

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

以 圓 錐 可 展 曲 面 擬 合 網 格 之 演 算 法

Approximating Meshes using Cone Spline Developable

Surfaces

研 究 生：劉育碩

指導教授：莊榮宏 教授

中 華 民 國 九 十 六 年 八 月

利用圓錐可展曲面擬合三角網格之演算法

研究生 : 劉育碩 指導教授 : 莊榮宏 博士

國立交通大學多媒體工程研究所

摘 要
 可展曲面可以應用於衣服或紙模型的設計。可展曲面具有易於生產，無扭曲

等優點，但通常需要有經驗的專家才能設計可展曲面。舊有的可展曲面擬合演算

法通常只能擬合近似可展之網格[3, 6, 8]，或限制擬合曲面為受限的可展曲面[5, 7,
9]。我們在論文中，提出了更通用的演算法，能利用圓錐可展曲面來擬合網格。

我們的演算法為一反覆擬合之架構，在每一次迴圈中，我們執行區域擴張並最佳

化擬合之圓錐可展曲面。不同於舊有的方法利用單一的圓錐曲面，我們利用多段

的圓錐曲面擬合網格以降低誤差，並保證同一區塊內，圓錐之間的C0連續性，

因此我們的演算法可以利用較少的區塊，來更精確的擬合網格。

 i

Approximating Meshes using Cone Spline Developable Surfaces

Student: Yu-Shuo Liu Advisor: Dr. Jung-Hong Chuang

Department of Computer Science

National Chiao Tung University

ABSTRACT

Developable surfaces have various applications like clothes or paper craft models design.

They have many advantages like simple to construct and no distortion. Designing developable

surfaces is not trivial though, so various developable surfaces approximation methods have

been proposed. Previous developable surfaces approximation methods either only approximate

near developable surfaces [3, 6, 8] or only use restrictive surfaces [5, 7, 9] as approximation

surfaces. We propose a more general method that use cone spline surfaces as approximation

surfaces. Our method is a iterative approach, in each iteration, our algorithm executes region

growing and approximation surface optimization. Unlike previous approaches that use a single

conic as proxy surface in the optimization phase, our method use multiple segments of conic to

further reduce the error and guarantee C0 continuity between the conics in the same cone spline

surface. As a result, our algorithm is more accurate and usually generates fewer patches than

previous methods.

1

Acknowledgments

I would like to thank my advisors, Dr. Jung-Hong Chuang, and Wen-Chieh Lin for their

inspirations and guidance.

I would especially thank Tan-Chi Ho, who spared his time to discuss with me and gave me

a lot helpful comments and advices.

Thanks to my colleagues in CGGM lab: Ji-Wen Chon, Chia-Lin Ko, Ya-Ching Chiu, Yung-

Cheng Chen, Yueh-Tse Chen, Chih-Hsiang Chang, Hsin-Hsiao Lin, Kuang-Wei Fu, and Ying-

Tsung Li for their assistances and discussions.

Special thanks to my senior colleagues Young-Cheng Cheng, we spent endless nights dis-

cussing software engineering, computer graphics and all other interesting stuff in game indus-

try. Thanks to Yi-Chun Lin, who taught me his philosophy of life, and various special attacks

in Ninja Gaiden.

Finally I would like to thank my family. Without their support I could not come through all

the pain in my life.

