I

Task-Role-BasedsAceess Control Model =
i BAi i F 1= 2

7t

) 2 s o= % L2 5 2 L +] > A
- B A3 T AR x5 B % k¢ A

A Delegation Framework Based on the
Task-Role-Based Access Control Model for
Workflow Management Systems

2

72

GRS

RS L

PoE X R 4 L+ A FE AN

- B TR AR i g 3 & 3¢ Z % Task-Role-Based Access Control
Model &k 12 42 B f= 28
A Delegation Framework Based on the Task-Role-Based Access Control
Model for Workflow Management Systems

Boyo4 ot % Student : Pu Jian
hERER I IEY Advisor : Feng-Jian Wang

C N S LA e
JT=l n

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
June 2007

Hsinchu, Taiwan, Republic of China

¢S E4 LA E AN

— B 1 TEIRAR X S p IRk 5LY A
Task-Role-Based Access Control Model 3% 32 2 E.
=%

N

% PEyE: 1% gl
B2 i« 8 g1 4287 47

Frow < B 1001 5

2

CERYIEMAFEIARFTFFIOF LM 7RI AEZH
A Eahl TR, 1 IFAR R SRR TR S
Task-role-based access control (T-RBAC).model 7 > st ¢ ,—_ﬁ BE I IEAR
Jodibend koo @ o A IFRAREIL kP TRBAC 5 A s 4] &
FERBF O AR B RN - B AL FIAE S E T kY £ TRBAC
MMdﬁ@ﬁﬁﬁﬁ#’%éﬁ$@ﬂﬁﬁ¢ﬁé’ﬁﬁﬁéﬁﬂﬂﬁﬁﬁ¢
SRR AR Y F e B FE A m kS PR ¥

BRI TP Rpies BRAER DM DS R R o
¥

M4EF: 1100k ¢ 3 ARPH IR 1 AR R RI R

A Delegation Framework based on the
Task-Role-Based Access Control Model for

Workflow Management Systems

Student: Pu Jian Advisor: Feng-Jian Wang
Institute of Network Engineering National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

The workflow management system (W{IMS). is widely used in performing
business processes among enterprises. When.an employee is unavailable to execute
his/her tasks, WIMS delegates‘the tasks-to-appropriate users. The task-role-based
access control (T-RBAC) model ‘teduces. the “administration costs for W{fMS.
However, the delegation mechanism in T-RBAC for W{MS is necessary to be
discussed. In this paper, a delegation framework based on the T-RBAC for WIMS is
proposed. By observing the delegation behaviors, three types of delegations are
described respectively. Based on the framework, the issues about user assignment
loop, separation of duty, and organization role conflict are proposed, and their

corresponding analysis methods are also presented.

Keywords: task-role-based access control (T-RBAC) model, delegation, workflow

management system (W{fMS).

II

‘4:‘

|:I0Y

Apwmeihrad o § AL LA A R PR s EanE
PR EA A AT R LA L TR o BT AR 2 3 TRIRAR K
FAEARRGT R T B 2L RAATEL cHFEeEdl uz gL

FrLeAmER BT 7 - RPREE LD R L% ik L o

PH AL R OF LI RE BT FE 7 3 8
D Aanh Y o AU EE - X AR ARG Y BHTIIER S L

YR B V0 hﬂ ﬁ-lfrmgs-f‘gggﬂ-y\;\ro\ﬁjﬁm;}pg‘b R A TP

—\\

TR o W BE A SE R o R g AT o B
HEES S SNk sl I B G et A

Bofs o AR BN D F AT ARh A 1 cTT o IR S hi
FoEATNELCREZRBRATFE T OHHE P - BREALL BAREY O

ﬁ“‘go

III

Table of Contents

B B e I
AADSETACE ...ttt et ettt ettt e b e et e bt e abe e bt e eat e e beeente e bt e nateebeeenbeenteas I
T PRSPPI 111
TabIe Of CONEENLSiieiiieiieeiiee ettt ettt ettt e et e st e e bt esateeabeesaeeenbeesanas v
LISt OF FIGUIES ..veeeiiiieeieeee ettt et e e et e e s be e e s aeeesabeeessbeeesnseeennseesnseeens VI
List Of AIGOTIERIMS ..ottt ettt e VII
LSt OF TADIES ...cueeeieteeieeee ettt ettt sb et a et es VII
L. INEEOAUCTION ...ttt ettt ettt e et e s e e bt e s st e et e eabeeabeesaeeenseesnneenne 1
2. BaCKGIOUNAooiiiiiiieieecie ettt ettt et e et e sab e e ba e e b e e beeenbeensaeenseenns 3

2.1. Role-Based Access Control MOodel.........cccueerueiiiieniiiiiiniieiiee e 3

2.2. Task-Role-Based AccessiControl'Model and Workflow Management

SYSEML..eineereeeceenerenee.. ol T (B ..o sneens 4
2.3. Delegation approaches M RBAC, i i 5
3. A Delegation Framework Based on Task-Role-Based Access Control Model...................... 7
R I B D 15 o2 2 o) o RS 7
3.2. Task-based delegation frameworkccoceeriiiiiiniiiiieeeeee e 8
3.2.1. User and Task r@POSILOTICSc.eeruerrriieriieeiieniieeieesireeteesteeeveessaesseeseessseeseens 9
3.2.2. Organization role and process role repoSItOTies........ccecvereerueriereeniereenieennns 11
3.2.3. User-authorized delegationccceeeuieriieiiieniieiiiecie e 14
3.2.4. Fixed dele@ation...........coouieiiiiiiiiiieieecee e 15
3.2.5. Dynamic-selection delegation...........c.cccuieriieiiieeiieniienie e 16
3.2.5.1. Delegatee user collecting algorithm..............cocceeviieiiiniiiieniieeee, 17

3.2.6. Dynamic-selection delegation with moONitor USETccceevveerieenieenniennnnene. 19
3.2.6.1. MONItor USET CONSLIAINLeetieriiieiieiiieeiieeiie ettt 20

v

3.2.7. Repeated dele@ationcceeeeieiieiiieiiieiie ettt 21

3.3 REVOCATION ...ttt ettt ettt ettt e ettt e eate e b eeesbeenbeesneeenne 21

3.4. Advantages of the task-based delegation framework..............ccoevveeiiieniinciieniiennnnne. 22
3.4.1. Process role repository and organization role repository..........ccceeeveerveennnenne. 22

3.4.2. The advantages of the temporal delegatee role..........ccceeveeviieiienieeniiennnene, 23

4. Analysis Methods for Task-Based Delegation Framework............cccccoeceeiiiniiininniieenennee. 25
4.1. User ASSIZNMENTE LOOP......iiiiieiieiiieiieeieeieeeee ettt ettt st e eseaeeraesnaeebeesenes 25
4.1.1. The Marking Method for User Assignment Loop Problem..............cc..c........ 26

4.1.2. Tracing Method for Use Assignment Loop Problem.............ccccocvveiienirnnnen. 27

4.2. Separation of DUty (SOD) ...cc.coouiiiimiiiiiiiieee e 29
4.2.1. Analysis method of Weak SoDccccoeviiiiiiiiiiiiiiceeceeee e 31

4.2.2. Analysis method of Strong SoD i ..ooveiiiiiiiiiie 32

4.3. Organization Role CoOnfliCt i o it et 34

4.4. Integration of the analysis MEthOdS wwrsmr. ... areveeviriiriiiiiccceeecee 38

5. Conclusion and fUtUre WOTKS ... o e essiite e eeeseeeieetestee e etesiee e ete et esteeeeseeeneeenee e 40
RETEIEICE ...ttt ettt et et e st e et e et e e beesateeneesnnas 41

