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Abstract

We present a new framework that combines the multi-resolution hierarchical
representation with video-based compression to manage and render large scale
time-varying data. In the preprocessing step, the proposed method first constructs a
multi-resolution octree hierarchy for each individual time step, and then applies
motion-compensation-based prediction to compress these octree nodes. During
rendering, the data is decompressed on-the-fly and rendered using hardware texture
mapping. The proposed approach breaks the hierarchical decompression dependency
in the conventional hierarchical wavelet representation methods, and allows a more
efficient reconstruction of data along the time axis. The system allows the user to
select a spatial region-of-interest (ROI) to adjust the spatial level-of-detail selection,
and the selection of a temporal ROI to choose only a sub-region for frequent update
during playback. With a suitable control of both ROIs, our system can reach an
interactive playback frame rate. This allows the user to observe the dynamic

properties of large time-varying data sets.
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Chapter 1

Introduction

As computer storage and scanning precision rapidly increases, scientific
measurements and simulations can generate large time-varying data set that have
hundreds or thousands of time steps, and each time step may contain billions of
voxels. Although direct volume rendering with 3D hardware texture mapping [Cabral
et al. 1994; Westermann and Ertl 1998] can perform efficient rendering, the limited
size of the texture memory makes it difficult to maintain an interactive frame rate
when large data sets have to be rendered. When the data size of an individual time
step does not fit into the available texture memory, a decomposition into blocks has to
be applied to the data set. In this case, the texture memory swap-in and swap-out
required for the entire volume reduce the rendering performances substantially. To
overcome this problem, several multi-resolution schemes for static [LaMar et al. 1999;
Weiler et al. 2000; Boada et al. 2001] or time-varying data [Shen et al. 1999] were
proposed. These methods construct a multi-resolution hierarchy that represents
different resolutions for different regions. They can adapt the data resolution to render
the interesting or important regions with high accuracy, while other regions are
rendered with lower accuracy. To further reduce the storage and data transmission
bandwidth, some wavelet compression schemes were proposed [Guthe et al. 2002;
Wang and Shen 2004]. These methods recursively apply wavelet transform to
compress the data and in the end construct a multi-resolution hierarchical wavelet
representation.

For time-varying data sets, user may not only want to navigate a specific time
step with certain spatial or temporal level-of-detail, but also want to directly observe
the temporal variations in the data. However, the current hierarchical wavelet
compression schemes such as the wavelet-based time-space partitioning (WTSP) tree

[Wang and Shen 2004] are not suitable for this purpose. Since they compress the data



using hierarchical wavelet transform, the reconstruction of the data requires a
hierarchical decompression process. It will cause many additional disk loading and
reconstruction overhead. In order to reduce reconstruction cost as much as possible,
we can utilize temporal coherence and apply motion-compensation-based prediction
in adjacent time steps. In this way, the reconstruction will not have hierarchical
dependency. Once the corresponding data in the previous time step has existed in
memory, we can directly reconstruct the data of the current time step.

Our algorithm constructs a system that is similar to a basic video coding
structure: Each time step of the data set is classified as either an intra-coded frame
(I-frame) or a predictive frame (P-frame). For an I-frame time step, we apply
hierarchical wavelet transform to construct a multi-resolution hierarchical wavelet
representation. The high-pass filtered coefficients are then encoded and stored in the
disk. For a P-frame time step, we also use the hierarchical wavelet transform to
construct a multi-resolution hierarchical representation. Then, we apply
motion-compensation-based prediction to the low-pass filtered data. The resulting
difference data and motion vectors are encoded and stored.

During rendering, the data is decompressed on-the-fly and rendered using
hardware 3D texture mapping. The system allows the user to select a spatial
region-of-interest (ROI) to adjust the spatial level-of-detail selection, and the selection
of a temporal ROI to choose only a sub-region for frequent update during playback.
With a suitable control of both ROIs, our system can reach an interactive playback
frame rate. This allows the user to observe the dynamic properties of large
time-varying data sets. We also propose caching and pre-loading mechanisms.
Caching is applied in I-frame to help reusing previously reconstructed data blocks
when the level of detail (LOD) selection is changed. Pre-loading is applied in P-frame
to distribute the workload of each frame more evenly.

The remainder of this thesis is structured as follows: We first review related work
in Chapter 2. Then, we describe the pre-processing compression scheme in Chapter 3.
In Chapter 4, we describe the run-time decompression and rending of our system.
Results are discussed in Chapter 5 and the conclusion is given in Chapter 6 with some

ideas for future work.



