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摘要 

關鍵詞：模擬退火、全域最佳化、類神經網路、Hough 轉換、震測圖形。 
 
    我們提出一個運用模擬退火演算法的參數偵測系統來偵測影像中的直線、

圓、橢圓與雙曲線，並且將此系統應用到震測圖形的偵測上。在此系統中，我們

定義了點到雙曲線的距離使得系統能夠成功的運作。這個模擬退火的參數偵測系

統能找到一組圖形(直線、圓、橢圓、與雙曲線)的參數，使得影像上的點到這組

圖形的距離為最小。除此之外，我們利用平均的最小距離作為判斷的依據，提出

自動判斷影像中圖形數量的方法。在實驗的部分，對於影像中的直線、圓、橢圓

與雙曲線均能成功的偵測。此系統也應用於偵測模擬與真實的單炸點震測圖形中

直接波的直線與反射波的雙曲線，此結果將幫助震測圖形的解釋與進一步的震測

圖形處理。 
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ABSTRACT 
Keywords: simulated annealing, global optimization, neural network, Hough 

transform, seismic pattern. 
 

Simulated annealing algorithm is adopted to detect the parameters of ellipses, 
hyperbolas and lines in images and applied to seismic pattern detection. We define the 
distance from a point to a hyperbolic pattern such that the detection becomes feasible. 
The proposed simulated annealing parameter detection system has the capability of 
searching a set of parameter vectors with global minimal error with respect to the 
input data. Based on the average of the minimum distance, we propose a method to 
determine the number of patterns automatically. Experiments on the detection of 
ellipses, hyperbolas, circles and lines in images are quite successful. The detection 
system is also applied to detect the line pattern of direct wave and the hyperbolic 
pattern of reflection wave in the simulated and real one-shot seismogram. The results 
can improve seismic interpretations and further seismic data processing. 
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Chapter 1 

Introduction 

 
Traditionally, the Hough transform (HT) is used to detect the parametric patterns 

such as lines and circles by mapping points in the image into the parameter space and 
find the peak (maximum) in the parameter space [1]-[2]. The coordinate of the peak in 
parameter space corresponds to a pattern in the image space. 
 

Seismic pattern recognition plays an important role in oil exploration. In seismic 
data, a line represents the direct wave and a hyperbola represents the reflection wave 
[3]-[5]. In 1985, Huang et al. had applied the HT to detect line pattern of direct wave 
and hyperbolic pattern of reflection wave in a one-shot seismogram [7]. However, it 
was not easy to determine the peak in the parameter space and the large memory 
requirement was also a problem. 

 
The Hough transform neural network (HTNN) was developed to solve the 

traditional HT problem [8]. It was designed to detect lines, circles, and ellipses by 
gradient descent to minimize the distance between points and patterns. HTNN was 
also adopted to detect lines and hyperbolas in a one-shot seismogram by Huang et al. 
[9]. The iterative method required less memory, but it had local minimum problem. 

 
Simulated annealing (SA) was first proposed by Kirkpatrick in 1983 [10]. The 

algorithm simulates the procedure of the substance frozen from melt to a perfect 
crystal or low-energy state by careful annealing. The Metropolis criterion [11] which 
conditionally allows the state of the system to higher energy condition is the key of 
the SA algorithm to reach the global minimum. SA algorithm solves many 
combinatorial problems such as traveling salesman problem, circuit wiring problem, 
and clustering problem [10], [12]-[16]. In 1987, Corana et al. applied the SA 
algorithm to solve the global optimal solution of the continuous function [17] and 
compare it with simplex method [18] and adaptive random search [19]. The result 
shows the power of SA algorithm. 

 
Here, we take the advantage of global optimization in SA to minimize the distance 

between points and patterns to detect parametric patterns: circles, ellipses, hyperbolas 
and lines. Also the proposed detection system is applied to the detection of line 
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pattern of direct wave and hyperbolic pattern of reflection wave in the simulated and 
real one-shot seismogram. 
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Chapter 2 

Simulated Annealing 

 
Optimization by SA is first proposed by Kirkpatrick et al. in 1983 to solve 

combinatorial problem such as the placement and circuit wiring in chip design and 
traveling salesmen problem [10]. The algorithm compares the optimization problem 
to cooling a fluid. A regular crystal has all atoms in the ground state or the lowest 
energy state by careful cooling procedure. In the procedure, the state of atoms is 
conditionally allowed to a higher energy state. Similarly, to achieve the optimal 
solution, the algorithm has to accept a solution with larger error in the procedure 
based on a criterion, Metropolis criterion [11]. Fig. 1 illustrates the function F(x) and 
the descent and ascent direction at x1. For the gradient descent algorithm, the direction 
for the next step is always descent. On the other hand, SA algorithm conditionally 
chooses ascent direction and this allows it to reach global minimum. The main steps 
of SA algorithm are in the following. 
 
Algorithm: SA algorithm to get a configuration with lowest energy state. 
Input: A system with unknown minimum-energy configuration. 
Output: A minimum-energy configuration. 
 
Step 1: Initialization: 

1. Set the initial temperature. 
2. Set the initial configuration. 
3. Define the temperature decreasing function. 
4. Define the energy function. 
 