List of Figures

FIZ. 2.1 RBACOO ...ttt sttt 3
Fig.2.2 Comparison of RBAC and T-RBACccccooiiiiiiiiiicceeeeeeeee e 5
Fig.3.1 Task-based delegation frameworkccccocieieriiiiiiiinieieeeeee e 9
Fig.3.2 An example of the organization StruCtUIe............ccccueeiieriiriiieniie et 12
Fig.3.3 User-authorized delegation.............coocierieiiiiieniieierieeeiesee e 14
Fig.3.4 FiX dele@atiOncc.eoiiiiiiiiiieiiee ettt ettt sttt et st e b e eneas 15
Fig.3.5 Dynamic-selection dele@ationcccceecuirieririinienieeieneieeee e 16
Fig.3.6 Dynamic-selection delegation with MONItOr USeT.........cccveeiieriiiriiieieeiceiie e, 19
Fig.3.7 Monitor role SOD ProbIemccceiieiiieiiiieiieesieeee e 20
Fig.3.8 Repeated delegation with a predefined delegatee user schema...........ccccoceeverienennens 21
Fig.4.1 User assignment 100p proBlem ... e, il e 26
Fig.4.2 A 10N TEQUESE PIOCESS .ieetsuuesueennes sstatbonseitesiasteeemsenseenseessenseensessesseensessesseensesseneensens 29
Fig.4.3 Organization role assignment-and process role assignmentcccceeeveevveeieenneennen. 35
Fig.4.4 Task assignment with process Tole il oo 35
Fig.4.5 The integration of analysis Methodsccceeririiiiiiniiiiieeeeeeee s 39

VI

List of Algorithms

Algorithm 3.1 (Delegatee user collecting algorithm)cccoeevieviiiiiiniienieeieecee e, 17
Algorithm 4.1 (Analysis of Assignment Loop with Marking Method)cccoocveeiieennne. 27
Algorithm 4.2 (Analysis of Assignment Loop with Tracing Method)...........cccccuvevvieirennnnen. 28
Algorithm 4.3 (Analysis of Weak S0D Principle)c.ccooevieniriiiniininiinicieciceccecsecees 31
Algorithm 4.4 (Strong SoD User Collecting AIgorithm)..........ccccoveeririenieniniiieceieeeeee 33
Algorithm 4.5 (Organization Role Conflict Checking Algorithm)..........cccooeviiniininiinennnn. 36
Algorithm 4.6 (Inter-Department Organization Role Conflict Checking Algorithm) 37
List,of Tables
Table 3.1 Three types of dele@ations ... e i il et 8
Table 3.2 Task attriDULESieiieieee e s oitesneene e e demmeeeeee it enteeteeste et e st e sbeenteeaeesteenbesneesaeenneas 10
Table 3.3 USer attriDULEScc.eeers ittt ettt et et ebe e 11
Table 3.4 Role/Process role/Organization role attributes...........ccveevveevieeriieniienieenieeie e, 12

VIl

1. Introduction

In modern enterprise, company employees perform tasks in several processes.
Usually, these employees may be sent to abroad to have meetings or technical
supporting. Once a user is not internal, his jobs are still needed to be executed.
Therefore, these tasks are assigned to some other people to execute. This
re-assignment action is called delegation. The delegation concept is very common in
the real world. When a user cannot perform his task, he asks someone to give him a
hand to do this task. After the helper agrees the request, this task is passed to him.
This is an example of task delegation.

The workflow management system gives the companies a systematic way to
realize business processes. It replaces the traditional paper-work business processes
by using e-forms and the internet. It increases the efficiency of executing processes.
However, like the real world, the tasks in the system. process are still performed by
company employees. These task performers-might sometimes unavailable. Therefore,
a systematic delegation is needed to implement as the real world.

Although there are lots of delegation approaches, most of them bases on the
Role-Based Access Control model (RBAC96) [2]. The RBAC model defines the
relationship between the users and permissions through roles. It gives the
administrator a convenient way to management the permissions. Nevertheless, it
only defines relationship the between users and data, not for the task and data. This
model is not totally suitable for the task-based workflow management systems.
Moreover, the subjects of those delegation approaches are permissions. For the
workflow process, the atomic elements are tasks. Delegating permission cannot
totally fit to the workflow process in delegations. Therefore, a task-based viewpoint

is needed.

This paper proposes a system view of delegation. By observing the delegation
behavior between the system and users, we define three types of delegations. The
observation leads us to develop a task-based delegation framework for the workflow
management system. This framework in introduced in Section3. Section2 presents
the fundamental approaches of our framework. In Section4, some problems in this

framework are stated, and the analysis methods of these problems are introduced.

2. Background

This section introduces backgrounds about access control models and delegation
models. In section 2.1, role-based access control model and related delegation model

are introduced. Section 2.2 presents the task-role-based access control model.

2.1. Role-Based Access Control Model

Role-based access control (RBAC96) [2] presents a new relationship between
users and access rights. In this model, permissions are associated with roles, and
roles are assigned to appropriate users. The relationship between user and role is
called “User Assignment (UA)”, and the other one between role and permission is
called “Permission Assignment (PA).” Fig.2.1 displays RBAC96 model. In RBAC,
users get permissions through roles. UAiand PA ‘are added constraints to restrict
users to gain permissions.

Role Hierarchy

[)
OSSm=

Fig.2.1 RBAC96
The primary concept of RBAC96 is to assign roles to users instead of directly
assigning permissions to users. In this model, a role is viewed as a set of permissions.

It is convenient to give administrators to manage permissions. A number of products

support some form of RBAC directly, and others support closely related concepts,
such as user groups, that can be utilized to implement roles. There are lots of
approaches to extend RBAC96 describing below.

Although role is a powerful concept for simplifying access control, the
implementation is normally restricted to single systems and applications. Enterprise
Role-Based Access Control (ERBAC) [4] enhances RBAC96 to implement the role
concept on different systems and applications by defining Enterprise Roles. Using
this enhanced role with parameters reduces the number of roles dramatically, thereby
minimizing administration and role maintenance costs on different systems and
applications.

Generalized Temporal Role-Based Access Control Model (GTRBAC) [6, 7] adds
time concept on roles. In practical, users may ‘be restricted to perform roles at
predefined time periods. Moreover,.roles may-only be invoked on pre-specified time
intervals when certain actions are permitted--In,this ‘model, the duration constraints
are added on roles, user-role assignments, and role-permission assignments. The
roles are activated only at the limit period. The role is assigned to the user at
predefined time. Furthermore, the permissions are allocated to the role at specific

time.

2.2. Task-Role-Based Access Control Model and Workflow
Management System

Task-Role-Based Access Control Model (T-RBAC) [1] modified RBAC96 to
adapt modern enterprise environment. Fig.2.2 [1] shows the comparison of these two
approaches. In RBAC, users get permissions through roles, but users in T-RBAC get
permissions through tasks and perform tasks through roles. The difference between

the two models is that there is a new notion named task in T-RBAC model. The task

4

is a fundamental unit of business work or business process. In order to reduce
company costs and increase working efficiency, business processes are emulated by
workflow process in workflow management system. A workflow is organized by

tasks. Therefore, the T-RBAC is suitable to model workflow processes.

@ Permission

(a) RBAC approach

O © e © s G

(b) T-RBAC approach

Fig.2.2 Comparison of RBAC and T-RBAC

One disadvantage in RBAC model is that RBAC didn’t define the permissions
between task and data. For exaniple, théprojéct budget data is not allowed for an
engineer role to access. But someone performing the engineer role may get this data
through the budget request task’-This scenario- expresses a security fraud in RBAC
model which a role can access an unauthorized data through the authorized task.