3

Contents

Abstract 1

Acknowledge 3

List of Figures 7

1 Introduction 1

1.1 Brief of Developable Surfaces . 1

1.2 Motivation . 1

1.3 Contributions . 2

1.4 Thesis Organization . 3

2 Related Work 5

2.1 Mathematical Background . 5

2.1.1 Developable Surfaces in Differential Geometry 5

2.1.2 Developable Surfaces in Projective Geometry 6

2.1.2.1 Projective space . 6

2.1.2.2 Duality . 7

2.2 Developable Surface Representations . 7

2.3 Paper Crafting . 9

5

3 Mesh Approximation using Cone Spline Surfaces 11

3.1 Approach overview . 11

3.2 Pre-segmentation . 12

3.3 Single patch approximation . 13

3.3.1 Cone Spline Surfaces Parametrization 13

3.3.2 Cost Function . 16

3.3.3 Region Growing Framework . 18

3.4 Boundaries Optimization . 20

4 Experimental Results and Discussion 23

4.1 Near developable meshes . 23

4.2 General meshes . 24

4.3 Discussion . 25

4.3.1 Initial guess and greedy approach . 26

4.3.2 Faces assignment problem . 27

5 Conclusion and Future Work 31

5.1 Conclusion . 31

5.2 Future work . 31

Bibliography 33

6

List of Figures

3.1 Overview of our algorithm . 12

3.2 Two conics are G1 continuous . 14

3.3 Two conics only preserve developability . 15

3.4 The local coordinate of the cone . 15

3.5 The local coordinate of the cylinder . 16

3.6 The local coordinate of the plane . 17

3.7 The region growing framework . 19

4.1 The approximation result of a general cone 24

4.2 The approximation result of a segment of fandisk model 25

4.3 The approximation result of a segment of bunny model 26

4.4 The approximation result of a segment of bunny model 26

4.5 The approximation result of a segment of horse model 27

4.6 The approximation result of a segment of horse model 28

4.7 Two possible initial guesses’ axis direction . 28

4.8 Two possible approximations . 29

7

C H A P T E R 1

Introduction

1.1 Brief of Developable Surfaces

Developable surfaces are surfaces that can be unfolded into planes without any distortion. They

are appealing because of their simplicity. During construction, they can be obtained by only

bending a plane without any stretching or contraction, which also means the surface has fewer

weak spots. Every objects made from metal, leather, wood, paper or cloth sheets without stretch

are developable surfaces. Although simple in concept and presented in everyday’s life, design-

ing and modeling of developable surfaces are difficult and require experienced experts. Such

difficulty often limits the applications of developable surfaces.

1.2 Motivation

Developable surfaces approximation is studied extensively in CAD realm, but in CAD realm

the original surfaces are often assumed to be very close to developable surfaces, and the ap-

proximation surfaces are often assumed to have C1 or G1 continuity [3, 6, 8], which restrict

these algorithms applying to general meshes.

1

2 Introduction

Making paper craft models is another application of developable surfaces. Recently there

are few papers propose algorithms to generate paper craft parts from meshes automatically.

These algorithms use restrictive surfaces like conic surfaces [5, 9], or long triangle strips [7] as

approximation surfaces. The paper craft models generated from these algorithms either have

too many parts or too complex boundaries so they are still far from ideal.

Because previous algorithms either restrict the original surfaces or the approximation sur-

faces, we try to close the gap by relaxing the restrictions of approximation surfaces so our

algorithm can be applied on near-developable surfaces as well as general meshes. And when

applied on general meshes, our algorithm can fit the surface more accurately than previous paper

crafting algorithms.

1.3 Contributions

Our algorithm use cone spline surfaces as approximation surfaces. Because cone spline surfaces

are more general than conic surfaces and have more degree of freedom, we can approximate

more complex surfaces. Compare our method to previous methods that use conics as approxi-

mation surfaces [5, 9], our method is often more efficient, which means that we can approximate

a complex patch using only a single cone spline surface, where previous methods require mul-

tiple conics. And we also guarantee the C0 continuity of the conics in the same cone spline

surface which can’t be guaranteed in previous method [9]. Because our method suffer from the

unstable boundaries between multiple cone spline surfaces as in previous method [9], we also

proposed a novel boundaries optimization method which is based on Hermite interpolation [6].

Compared to the methods presented in CAD realm [3, 6, 8], we relax the constraint of the C1

and G1 continuity and only preserve C0 continuity, as a result our algorithm can approximate

near developable surfaces as well as general surfaces.

1.4 Thesis Organization 3

1.4 Thesis Organization

In chapter 2 we first introduce the mathematical background of developable surfaces, then dis-

cuss related works of our method. Chapter 3 describes our algorithm framework. Chapter 4

shows the experiment results and discuss some problems in our method, and chapter 5 is the

conclusions and discusses of future work.

C H A P T E R 2

Related Work

In this chapter, a review on related works of our method will be given. Section 2.1 introduces

the mathematical background of developable surfaces. Section 2.2 discusses representation and

approximation algorithms of developable surfaces.

2.1 Mathematical Background

In this section we discuss the mathematical background of developable surfaces. Section 2.1.1

discuss the properties of developable surfaces from the perspective of differential geometry. In

Section 2.1.2 we discuss how duality principle in projective geometry simplifies the represen-

tation of developable surfaces.

