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摘要 
 

我 們 提 出 一 個 結 合 多 層 次 解 析 度 階 層 表 示 法 (multi-resolution hierarchical 
representation)與影片式壓縮 (video-based compression)的新架構，以管理與顯像

大型時變容積資料。此方法首先在預先處理的步驟中對每個時間點的資料建構出

多層次解析度的八元樹階層架構，之後再對這些八元樹的節點實施運動補償式預

測(motion-compensation-based prediction)的壓縮法。在顯像時這些資料將被即時

的解壓縮還原並以硬體貼圖繪畫的方式來顯像。相較於傳統上使用階層式小波轉

換的方法，我們的方法移除了階層式解壓縮的相依性並且使得在時間軸上的解壓

縮 還 原 更 有 效 率 。 此 系 統 提 供 了 使 用 者 控 制 空 間 興 趣 區 域 (spatial 
region-of-interest)以調整空間上的多層細緻程度(level-of-detail)選擇；並提供控制

時間興趣區域(temporal region-of-interest)以只選擇出部分區域進行播放，在一個

合適的興趣區域控制下，我們的系統可以到達互動速度的播放，這樣的結果提供

了使用者可以觀察到大型時變容積在時間上的動態變化。 
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Abstract 

We present a new framework that combines the multi-resolution hierarchical 

representation with video-based compression to manage and render large scale 

time-varying data. In the preprocessing step, the proposed method first constructs a 

multi-resolution octree hierarchy for each individual time step, and then applies 

motion-compensation-based prediction to compress these octree nodes. During 

rendering, the data is decompressed on-the-fly and rendered using hardware texture 

mapping. The proposed approach breaks the hierarchical decompression dependency 

in the conventional hierarchical wavelet representation methods, and allows a more 

efficient reconstruction of data along the time axis. The system allows the user to 

select a spatial region-of-interest (ROI) to adjust the spatial level-of-detail selection, 

and the selection of a temporal ROI to choose only a sub-region for frequent update 

during playback. With a suitable control of both ROIs, our system can reach an 

interactive playback frame rate. This allows the user to observe the dynamic 

properties of large time-varying data sets.  
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Chapter 1 

Introduction 
 

As computer storage and scanning precision rapidly increases, scientific 

measurements and simulations can generate large time-varying data set that have 

hundreds or thousands of time steps, and each time step may contain billions of 

voxels. Although direct volume rendering with 3D hardware texture mapping [Cabral 

et al. 1994; Westermann and Ertl 1998] can perform efficient rendering, the limited 

size of the texture memory makes it difficult to maintain an interactive frame rate 

when large data sets have to be rendered. When the data size of an individual time 

step does not fit into the available texture memory, a decomposition into blocks has to 

be applied to the data set. In this case, the texture memory swap-in and swap-out 

required for the entire volume reduce the rendering performances substantially. To 

overcome this problem, several multi-resolution schemes for static [LaMar et al. 1999; 

Weiler et al. 2000; Boada et al. 2001] or time-varying data [Shen et al. 1999] were 

proposed. These methods construct a multi-resolution hierarchy that represents 

different resolutions for different regions. They can adapt the data resolution to render 

the interesting or important regions with high accuracy, while other regions are 

rendered with lower accuracy. To further reduce the storage and data transmission 

bandwidth, some wavelet compression schemes were proposed [Guthe et al. 2002; 

Wang and Shen 2004]. These methods recursively apply wavelet transform to 

compress the data and in the end construct a multi-resolution hierarchical wavelet 

representation. 

 For time-varying data sets, user may not only want to navigate a specific time 

step with certain spatial or temporal level-of-detail, but also want to directly observe 

the temporal variations in the data. However, the current hierarchical wavelet 

compression schemes such as the wavelet-based time-space partitioning (WTSP) tree 

[Wang and Shen 2004] are not suitable for this purpose. Since they compress the data 
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using hierarchical wavelet transform, the reconstruction of the data requires a 

hierarchical decompression process. It will cause many additional disk loading and 

reconstruction overhead. In order to reduce reconstruction cost as much as possible, 

we can utilize temporal coherence and apply motion-compensation-based prediction 

in adjacent time steps. In this way, the reconstruction will not have hierarchical 

dependency. Once the corresponding data in the previous time step has existed in 

memory, we can directly reconstruct the data of the current time step. 

 Our algorithm constructs a system that is similar to a basic video coding 

structure: Each time step of the data set is classified as either an intra-coded frame 

(I-frame) or a predictive frame (P-frame). For an I-frame time step, we apply 

hierarchical wavelet transform to construct a multi-resolution hierarchical wavelet 

representation. The high-pass filtered coefficients are then encoded and stored in the 

disk. For a P-frame time step, we also use the hierarchical wavelet transform to 

construct a multi-resolution hierarchical representation. Then, we apply 

motion-compensation-based prediction to the low-pass filtered data. The resulting 

difference data and motion vectors are encoded and stored. 