T-RBAC simplifies the permission between tasks and data by binding permissions
on the tasks. The role cannot directly access the data. Only when the role has the
task can it access the data. For example, the access right of budget data is on the task
of budget request, not on the engineer role. Therefore, an engineer role cannot

access the budget data directly if the budget request task is not assigned to him.

2.3. Delegation approaches in RBAC
The other disadvantage of RBAC is that it only defines a fixed assignment
between permissions, roles and users. If a user wants to access an unauthorized data,

he must ask the system administrator to grant the permission to him manually. This

increases the maintenance cost of the administrator. Delegation provides a flexible
way to grant permissions and roles systematically. When the user wants to access the
unauthorized data, the system follows some delegation rules to grant the access
rights to him. By using delegations, the administration cost is decreased. There are
lost of approaches of delegation based on RBAC.

RBDMI [10] is a role-based delegation model. It bases on the RBAC model and
extends the RBDMO, which was a delegation model using flat roles. This model
considers the hierarchical role. By identifying different semantics of can-delegate
relation, it presents the role to role delegation.

A user to user delegation is presented in [11]. The essence of this delegation
model is that a user delegates a particular right to another user. Unlike RBDM1, this
model not only delegates roles to.users but also delegates the single permission to
users. Therefore, users get some particular permission without receiving a whole
role. This model also gives an algorithm for-acecepting the delegation.

The role graph model [16] gives.the wisualization of permission and role
assignments. The delegation in role graph [13] shows a simple way to delegate
privileges to users by creating a delegatee role. This special role provides a
convenient way to delegate a whole role or some particular permissions.

However, all these delegation approaches delegate the privileges. In workflow
management system, tasks are the basic elements of the workflow process.
Therefore, delegating rights to user is insufficient to support the task-based
workflow. In our framework, the idea of delegation is added to provide the task

delegation. And the T-RBAC gives the fundamental basis of the framework.

3. A Delegation Framework Based on Task-Role-Based

Access Control Model

This section presents a delegation framework in the workflow management
systems. The three types of delegations are described in Section 3.1. Section 3.2
shows the basic delegation framework. Revocation process is presented in section

3.3. Section 3.4 describes the advantage of this framework.

3.1. Delegation

In modern enterprises, company employees usually have some business travels.
When they go abroad to have meetings, their jobs still need to be done. Thus, their
jobs have to be delegated to others ptoperly. This scenario can be corresponded to
workflow management system. In a workflow. process, if a user is unable to do his
task, he can delegate his task to:someone who can perform it. Moreover, if a user is
accidentally unavailable to his“task, the workflow engine may perform such
delegation actively.

The user who delegates his task out is called the delegator user, and the user who
is delegated the task is called the delegatee user. By observing the delegation
behaviors, delegations can be divided into three types: user-authorized delegation,

fixed delegation, and dynamic delegation. Table 3.1 shows this observation.

Delegation Requestor | Delegatee User Selection |Types of Delegation

Human or System [Human User-Authorized Delegation

Selected by the system
through a predefined Fixed Delegation

delegatee user list

Selected by the system
from a delegatee user set
Dynamic-Selection Delegation

constructed by a

collection algorithm

Table 3.1 Three types of delegations

Users delegate their tasks to others manually are called user-authorized
delegations. Fixed delegations mean that tasks are delegated by the system following
the predefined delegation delegatee user list. A dynamic-selection delegation is
triggered under some unexpected circumstances. For example, a manager is
accidentally unable to attend an important meeting. The system needs to
automatically select an appropriate user to the meeting in time. However, such an
accident is unpredictable, and th& replaced perSon cannot be chosen through a
pre-defined delegatee user list. ‘Thus, an .algorithm must be defined for each

dynamical selection of appropriate replaced-users.

3.2. Task-based delegation framework

Fig.3.1 presents the task-based delegation framework. The process role repository
stores the information of process roles in one process, and the organization role
repository stores the organization role information. When a dynamic-selection
delegation starts, the workflow engine executes the delegatee user collecting
algorithm to collect users from the process role repository. The set of collected users
is called the candidate user set. The collecting algorithm is described in Section
3.2.4.2. After generating the candidate user set, the analysis methods are executed to
prevent some problems in delegations. These methods are described in Chapter4.
After the analysis, a delegatee user set is constructed, and the delegatee user is

selected from this set following the delegatee user decision rules. However, there

8

are some special tasks that cannot be delegated by using the collecting algorithm.
The monitor users are introduced to deal with this kind of tasks. The monitor users
are stored in the monitor user repository. These special users are defined by the
process designers and described in Section 3.2.6.

) Fixed q°|°§ﬁ|i0”) Dynamic-Selection
User Authorized delegation {5

CJ:/ C—L/ | 4> delegation
Delegation [| Delegatee User

Per-defined . .
Delegatee User Handler [— Process Role Task Reposilory Collecting
Schema Repository a5k epasiiary Algorithm Delegation
Constraints
I — Organization
= Constraints / Role Repository
L1 Rules/List
Analysis Methods
B Repositories
Algorithms / Monitor User
Methods / Handlers Repository
——
O User sets "
—> Execution flow —
Delegatee User Set Delegatee User
% Delegation signals Decision Rules

Delegatee User

Fig.3.1 Task-based delegation framework
The delegation handler takes caré—of-fixed ‘delegation and user-authorized
delegation. When a fixed delegation happens; the handler chooses a delegatee user
from the predefined delegatee user schema. The delegatee user of user-authorized
delegation is decided by the delegator user. Thus, the function of the delegation
handler in user-authorized delegation is to pass the delegated task to the delegatee

user.

3.2.1. User and Task repositories

The user and task attributes are stored in the user and task repositories module
respectively. Table 3.2 lists the attributes of tasks. The contents of attributes are
defined by process designers at design phase. The attributes in Table3.1 are essential.
The p_1d represents the id of the process this task belongs to, and the type shows

the type of the task. The p_role field stores the process role to which to this task is

9

assigned. The d_role field stores the id of the delegatee role which is created in
delegation. Prior is the priority of a task in a process. The primary use of priority
is that if there are lots of tasks in a user’s task queue, he executes them from high
priority task to low one. The m_fFlag is a boolean variable. If m_flag is true, it
means that this task needs a monitor user to decide the delegatee user. Otherwise, if
the task is delegated, the delegatee user is automatically chosen by the system from
the delegatee role constructed by the selection algorithm. The state shows the
current state of this task. There are three states of one task: ready, running, and
submit. When a process is initiated, all the tasks are set to ready. The running state
reflects the task is executing. After the completion of the task, the state is set to
submit. There are three constraint fields needed by the system. The sod_Fflag is
used to label if this task needs the separation of duty principle. There are three
settings of this attribute: -Stong_SoD; Weak_SoD, and none. The
org_conflict_flag is a boolean variable. used to mark the allowance of the
organization role conflict. The max.d_cnt defines the maximum amount of

delegating this task.

Task attributes

1. id:taskid

2. p_1id: process id

3. p_role: process role id

4. d_role: delegatee role id

5. type: type of this task

6. state: the task state

7. prior: priority

8. m_Tlag: monitor user flag

9. sod_Tflag: separation of duty constraint

10. org_conflict_flag: organization role constraint

11. max_d_cnt:the maximum amount of delegation

Table 3.2 Task attributes

10

The user attributes defined here are listed in Table 3.3. The information of user
performing tasks is stored in the process role repository. The org_role is used for
recording the user’s job position in this enterprise. The 1d and p_role represent
user’s id and process role. The role_cnt stores the amount of assigned role(s).
The w_cnt attribute increases one when a task is added into user’s task queue.
There are two user constraints. The max_load field contains the user’s restriction
of maximum workload, and the max_role_assign field gives the maximum

amount of role assignment.