2.1.1 Developable Surfaces in Differential Geometry

Ruled surfaces are surfaces such that each points on the surface has one tangent line (ruling)

pass through it such that the tangent line is also lies on the surface. Given a one-parameter

family of straight lines {α(t), ω(t)}, for each t, α(t) is a point and ω(t) is a vector, a ruled

5

6 Related Work

surface can be represented as

x(t, v) = α(t) + vω(t), t ∈ I, v ∈ R. (2.1)

In equation 2.1, the curve generate by α(t) is called a directrix, and the straight line gener-

ated by vector ω(t) is called a ruling. Equation 2.1 has the geometric interpretation that a rule

surface is generated by a straight line parallel to ω(t), and pass through α(t), sweep through the

directrix.

Developable surfaces are ruled surfaces with the additional constraint

(ω, ω′, α′) = 0. (2.2)

The constraint can be interpreted as that, for the directrix α(t) of a developable surface x, such

that α(t) is on a surface S, each points on the same ruling have the same tangent plane Tα(t)(S)

of the surface S. The interpretation implies that each rulings of the developable surfaces x are

the limiting positions of the intersection of neighboring tangent planes of the family {Tα(t)(S)},

and the developable surface x is called the envelope of the family of tangent planes of S along

α(t).

2.1.2 Developable Surfaces in Projective Geometry

Using duality principle in projective three space, developable surfaces representation can be

greatly simplified. In this section we introduce the basic concept of projective space and the

duality principle. Then we show the the dual form of developable surfaces in projective three

space.

2.1.2.1 Projective space

Let the coordinates of a point P in the projective three-space be (x1, x2, x3, x4), which are also

known as the homogeneous coordinates of a point. The corresponding point P in the Euclidean

space is obtained by

(x, y, z) = (
x1

x4

,
x2

x4

,
x3

x4

) (2.3)

2.2 Developable Surface Representations 7

The points at infinity can be expressed by setting x4 = 0, in which case the first three coor-

dinates define the direction of a point at infinity. Finite points can be represented using their

Cartesian coordinates and unity as their fourth coordinate. The coordinates (x1, x2, x3, x4) and

(kx1, kx2, kx3, kx4), where k is nonzero real number, represent the same point P in Euclidean

space.

2.1.2.2 Duality

In projective space, there is an important principle called duality, which means that every the-

orems in projective space actually have two versions. For example, in projective three-space,

points and planes are dual to each other, which means the coordinates (x1, x2, x3, x4) could

be a point or a plane, and every theorem for the point have a dual theorem for the plane. For

example, for three points a, b and c being co-planar and the plane is D, the condition must be

satisfied is that (a, b, c) = 0. The dual statement of above theorem is that if three planes A, B

and C (A, B and C have the same coordinates with a, b and c respectively) intersect at one point,

they must satisfy the condition (A, B, C) = 0, and the intersection point is d.

In section 2.2, we see that a developable surface can be represented as a one parameter

family of tangent planes. In projective three-space, each tangent planes are dual to a points,

so the dual representation of a developable surface in projective three-space is a curve. This

property inspires many recent developable surfaces representation methods.

2.2 Developable Surface Representations

The representation of curves and surfaces in NURBS form is standard in CAD realm. Ear-

lier NURBS developable surfaces representations[1] methods treat the developable surfaces as

ruled surfaces then derive conditions that have to be imposed additionally in order to achieve

developability. These additional conditions however, are complex nonlinear equations, which

restrict the practical usage of these methods.

Bodduluri and Ravani [2] first proposed the dual algorithm. They consider a developable

8 Related Work

rational surfaces as a rational curve in dual projective space. This dual consideration trans-

formed the original problem to curves representation problem. They choose the directrix of the

developable surface as the dual curve and compute the tangent plane, then the tangent planes

are represented in Bézier or B-spline form. The problem of their algorithm is that the devel-

opable surfaces are represented in 1D Bézier or B-spline form, not in standard tensor product

form. Because they choose the directrix as the dual curve, their algorithm can not be applied to

cylinders or cones, in such cases, the differential of the directrix degenerate and their algorithm

fail.

Pottmann and Farin [8] extended Bodduluri and Ravani’s work by generalizing the dual

approach so that developable surfaces can be represented in standard tensor product form. Their

method first construct the developable surfaces in 1D B-spline form, then intersect the surface

with two other planes in projective space. The intersection of the developable surface and the

two planes are two curves, connect the two curves at corresponding parameters forms the tensor

product form of the developable surface. Because they don’t use the directrix to compute the

tangent planes, their algorithm can represent cylinders or cones which can’t be represented in

Bodduluri and Ravani’s algorithm.