During rendering, the data is decompressed on-the-fly and rendered using 

hardware 3D texture mapping. The system allows the user to select a spatial 

region-of-interest (ROI) to adjust the spatial level-of-detail selection, and the selection 

of a temporal ROI to choose only a sub-region for frequent update during playback. 

With a suitable control of both ROIs, our system can reach an interactive playback 

frame rate. This allows the user to observe the dynamic properties of large 

time-varying data sets. We also propose caching and pre-loading mechanisms. 

Caching is applied in I-frame to help reusing previously reconstructed data blocks 

when the level of detail (LOD) selection is changed. Pre-loading is applied in P-frame 

to distribute the workload of each frame more evenly. 

 The remainder of this thesis is structured as follows: We first review related work 

in Chapter 2. Then, we describe the pre-processing compression scheme in Chapter 3. 

In Chapter 4, we describe the run-time decompression and rending of our system. 

Results are discussed in Chapter 5 and the conclusion is given in Chapter 6 with some 

ideas for future work. 
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Chapter 2 

Related work 
In this chapter, we give a brief overview of related work in the area of texture-based 
volume rendering, multi-resolution rendering, time-varying data compression scheme, 
and time-varying data hierarchical representation. 
 

2.1 Texture-based Volume Rendering 

The shear-warp factorization proposed by Lacroute and Levoy [Lacroute and Levoy 

1994] is the most efficient software-based technique for direct volume rendering. 

They proposed the basic idea of using object-aligned textured slices to substitute 

trilinear by bilinear interpolation. This technique can be adapted to exploit 2D-texture 

hardware and achieve an interactive frame rate [Rezk-Salama et al. 2000]. The usage 

of hardware 3D texture mapping algorithm[Cabral et al. 1994; Westermann and Ertl 

1998] allows for more flexibility and can provide a higher image quality. There are 

several advanced shading techniques proposed in recent visualization algorithms, such 

as lighting [Meißner et al. 1999], shadows [Behrens and Ratering 1998], high quality 

post-classification using a pre-integration technique [Engel et al. 2001], and gradient 

magnitude modulation[Van Gelder 1996]. 

 

2.2 Multi-resolution Rendering 

The idea of multi-resolution volume rendering algorithms is to provide a spatial 

hierarchy to adapt the data resolution to render the interesting or important regions 

with higher accuracy, while other regions are rendered with lowerer accuracy. LaMar 

et al. [LaMar et al 1999] describe an octree-based multi-resolution approach for 

interactive volume rendering. They filter the volume to create levels-of-detail in an 

octree structure. They propose the use of spherical shells to reduce visual artifacts for 
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3D texture mapping. A similar technique was proposed by Boada et al [Boada et al. 

2001]. Their hierarchical representation benefits nearly homogeneous regions and 

regions of lower interest. Weiler et al. [Weiler et al. 2000] address the avoidance of 

discontinuity artifacts between different levels of detail. Their approach allows 

consistent interpolation between levels. These multi-resolution techniques can handle 

volume data sets that do not fit completely into the texture memory of the graphics 

hardware. However, the data must still fit into the main memory. Guthe et al. [Guthe 

et al. 2002] improved on this by using wavelet representation. They recursively apply 

wavelet transform to compress the data and construct a multi-resolution hierarchical 

wavelet representation. Their approach is able to render walkthroughs of large data 

sets in real time on a conventional PC. 

 Multi-resolution volume rendering provide a data hierarchy that supports 

level-of-detail (LOD). There are several types of criteria for the LOD selection. These 

LOD selection methods can be classified into four types. We give a brief overview to 

these LOD selection methods. 

 

1. View-dependent criterion: This is a general criterion that takes the view- 

dependent factors into account. According to the position of viewer, it will 

let the regions that are closer to the viewer or the regions with larger 

projected screen area have higher resolution [LaMar et al. 1999; Guthe et al. 

2002].  

2. Region-of-interest: This criterion depends on the user-specified region- 

of-interest (ROI) to decide LOD selection [Pinskiy et al. 2001; Plate et al. 

2002]. Usually there is a 3D bounding box to represent the ROI. User can 

change the size and the position of the bounding box. It will let the regions 

inside the ROI bounding box have higher resolution. 

3. Data error metric: The data error metric calculates the error (usually the 

mean squared error) between the low resolution data block and the 

corresponding original volume data. Then, the LOD selection is decided by 

letting each subvolume satisfy the user-specified error tolerance [Shen et al. 
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1999; Wang and Shen 2004]. 

4. Image-based quality metric: The image-based quality metric evaluates the 

contribution of multi-resolution data blocks to the final image. Then, the 

LOD selection algorithm tries to choose a set of blocks that generate images 

of best visual quality [Ljung et al. 2004; Wang and Shen 2006; Wang et al. 

2007]. 

 

2.3 Time-varying Data Compression Scheme 

Guche and StraBer [Guthe and Straßer 2001] introduced an algorithm that uses the 3D 

wavelet transform to encode each individual volume, and then applies a 

motion-compensation-based prediction in adjacent time steps. Their algorithm is 

capable of decompressing and visualizing animated volume data at interactive frame 

rates. Sohn et al. [Sohn et al. 2002] proposed a volumetric video system that borrows 

the idea of MPEG compression to efficiently exploit spatial and temporal coherence. 