User attributes

id: user id

p_role: process roles

org_role: organization roles
role_cnt: the amount of assigned role(s)
w_cnt: current work count

max__load: maximum workload

N kR R =

max_role_assign: maximum amount role assignment

Table 3.3 User attributes

3.2.2. Organization role and process role repositories

As implied by the name, the organization role repository stores the structure of
organization role, including job position, levels of organization roles...etc. Table 3.4
lists the attributes of roles. The 1d is the id of the role, and the pT field stores the
performers of the role. The process and organization role attributes extend the role
attributes. The o0_t field in process role defines all the tasks belonging to this

process role. The org_level field stores the level of the organization role.

Role attributes

1. id: the id of the role

2. pf: performers

11

Process role attributes

1. o_t: own tasks

Organization role attributes

1. org_level: the level of this role in organization

Table 3.4 Role/Process role/Organization role attributes
Normally, the organization role structure is represents as a tree structure. By using
tree structure, organization role hierarchy is easily presented, and the relationships
between roles are described clearly. The relation in tree structure is classed into two
types: vertical and horizontal. The vertical relation gives a level-view of
organization roles. The horizontal relation gives an up-and-down concept of

organization roles. These relations between organization roles are defined below.

Lv.1 Tom
CEO
|]
Lv.2 Joe Rose Peter
Accounting Manager Engineer Manager Sales Manager

Lv.3 Adam Alex Eric Emily Steve Simon

Accountant Accountant Senior Engineer|| || Senior Engineer Sales Sales

[]
Lv.4 Ella Elva Elvis
Engineer Engineer Engineer

Fig.3.2 An example of the organization structure
The organization role repository stores the information of organization structures.
Fig.3.2 gives an example of organization structure. It contains job position, the rank
of each employee, and the hierarchies of organization roles...etc. The “lower than”
relationship between two organization roles is defined in Definition 3.1. For
example, Tom plays CEO role in company, and Joe is one of his successors. It says
that Joe is “lower than” Tom and denotes “Joe .~ Tom.” Similarly, Ella is Rose’s

grand successor, and Ella £ Rose,

12

Definition 3.1 (lower than): A is B’s successor, and B is on the A’s path to the
root of organization tree. It says that A’s organization role is lower than B’s. This

relationship is denoted by “ /.

Definition 3.2 defines another vertical relation in tree structure. If the level of one
organization role is larger than another with different path to the root of organization
tree, the relation between these two is called “cross-lower than.” For example,
Elva’s level is lager than Emily, but Emily is not on Elva’s path to the root.
Therefore, Elva’s organization role is cross-lower than Emily’s, and it is denoted by

“Elva 4 Emily”.

Definition 3.2 (cross-lower than): A’s level is lager than B’s, and their path to
the root of organization tree are not totally the same. It is said that A’s

organization role is cross-lower:than B’s. This telationship is denoted by “.A”.

Two organization roles of two users have-the same parents is called “equal to”
defined in Definition 3.3. For ‘instances-Joerand Rose are both managers. In the
organization role tree, they have the same.parent, CEO Tom. It says that Joe is

“equal to” Rose and is denoted by “Joe = Rose.”

Definition 3.3 (equal to): A and B have the same parent iff that A’s organization

role is equal to B’s. This relationship is denoted by “=",

The other horizontal relation “cross- equal t0” is defined in Definition 3.4. The
difference of “equal to” relation is that the “equal to” relation has the same parent,
but the cross-equal to not. For example, Eric and Steve are at the same level, level 3,
but their parents are different. This is called Eric is “cross-equal to” Steve. And it is

denoted by “Eric = Steve”.

Definition 3.4 (cross-equal to): A’s level and B’s level are the same with

different parent iff that A’s organization role is cross-equal to B’s. This

13

relationship is denoted by “=",

3.2.3. User-authorized delegation

Delegating the task by user himself is called a user-authorized delegation. When a
user wants to delegate his task to a designate user, he asks the workflow engine to
create a temporal process role called the delegatee role in the beginning. After
creating the delegatee role, the system assigns this task to this temporal role. Then

the designate user is allocated, and the delegatee role is assigned to him. Fig.3.3 is

an example.
Task 1
Assign
/ Tem poral kY
I
| Delegatee |
‘. Role /
~ ,/
E / A -\.-\.
User 1 7777777777777 > User 2
Delegate

Q Process role I:] Task

4,
Task-Role Assignment/
Role-User Assignment

I/’ - © Temporal
‘._.* Delegatee Role

Hgers Diclegation Direction
Fig.3.3 User-authorized delegation

Once Userl is too busy to perform Task1, he requires a delegation for Task1 from

the system. When the workflow engine accepts such a request, it creates a temporal

delegatee role immediately and assigns Task1 to this role. Then, the system assigns

temporal delegatee role to User2 authorized by Userl directly. After these three

steps, Taskl is delegated from Userl to User2. Obviously, this is a user-authorized

delegation.

14

3.2.4. Fixed delegation

In case of interrupting the execution of a process, the process designer defines
some delegatee users for each task to prevent the user unavailable problem. If
someone cannot perform his task when executing this process, the system delegates
this task to the predefined delegatee user. This kind of delegation is called fixed

delegation. Fig.3.4 is an example.

Predefined
Delegatee User Schema

Selected
by the

system
Task 1
Assign

ff/ Tempnral\\‘

| Delegatee i

‘. Role /

~ e
y T “--\‘-, - “
| Userl p-----------o % User2 |
4 Delegate A f

_..
Task-Role Assignment/
Role-User Assignment

If’ h \\I Temporal
‘._./ Delegatee Role

Delegation Direction

_|>
Delegatee User Selection

Fig.3.4 Fix delegation
In Fig.3.4, the delegatee user list is defined by the process designer for Taskl.
When Userl is unavailable to perform Taskl, User2 is woken up in the delegatee
user schema by the system to perform Taskl. After waking User2 up, the temporal
delegatee role is created, and Task]1 is assigned to this temporal role. At last step, the

temporal delegatee role is assigned to Uses2.

15

3.2.5. Dynamic-selection delegation

There are lots of unexpected events when executing workflow processes. For
example, let the defined delegatee user in fixed delegation be accidentally absent
from an important meeting. The system has to choose another delegatee user to do
this task automatically. However, the process designer didn’t assign the delegatee
user for this meeting. Therefore, some rules or algorithms are needed to select an
appropriate user as a substitute for the meeting dynamically. This kind of delegation

is called the dynamic-selection delegation. Fig.3.5 shows the dynamic-selection

delegation.
Task 1
) System
Assign
i Execute
TR, Delegatee User
If’ Temporal\\\ Collecting Algorithm
| Delegatee |
. Role }’; J/
l Delegatee User Set
;/"'V \ ﬂ@ by the System
User]l F--————-——==-- >' User 2

_.;" Delegate

O Process role I:l Task =

Delegatee User

> Selection
Task-Role Assignment/
Role-User Assignment Execution Flow

' - " Temporal
‘._." Delegatee Role

Users Delegation Direction
Fig.3.5 Dynamic-selection delegation
When a dynamic-selection delegation starts, the temporal delegatee role is created,
and Taskl is assigned to this role. Then, the algorithm for collecting delegatee users
is executed to generate the delegatee user set. After constructing the delegatee user

set, the system follows the delegatee user decision rules to select the delegatee user.

This approach is named as dynamic-selection delegation.