Chapter 2

Related work

In this chapter, we give a brief overview of related work in the area of texture-based
volume rendering, multi-resolution rendering, time-varying data compression scheme,
and time-varying data hierarchical representation.

2.1 Texture-based Volume Rendering

The shear-warp factorization proposed by Lacroute and Levoy [Lacroute and Levoy
1994] is the most efficient software-based technique for direct volume rendering.
They proposed the basic idea of using object-aligned textured slices to substitute
trilinear by bilinear interpolation. This technique can be adapted to exploit 2D-texture
hardware and achieve an interactive frame rate [Rezk-Salama et al. 2000]. The usage
of hardware 3D texture mapping algorithm[Cabral et al. 1994; Westermann and Ertl
1998] allows for more flexibility and can provide a higher image quality. There are
several advanced shading techniques proposed in recent visualization algorithms, such
as lighting [MeiRner et al. 1999], shadows [Behrens and Ratering 1998], high quality
post-classification using a pre-integration technique [Engel et al. 2001], and gradient

magnitude modulation[Van Gelder 1996].

2.2 Multi-resolution Rendering

The idea of multi-resolution volume rendering algorithms is to provide a spatial
hierarchy to adapt the data resolution to render the interesting or important regions
with higher accuracy, while other regions are rendered with lowerer accuracy. LaMar
et al. [LaMar et al 1999] describe an octree-based multi-resolution approach for
interactive volume rendering. They filter the volume to create levels-of-detail in an

octree structure. They propose the use of spherical shells to reduce visual artifacts for



3D texture mapping. A similar technique was proposed by Boada et al [Boada et al.
2001]. Their hierarchical representation benefits nearly homogeneous regions and
regions of lower interest. Weiler et al. [Weiler et al. 2000] address the avoidance of
discontinuity artifacts between different levels of detail. Their approach allows
consistent interpolation between levels. These multi-resolution techniques can handle
volume data sets that do not fit completely into the texture memory of the graphics
hardware. However, the data must still fit into the main memory. Guthe et al. [Guthe
et al. 2002] improved on this by using wavelet representation. They recursively apply
wavelet transform to compress the data and construct a multi-resolution hierarchical
wavelet representation. Their approach is able to render walkthroughs of large data
sets in real time on a conventional PC.

Multi-resolution volume rendering provide a data hierarchy that supports
level-of-detail (LOD). There are several types of criteria for the LOD selection. These
LOD selection methods can be classified into four types. We give a brief overview to

these LOD selection methods.

1. View-dependent criterion: This is a general criterion that takes the view-
dependent factors into account. According to the position of viewer, it will
let the regions that are closer to the viewer or the regions with larger
projected screen area have higher resolution [LaMar et al. 1999; Guthe et al.
2002].

2. Region-of-interest: This criterion depends on the user-specified region-
of-interest (ROI) to decide LOD selection [Pinskiy et al. 2001; Plate et al.
2002]. Usually there is a 3D bounding box to represent the ROI. User can
change the size and the position of the bounding box. It will let the regions

inside the ROI bounding box have higher resolution.

3. Data error metric: The data error metric calculates the error (usually the
mean squared error) between the low resolution data block and the
corresponding original volume data. Then, the LOD selection is decided by

letting each subvolume satisfy the user-specified error tolerance [Shen et al.



1999; Wang and Shen 2004].

4. Image-based quality metric: The image-based quality metric evaluates the
contribution of multi-resolution data blocks to the final image. Then, the
LOD selection algorithm tries to choose a set of blocks that generate images
of best visual quality [Ljung et al. 2004; Wang and Shen 2006; Wang et al.
2007].

2.3 Time-varying Data Compression Scheme

Guche and StraBer [Guthe and StraRer 2001] introduced an algorithm that uses the 3D
wavelet transform to encode each individual volume, and then applies a
motion-compensation-based prediction in adjacent time steps. Their algorithm is
capable of decompressing and visualizing animated volume data at interactive frame
rates. Sohn et al. [Sohn et al. 2002] proposed a volumetric video system that borrows
the idea of MPEG compression to efficiently exploit spatial and temporal coherence.
They encoded only the significant data that contribute to the iso-surface and
volumetric feature to achieve high compression ratio with fast reconstruction. While
the above two methods can perform efficient data compression and rendering, they are
not designed for handling large time-varying data set that the size of an individual
time step is larger than the texture memory, or is even larger than the main memory.
The compression scheme of our algorithm is similar to the method of [Guthe and
Straller 2001]. Their algorithm focuses on compressing the data as small as possible
with fast reconstruction, using a lossy compression scheme where the rendering
quality is decided during pre-processing and can not be changed later. Our algorithm
addresses the combination of multi-resolution representation and such compression
scheme. Even with a lossless compression of lower compression ratio, our system
could achieve interactive playback of large time-varying data set by adjusting the
LOD selection. If necessary, the rendering quality also can be enhanced by sacrificing

the interactivity in the run-time.