The problem of the dual approaches is that during the design process, users are controlling

control planes instead of control points of the NURBS surface which is not very intuitive. All

previous developable surfaces representation methods can only represent (1, n) developable

surfaces, general (m,n) developable surfaces representation is still an open problem. Such

constraint limit the applications of previous methods, for example, paper craft models often have

many cuts that singular points in a patch, which can’t be accomplished by previous methods.

Because it’s hard to directly approximate a surface by general NURBS developable surfaces,

cone spline surfaces are often used instead. Cone spline surfaces are piece wise conic surfaces,

which are more suitable for local approximation.

Leopoldseder and Pottmann [6] proposed Hermite interpolation method for the conic sur-

faces. A Hermite element of a conic surface is a ruling plus the tangent plane pass though the

ruling. Leopoldseder and Pottmann first derive the interpolation solutions of the one parame-

2.3 Paper Crafting 9

ter family of the two G1 connected (have the same tangent plane between them) conics with

the boundaries being two given Hermite elements. Because the solutions of two consecutive

Hermite elements are known, the same technique can be extended to a sequence of Hermite

elements, the interpolated surface will be at least G1 everywhere. In their paper, the original

surfaces are developable surfaces, so the Hermite elements sequence is well behaved, but it’s

difficult to find such sequence on general meshes

2.3 Paper Crafting

Automatically making paper craft parts form meshes is first introduced by Mitani and Suzuki

[7]. The algorithm first segment the meshes into parts based on features. Then these parts

are approximated with triangle strips. The same process repeat until all triangles are covered

by some triangle strips. The triangle strips generate from their algorithm tend to have long

boundaries which are not convenient for gluing. Another problem is that the method dose not

consider any error metric, the only way to control the error is the predefined width of the triangle

strips, which is not flexible.

Julius et al. [5] propose using developability as error metric to segment the meshes. Their

algorithm is based on region growing framework and use a Lloyd scheme. For each patch, a

conic is used as a proxy surface. Because the angle between the conic’s axis and normal on the

surface is constant, the developable error metric is defined as

(NC · nt − cosθC)2. (2.4)

where NC is the axis of the conic, nt is the normal of the triangle, θ is the constant angle. They

additionally consider the compactness and boundary smoothness of the patch as error metrics

and use the product of the three weighted error metrics as the region growing error metric.

At each iteration, faces with the smallest error are inserted into the patches until all faces are

covered, then the optimized proxy conics are computed to fit the patches, the process repeat

until converge. Because the algorithm only segment the mesh, a parametrization method must

10 Related Work

be used to unfold patches into a plane. Because there are no isometric parametrization for

general patches, distortion will still be introduced in the process.

Shatz et al. [9] also use conic surfaces as proxy surfaces, but additionally consider the error

between the triangles and the conic surface. The proxy conic surfaces are treated as the final

approximation surfaces and can be directly unfolded. Because of the error between the proxy

conic and the origin meshes, sometimes the boundaries between the neighboring conic surfaces

will be unstable and must be specially dealt with. They only apply additional optimization pro-

cess on such unstable boundaries, so seams will probably appear between neighboring conics.

C H A P T E R 3

Mesh Approximation using
Cone Spline Surfaces

3.1 Approach overview

The aim of our algorithm is to approximate a mesh by several cone spline surfaces. The

overview flow of our method is shown in Fig. 3.1. First the mesh is pre-segmented into several

patches. For each patch, we perform region growing from the two boundaries of a cone spline

surface to approximate the patch until the boundaries contain no faces. If the patch contains

faces that are not covered by the cone spline surface, these faces will form new patches and the

whole process repeat until every face is covered by one cone spline surface.

In section 3.2 we discuss the options of pre-segmentation method. In section 3.3, we discuss

the detailed single patch approximation method. Because the boundaries between multiple cone

spline surfaces may be unstable, in section 3.4, we discuss the possible boundaries optimization

method.