16

3.2.5.1. Delegatee user collecting algorithm

Delegatee user assignment is the most important part in delegation process. In
some cases, numbers of user are collected by the system and one of them is selected
by the monitor role. This case is called dynamic-selection delegation with monitor
user described in Section 3.2.6. For the rest, the delegatee users are automatically
chosen by the workflow engine. The delegatee user is selected from a list called
delegatee user set shown in Fig.3.1. The delegatee user list is constructed in
accordance with a collecting algorithm. This algorithm is executed by the workflow
engine to select users into delegatee user set. Some user and task attributes are
provided to determine whom to choose. These attributes are shown in Table 3.1 and

Table 3.2. The collecting algorithm is presented in Algorithm 3.1.

Algorithm 3.1 (Delegatee user collecting algorithm)
Input:

The process role repository P

The delegated task t
Output:

A candidate user set C

DUCA:
01 Begin
02 For each process role pe P, do
03 For each useruep.o_tdo
04 Ifu.w_cnt < u.max_load ||
u.role_cnt < u.max_role_assign
05 Insert utoC
06 EndIf

17

07 EndFor

08 EndFor

09 If t.prior=HIGH

10 For eachuseru” e C, do

11 Foreachtask €’ceu”.p_role.o_t, do
12 If t”_prior =HIGH
13 Remove u” fromC
14 Break

15 Endif

16 Endfor

17 Endfor

18 Endif

19 End

Delegatee users are selected from the~proeess role repository. The workflow
engine checks user’s attributes to collect.appropriate users as a list of delegatee users.
In Stepl (Line02-08) of Algorithm3.1, the engine chooses the users whose current
work counts are less than their maximum workload. Second, it selects the users
whose assignment numbers are less than their limitation respectively. The function
of the second constraint is to limit the numbers of delegations for each user.

The Step2 (Line09-18) checks the attributes, in Table3.1, of the delegated task. If
the priority of delegated task is marked as “HIGH”, the system selects users with no
high priority tasks in task queue first from the result of Stepl. The priority of task is
defined by process designers. There are two levels of priority: “HIGH” and
“NORMAL”. This is used to give the high execution order to high priority tasks. If

the priority is set to “NORMAL”, there is no change for Stepl.

18

3.2.6. Dynamic-selection delegation with monitor user

Sometimes delegation process invokes a special role type called a monitor role.
The primary job of a monitor role is to decide the final delegatee user. The user
assigned the monitor role is called a monitor user. Fig.3.6 shows how a monitor

user participates in a dynamic delegation process.

Task 1
System
Assign
Execute
S il
/ Temporal \ Delegatee User Find
. Dalegates. Collecting Algorithm
\\ Role ,1"]
i Delegatee User Set /¢ or-\'"-
| Userl r--———m——mo-2 S User2 I
' Delegate | Selected by the Monitor User
_— Task =
O Erogessudle I:l Delegatee User Selection
- R

/"™ Temporal

l\“; Delegatee Role Task-Role Assignment/

; Execution Flow
Role-User Assignment

Delegation Direction

Fig.3.6 Dynamic-selection delegation with monitor user

When a dynamic-selection delegation starts, the workflow engine first checks the
attributes of the task. If the monitor flag is labeled true, the engine creates a monitor
role and assigns it to an appropriate user based on a pre-defined monitor role
assignment policy. When the monitor user is decided, the selection is then executed
to generate the delegatee user set. Unlike dynamic delegation without monitor user,
the final delegatee user is picked from the delegatee user set by the monitor user.

The other function of monitor user is to appoint the delegatee user when no users

are picked into the delegatee user set. During execution, an existing collecting

19

algorithm might find no user for the delegatee user set. When this situation happens,

the system asks the monitor user to select the final delegatee user manually.

3.2.6.1. Monitor user constraint

Budget Budget
request approval
Invoke l

]

s . % 7

! Monitor \ [/ Roled Y

I 1

. Raolel # | DOkeS)

k bl \\ /f
- Fa s 7

N

User 3

Delegatee User Set

Fig.3.7"Monitor role“SoD problem

There is a constraint for the monitor role “assignment. The monitor user of the
delegated task cannot be selected into the delegatee user set. This is used to prevent
the separation of duty problem. Fig.3.7 presents an example of separation of duties.
In the example, the budget request task is assigned to User3. Now a monitor role,
Monitor Rolel, is invoked when the budget approval task is delegated. And a
temporal role, Role4, is created by the workflow engine for delegation. When the
monitor role is assigned, User3 is expected to select a delegatee user from delegatee
user set to play Role4. If User3 is in the delegatee user set at the same time, he can
select himself to do this task. Thus, User3 can request the budget and approve it.

This kind of problem is likely to be prevented in enterprises.

20

3.2.7. Repeated delegation

The repeated delegation is a phenomenon of the delegation. When the delegatee
user is unable to perform the task delegating to him, this task must be delegated to
another person. The delegation from one delegatee user to another is called a
repeated delegation.

Fig.3.8 gives an example of a repeated delegation with the fixed delegation. After
Userl delegates Task1 to User2, User2 is accidentally unavailable. Thus, he requests
a fixed delegation to delegate Taskl out. When the system receives this request, it
selects User3 from the predefined delegatee user schema as the delegatee user of
User2 and assigns the temporal delegatee role to User3. This multiple delegation is

called repeated delegation.

Predefined
Delegatee User Schema

Task 1

Selected by the
system

Assign
/Temporal\\
| Delegatee |
', Role /
el ,,‘__,__‘.\ 3 -\\.
Userl p——oo—m—m—mi A User2, Froswaaes User3 |

Delegate % ,.:‘; Delegate

Q Process role |:| Task

I’ T Temporal L . .
__/ Delegatee Role Task-Role Assignment/

= Role-User Assignment

Delegatee User Selection

Y .
| | Users i . .
A Delegation Direction

Fig.3.8 Repeated delegation with a predefined delegatee user schema

3.3. Revocation

With the temporal role in the delegation process, the revocation process only

21

requires only three steps. First, the engine deletes the role assignment between the
delegatee role and the delegatee user. Second, task assignment between the
delegated task and delegatee role is deleted. The temporal role is deleted at the last
step, and the delegated task can be revoked back to the original user. For example, in
Fig.3.1 the workflow engine first deletes the role assignment between the temporal
delegatee role and User2. Then, it deletes the assignment between Taskl and
temporal delegatee role. Last, the temporal delegatee role is delegated, and the
revocation process is finished.

However, there is a problem in revocation: the delegated task is asked to be
revoked while a delegatee user is performing it. Here presents a solution. According
to the state of the delegated task, the result of the submitted state task is
remained. And the result of the task in running state is discarded. The ready
state task is revoked immediately after the revocation request is sent. The advantage
of this solution is that the workflowiengine-deesn’t-have to halt the delegatee user
while he/she is performing the delegated task: Instead, it only has to re-assign the

task to delegator and re-sends the information before delegating to him.

3.4. Some discussions of the task-based delegation framework
There are some discussions in our framework. Section 3.4.1 describes the benefit
of using two kinds of role repositories. The advantages of using a temporal delegatee

role are mentioned in Section 3.4.2.

3.4.1. Process role repository and organization role repository
The primary reason to separate the roles into two types is to clearly distinguish
roles in the processes and organization. When a new project is started, new

processes are created for this new project. Some roles, such as project managers,

22

quality assurance engineers, and programmers...etc., are created for this project only.
If using the organization role as the performers in the processes, the relationships
between the new project-oriented roles and the existing organization roles must be
defined. Moreover, these project-oriented roles and the relationships must be deleted
after finishing the project. In this scenario, the system administrators may have to
rapidly define and delete the relationships between project roles and organization
roles when new projects are created and finished. It costs some maintenance efforts
for the administrators.

