin

01 For each u∈C, do

02 If u.org_role.org_level ≦ d.org_role.org_level

03 Remove u from C

04 Endif

05 Endfor

06 End

Algorithm 4.6 Inter-department organization role conflict checking algorithm

 Line02 changes the checking condition of Algorithm 4.5. In Algorithm 4.5, the

checking condition is organization role. If the delegatee user’s organization role is

lower than the delegator user’s, he is deleted from delegatee user set. In Algorithm

4.6, the checking condition is the organization level. If the level of delegatee user is

smaller than the delegator user’s, he is erased from the delegatee user set.

4.4. Integration of the analysis methods

 After describing the analysis methods, we use a flow to integrate these methods.

Fig.4.5 shows the relationships between these three analysis methods.

 38

Fig.4.5 The integration of analysis methods

 In Fig.4.5, after generating the candidate user set, the system checks the

sod_flag of the delegated task. If this flag is labeled Strong_SoD or

Weak_SoD, this means that the task must not violate the separation of duty

principle. Therefore, the candidate user set is passed into the analysis methods of

SoD. Otherwise, this set is passed to the organization conflict analysis stage. When

the user set from SoD analysis or the collecting algorithm is passed out, the system

checks the org_conflict_flag to see whether the delegated task must not

violate the organization role conflict. If this flag is true, the candidate users are

delivered to the organization conflict analysis method. After checking the two flags

of the delegated task, the candidate user set may be filtered by the SoD and

organization role conflict analysis methods. Finally, the user assignment loop

problem must be checked and the delegatee user set is constructed. This is how the

three analysis methods to be integrated.

 39

5. Conclusion and future works

 In this paper, we introduce three types of delegation by observing the behaviors of

delegation. The delegatee user is selected by delegator user in the user-authorized

delegation. The system chooses the delegatee user following the predefine delegatee

user schema in fixed delegation. A delegatee user collecting algorithm is executed

by the system to construct the delegatee user set for deciding the delegatee user in

the dynamic-selection delegation. Two extensions of the delegations are also

introduced. The monitor user selects the delegatee user from the delegatee user set

constructed by the dynamic-selection delegation. The repeated delegation is

composed of at least two delegations. A task-based delegation framework is

proposed to handle the delegation described above.

 With three analysis methods, the problems and conflicts are given appropriate

solutions respectively. In the future, one of our works is to implement this

framework to existing workflow management systems.

 40

Reference

[1] Sejong Oh, Seog Park, “Task-role-based access control model,” Information

Systems, Volume 28, Issue 6, September 2003

[2] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, “Role-Based Access

Control Models,” IEEE Computer 29(2): 38-47, IEEE Press, 1996.

[3] Simon, R.T.; Zurko, M.E., “Separation of duty in role-based environments,”

Computer Security Foundations Workshop, 1997.

[4] Axel Kern, Andreas Schaad, Jonathan Moffett, “Advanced Features for

Enterprise-Wide Role-Based Access Control,” Computer Security Applications

Conference, 2002

[5] Yang, L. Ege, R. K.Ezenwoye, O. Kharma, Q., “A Role-Based Access

Control Model for Information Mediation,” Information Reuse and Integration,

2004.

[6] Basit Shafiq, Arjmand Samuel, Halima Ghafoor, “A GTRBAC Based System for

Dynamic Workflow Composition and Management,” Object-Oriented Real-Time

Distributed Computing, 2005

[7] J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “Generalized Temporal

Role-Based Access Control Model,” IEEE Transaction on Knowledge and Data

Engineering, Vol. 17, No. 1, January 2005, pages. 4 - 23.

[8] Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N., “Modeling security

requirements through ownership, permission and delegation,” Requirements

Engineering, 2005. Proceedings. 13th IEEE International Conference

[9] Gail-Joon Ahn, Badrinath Mohan, “Secure Information Sharing Using

Role-based Delegation,” Information Technology: Coding and Computing, 2004

[10] Ezedin Barka, Ravi Sandhu, “Role-Based Delegation Model/Hierarchical Roles

 41

(RBDM1),” Computer Security Applications Conference, 2004.

[11] Jacques Wainer, Akhil Kumar, “A Fine-grained, Controllable, User-to-User

Delegation Method in RBAC,” ACM symposium on Access control models and

technologies SACMAT’05

[12] Jason Crampton,“A Reference Monitor for Workflow Systems with Constrained

Task Execution,” ACM symposium on Access control models and technologies

SACMAT’05.

[13] He Wang, Sylvia L. Osborn, “Delegation in the Role Graph Model,” ACM

symposium on Access control models and technologies SACMAT’06

[14] Geethakumari, G. Negi, A. Sastry, V.N.,” Dynamic Delegation Approach for

Access Control in Grids,” e-Science and Grid Computing, 2005

[15] James B. D. Joshi, Elisa Bertino, “Fine-grained role-based delegation in

presence of the hybrid role hierarchy,” ACM symposium on Access control models

and technologies SACMAT '06.

[16] Matunda Nyanchama, Sylvia Osborn, “The Role Graph Model and Conflict of

Interest, “ACM Transactions on Information and System Security, Vol. 2, No. 1,

1999

[17] Vijayalakshmi Atluri, Janice Warner, “Supporting conditional delegation in

secure workflow management systems,” ACM symposium on Access control models

and technologies SACMAT '05

[18] Shih-Chien Chou, “Dynamic adaptation to object state change in an information

flow control model,” Information and Software Technology, 2004

[19] Workflow Management Coalition Terminology & Glossary, WFMC-TC-1011,

1994

[20] R. A. Botha, J. H. P. Eloff, Separation of duties for access control enforcement

in workflow environments, IBM System Journal, Vol.40, No.3, 2001.

 42

[21] Simon, R.T.; Zurko, M.E., Separation of duty in role-based environments, IEEE

Computer Security Foundations Workshop, 1997.

 43

	摘要
	Abstract
	誌謝
	Table of Contents
	List of Figures
	List of Algorithms
	List of Tables