11

12 Mesh Approximation using Cone Spline Surfaces

Figure 3.1: Overview of our algorithm

3.2 Pre-segmentation

Because our method can only locally approximate a patch, so pre-segmentation is required to

segment the mesh into several patches before the patches could be approximated by cone spline

surfaces. There are several types of mesh segmentation algorithm. Ideal segmentation for our

method should be developability and feature based, which segment the mesh into near devel-

opable and meaningful parts. With such segmentation, our method could be applied to generate

paper craft models from meshs which contain several meaningful parts, and each part can be

approximated by a cone spline surface. To our best knowledge though, D-charts [5] is the only

developability based segmentation, but it actually only uses conics to measure developability,

which will limit our method. Because currently there is no ideal segmentation method fulfill our

need, we segment the mesh manually into visually near developable and meaningful parts. Man-

ually segment the mesh is very time-consuming, so we hope that in the future, more advanced

mesh segmentation method that fulfill our need will be proposed, so the pre-segmentation could

3.3 Single patch approximation 13

be fully automated.

3.3 Single patch approximation

After the pre segmentation, we use a region growing approach to generate cone spline surfaces

that approximate the patch. In this section, we discuss in detail the region growing process.

Because we use cone spline surfaces as approximation surfaces, the consecutive conics in the

same cone spline surface must at least C0 continuous. In section 3.3.1, we discuss the conic

parametrization that preserve C0 continuity between consecutive conics. In section 3.3.2, we

discuss the region growing cost function and conic optimization function. Finally in section

3.3.3 we discuss the region growing framework using the conic parametrization and error func-

tions defined in 3.3.1 and 3.3.2.

3.3.1 Cone Spline Surfaces Parametrization

We followed the work of Shatz et al. [9] and define a conic as follow: Let c be the center of the

cone base, n be the cone axis, d be the distance from the cone, θ be the constant angle between

and the normals and the cone axis. Then a conic (n, c, d, θ) is defined by:

nx · (x− c) = d, (3.1)

where rx and nx are defined as follows:

rx =
(x− c)− ((x− c) · n)n

‖(x− c)− ((x− c) · n)n‖
, (3.2)

nx = rx · sinθ + nx · cosθ. (3.3)

A plane is a conic where c = (0, 0, 0) and θ = 0.

A cone spline surface is a piece wise conic surfaces. In the work of Leopoldseder and

Pottmann [6], the consecutive conic surface share a G1 Hermite element which means the tan-

gent planes of the connected boundaries of the two conic surface is the same. Such constraint

14 Mesh Approximation using Cone Spline Surfaces

is actually too strong and restrict the shape of the cone spline. In a lot of cases such as paper

crafting, only the C0 continuity is required for the cone spline. As shown in Fig. 3.2, the con-

dition for two conics being G1 continuous is that they share the same generator and the tangent

planes are the same, it’s obvious that both conics’ axes lie on the same normal plane.

Figure 3.2: Two conics are G1 continuous

In our method, the constraint is relaxed so the consecutive conics are only C0 continuous.

As shown in Fig. 3.3, the two conics only share the same ruling, but the tangent planes at

the ruling are different. As a result, the axes of the two conics now could lie on two different

normal plane, which increase the the degree of freedom during the approximation process. Such

relaxation will result in a ”folding line” between the two conics, but the developability is still

preserved.

Following we discuss the parametrization of the three kinds of conic: cone, cylinder and

plane respectively. The parametrization assume the neighboring conic and its boundary Hermite

element is known so the conic can be expressed using the boundary information.

Cone

In the case of a cone, the vertex of the cone must reside on the ruling so we can use a

parameter tv to express the position of the vertex using the generator’s line coordinate. Once

3.3 Single patch approximation 15

Figure 3.3: Two conics only preserve developability

the vertex position is determined, a local coordinates is defined using the vertex as origin. As

shown in Fig. 3.4, the local coordinates are (u, v, w), where u is the normal of the normal plane,

v is the direction of the generator and w = u× v. Using the local coordinates, the direction of

the new axis can be expressed using three parameters (u0, v0, w0). Because the vertex and axis

actually defined two cones, one in the upper and another in the lower of the vertex, so another

parameter tc is added to distinguish the two cases, tc > 0 represent the upper cone, and tc < 0

represent the lower cone. So a cone can be parameterized by (tv, u0, v0, w0, tc).

Figure 3.4: The local coordinate of the cone

Cylinder

16 Mesh Approximation using Cone Spline Surfaces

In the case of a cylinder, the axis direction must be the same as the ruling, so we only need

to specify the radius and the direction of the axis. As shown in Fig. 3.5, two parameters (θ, r)

are used to express the cylinder, where r is the radius of the cylinder and θ is the angle between

the local coordinate direction u and the vector x which is the direction from generator to the

cylinder center.