2.4 Time-varying Data Hierarchical Representation

Linsen et al. [Linsen et al. 2002] proposed a four-dimensional multi-resolution
approach for time-varying volume data. Their scheme treats temporal and spatial
dimensions equally in a single hierarchical framework. The hierarchical data
organization is based on 4/2 subdivision. The %/2 -subdivision scheme only doubles
the overall number of grid points in each subdivision step. This fact leads to fine
granularity and high adaptivity. Shen et al. [Shen et al. 1999] proposed time space
partitioning (TSP) tree that captures both the spatial and temporal coherence of the
underlying data. It allows the user to request spatial and temporal data resolutions
independently with separate error tolerances. Ellsworth et al. [Ellsworth et al. 2002]
later followed up the work and provided a hardware volume rendering using a TSP tee.
They also proposed color-based error metrics that improve the selection of data blocks
to be loaded into texture memory. Wang and Shen further utilized wavelet transform
to propose wavelet-based time-space partitioning (WTSP) tree method [Wang and
Shen 2004]. They first build a wavelet tree hierarchical representation [Guthe et al.
2002] for each individual time step. Then for the high-pass filtered coefficients from
the corresponding spatial node along the time axis, they apply 1D wavelet transform
to form a binary time tree. Although WTSP tree method supports flexible
spatio-temporal multi-resolution data browsing, their hierarchical 1D wavelet
compression of the spatial node along the time axis is not suitable for interactive

playback.



Chapter 3

Compression Scheme

In this chapter, we describe our compression scheme. The input data is a time-varying
volume data set, V = {V1, Vo, ..... , V1} with T time steps. In order to support
multi-resolution volume rendering, we first construct a multi-resolution data hierarchy
for each time step. Then we apply our compression scheme on these hierarchy data.
Each time step is classified as either an intra-coded frame (I-frame) or a predictive
frame (P-frame). The compression of an I-frame is independent of the other frames,
while compression of a P-frame is dependent on its previous frame.

We illustrate the whole compression process as Figure 3.1. The steps of the

compression scheme are as follows:

1.  We subdivide the original volume of an individual time step into a sequence
of blocks.

2. Then we recursively apply 3D wavelet transform to these blocks and
construct a hierarchical wavelet representation.

3. (). If this volume is an I-frame, we store the high-pass filtered coefficients
and the low-pass filtered root block. The high-pass filtered coefficients are
encoded before storing.

(b). If this volume is a P-frame, we apply motion-compensation-based
prediction to each of its nodes from its corresponding spatial node in the
previous frame. The resulting difference data and motion vectors are

encoded and stored.
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sequence of blocks. Step 2 is to apply 3D wavelet transform to these blocks and construct a
hierarchical wavelet representation. In step 3, if this volume is an I-frame, the high-pass
filtered coefficients are encoded. Then we store the encoded high-pass coefficients and the
root data block. If this volume is a P-frame, we apply motion-compensation-based prediction
from its corresponding spatial node in the previous frame. The resulting difference data and
motion vectors are encoded and stored.

In the following section we will describe how we compress I-frame data and

P-frame data in detail.

3.1 I-frame compression

We compress I-frame data using the wavelet-tree method [Guthe et al. 2002].

First, we divide the volume data of this frame into a sequence of blocks. Assuming



that the block size N is n,xn xn,, where n,, n , and n, are all integers and

are all powers of 2. Then we apply 3D wavelet transform to each block. This will
produce N/8 low-pass filtered coefficients and 7N/8 high-pass filtered
coefficients. The low-pass filtered coefficients from eight adjacent blocks are
collected and grouped into a new block of N voxels (see Figure 3.2). Then we can
apply this 3D wavelet transform and low-pass coefficients grouping process
recursively until only a single block is left. This procedure produces an octree: Each
node of the octree is a data block of N voxels and contains a set of high frequency
coefficients that allow for the reconstruction of the child nodes from the current node.
The resolution of a child node is twice as high (in each dimension) as that of a parent
node. We only keep the root low-pass filtered block and all the high-pass filtered data
(see Figure 3.3). The other data blocks can be reconstructed by applying top-down
inverse-wavelet transform recursively.