Separating roles into the process and organization roles makes the administrators
maintain these project-oriented roles easier. When each new process is created in a
new project, a process role repository is allocated to this process. The administrators
focus on managing the relationships of the new:.created roles in the process role
repository. He doesn’t have to define the relationship-between the new roles and the
organization roles. It saves some efforts-to.manage the roles in the processes and

organization.

3.4.2. The advantages of the temporal delegatee role

The other distinguished feature of our framework is that using a temporal
delegatee role instead of directly delegating the delegator user’s role to the replaced
person. The work can decrease some administrator’s maintenance efforts too.

In our framework, users perform tasks through the process roles. A process role
may be assigned multiple tasks. If delegating the delegator role to the delegatee user
directly, the delegatee user can perform all the tasks assigned to the delegator role.
Therefore, in other approaches without the temporal delegatee roles, the
administrators have to define extra delegation constraints between the delegator role

and all the tasks belonging to the delegator roles. In our framework, the

23

administrator manages the assignment between the delegated task and the temporal
delegatee role. He/she doesn’t have to define the extra delegation constraints
between the delegator role and all the tasks belonging to the delegator role. In
comparison to previous approaches in managing the delegations, our framework

saves some management efforts of defining the extra delegation constraints.

24

4. Analysis Methods for Task-Based Delegation Framework

Our framework supports delegation handling in workflow systems. Several issues
are derived from our framework. The issues and corresponding solutions are
discussed in this Chapter. First, user assignment loop problem may occur in the
repeated delegation, and this problem is presented in Section 4.1 In section 4.2, the
separation of duty principle in our framework is introduced. Organization role
conflict problem in Section 4.3 gives a new issue between organization role and

process role.

4.1. User Assignment Loop

If a delegated task is delegated to its delegator user, user assignment loop problem
happens. Normally, a user doesn’t delegate his. task to himself. Therefore, the user
assignment loop only occurs in a repeated delegation.

Fig.4.1 presents an example of user.assignment loop problem. Taskl is assigned
to Userl through Rolel. Assume that ‘Userl delegates his task, Taskl, to User2, and
delegates Taskl to User3 due to an emergency task. Furthermore, User3 is
accidentally unavailable, after he accepts the delegated task. If Taskl is
automatically now assigned to Userl by the workflow engine, the user assignment
loop problem takes place under this scenario.

To prevent this problem, the delegator users are needed to be recorded. There are
two ways to record the delegator users of a delegated task. One is marking method,
and the other one is tracing method. The two methods are introduced in following

sections.

25

Task 1

f’Temporal\\
| Delegatee)
', Role |

~

Delegat
(lsen | ook S e ier 3 |

A

Fig.4.1 User assignment loop problem

4.1.1. The Marking Method for User Assignment Loop Problem

In marking method, the id of'the delegated task is stored in a table named d_task
which is associated with the delegator-user as'an extended attribute. When a
delegation happens, the delegated taskid'is'put into the d_task table associated with
the delegator user. Moreover, while the repeated delegation occurs, the delegated
task id is recorded in all delegator users’ d_task tables respectively. As described in
Chapter 3, when the original user revokes his delegated task or the task completes,
the delegated task id is kick off from those user who has it in his/her d_task.

Algorithm 4.1 AALMm (Analysis of Assignment Loop with Marking Method)
describes the marking method. This algorithm removes users who might cause the
user assignment loop from the user set generated by the collecting algorithm and
analyzed by other analysis methods. Each candidate user’s d_tasks table is checked
if there is a recorded task id equaled to the delegated one. In case it is true, this user

is deleted from the delegatee user set.

26

Algorithm 4.1 (Analysis of Assignment Loop with Marking Method)

Input:

A userset C

The delegated task €

Output:

A delegatee user set D without the user assignment loop problem

AALMmM

01 Begin

02 D=C

03 For each user ueD, do

04 For each task id d_1deu.d_task do
05 Ifthe d_idisequaltot.id
06 Remove u from D

07 Break

08 EndIf

09 EndFor

10 EndFor

11 End

4.1.2. Tracing Method for Use Assignment Loop Problem

In tracing method, the id of the delegator user is stored in a table, named r_task,
which is associated with the temporal delegatee role. When a delegation happens,
the delegator user’s id is put into the r task table associated with the temporal
delegatee role. Furthermore, while the repeated delegation occurs, all ids of the
delegator users are recorded in the r_task table. As described in Chapter 3, when the

original user revokes his delegated task or the task completes, the temporal

27

delegatee role is removed, and the r_task table on this role is also deleted.

Algorithm 4.1 AALTm (Analysis of Assignment Loop with Tracing Method)
describes the tracing method. The purpose of this algorithm is the same with the
algorithm AALMm. The r_tasks table binding on the temporal delegatee role related

to the delegated task is checked.

Algorithm 4.2 (Analysis of Assignment Loop with Tracing Method)
Input:

Auser set C

The delegated task t
Output:

A delegatee user set D without the user assignment loop problem
AALTmM
01 Begin
02 D=C-t.d_role.r-task

03 End

Algorithm 4.2 Tracing method algorithm for user assignment loop problem

The difference between the two methods is where to log the information of
delegator users. The marking method records the information of delegator users in
the user attribute, but the tracing method uses the delegatee role to store the
information of delegator users. Generally speaking, the tracing method is faster than
marking method in checking user assignment loop for one delegated task. This is
because that tracing method only verifies users in the delegator user table. But
marking method has to go through all the users in the delegatee user set to check
whether the delegated task ID is in their d_tasks attributes. Normally, delegator users
in multi-delegations are not more than five people, but the numbers of users in

delegatee user set are. Thus, executing tracing method is usually faster than marking

28

method in checking loop problem for one task.

The advantage of marking method is that it is easy to know what tasks are
delegated by users. The marking method is better used before the selection algorithm
to help the system to collect delegatee user set. When picking up delegatee users, the
engine checks the d tasks in users. If the delegated task ID is appeared in this
attribute, this user is not chosen into delegatee user set. The tracing method can also
be used before executing selection algorithm. But in comparison of executing time,
the marking method is faster then tracing. The reason is that tracing method traces
delegator user table every time before a user is picked. The marking method only
has to compare the delegated ID with the d tasks attribute. Normally, the size of
d_tasks attribute is smaller than the delegator user table. Thus, the marking method

is better than the tracing method toput at the beginning of selection algorithm.

4.2. Separation of Duty (SeD)
The separation of duty (SoD) is a security-principle. When two or more tasks in

the same process are performed by one user, SoD problem might occur.

T3: Department manager
approval

Lown armoumt == S1O0K.

T1: Receive T2: Account manager | Loan amount = S100K . .
I Bt = i ¥ T4 Issue check = T5: Grant loan

Fig.4.2 A loan request process

Fig.4.3 presents a loan process. All the tasks are assigned to different users
through different roles. Suppose that T2 is assigned to User2 through a process role
named account manager. T3 is assigned to User3 through another process role
named department manager. Now User3 is unexpectedly unavailable, and the task

approval task is needed to be executed. If T3 is automatically delegated by the

29

engine and is assigned to User2, thus, User2 can easily approve any amount of
loans.
To state the SoD principle in detail, tasks are divided into two types: decision task

and general task. The definition is described below.

Definition 4.1 (Decision Task): A task within the workflow where a single
thread of control makes a decision upon which branch to take when encountered
with at least one alternative workflow branches. This kind of task is called

decision task.