Figure 3.5: The local coordinate of the cylinder

Plane

In the case of a plane, the plane must pass through the generator, so the normal direction

must be perpendicular to the generator. As shown in Fig. 3.6, the normal of the plane is

parameterized by (β), which is the angle between the local coordinate direction u and the plane

normal.

3.3.2 Cost Function

In this section, we define various cost functions used in our method. Because we hope the

cone spline is grown in ”good shape”, beside distance cost function, we define additional cost

functions that change the weight of the distance cost of each face. The total region growing cost

function is defined as the product of these cost functions. Following we discuss the three cost

functions used in our algorithm.

3.3 Single patch approximation 17

Figure 3.6: The local coordinate of the plane

Distance cost function

Distance cost function measure the distance between the faces and the conic surface. The

cost is defined by:

Dist(face, conic) = Σv∈face‖v − Projconic(v)‖. (3.4)

where v is the vertex in the face and Projconic(v) is the closest point of v on the conic.

Normal difference cost function

Normal difference measure the normal difference between the face and the approximation

conic. The cost is defined by:

NormDiff(face, conic) = 1 + λ · Σv∈face(1− ‖Nconic(v) ·N(face)‖). (3.5)

Where Nconic(v) is the normal of the conic at the projection of v, N(face) is the normal of the

face, and λ is a user- defined parameter.

Compactness cost function

To prevent the generated patches to be strip-like, compactness cost is added to generate

relatively ”round” patches [5], which is defined by:

CompactCost(face, patch) = π
D(Spatch, face)

2

Apatch
. (3.6)

18 Mesh Approximation using Cone Spline Surfaces

Where Spatch is the seed face of the patch, D(Spatch, face) is the geodesic distance between

the face and the seed, Apatch is the area of the patch. For triangles on the boundary of a circle

(which is ideally compact) this metric evaluates to one.

Total cost

The cost of a face added to a patch is the combination of the three cost functions, which is

defined by:

Cost(face, Conic, Patch) = Dist(face, conic)αNormDiff(face, conic)βCompactCost(face, patch)γ.

(3.7)

Where α, β and γ are user-defined parameters, in our algorithm, we use α = β = γ = 1.

3.3.3 Region Growing Framework

The region growing framework is shown in Fig. 3.7. First, we find a conic surface that locally

approximate the patch, the conic is then treated as the initial cone spline surface, then region

growing is performed from the two boundaries of the cone spline surface. At each iteration, the

face at the boundaries and with smallest total cost is selected and assigned to the cone spline

surface. If the total cost of the assigned face is greater than a threshold Ttriangle, a new conic

surface that preserve C0 continuity and better approximate the face is created from the two

boundaries of the initial conic. The growing stopped when the boundaries contain no face.

Following we discuss every process in detail.

Get initial conic by local approximation the patch

If the pre segmentation is developability based like d-charts [5], then an initial guess could

possibility be derived from the segmentation process. Because currently we manually segment

the mesh, such information is not available, so we first find a conic by optimizing the distance

cost of the conic and the whole patch, then the part of the patch that has smallest cost is selected,

finally the initial conic is found by optimizing the distance cost to fit the part.

3.3 Single patch approximation 19

Figure 3.7: The region growing framework

Optimize the distance cost of the conic

After the initial conic is computed, at each of its two boundaries, a conic is used to approx-

imate the patch. We keep a priority queue that store faces that reside at the boundary, at each

iteration of region growing, the face in the queue that has minimal total cost defined in equation

3.7 is extracted from the queue and assigned to the new conic and its neighbor faces are inserted

into the queue, then the approximation conic are optimized by the distance cost function defined

in equation 3.4. We first treat the conic as a cone, and the cone is optimized by

argmintv ,u0,v0,w0,tc(Σface∈coneDist(face, cone(tv, u0, v0, w0, tc))). (3.8)

If the cone degenerates to a cylinder, then the cylinder is optimized by:

argminθ,r(Σface∈cylinderDist(face, cylinder(θ, r))). (3.9)

20 Mesh Approximation using Cone Spline Surfaces

And if the cone degenerates to a plane, then the plane is optimized by:

argminβ(Σface∈planeDist(face, plane(β))). (3.10)