To reduce the size of the coefficients to be stored in the octree, the high-pass
filtered coefficients resulting from the wavelet transform will be compared against a
pre-defined threshold. The high-pass filtered coefficients are mapped to zero if they
are smaller than the threshold. In our implementation, we set the threshold to zero,
leading to a lossless compression. The high-pass filtered coefficients are then encoded
using run-length encoding combined with a fixed Huffman encoder [Guthe et al.
2002]. The coefficients are first mapped to positive values: Positive coefficients are
mapped to odd values (¢ — cx2-1) while negative coefficients are mapped to even
values (¢ —cx(-2)). The encoding model is defined as follows: A run of zero

coefficients is marked by a leading O bit. The following n . bits store the number of

zero

consecutive zeros. This results in 1 to 2" zeros encoded in n, +1 bits. Any

other coefficient is stored by using n . bits and a leading 1 bit, with n . being the

minimum number of bits needed to represent the coefficient using a pre-defined

Huffman code table.
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Figure 3.3: The compressed wavelet tree of an I-frame. We only keep the
root low-pass filtered block and all the high-pass filtered data.

3.2 P-frame compression

First we construct the octree hierarchy using the same method as I-frame, but we
only keep the low-pass data of each level of the octree. Then for each node of the

octree, we apply motion-compensation-based prediction from its corresponding
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spatial node in the previous frame (see Figure 3.4). The steps of the

motion-compensation-based prediction algorithm are as follows:

1. We further subdivide a node (a block with N voxels) into micro-blocks. A

micro-block is a unit size for applying motion-compensation-based prediction.

The size of micro-block is 1, xI, xI,. In our implementation, value of 4 or 8
Is a suitable choice.

2. (a). For each micro-block, a best match, i.e. minimum mean squared error, in
the corresponding spatial node of previous frame is computed by searching for
this minimum. The displacement of this micro-block to the best match is
called a motion vector (see Figure 3.5). We store the motion vector and the
differences between a micro-block and its best match.

(b). Sometimes, a good match cannot be found — the prediction error exceeds a
certain acceptable level. In this case each voxel of the micro-block is predicted
from its neighboring voxels. If the result of this neighboring voxel prediction
has smaller mean squared error, we store the predicted differences of each

voxel.

3. Again, the differences data of all micro-blocks will be compared against a
pre-defined threshold. The differences are mapped to zero if they are smaller
than the threshold. We also set this threshold to zero in our implementation.
The differences are then encoded using run-length encoding combined with a

fixed Huffman encoder.

11
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Figure 3.5: Motion-compensation-based prediction for a block node. For each micro-block
of current processing P-frame, we search the best match in the corresponding node in the
previous frame. The resulting motion vectors and difference data is then encoded and

stored.
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Chapter 4

Rendering

In the pre-processing compression stage, the given time-varying volume data set has
been transformed into a sequence of compressed data. In this section, we will describe
the run-time decompression and rending of our system.

The system starts from a LOD selection that chooses a list of blocks to be
rendered. We introduce our LOD selection method in Section 4.1. In Section 4.2, we
describe the decompression and reconstruction of the data blocks in the selected
blocks at run-time. In Section 4.3, we render the volume data using hardware texture
mapping. In Section 4.4, we propose a caching and pre-loading mechanism that helps

our system achieve better performance.

4.1 Level of Detail Selection

In our system, the spatial LOD selection is decided by considering region of interest
(ROI) and some view-dependent parameters. The ROI is specified by a 3D bounding
box. Users can change the size of the bounding box and arbitrarily move the bounding
box to adjust the LOD selection. This method provides an intuitive and flexible way
to specify LOD selection.