They encoded only the significant data that contribute to the iso-surface and 

volumetric feature to achieve high compression ratio with fast reconstruction. While 

the above two methods can perform efficient data compression and rendering, they are 

not designed for handling large time-varying data set that the size of an individual 

time step is larger than the texture memory, or is even larger than the main memory. 

 The compression scheme of our algorithm is similar to the method of [Guthe and 

Straßer 2001]. Their algorithm focuses on compressing the data as small as possible 

with fast reconstruction, using a lossy compression scheme where the rendering 

quality is decided during pre-processing and can not be changed later. Our algorithm 

addresses the combination of multi-resolution representation and such compression 

scheme. Even with a lossless compression of lower compression ratio, our system 

could achieve interactive playback of large time-varying data set by adjusting the 

LOD selection. If necessary, the rendering quality also can be enhanced by sacrificing 

the interactivity in the run-time. 
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2.4 Time-varying Data Hierarchical Representation 

Linsen et al. [Linsen et al. 2002] proposed a four-dimensional multi-resolution 

approach for time-varying volume data. Their scheme treats temporal and spatial 

dimensions equally in a single hierarchical framework. The hierarchical data 

organization is based on 4 2  subdivision. The 4 2 -subdivision scheme only doubles 

the overall number of grid points in each subdivision step. This fact leads to fine 

granularity and high adaptivity. Shen et al. [Shen et al. 1999] proposed time space 

partitioning (TSP) tree that captures both the spatial and temporal coherence of the 

underlying data. It allows the user to request spatial and temporal data resolutions 

independently with separate error tolerances. Ellsworth et al. [Ellsworth et al. 2002] 

later followed up the work and provided a hardware volume rendering using a TSP tee. 

They also proposed color-based error metrics that improve the selection of data blocks 

to be loaded into texture memory. Wang and Shen further utilized wavelet transform 

to propose wavelet-based time-space partitioning (WTSP) tree method [Wang and 

Shen 2004]. They first build a wavelet tree hierarchical representation [Guthe et al. 

2002] for each individual time step. Then for the high-pass filtered coefficients from 

the corresponding spatial node along the time axis, they apply 1D wavelet transform 

to form a binary time tree. Although WTSP tree method supports flexible 

spatio-temporal multi-resolution data browsing, their hierarchical 1D wavelet 

compression of the spatial node along the time axis is not suitable for interactive 

playback.  
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Chapter 3 

Compression Scheme 
 

In this chapter, we describe our compression scheme. The input data is a time-varying 

volume data set, V = {V1, V2, ….., VT} with T time steps. In order to support 

multi-resolution volume rendering, we first construct a multi-resolution data hierarchy 

for each time step. Then we apply our compression scheme on these hierarchy data. 

Each time step is classified as either an intra-coded frame (I-frame) or a predictive 

frame (P-frame). The compression of an I-frame is independent of the other frames, 

while compression of a P-frame is dependent on its previous frame. 

We illustrate the whole compression process as Figure 3.1. The steps of the 

compression scheme are as follows: 

1. We subdivide the original volume of an individual time step into a sequence 

of blocks. 

2. Then we recursively apply 3D wavelet transform to these blocks and 

construct a hierarchical wavelet representation. 

3. (a). If this volume is an I-frame, we store the high-pass filtered coefficients 

and the low-pass filtered root block. The high-pass filtered coefficients are 

encoded before storing. 

(b). If this volume is a P-frame, we apply motion-compensation-based 

prediction to each of its nodes from its corresponding spatial node in the 

previous frame. The resulting difference data and motion vectors are 

encoded and stored. 
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Figure 3.1: The compression process. Step 1 is to subdivide the original volume into a 
sequence of blocks. Step 2 is to apply 3D wavelet transform to these blocks and construct a 
hierarchical wavelet representation. In step 3, if this volume is an I-frame, the high-pass 
filtered coefficients are encoded. Then we store the encoded high-pass coefficients and the 
root data block. If this volume is a P-frame, we apply motion-compensation-based prediction 
from its corresponding spatial node in the previous frame. The resulting difference data and 
motion vectors are encoded and stored. 

 

 

 In the following section we will describe how we compress I-frame data and 

P-frame data in detail. 

 

3.1 I-frame compression 

 We compress I-frame data using the wavelet-tree method [Guthe et al. 2002]. 

First, we divide the volume data of this frame into a sequence of blocks. Assuming 
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that the block size  is N zyx nnn ××

N

, where , , and  are all integers and 

are all powers of 2. Then we apply 3D wavelet transform to each block. This will 

produce  low-pass filtered coefficients and  high-pass filtered 

coefficients. The low-pass filtered coefficients from eight adjacent blocks are 

collected and grouped into a new block of  voxels (see Figure 3.2). Then we can 

apply this 3D wavelet transform and low-pass coefficients grouping process 

recursively until only a single block is left. This procedure produces an octree: Each 

node of the octree is a data block of  voxels and contains a set of high frequency 

coefficients that allow for the reconstruction of the child nodes from the current node. 