Generate a new conic

The region growing will continue until the new conic contain at leastMinFace faces, which

is about one tenth of the total faces in the patch. After the number of faces in the conic exceed

MinFace, the cost of the newly inserted face is checked, if it’s greater than a predefined thresh-

old Ttriangle, a new conic that preserve C0 continuity and better approximate the face is created

from the boundary. Because there are various possible choices of the new conic, a set of initial

guesses of the new conic are used to perform region growing and the one with smallest total

cost will be chosen. The cone spline surface will grow until the boundaries of the two sides

contain no face. If there are remaining faces in the patch, these faces will form new patches and

the process repeats until all faces are assigned to some cone spline surfaces.

3.4 Boundaries Optimization

In applications such as paper craft models, the boundaries between neighboring cone splines

must be accurate enough to allow the parts to be glued back together to construct the models.

As pointed out by Shatz and Leifman [9], when the normal difference between the two conic is

small, the boundaries of the two conics will be unstable. In such case, they perform additional

optimization passes to optimize the conics’ boundaries. In our case, however, we can not opti-

mize a single conic’s boundary in a cone spline surface, because such optimization will break

the continuity of the cone spline surface.

Instead of directly optimizing a conic, we follow the idea of Hermite interpolation [6], which

allow one parameter family of two G1 continuous conics to be generated if the two boundaries’

Hermite element are given. For each cone spline surface, we first specify the segment that

contain unstable boundaries, then the Hermite elements at the two boundaries of the segments

3.4 Boundaries Optimization 21

are extracted. Using Hermite interpolation, we optimize the segment by:

argmintΣface∈segmentDist(face, conic(t))+β·Σvertex∈bounaryDist(vertex, conic(t)). (3.11)

Where t is the parameter used in Hermite interpolation. If the optimization result is not good

enough, the segment can be further divided and extract more Hermite elements and increase the

degree of freedom in the optimization process.

After the boundaries have been optimized, we can follow the work of Shatz and Leifman

[9] and extract the analytical boundaries by projecting the boundaries of the patch onto the

neighboring conics multiple times.

C H A P T E R 4

Experimental Results and
Discussion

In this section, we present the experimental results and discussion of our method. In section 4.1,

we first show the results when applying our algorithm on patches that are close to developable

surfaces. In section 4.2, we show the results when applying our algorithm on more general

meshes. In section 4.3, we discuss the unsolved problems and limitations of our method.

4.1 Near developable meshes

Fig. 4.1 shows the approximation result of a general cone. As shown in Fig. 4.1 (c) and (d),

our method can approximate the shape quite well with multiple segments of cone. The cones

are all connected with C0 continuity so we can unfold the cone spline in only one patch. In

contrast, previous method [9] that use conics as approximation surfaces will approximate the

patch with multiple separate cones and the boundaries between the cones are not guaranteed to

be C0 continuous.

Fig. 4.2 shows the approximation result of a part of the fandisk model. The patch can be

seen as a general cylinder. As shown in Fig. 4.2 (d), the part can be approximated efficiently

23

24 Experimental Results and Discussion

with a cone spline with only four segments of cylinder.

Figure 4.1: The approximation result of a general cone

4.2 General meshes

Fig. 4.3 and Fig. 4.4 show the approximation results of a segment of bunny model. As can be

seen in Fig. 4.4 the cone spline can fit the surface accurately which is not possible using only a

cylinder.

4.3 Discussion 25

Figure 4.2: The approximation result of a segment of fandisk model

Fig. 4.5 and Fig. 4.6 show the approximation results of a segment of the horse model.

Although the detail on the patch is disappeared after the approximation, the overall shape of the

patch is still preserved. As can be seen in Fig. 4.6, the upper and lower boundaries of the patch

are preserve quite well in the cone spline approximation.

4.3 Discussion

Currently our algorithm still has some unsolved problems, we discuss these problems in this

section.

26 Experimental Results and Discussion

Figure 4.3: The approximation result of a segment of bunny model

Figure 4.4: The approximation result of a segment of bunny model

4.3.1 Initial guess and greedy approach

The initial conic can greatly affect the approximation results, take the Fig. 4.7 for example,

there are two possible initial guesses of the axis. In (a), the hyperboloid will be approximated

by two cones, but in (b) the result will be many strip-like general cylinders. In this case, both

approximations can be considered good, but the number of patches generated are greatly var-

ied. In some cases however, bad initial guess will generate many unnecessary patches. In our

implementation, if the result is not ideal, we allow the users to adjust the initial guess manually.