In order to reduce the total size of updated blocks along time axis and achieve an
interactive playback, we provide the user the temporal ROl to choose only a
sub-region for per-frame update. This temporal ROI is another 3D bounding box that
can be controlled in the spatial space by the user. When the temporal ROI is enabled,
the system first decides the spatial LOD selection by the spatial ROl and
view-dependent parameters, and then only the data blocks that is selected by the
temporal ROI will be updated at every time step. Blocks that are outside the temporal

ROI are only updated at every I-frame

13



4.1.1 Spatial LOD selection

The spatial LOD selection will choose a list of blocks from the octree hierarchy for
rendering. In order to avoid texture swapping-in and swapping-out in a single
rendering pass, the total texture size of selected blocks should not exceed the texture
memory of the graphics hardware. Usually the user may want to set a maximum
amount of blocks size M., for this spatial LOD selection. We provide a scalar

factor ¢, and the maximum amount of selected blocks size M., will be:

MLOD :¢s 'MTEX

where M., is the maximum available texture memory of the graphics hardware,
and the value of ¢ is within 0.0 to 1.0. Higher value of ¢, will have better
rendering quality, while lower value of ¢, will make the rendering or playback faster.
Users can change the value of ¢ in the run-time to trade the rendering quality for
rendering or playback speed.

The spatial LOD selection algorithm is achieved by traversing the octree with a
priority queue. Each node i of the octree hierarchy will have a priority value

P.oo (1) . The priority value is given by considering the ROI bounding box and the

distance to the viewer position:
Ploo (1) =C; - Py (1) +C, - Ry (1)

where C, and C, are weighting coefficients. We now define P, (i) and R, (i)

as follow:

1. P (1): This function will let the regions which are inside the ROI
bounding box have the highest priority value, and let the regions which
are outside the ROI bounding box get lower and lower priority value while

the distance to the ROI bounding box is increased. For the node whose

center is inside the ROI bounding box, its priority value Py, (i) will be

set to 1. For other nodes that are outside the ROl bounding box, we set

14



Paoi (1) =1/(1+ Dgg, (1)) where Dy, (i) is the distance from the center of

node i tothe ROI bounding box.

2. PRy (i): Since the node that is closer to the viewer usually contributes
more to the final image. This function lets the nodes that are closer to the
viewer have higher priority value. We set R, (i) =1/(1+ Dyeyer (1))

where D, (i) i the distance from the node i to the viewer.

In the beginning of the algorithm, we create an empty priority queue and insert the
root node r of the octree hierarchy into the queue with priority P, (r). Then we
successively fetch the node with the highest priority from the queue, and insert its
eight child nodes into the queue. If a leaf node is reached, we remove this leaf node
from the priority queue and put it into another queue for storing nodes to be rendered.
This procedure stops when the total blocks size of the priority queue and rendering
queue reaches the maximum size M ,,. Then we put all the nodes in the priority
queue into the rendering queue. All the nodes in the rendering queue will be used for

rendering.

4.1.2 Temporal Region of Interest

After the spatial LOD selection, we have chosen a set of blocks that provide a suitable
approximation to the original volume in a single time step. But even with this smaller
approximation data set, there is still too much data for updating all blocks in every
time steps. In order to achieve interactive playback, we provide another temporal ROI
bounding box. From the blocks that have been chosen by the spatial LOD selection
algorithm, we can use the temporal ROI bounding box to specify which blocks will be
updated at every time step. The blocks that are inside the temporal ROI bounding box
will be updated at every time step, while the others will be updated only at every
I-frame (see Figure 4.1). The user can change the temporal ROI bounding box to

adjust the number of blocks that are selected for full update.
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Figure 4.1: The temporal ROI. The current spatial LOD selection is decided by the spatial
ROI as in (a). When the temporal ROI is enable as (b) and (c), only the blocks that is
selected by temporal ROI (denoted as yellow blocks) will be updated at every time step
during playback. In (b), there are only 5 blocks that are selected by the temporal ROI. In (c),
there are 7 blocks that are selected by the temporal ROI.

4.2 Run-Time Decompression

Once we have decided the spatial LOD selection in I-frame, we need to
decompress these blocks data from disk. For an I-frame, the decompression procedure
starts at the root node of the octree hierarchy. We load the low-pass filtered block data
of the root node and its corresponding high-pass filtered coefficients from disk. Then
we decode these high-pass filtered coefficients and apply inverse 3D wavelet
transform to obtain the data of its eight child blocks. We recursively take these
decompressed blocks and their corresponding high-pass filtered coefficients to
reconstruct their child blocks. When the reconstruction traversal meets a block node
that is selected by the spatial LOD selection, we stop the traversal of this node.