The resolution of a child node is twice as high (in each dimension) as that of a parent 

node. We only keep the root low-pass filtered block and all the high-pass filtered data 

(see Figure 3.3). The other data blocks can be reconstructed by applying top-down 

inverse-wavelet transform recursively. 

xn yn zn

8/8/N 7N

N

 To reduce the size of the coefficients to be stored in the octree, the high-pass 

filtered coefficients resulting from the wavelet transform will be compared against a 

pre-defined threshold. The high-pass filtered coefficients are mapped to zero if they 

are smaller than the threshold. In our implementation, we set the threshold to zero, 

leading to a lossless compression. The high-pass filtered coefficients are then encoded 

using run-length encoding combined with a fixed Huffman encoder [Guthe et al. 

2002]. The coefficients are first mapped to positive values: Positive coefficients are 

mapped to odd values ( 12 −×→ cc

n

) while negative coefficients are mapped to even 

values ( ). The encoding model is defined as follows: A run of zero 

coefficients is marked by a leading 0 bit. The following  bits store the number of 

Huffman code table. 

 

)2(−×→ cc

consecutive zeros. This results in 1 to 

zeron

zeros encoded in 

bits and a leading 1 bit, with 

zeron2  1+zeron

posn

 bits. Any 

other coefficient is stored by using  being the 

minimum number of bits needed to represent the coefficient using a pre-defined 

pos  
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Figure 3.2: Construction of the wavelet tree. We apply 3D wavelet transform to 
each block, for example, block A and B in the figure. The low-pass filtered 
coefficients from eight adjacent blocks are collected and grouped into a new block 
C. Then we can apply this 3D wavelet transform and low-pass coefficients 
grouping process recursively until only a single block D is left. 

 
 
 

 
Figure 3.3: The compressed wavelet tree of an I-frame. We only keep the 
root low-pass filtered block and all the high-pass filtered data. 

 
 

 

3.2 P-frame compression 

 First we construct the octree hierarchy using the same method as I-frame, but we 

only keep the low-pass data of each level of the octree. Then for each node of the 

octree, we apply motion-compensation-based prediction from its corresponding 
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spatial node in the previous frame (see Figure 3.4). The steps of the 

motion-compensation-based prediction algorithm are as follows: 

1. We further subdivide a node (a block with N  voxels) into micro-blocks. A 

micro-block is a unit size for applying motion-compensation-based prediction. 

The size of micro-block is zyx lll ×× . In our implementation, value of 4 or 8 

is a suitable choice. 

2. (a). For each micro-block, a best match, i.e. minimum mean squared error, in 

the corresponding spatial node of previous frame is computed by searching for 

this minimum. The displacement of this micro-block to the best match is 

called a motion vector (see Figure 3.5). We store the motion vector and the 

differences between a micro-block and its best match.  

(b). Sometimes, a good match cannot be found – the prediction error exceeds a 

certain acceptable level. In this case each voxel of the micro-block is predicted 

from its neighboring voxels. If the result of this neighboring voxel prediction 

has smaller mean squared error, we store the predicted differences of each 

voxel. 

3. Again, the differences data of all micro-blocks will be compared against a 

pre-defined threshold. The differences are mapped to zero if they are smaller 

than the threshold. We also set this threshold to zero in our implementation. 

The differences are then encoded using run-length encoding combined with a 

fixed Huffman encoder. 
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Figure 3.4: The compression of P-frame. Each node of the octree of P-frame is 
applied motion-compensation-based prediction from its corresponding node in the 
previous frame. 

 
 
 
 

 
 

Figure 3.5: Motion-compensation-based prediction for a block node. For each micro-block 
of current processing P-frame, we search the best match in the corresponding node in the 
previous frame. The resulting motion vectors and difference data is then encoded and 
stored. 
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Chapter 4 

Rendering 
 

In the pre-processing compression stage, the given time-varying volume data set has 

been transformed into a sequence of compressed data. In this section, we will describe 

the run-time decompression and rending of our system.  

 The system starts from a LOD selection that chooses a list of blocks to be 

rendered. We introduce our LOD selection method in Section 4.1. In Section 4.2, we 

describe the decompression and reconstruction of the data blocks in the selected 

blocks at run-time. In Section 4.3, we render the volume data using hardware texture 

mapping. In Section 4.4, we propose a caching and pre-loading mechanism that helps 

our system achieve better performance. 

 

4.1 Level of Detail Selection 

In our system, the spatial LOD selection is decided by considering region of interest 

(ROI) and some view-dependent parameters. The ROI is specified by a 3D bounding 

box. Users can change the size of the bounding box and arbitrarily move the bounding 

box to adjust the LOD selection. This method provides an intuitive and flexible way 

to specify LOD selection. 