During region growing, the initial guess of the growing conics also greatly affect the result.

4.3 Discussion 27

Figure 4.5: The approximation result of a segment of horse model

Because we take a greedy approach, the conic that has smallest cost will be chosen, such ap-

proach can’t guarantee an optimal result. In Julius et al. [5] and Shatz et al.’s [9] works, the

region growing are accompanied with a Lloyd scheme, so their approximation will ”move” at

each iteration and converge to a good result. But in our method, the number of parameters of

each cone spline is not known a priori, so its hard to integrate our method with such scheme.

4.3.2 Faces assignment problem

Sometimes if the meshes have thin structures, the approximation algorithm will assign the faces

to the wrong conic, which results in incorrect results. For example, in Fig. 4.8, (a) incorrectly

assign the two sides of patches to the same conic surface where the correct result should be two

different conic surfaces like (b). If such problem occurs, the incorrect faces will be inserted into

the priority queue, and the algorithm fails.

28 Experimental Results and Discussion

Figure 4.6: The approximation result of a segment of horse model

Figure 4.7: Two possible initial guesses’ axis direction

This problem may be automatically detected in the pre-segmentation process. But as discuss

in section 3.2, currently there is no appropriate segmentation method for us, so currently we

don’t deal with the problem. If the problem occurs, we manually segment the thin structure into

4.3 Discussion 29

Figure 4.8: Two possible approximations

two or more patches.

C H A P T E R 5

Conclusion and Future Work

5.1 Conclusion

We have proposed a novel cone spline developable surface approximation method that can be

applied on near developable surfaces as well as more general meshes. Our algorithm can be

seen as a generalize form of the paper craft algorithms that use single conic as approximation

surface. Currently our algorithm has some problems discussed in section 4.3, but we believe

these problems can be solved by further analysis of the meshes and a better approximation

framework.

5.2 Future work

Currently our algorithms can generate dramatically different results when applying different ini-

tial guesses, and it’s difficult to get an ideal initial guess by local approximation of the patches,

so we want to apply a global analysis on the patch to generate better initial guesses.

Our algorithm can’t automatically identify the sharp edge on the patches and can be affected

by the noisy surfaces, so we want to consider and integrate local approximation methods such

31

32 Conclusion and Future Work

as moving least square [4] that can identify outliers and features.

To our best knowledge, there is no developability based mesh segmentation algorithm that

use general developable surfaces as proxies. So our ultimate goal is to use cone spline surfaces

as proxies and combine a cluster scheme to automatically segment the mesh. Such algorithm

would generalize our work so the segmentation and approximation is performed simultaneously

and the result will automatically converge to a good result.

Finally, we also want to incorporate user editing system so the approximated results can be

easily modified, and our our algorithm can be used as a developable surfaces design system.

Bibliography

[1] G. Aumann. Interpolation with developable bézier patches. In Computer Aided Geometric

Design, 1991.

[2] R. Bodduluri and B. Ravani. Design of developable surfaces using duality between plane

and point geometries. In Computer Aided Design, 1992.

[3] H.-Y. Chen, I.-K. Lee., S. Leopoldseder, H. Pottmann, T. Randrup, and J. Wallner. On sur-

face approximation using developable surfaces. In Graphical models and image processing:

GMIP, 1999.

[4] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving least-squares fitting with sharp

features. In Proc. ACM Transactions on Graphics, 2005.

[5] D. Julius, V. Kraevoy, and A. Sheffer. D-charts: Quasi-developable mesh segmentation. In

Proc. Eurographics, 2005.

[6] S. Leopoldseder and H. Pottmann. Approximation of developable surfaces with cone spline

surfaces. In Computer Aided Design, 1998.

[7] J. Mitani and H. Suzuki. Making papercraft toys from meshes using strip-based approxi-

mate unfolding. In Proc. ACM Transactions on Graphics, 2004.

[8] H. Pottmann and G. Farin. Developable rational bezier and b-spline surfaces. In Computer

Aided Geometric Design, 1995.

33

34 Bibliography

[9] I. Shatz, A. Tal, and G. Leifman. Paper craft models from meshes. In The Visual Computer,

2006.