For a P-frame, its spatial LOD selection is decided by the previous I-frame.
Since each block of a P-frame is predicted from its corresponding block in the
previous frame, once all the blocks of its previous frame are reconstructed, we can

decode the difference data from disk and recover the blocks data of P-frame.
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4.3 Rendering of Blocks

To render these selected blocks, we use texture-based volume rendering. We
draw all blocks in back-to-front order. The order can be established by enforcing a
back-to-front traversal order of the octree. For each block, a 3D texture is created and
loaded into the texture memory. We place view-aligned slices into the block (see
Figure 4.2) and render these slices in back-to-front order. Alpha blending delivers the
volume integrals along viewing rays for all the pixels on the screen.

To obtain a higher rendering quality, we provide pre-integrated volume rendering
[Engel et al 2001]. The pre-integrated volume rendering requires more texture
fetching to render the slices, hence it will consume more time for rendering. Users can

turn on or off pre-integrated rendering depending on their needs.

IS viewplane

4

\ slices

Figure 4.2: Rendering with view-aligned slices

4.4 Caching and Pre-Loading

The most time-consuming part of our system is the transmitting and reconstruction of
data blocks. To further enhance performance, we propose caching and pre-loading
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mechanisms. Caching is applied in I-frame to help reusing previously reconstructed
data blocks when the LOD selection is changed. Pre-loading is applied in P-frame to
distribute the workload of each frame more evenly. We will allocate a pre-defined

amount of additional main memory and texture memory for caching and pre-loading.

4.4.1 Caching

In I-frame, user may often change the spatial ROl bounding box to adjust spatial
LOD selection. Some of the data blocks that are currently useless may be useful again
in the future time. To save the time for loading and reconstructing these data blocks,
we cache all the decompressed data blocks in main memory during I-frame. We give
each cached block i a deleting priority P, (i). If we run short of memory, we
delete the data blocks that have the highest P, (i). We define the deleting priority

Pog. (i) for each block i as:
Poer (1) =W, L (i) +W,C (i) +W,F (i)

where W,, W,,and W, are weighting coefficients. We now define L(i), C(i), and

F(i) asfollow:

1. L(i): This function considers the likelihood of a block node being visited. A

block node will be visited for decompressing child nodes more often when

it is closer to the root of the octree hierarchy. Thus, we define L(i) of

block node i as their depth in the octree. The root node is at depth zero.

2. C(i): This function is defined using a least recently used (LRU) scheduling
scheme. We give each decompressed block in memory a counter C(i) that

is initially set to zero. Every time when spatial LOD selection is changed,

the counter C(i) of each block is updated as:

C(1))=C(i)+1, when block i is not used.
C(i) =0, otherwise.
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It means that the least recently used blocks will get higher deleting priority.

3. F(i): This function is an auto-adapting term for the blocks that are
swapped in and out frequently. If we find a data block is swapped in and out
frequently, it is better to cache this block for performance consideration. To
realize this function, we define a loading counter S(i) for each block of
the octree hierarchy. S(i) is initially set to zero. Every time when a block
i is loaded from disk and decompressed into memory, the value of S(i) is

increased by 1. Then the value of F(i) can be calculated as:

if S(i)> Spmes F()=-1x(S() —Sppe) »
else, F(i)=0

where S; IS a pre-defined threshold value. Thus, if a block is swapped
in and out too frequently, i.e. S(i) > S;..=, We will decrease its deleting

priority.

We have explained our caching mechanism for main memory. The caching of texture
memory is the same as the one of main memory, except that this time we do not
consider the effect of visiting likelihood L(i), since we do not need to visit these
blocks in texture memory for decompressing child nodes. The deleting priority

Pog (i) for each block i of texture memory is defined as:

Poec (1) =W,C (i) +W,F (i)

4.4.2 Pre-loading

When temporal LOD is enabled, data blocks that are selected by temporal ROI
bounding box will be updated at every time step, while others will be updated only at
every I-frame. It means that the workload of I-frame is usually much larger than the

workload of P-frame, and causes the playback an obvious delay when encountering an
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I-frame. To distribute the workload more evenly, at P-frame we can pre-load the data

blocks of the next I-frame in advance. This will make the playback smoother.
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Chapter 5

Result

In this chapter, we discuss the experimental result obtained with an implementation of
our algorithm. The algorithm was implemented in C++ and OpenGL. All benchmarks
were performed on a 2.4GHz Intel core 2 processor with 2GB main memory , and an

nVidia GeForce 8800 GTX graphics card with 768MB video memory.