In order to reduce the total size of updated blocks along time axis and achieve an 

interactive playback, we provide the user the temporal ROI to choose only a 

sub-region for per-frame update. This temporal ROI is another 3D bounding box that 

can be controlled in the spatial space by the user. When the temporal ROI is enabled, 

the system first decides the spatial LOD selection by the spatial ROI and 

view-dependent parameters, and then only the data blocks that is selected by the 

temporal ROI will be updated at every time step. Blocks that are outside the temporal 

ROI are only updated at every I-frame 
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4.1.1 Spatial LOD selection 

The spatial LOD selection will choose a list of blocks from the octree hierarchy for 

rendering. In order to avoid texture swapping-in and swapping-out in a single 

rendering pass, the total texture size of selected blocks should not exceed the texture 

memory of the graphics hardware. Usually the user may want to set a maximum 

amount of blocks size  for this spatial LOD selection. We provide a scalar LODM

, and the maxi mount of selected blocks size  will be: mum a LODMfactor Sφ

TEXSLOD MM ⋅= φ  

where is the maximum available texture m mory of the graphics hardware, TEXM  

and the value of 

e

Sφ  is within 0.0 to 1.0. Higher value of Sφ  will have better 

rendering quality, while lower value of Sφ  will make the rendering or playback faster. 

Users can change the value of Sφ  in the run-time to trade the rendering quality for 

 The spatial LOD selection algorithm i achieved by traversing the octree with a 

priority queue. Each node i  of the octree hierarchy will have a priority value 

distance to the viewer position: 

rendering or playback speed. 

s 

. The priority value is given by considering the ROI bounding box and the )(iPLOD

)()()( 21 iPCiPCiP VIEWROILOD ⋅+⋅=  

1C  and 2C  are weighting coefficients. We now define )(iPROI  and )(iPVIEW  

as follow: 

where 

1. : This function will let the regions which are inside the ROI 

bounding box have the highest priority value, and let the regions which  

are outside the ROI bounding box get lower and lower priority value while 

center is inside the ROI bounding box, its priority value  will be 

. For other nodes that are outside the ROI bounding box, we set 

)(iPROI

set to 1

the distance to the ROI bounding box is increased. For the node whose 

)(iPROI
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))(1/(1)( iDiP ROIROI +=  where )(iDROI  is the distance from the center of 

node i  to the ROI bounding box. 

2. )(iP : Since the node that is closer to the viewer usually contributes 

more to the final image. This function lets the nodes that are closer to the 

viewer have higher priority value. We set ))(1/(1)( iDiP VIEWERVIEW +

VIEW

= , 

 we create an em

where )(iDVIEWER  

In the beginning of the algorithm,

is the distance from the node 

pty priority queue and insert the 

root node 

i  to the viewer. 

r  of the octree hierarchy

ly fetch 

eight child nodes into the queue. If a leaf 

 the priority queue and put

 maximum

queue into the rendering queue. All the nodes 

e steps. In order to achieve in

e can use the temporal ROI 

every time step. The blocks th

 into the que

 it into another queue for 

layback, we 

ue with priority . Then we 

e

from  

Th iority q

qu  priority 

in the rendering queue will be used for 

tim teractive p provide another temporal ROI 

bounding box to specify which blocks will be 

pdated at at are inside the temporal ROI bounding box 

temporal ROI bounding box to 

)(rPLOD

storing nodes to be rendered.

ueue and 

successiv the node with the highest priority from the queue, and insert its 

node is reached, we remove this leaf node 

is procedure stops when the total blocks size of the pr rendering 

eue reaches the  size LODM . Then we put all the nodes in the

rendering. 

 

4.1.2 Temporal Region of Interest 

After the spatial LOD selection, we have chosen a set of blocks that provide a suitable 

approximation to the original volume in a single time step. But even with this smaller 

approximation data set, there is still too much data for updating all blocks in every 

bounding box. From the blocks that have been chosen by the spatial LOD selection 

algorithm, w

u

will be updated at every time step, while the others will be updated only at every 

I-frame (see Figure 4.1). The user can change the 

adjust the number of blocks that are selected for full update. 
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Figure 4.1: The temporal ROI. The current spatial LOD selection is decided by the spatial 
s in (a). When the temporal ROI is enable as (b) and (c), only the blocks that is 

selected by temporal ROI (denoted as yellow blocks) will be updated at every time step 
during playback. In (b), there are only 5 blocks that are selected by the temporal ROI. In (c), 
there are 7 blocks that are selected by the temporal ROI. 

 
 

4.2 Run-Time Decompression 

 Once we have decided the spatial LOD selection in I-frame, we need to 

d

s

o

w nd apply inverse 3D wavelet 

ansform to obtain the data of its eight child blocks. We recursively take these 

ecompressed blocks and their corresponding high-pass filtered coefficients to 

n traversal meets a block node 

that is selected by the spatial LOD selection, we stop the traversal of this node. 

ROI a

ecompress these blocks data from disk. For an I-frame, the decompression procedure 

tarts at the root node of the octree hierarchy. We load the low-pass filtered block data 

f the root node and its corresponding high-pass filtered coefficients from disk. Then 

e decode these high-pass filtered coefficients a

tr

d

reconstruct their child blocks. When the reconstructio

 For a P-frame, its spatial LOD selection is decided by the previous I-frame. 