In definition 4.1, decision tasks decide the execution path of a process. Using Fig
3.5 as an example, T2 and T3 are loan approval tasks. If managers in T2 or T3
disagree with loan requests, these loan requests are dropped. Obviously, T2 and T3
can effect the execution of process. Therefore, T2-and T3 are decision tasks. Check
points and decision making tasks in processes.are-usually classed as decision tasks.
From workflow viewpoint, XOR-split-nedes-are,classed as decision tasks. T1 and T5
in Fig.4.3 are general tasks. These‘kinds. of-tasks are routines or those that never

change process execution path.

Definition 4.2 (General Task): All Tasks which are not classed as decision tasks

are general tasks.

When constructing the delegatee user set, the workflow engine shall check the
picked users’ SoD constraints. If some ones violate these constraints, they cannot be
selected into delegatee user set. There are two types of separation of duty constraints:

strong SoD and weak SoD.

Definition 4.3 (Strong SoD): Any two tasks in one process, including decision
tasks and general tasks, are not performed by the same person is called Strong

Separation of Duty.

30

That the delegations both decision and general tasks cannot violate separation of
duty constraints is called strong SoD. Limiting decision tasks not to violate
separation of duty constraints only is called weak SoD. The benefit of strong SoD
constraint is to prevent that a task in highly secure processes, such as military
processes, are performed by the same user. Usually, the enterprise processes only

require weak SoD constraints.

Definition 4.4 (Weak SoD): That the decision tasks in one process only are

restricted to be performed by different users is called Weak Separation of Duty.

4.2.1. Analysis method of Weak SoD

The weak SoD principle does not allow two decision tasks to be executed by one
person, since one can easily change the execution path or result when holding two or
more decision tasks in a proeess: Algorithm 4.3-gives a method filtering the
candidate user set to assure that the -delegatee user set violates no weak SoD

principle.

Algorithm 4.3 (Analysis of Weak SoD Principle)
Input:
The Task repository T
A user set C
Output:
A user set D
AWSDP
00 D=C

01 Foreachtask teT, do

02 If t.type = decision

31

03 If t.state = submit

04 If t.d_role!=NULL

05 Remove t.d_role.pfT from D
06 Else

07 Remove t.p_role.pfT from D
08 Endif

09 Else

10 Remove t.d_role.pf from D
11 Remove t.p_role.pf from D
12 Endif

13 Endif

14 Endfor

Algorithm 4.3, AWSDP (Analysis of Weak:SoD Principle), is executed when the
delegated tasks is typed “decision’” and under-the constraint of weak SoD principle.
In AWSDP, all the users which potentially perform any decision tasks in the process
are removed from the result set. To achieve the goal, the execution states of tasks are
considered. For a submitted task, if the task is not delegated, the original performer
is considered, otherwise only the delegatee user is considered. To a ready or a
running task, because revocation might take place, both the original performer and

the delegatee user (if any) must be considered.

4.2.2. Analysis method of Strong SoD

Strong SoD restrict that all tasks in one process must be performed by different
users. Since the collecting algorithm collects users only from the process role
repository, the collecting algorithm find no delegatee users under strong SoD. For

this reason, when delegating one task with strong SoD constraint, a new collecting

32

algorithm is brought up for fitting strong SoD by using organization role repository.
When one task is set to strong SoD constraint, Algorithm 3.1 is not used to select

the delegatee users of this task in order not to against this constraint. A new selection

algorithm is used to collect candidate users from the organization role repository.

Algorithm 4.4 presents this method.

Algorithm 4.4 (Strong SoD User Collecting Algorithm)
Input:
The User repository U
The Process role repository P
The delegator user d
The delegated task t
Output:
The delegatee user set D
SSUCA
00 Begin
01 ForeachuserueU, do

02 Ifd.org_role 2~ u.org_role|d.org _role=u.org_role

03 Insert uto D
04 Endif
05 Endfor

06 Foreachuser u’eD, do

07 Ifu”.w_cnt+l1>u”.max_load|u’eP

08 Remove U’ from D
09 Endif
10 Endfor

33

11 D=AUALTm(D, t)

12 End

First, the delegator user’s supervisors in organization are collected. Moreover,
users with the equal organization level to the delegator user are picked. Second, the
system deletes users whose work count is out of their maximum workload or process
role appeared in the process repository of delegated task. This action is used to
achieve the main concept of separation of duty. Third, the user assignment loop
checking algorithm in Section 4.1 is executed to prevent the loop problem. After
executing this algorithm, a delegatee user set based on organization role is

constructed without against the strong SoD principle.

4.3. Organization Role Confhct

The delegatee role may be assigned to a user.-whose organization role is lower
than the delegator user. A problem isiraised-that: some decision tasks of a supervisor
may be performed by his subordinate after.delegation. Fig.4.5 presents an example
of organization role assignment and process role assignment. In this organization,
Tom is Rose’s supervisor, and Elvis is Rose’s subordinate. In one project of this
organization, the project manager role is played by Tom, and the QA and RD roles
are respectively assigned to Rose and Elvis. It is noticed that the roles are
hierarchical in organization role structure, but those in process roles are not totally
hierarchical. The project manager, QA, and RD roles are project-oriented role.

Therefore, they belong to process roles.

34

Organization role

. Process role
hierarchy

.

/ \ ,
|I Department | Assign

\ manager / o ‘nnm_‘Assign
H‘lu/ Project \
'\ manager /
./,-F H‘"‘\, S o e — . ",/"
[Engincer | Assign / /
| f———» Rose | S
|\ manager | . .
Ae ot \ W Assign — N
- -~ e 3 -._____;// ‘\\II I// \\ll
l QA ;| [\ RD |
A e A
A ™ . Rl "_,/" —
.'/) \\ Assign _a") Assign i
| Engineer f|————» Elvis 4——

Fig.4.3 Organization role assignment and process role assignment

Fig.4.6 shows a process of asking leave ,of absence. If someone in this project
cannot attend scheduled meetings; he starts/this.process. He sends the form of asking
leave of absence to the project manager to approve. this request. In this scenario,
approving absence requests task-is assigned-to thé project manager, Tom. Assume
that someday Tom 1is accidentally” “unavailable, and the workflow engine
automatically delegates the approval task to Elvis. A strange situation is brought
about that Rose’s absence request is approved by Elvis, i.e. the supervisor’s absence

request is approved by his subordinate.

Approve the Form of
Asking Leave of Absence

A

Assian

Apply for Form of Asking
Leave of Absence

Fig.4.4 Task assignment with process role

The primary reason to cause organization conflict is that tasks are assigned to the

35

process role instead of being assigned to the organization role. Section 3 has
described the advantages of separating role into these two types. However, the
implicit problem is coming up with this special assignment of role, tasks, and users.
From company ethics viewpoint, an engineer cannot approve the manager’s absence
request. For not to violate such company ethics problem, the delegatee user’s
organization role is needed to be checked when collecting the candidate users.
Considering the type of task, the execution path and result is not changed when
executing general task. This means that no organization role conflict in delegating
general tasks. But the decision type task may change. Thus, in order not to cause the
organization role conflict problem, decision tasks are not allowed to be delegated to
users with lower organization roles. Algorithm 4.5 gives this solution of checking

the organization role conflict.

Algorithm 4.5 (Organization Role Conflict Checking Algorithm)
Input:
A user set C
The delegator user d
Output:
A user set D
ORCCA
00 Begin
01 D=C
02 ForeachueC, do
03 Ifu.org_role ~ d.org_role|u.org _role s d.org_role
04 Remove u from D

05 Endif

36

06 Endfor

07 End

The users whose organization roles are lower then the delegator user are deleted.
This step ensures no subordinate of the delegator user is collected into the delegatee
user set. It prevents the primary reason to cause organization role conflicts.