5.1 Example Data Sets

The time-varying data set used in our testing is Turbulent Combustion Simulation data
set from the Institute of Ultra-Scale Visualization (IUSV). This data set is made
available by Dr. Jacqueline Chen at the Sandia National Laboratory through SciDAC
IUSV. The original data set consists of five floating variables. There are
480x720x120 voxels, and a total of 122 time steps. For simplicity reason, we
convert the floating variables into 16-bit integers. We take one of the variables named
“chi” as our test data set — Jet_chi (see Table 5.1). Another data set Jet_merg (see
Figure 5.1) is obtained by merging four variables to form a larger data set. It has
960x1440x360 voxels in each time step, and a total of 64 time steps. The data size

of each time step is 949 MB, and the total size of 64 time steps is 59.3 GB.

Table 5.1: The data sets used in our testing.

Data set Resolution Time steps Size of each Total size
time step

Jet_chi 480x720x120 122 79.1 MB 942 GB

Jet_merg 960 %1440 x 360 64 949 MB 59.3GB
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Figure 5.1: The Jet_merg data set.

5.2 Preprocessing Result

In Jet_chi data set, we chose the block size to be 128x256x32 and each block is of
size 2MB. This leads to a 3-level hierarchy octree with 73 nodes. In Jet_merg data
set, we chose the block size to be 64x128x32, and each block is of size 0.5 MB.
This leads to a 5-level hierarchy octree with 4681 nodes. We use Haar wavelet
transform with lifting scheme in all our tests for simplicity and efficiency reasons. We
first test the compression ratio with different number of I-frames in Jet_chi data set.
The result is displayed in Table 5.2. Lossless compression scheme is used. It shows
that our P-frame compression is slightly better than the conventional wavelet-tree

(I-frame) method.

Table 5.2: The compression ratio with different number of I-frames in Jet_chi data set (total

122 time steps).

No. of I-frame : No. of P-frame | 13:109 25: 97 61:61 122:0
Total size 1.85GB | 1.87GB | 1.92GB | 2.02GB
Compression ratio 5.091:1 5.037:1 4.906:1 4.663:1

We also implement the algorithm of WTSP tree [Wang and Shen 2004] to compare
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with our algorithm. We set all compression parameters the same to compress the
Jet_merg data set with WTSP tree method and our algorithm.The compression result
is displayed in Table 5.3. Our algorithm can achieve higher compression ratio than

WTSP tree method.

Table 5.3: Compression of Jet_merg data set with our algorithm and WTSP tree.
Our algorithm WTSP tree
Compressed size 19.515 GB 20.517 GB
Compression ratio 3.04:1 2.89:1

From the result of Table 5.2, we can see that the P-frame compression does not
enhance compression ratio as much as in video compression. It is because the tested
scientific data do not behave like rigid body motion, and the variation between two
consecutive frames is much more than in general video. Thus, the temporal coherence
is much harder to catch and the motion-compensation-based prediction is not as

effective as in general video system.

5.3 Run-Time Rendering Result

During rendering, the selected blocks will be decompressed on-the-fly and then
uploaded to texture memory for texture mapping. In all the following tests, we set the

maximum available texture memory M, as512MB for spatial LOD selection.

5.3.1 Decompression Time

Here we test our decompression efficiency with Jet_merg data set and compare it to
the WTSP tree method. We test the decompression time and disk loading bandwidth
in our system and in the WTSP tree method. In Figure 5.2, the LOD selection chooses
out a set of blocks of size 20 to 30 MB. In Figure 5.2(a), we compare the

decompression time of our algorithm with WTSP tree method. In Figure 5.2(b), we
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display the corresponding disk loading bandwidth. In Figure 5.3, we display another
test result under different spatial LOD selections. The LOD selection chooses out a set
of blocks of size about 40 to 50 MB. The decompression time includes disk 1/0 to
fetch compressed data, decoding the compressed bit streams, and reconstruction of
data blocks. The comparison is tested under the same situation. The rendering results
are identical in both methods. We assume that we don’t have additional memory space
to cache intermediate nodes in the binary time tree of WTSP tree method. We also
disable the caching and pre-loading mechanism in our system.