Since each block of a P-frame is predicted from its corresponding block in the 

previous frame, once all the blocks of its previous frame are reconstructed, we can 

decode the difference data from disk and recover the blocks data of P-frame. 
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4.3 Rendering of Blocks 

 To render these selected blocks, we use texture-based volume rendering. We 

draw all blocks in back-to-front order. The order can be established by enforcing a 

back-to-front traversal order of the octree. For each block, a 3D texture is created and 

loaded into the texture memory. We place view-aligned slices into the block (see 

Figure 4.2) and render these slices in back-to-front order. Alpha blending delivers the 

he pixels on the screen. 

 To obtain a higher rendering quality, we provide pre-integrated volume rendering 

 

volume integrals along viewing rays for all t

[Engel et al 2001]. The pre-integrated volume rendering requires more texture 

fetching to render the slices, hence it will consume more time for rendering. Users can 

turn on or off pre-integrated rendering depending on their needs. 

 

 
Figure 4.2: Rendering with view-aligned slices  

 
 
 

4.4 Caching and Pre-Loading 

The most time-consuming part of our system is the transmitting and econstruction of 

data blocks. To further enhance performance, we propose caching and pre-loading 

 r
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mechanisms. Caching usly reconstructed 

data blocks when the LOD selection is ch pplied in P-frame to 

istribute the workload of each frame more evenly. We will allocate a pre-defined 

amount of additional main memory and texture memory for caching and pre-loading. 

 

ach cached block a deleting priority . If we run short of memory, we 

. We define the deleting priority 

  as: 

 is applied in I-frame to help reusing previo

anged. Pre-loading is a

d

 

4.4.1 Caching 

 In I-frame, user may often change the spatial ROI bounding box to adjust spatial 

LOD selection. Some of the data blocks that are currently useless may be useful again 

in the future time. To save the time for loading and reconstructing these data blocks, 

we cache all the decompressed data blocks in main memory during I-frame. We give 

e i  

delete the data blocks that have the highest 

)(iPDEL

(iPDEL )

)(iPDEL  for each block i

)()()()( 321 iFWiCWiLWiPDEL ++=  

where 1W , 2W , and 3W  are weighting coefficients. We now define )(iL , )(iC , and 

)(iF  as follow: 

1. )(iL : This function considers the likelihood of a block node being visited. A 

block node will be visited for decomp

it is closer to the root of the octree hierarchy. Thus, we define )(iL  of 

block node i

ressing child nodes more often when 

as their depth in the octree. The root node is at depth zero. 

2. : This function is defined using a least recently used (LRU) scheduling 

e. We give each decompressed block in memory a counter  that 

et 

ter of each block is updated as: 

 

)(iC

schem

 

)(iC

is initially s to zero. Every time when spatial LOD selection is changed, 

the coun )(iC  

            
⎩
⎨
⎧

=
+=

                                otherwise.  ,0)(
used.not  is block   when ,1)()(

iC
iiCiC
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It means that the least recently used blocks will get higher deleting priority. 

nter for each block of 

tree hierarchy. is initially set to zero. Ev e when a block 

 decompressed into m  value of  is 

increased by 1. can be calculated as: 

3. )(iF : This function is an auto-adapting term for the blocks that are 

swapped in and out frequently. If we find a data block is swapped in and out 

frequently, it is better to cache this block for performance consideration. To 

realize this function, we define a loading cou

th

i  is loaded from emory, the

 

               ))((1)(   ,)( if SiSiFSiS

)(iS  

ery tim

THRE

e oc )(iS  

 disk and

Then the value of 

)(iS

)(iF  

THRE −×−=> , 

               else, 0)( =iF  

 

where THRES  is a pre-defined threshold value. Thus, if a block is swapped 

in and out too frequently, i.e. THRESiS >)( , we will decrease its deleting 

priority. 

e have explained our caching mechanism for main memory. The cach

e

onsider the effect of visitin eed to vis

locks in texture memory for deco res

)

)()()( 32 iFWiCWiPDEL

 

W ing of texture 

m mory is the same as the one of main memory, except that this time we do not 

c g likelihood , since we do not n it these 

b mp  child nodes. The deleting priority 

for each block of texture mem ry is defined as: 

)(iL

sing

o(iPDEL  i  

+=  

 
 

e step, while o

workload of P-fram en encountering an 

4.4.2 Pre-loading 

When temporal LOD is enabled, data blocks that are selected by temporal ROI 

bounding box will be updated at every tim thers will be updated only at 

every I-frame. It means that the workload of I-frame is usually much larger than the 

e, and causes the playback an obvious delay wh
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I-frame. To distribute the workload more evenly, at P-frame we can pre-load the data 

blocks of the next I-frame in advance. This will make the playback smoother. 
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Chapter 5 

Result 
 

In this chapter, we discuss the experimental result obtained with an implementation of 

our algorithm. The algorithm was implemented in C++ and OpenGL. All benchmarks 

were performed on a 2.4GHz Intel core 2 processor with 2GB main memory , and an 

nVidia GeForce 8800 GTX graphics card with 768MB video memory. 