There are lots of departments in modern enterprises. And the process in this
environment usually requires inter-department cooperation. When delegations
happen in such environment, the organization role conflict problem may apparent
much easier. This conflict is called inter-department organization role conflict.
Using Fig.4.3 as an example, Rose is the supervisor of engineer department, and
Peter is sales department manager. There is a project to be carried out by the two
departments to carry out, but one collaborate process is created. In this project, Rose
is the project leader, and Peter 1s a.member of this project. In process view, Peter’s
absence request is approved by ‘Rosei-Rese-is-accidentally unavailable one day, and
project leader role is delegated to Erici.Peter’s absence request is approved by Eric
in this scenario. This breaks the company ethics, and inter-department organization
role conflict occurrs. This problem is viewed as a special case in organization role
conflict. Decision type tasks bring up this conflict. The solution of this problem is
similar to organization conflict. In order not to let the decision type task delegate to
the subordinate of other departments, the checking condition is modified to check
the level of organization role. Algorithm 4.6 presents inter-department organization

role conflict checking algorithm.

Algorithm 4.6 (Inter-Department Organization Role Conflict Checking

Algorithm)

Input:

37

A user set C

The delegator user d
Output:

A user set D
IDORCCA
00 Begin
01 ForeachueC, do

02 Ifu.org_role.org_level = d.org_role.org_level

03 Remove u from C
04 Endif

05 Endfor

06 End

Algorithm 4.6 Inter-department organization role conflict checking algorithm
Line02 changes the checking conditionref-Adgorithm 4.5. In Algorithm 4.5, the
checking condition is organization role..lf the delegatee user’s organization role is
lower than the delegator user’s, he is deleted from delegatee user set. In Algorithm
4.6, the checking condition is the organization level. If the level of delegatee user is

smaller than the delegator user’s, he is erased from the delegatee user set.

4.4. Integration of the analysis methods

After describing the analysis methods, we use a flow to integrate these methods.

Fig.4.5 shows the relationships between these three analysis methods.

38

org_conflict

. flag
False a8
True
Delegatee user set -
User Assignment Organization Separation of
—— " Begarizsiion. paration o
Loop Analysis Conflict Analysis Duty Analysis
Strong SoD/
True Weak SoD
m Analysis
mathod
. Flag False - none Candidate user set
" checking) org_conflict

flag sod_flag

Fig.4.5 The integration of analysis methods

In Fig4.5, after generating the candidate user set, the system checks the
sod_flag of the delegated task. If this flag is labeled Strong_SoD or
Weak_SoD, this means that the task. must not violate the separation of duty
principle. Therefore, the candidate user’setiis'passed into the analysis methods of
SoD. Otherwise, this set is passed to the organization conflict analysis stage. When
the user set from SoD analysis or the collecting algorithm is passed out, the system
checks the org_conflict_flag tosee whether the delegated task must not
violate the organization role conflict. If this flag is true, the candidate users are
delivered to the organization conflict analysis method. After checking the two flags
of the delegated task, the candidate user set may be filtered by the SoD and
organization role conflict analysis methods. Finally, the user assignment loop
problem must be checked and the delegatee user set is constructed. This is how the

three analysis methods to be integrated.

39

5. Conclusion and future works

In this paper, we introduce three types of delegation by observing the behaviors of
delegation. The delegatee user is selected by delegator user in the user-authorized
delegation. The system chooses the delegatee user following the predefine delegatee
user schema in fixed delegation. A delegatee user collecting algorithm is executed
by the system to construct the delegatee user set for deciding the delegatee user in
the dynamic-selection delegation. Two extensions of the delegations are also
introduced. The monitor user selects the delegatee user from the delegatee user set
constructed by the dynamic-selection delegation. The repeated delegation is
composed of at least two delegations. A task-based delegation framework is
proposed to handle the delegation described.above.

With three analysis methods,.the, problems.and.conflicts are given appropriate
solutions respectively. In the-future, one of our-works is to implement this

framework to existing workflow management 'systems.

40

Reference

[1] Sejong Oh, Seog Park, “Task-role-based access control model,” Information
Systems, Volume 28, Issue 6, September 2003

[2] R. S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman, “Role-Based Access
Control Models,” IEEE Computer 29(2): 38-47, IEEE Press, 1996.

[3] Simon, R.T.; Zurko, M.E., “Separation of duty in role-based environments,”
Computer Security Foundations Workshop, 1997.

[4] Axel Kern, Andreas Schaad, Jonathan Moffett, “Advanced Features for
Enterprise-Wide Role-Based Access Control,” Computer Security Applications
Conference, 2002

[5] Yang, L. Ege, R. K.Ezenwoye,, O. . Kharma, Q., “A Role-Based Access
Control Model for Information.*Mediation,’’ Information Reuse and Integration,
2004.

[6] Basit Shafiq, Arjmand Samuel,; Halima Ghafoor,-“A GTRBAC Based System for
Dynamic Workflow Composition and ‘Management,” Object-Oriented Real-Time
Distributed Computing, 2005

[7]1 J. B. D. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “Generalized Temporal
Role-Based Access Control Model,” IEEE Transaction on Knowledge and Data
Engineering, Vol. 17, No. 1, January 2005, pages. 4 - 23.

[8] Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N., “Modeling security
requirements through ownership, permission and delegation,” Requirements
Engineering, 2005. Proceedings. 13th IEEE International Conference

[9] Gail-Joon Ahn, Badrinath Mohan, “Secure Information Sharing Using
Role-based Delegation,” Information Technology: Coding and Computing, 2004

[10] Ezedin Barka, Ravi Sandhu, “Role-Based Delegation Model/Hierarchical Roles

41

(RBDM1),” Computer Security Applications Conference, 2004.

[11] Jacques Wainer, Akhil Kumar, “A Fine-grained, Controllable, User-to-User
Delegation Method in RBAC,” ACM symposium on Access control models and
technologies SACMAT’05

[12] Jason Crampton,“A Reference Monitor for Workflow Systems with Constrained
Task Execution,” ACM symposium on Access control models and technologies
SACMAT’05.

[13] He Wang, Sylvia L. Osborn, “Delegation in the Role Graph Model,” ACM
symposium on Access control models and technologies SACMAT’06

[14] Geethakumari, G. Negi, A. Sastry, V.N.,” Dynamic Delegation Approach for
Access Control in Grids,” e-Science and Grid Computing, 2005

[15] James B. D. Joshi, Elisa Bertino, “Fine-grained role-based delegation in
presence of the hybrid role hierarchy,” ACM.symposium on Access control models
and technologies SACMAT '06.

[16] Matunda Nyanchama, Sylvia Osbern, “The Role Graph Model and Conflict of
Interest, “ACM Transactions on Information and System Security, Vol. 2, No. 1,
1999

[17] Vijayalakshmi Atluri, Janice Warner, “Supporting conditional delegation in
secure workflow management systems,” ACM symposium on Access control models
and technologies SACMAT '05

[18] Shih-Chien Chou, “Dynamic adaptation to object state change in an information
flow control model,” Information and Software Technology, 2004

[19] Workflow Management Coalition Terminology & Glossary, WFMC-TC-1011,
1994

[20] R. A. Botha, J. H. P. Eloff, Separation of duties for access control enforcement

in workflow environments, IBM System Journal, Vol.40, No.3, 2001.

42

[21] Simon, R.T.; Zurko, M.E., Separation of duty in role-based environments, IEEE

Computer Security Foundations Workshop, 1997.

43

	摘要
	Abstract
	誌謝
	Table of Contents
	List of Figures
	List of Algorithms
	List of Tables