In the comparison result we can see that the decompression time of our system is
obviously less than that of the WTSP tree method. It is because of the large additional
overhead to traverse the binary time tree in the WTSP tree method. This problem will
get worse when the number of time steps is increased. In our algorithm, even without
additional memory space, we can decompress the data blocks efficiently, and the
performance is independent of the number of time steps. In Figure 5.2, the playback
frame rate of WTSP tree method is 0.264 fps when there are only 64 time steps. Our

method can reach a playback frame rate of 1.834 fps under the same situation.
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Figure 5.2: (a) The comparison of decompression time. We select a set of blocks of size 20 to
30 MB to be rendered. The decompression time for our algorithm and WTSP tree method is
displayed in the figure. (b) The corresponding size of disk loading.
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Figure 5.3: (a) The comparison of decompression time. We select a set of blocks of size 40 to
50 MB to be rendered. The decompression time for our algorithm and WTSP tree method is
displayed in the figure. (b) The corresponding size of disk loading.
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5.3.2 LOD and Rendering Speed

In Table 5.4, we list the rendering speed with three different scalar factor ¢, at

the first time step of the Jet_merg data set. We also show the result images in Figure

5.4.

Table 5.4: The rendering speed with three different LOD selections at the first time step of the

Jet_merg data set

¢, =0.2442 | ¢ =0.0924 | ¢, =0.033
No. of total blocks 246 92 29
No. of non-uniform blocks 228 88 25
Size of non-uniform blocks 114 MB 44 MB 12.5 MB
Rendering frame rate 19.81 29.89 31.14
Rendering frame rate (pre-integrated) 18.18 19.15 19.97
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(d)

Figure 5.4: The rendering result image with tree difference scalar factors. (a): The rendering
result with ¢ = 0.033. Its corresponding LOD selection is showed in (d). The white string
lines stand for the bounding box of each block. (b): ¢s = 0.924. Its corresponding LOD

selection is showed in (e). (c): ¢ = 0.2442. Its corresponding LOD selection is showed in

(f).

From the result, we show that we can lower down the value of ¢ in the

run-time to trade rendering quality for rendering speed. User can roughly browse the
data set and find out suitable camera parameters quickly with smaller ¢, in the

beginning, and then increase ¢ to reveal more detail.

5.3.3 Temporal ROI and Interactive Playback

In Table 5.5, we show how to improve the playback speed in our system. We display
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the selected blocks of temporal ROI with yellow bounding boxes in Figure 5.5. The

size of the temporal ROl is 1/8 of the whole volume size. Decreasing the value of

¢s and using temporal ROI helps to enhance the playback frame rate. Here we

demonstrate that with the flexible spatial and temporal LOD selection mechanism,

user can easily achieve an interactive playback.

Table 5.5: The playback speed of difference spatial LOD selections and temporal LOD selections.

¢y =0.2442

¢y =0.2442

(With Temporal ROI)

¢y =0.0924

¢y =0.0924

(With Temporal ROI)

¢, =0.033

¢, =0.033

(With Temporal ROI)

No. of

non-uniform

blocks

230

146

84

45

21

10

Size of
non-uniform

blocks

115 MB

73 MB

42 MB

22.5 MB

10.5 MB

5MB

Playback

frame rate

0.272

0.425

1.151

1.841

413

7.81
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(C). ¢s =0.033. Temporal ROI elected blocks size: 5 MB. Playback frame rate: 7.81.
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Figure 5.5: The temporal LOD selection. The green rectangular is the bounding box of
temporal ROI. The blocks that are selected by the temporal ROI will be displayed in yellow

bounding box, and only these selected blocks will be updated every time steps.
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Chapter 6

Summary and Future Work

6.1 Summary

We have introduced a new framework that combines the multi-resolution hierarchical
representation with video-based compression to manage and render large scale
time-varying data. We demonstrate how this new structure can perform more efficient
reconstruction in time axis with respect to the WTSP tree method. We also provide
flexible user-assisted mechanism to easily achieve interactive playback in the
run-time. Our main contribution is to provide the user the ability to observe the
dynamic change in interactive frame rate. We believe that the ability of interactive
playback can help the users to reveal more information in large time-varying volume

data, which is not available in the previous multi-resolution representation.
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6.2 Future work

We currently use the temporal ROI to choose a sub-region for full update along
time axis. We could calculate the temporal error of each block in the pre-processing
stage. User can specify a temporal error tolerance. In the run-time, we can update only
the blocks whose temporal errors are larger than the error tolerance.

Since we construct a new structure that combines the multi-resolution
hierarchical representation with video-based compression, we could adapt the current
advanced video compression techniques to improve the compression and
decompression efficiency. Since the size of our approach for a large time-varying data
set may still be too large to handle on a single PC, we could distribute the
multi-resolution data into a parallel or multi-server network visualization system to

achieve real-time rendering.
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