 

5.1 Example Data Sets 

The time-varying data set used in our testing is Turbulent Combustion Simulation data 

set from the Institute of Ultra-Scale Visualization (IUSV). This data set is made 

available by Dr. Jacqueline Chen at the Sandia National Laboratory through SciDAC 

IUSV. The original data set consists of five floating variables. There are 

 voxels, and a total of 122 time steps. For simplicity reason, we 

convert the floating variables into 16-bit integers. We take one of the variables named 

“chi” as our test data set – Jet_chi (see Table 5.1). Another data set Jet_merg (see 

Figure 5.1) is obtained by merging four variables to form a larger data set. It has 

 voxels in each time step, and a total of 64 time steps. The data size 

of each time step is 949 MB, and the total size of 64 time steps is 59.3 GB. 

120720480 ××

3601440960 ××

 

 

Table 5.1: The data sets used in our testing. 

Data set Resolution Time steps Size of each 

time step 

Total size 

Jet_chi 120720480 ×× 122 79.1 MB 9.42 GB 

Jet_merg 3601440960 ×× 64 949 MB 59.3 GB 
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Figure 5.1: The Jet_merg data set. 

 

5.2 Preprocessing Result 

In Jet_chi data set, we chose the block size to be 32256128 ××  and each block is of 

size 2MB. This leads to a 3-level hierarchy octree with 73 nodes. In Jet_merg data 

set, we chose the block size to be 3212864 ×× , and each block is of size 0.5 MB. 

This leads to a 5-level hierarchy octree with 4681 nodes. We use Haar wavelet 

transform with lifting scheme in all our tests for simplicity and efficiency reasons. We 

first test the compression ratio with different number of I-frames in Jet_chi data set. 

The result is displayed in Table 5.2. Lossless compression scheme is used. It shows 

that our P-frame compression is slightly better than the conventional wavelet-tree 

(I-frame) method. 

 

Table 5.2: The compression ratio with different number of I-frames in Jet_chi data set (total 

122 time steps). 

No. of I-frame : No. of P-frame 13 : 109 25 : 97 61 : 61 122 : 0 

Total size 1.85 GB 1.87 GB 1.92 GB 2.02 GB 

Compression ratio 5.091:1 5.037:1 4.906:1 4.663:1 

 

We also implement the algorithm of WTSP tree [Wang and Shen 2004] to compare 
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with our algorithm. We set all compression parameters the same to compress the 

Jet_merg data set with WTSP tree method and our algorithm.The compression result 

is displayed in Table 5.3. Our algorithm can achieve higher compression ratio than 

WTSP tree method. 

 

Table 5.3: Compression of Jet_merg data set with our algorithm and WTSP tree. 

 Our algorithm WTSP tree 

Compressed size 19.515 GB 20.517 GB 

Compression ratio 3.04:1 2.89:1 

 

From the result of Table 5.2, we can see that the P-frame compression does not 

enhance compression ratio as much as in video compression. It is because the tested 

scientific data do not behave like rigid body motion, and the variation between two 

consecutive frames is much more than in general video. Thus, the temporal coherence 

is much harder to catch and the motion-compensation-based prediction is not as 

effective as in general video system. 

 

5.3 Run-Time Rendering Result 

During rendering, the selected blocks will be decompressed on-the-fly and then 

uploaded to texture memory for texture mapping. In all the following tests, we set the 

maximum available texture memory  as 512MB for spatial LOD selection. LODM

 

5.3.1 Decompression Time 

Here we test our decompression efficiency with Jet_merg data set and compare it to 

the WTSP tree method. We test the decompression time and disk loading bandwidth 

in our system and in the WTSP tree method. In Figure 5.2, the LOD selection chooses 

out a set of blocks of size 20 to 30 MB. In Figure 5.2(a), we compare the 

decompression time of our algorithm with WTSP tree method. In Figure 5.2(b), we 
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display the corresponding disk loading bandwidth. In Figure 5.3, we display another 

test result under different spatial LOD selections. The LOD selection chooses out a set 

of blocks of size about 40 to 50 MB. The decompression time includes disk I/O to 

fetch compressed data, decoding the compressed bit streams, and reconstruction of 

data blocks. The comparison is tested under the same situation. The rendering results 

are identical in both methods. We assume that we don’t have additional memory space 

to cache intermediate nodes in the binary time tree of WTSP tree method. We also 

disable the caching and pre-loading mechanism in our system. 

 In the comparison result we can see that the decompression time of our system is 

obviously less than that of the WTSP tree method. It is because of the large additional 

overhead to traverse the binary time tree in the WTSP tree method. This problem will 

get worse when the number of time steps is increased. In our algorithm, even without 

additional memory space, we can decompress the data blocks efficiently, and the 

performance is independent of the number of time steps. In Figure 5.2, the playback 

frame rate of WTSP tree method is 0.264 fps when there are only 64 time steps. Our 

method can reach a playback frame rate of 1.834 fps under the same situation. 
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Figure 5.2: (a) The comparison of decompression time. We select a set of blocks of size 20 to 
30 MB to be rendered. The decompression time for our algorithm and WTSP tree method is 
displayed in the figure. (b) The corresponding size of disk loading. 
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Figure 5.3: (a) The comparison of decompression time. We select a set of blocks of size 40 to 
50 MB to be rendered. The decompression time for our algorithm and WTSP tree method is 
displayed in the figure. (b) The corresponding size of disk loading. 

 26



5.3.2 LOD and Rendering Speed 

In Table 5.4, we list the rendering speed with three different scalar factor Sφ  at 

5.4. 

 

the first time step of the Jet_merg data set. We also show the result images in Figure 

able 5.4: The rendering speed with three different LOD selections at the first time step of the T

Jet_merg data set 

 = 0.0924 Sφ = 0.2442 Sφ  = 0.033Sφ 

No. of total blocks 246 92 29 

No. of non-uniform blocks 228 88 25 

Size of non-uniform blocks 114 MB 44 MB 12.5 MB 

Rendering frame rate 19.81 29.89 31.14 

Renderi grated)ng frame rate (pre-inte 18.18 19.15 19.97 
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 (a)

 (b)

 (c)
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                (d)                                  (e) 

 
(f) 

Figure 5.4: The rendering result image with tree difference scalar factors. (a): The rendering 

result with Sφ  = 0.033. Its corresponding LOD selection is showed in (d). The white string 

lines stand for the bounding box of each block.  (b): Sφ  = 0.924. Its corresponding LOD 

selection is showed in (e).  (c): Sφ  = 0.2442. Its corresponding LOD selection is showed in 

(f). 

 

From the result, we show that we can lower down the value of Sφ  in the 

n-time to trade rendering quality for rendering speed. User can roughly browse the 

data 

ru

set and find out suitable camera parameters quickly with smalle Sr φ  in the

beginning, and then increase S

 

φ  to reveal more detail. 

 

5.3.3 Temporal ROI and Interactive Playback 

In Table 5.5, we show how to improve the playback speed in our system. We display 
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the selected blocks of temporal ROI with yellow bounding boxes in Figure 5.5. The 

size of the temporal ROI is 81  of the whole volume size. Decreasing the value of 

Sφ  and using temporal ROI helps to enhance the playback frame rate. Here we 

Table 5.5: The playback speed of difference spatial LOD selections and temporal LOD selections. 

demonstrate that with the flexible spatial and temporal LOD selection mechanism, 

user can easily achieve an interactive playback.  

 

 Sφ  = 0.2442 Sφ  = 0.2442

(With Temporal ROI)

Sφ  = 0.0924 Sφ  = 0.0924

(With Temporal ROI)

Sφ  = 0.033 Sφ  = 0.033 

(With Temporal ROI)

No. of    

non-uniform 230 146 84 

 

45 

 

21 

 

10 

blocks 

Size of 

non-uniform 

blocks 

115 MB 73 MB 42 MB  22.5 MB 10.5 MB 5 MB 

       

Playback 

frame rate 

0.272 0.425 1.151 1.841 4.13 7.81 
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(a). Sφ  = 0.2442. Temporal ROI elected blocks size: 73 MB. Playback frame rate: 0.425. 

 
(b). Sφ  = 0.0924. Temporal ROI elected blocks size: 22.5 MB. Playback frame rate: . 1.84

 

(c). Sφ  = 0.033. Temporal ROI elected blocks size: 5 MB. Playback frame rate: 7.81. 
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Figure  T x of 

temporal ROI. The blocks that are selected by the temporal ROI will be displayed in yellow 

 5.5: he temporal LOD selection. The green rectangular is the bounding bo

bounding box, and only these selected blocks will be updated every time steps. 

 32



Chapter 6 

Summary and Future Work 
 

6.1 Summary 

We have introduced a new framework that combines the multi-resolution hierarchical 

representation with video-based compression to manage and render large scale 

time-varying data. We demonstrate how this new structure can perform more efficient 

reconstruction in time axis with respect to the WTSP tree method. We also provide 

flexible user-assisted mechanism to easily achieve interactive playback in the 

run-time. Our main contribution is to provide the user the ability to observe the 

dynamic change in interactive frame rate. We believe that the ability of interactive 

playback can help the users to reveal more information in large time-varying volume 

data, which is not available in the previous multi-resolution representation. 
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6.2 Future work 

 We currently use the temporal ROI to choose a sub-region for full update along 

time axis. We could calculate the temporal error of each block in the pre-processing 

stage. User can specify a temporal error tolerance. In the run-time, we can update only 

the blocks whose temporal errors are larger than the error tolerance. 

Since we construct a new structure that combines the multi-resolution 

hierarchical representation with video-based compression, we could adapt the current 

advanced video compression techniques to improve the compression and 

decompression efficiency. Since the size of our approach for a large time-varying data 

set may still be too large to handle on a single PC, we could distribute the 

multi-resolution data into a parallel or multi-server network visualization system to 

achieve real-time rendering. 
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