Step 2: Give the configuration a random displacement then obtain a new configuration 
and a resulting energy change ∆E. To accept the displaced configuration or not 
is determined by Metropolis criterion. Metropolis criterion is a rule: If ∆E ≤ 0, 
the displaced configuration is accepted and treated as the starting 
configuration of the next step. 
On the other hand, if ∆E ≥ 0, the acceptance of the displaced configuration is 
treated probabilistically: 
1. Calculate prob = exp[-∆E/T(t)]. 
2. Generate a random number x. For convenience, random numbers uniformly 

distributed over (0, 1) are chosen. 
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3. If prob is greater than x, the new configuration is retained. Otherwise, the 
original configuration is used to the starting configuration of the next step. 

Repeat this step until equilibrium condition. 
 

Step 3: When the equilibrium condition is reached, cool the system using the 
temperature decreasing function. Repeat this step until frozen condition. 

 
   In the SA algorithm, when to reach equilibrium condition and frozen condition is 
determined prior. For example, in step 2, the system reaches equilibrium condition in 
a specific temperature after 100 trials. Similarly, in step 3, frozen condition can be the 
temperature T < 0.001. Fig. 2 is the flowchart of the SA algorithm. 
 

 

x1
x 

F(x) 

 
Fig. 1. Illustration of descent and ascent direction. Dash arrow: ascent direction. Solid 
arrow: descent direction. 
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Fig. 2. Flowchart of the simulated annealing algorithm. 
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Chapter 3 

Proposed System 

 
Fig. 3 is the overview of the proposed system. The detection system takes the N 

data as the input, followed by the SA parameter detection system to detect a set of 
parameter vectors of K patterns. After convergence, patterns are recovered from the 
detected parameter vectors. 

 

Input  
N data 

Simulated annealing parameter 
detection system 

Detected 
parameters

Detected  
K patterns 

 
Fig. 3. The system overview. 

 
SA parameter detection system consists of two main parts: 1. definition of system 

error (energy, distance); 2. SA algorithm for determination of the parameter vectors 
with minimum error. To obtain the system error, we calculate the error or the distance 
from a point to patterns, and combine the errors from all points to patterns to be the 
system error. 

 

3.1 Definition of the system error 
 

To define the error or energy of the system, we first discuss the equation of the 
quadratic curve and the distance from a point to the pattern. Seconds, the error from a 
point to K patterns is the geometric mean of the distances from the point to all 
individual patterns. Finally, the system error is the arithmetic mean of the error of N 
points. 
 

3.1.1 Equation of the parametric pattern 

Circles, ellipses, and hyperbolas with rotations and translations can be expressed 
in the standard form in the translated and rotated coordinate system. That is, in 
translated and rotated coordinate system x″-y″, circles, ellipses, and hyperbolas can be 
expressed in the standard form as 

fbyax =+ 22 '''' , (1)
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where a, b, and f control the graph of the equation. Table I lists the relation between 
the graph of the equation and parameters a, b, and f. If a > 0, b > 0, and f > 0 or a < 0, 
b < 0, and f < 0, the graph is an ellipse; if a > 0, b < 0, and f ≠ 0 or a < 0, b > 0, and f ≠ 
0 the graph is a hyperbola. If a > 0, b < 0, and f = 0 or a < 0, b > 0, and f = 0, the 
graph represents the asymptotes of the hyperbola. 
 

Table I 
Relation between graph and parameters in (1) 

a b f Graph 
＋ ＋ ＋ Ellipse 
－ － ＋ No graph 
＋ － ＋ Hyperbola 
－ ＋ ＋ Hyperbola 
＋ － － Hyperbola 
－ ＋ － Hyperbola 
＋ ＋ － No graph 
－ － － Ellipse 
＋ － 0 Asymptote 
－ ＋ 0 Asymptote 
＋ ＋ 0 Point 
－ － 0 Point 

 
Since x″-y″ are the axes counter-clockwise rotated by θ from x′- y′, the relations of 

axes rotation are 
θθ sin'cos''' yxx +=  
θθ cos'sin''' yxy +−= . (2)

Fig. 4 illustrates the relation. The equation of ellipses and hyperbolas after axes being 
rotated back to x′- y′ becomes 

fyxbyxa =+−++ 22 ]cos'sin'[]sin'cos'[ θθθθ . (3)
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θ

x″

y″ y′

θ
θ

θ

x′ 

 
Fig. 4. Illustration of axis rotation: rotate the axis counterclockwise by θ. 

 
   Since x′ and y′ axes translates the origin of x-y coordinate system to (mx, my), the 
relations of translation are 

y

x

myy
mxx

−=
−=

'
'

. (4)

Fig. 5 illustrates the axes translation. And the equation in the x-y coordinate system is 

fmymxbmymxa yxyx =−+−−+−+− 22 ]cos)(sin)([]sin)(cos)[( θθθθ . (5)

This can completely express any translated and rotated ellipse or hyperbola in 2D 
space. 
 

So we can use (5) to represents any ellipse and hyperbola with the parameter, a, b, 
f, θ, mx, and my. Parameter (mx, my) is the center; a, b, and θ are concerned about the 
shape; f is related to the size. In the matrix form, a parameter vector, p = [mx, my, a, b, 
θ, f]T represents a pattern. Since (5) represents the asymptotes or two crossing lines 
when f = 0, we can use it to detect lines. 

 

(mx, my)

x (0, 0) 

y 

y’ 

x’

 
Fig. 5. Illustration of translation: translate the origin to (mx, my). 
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3.1.2 Distance from a point to a pattern 

Here, the detected patterns include ellipses, circles, hyperbolas, and lines. The 
distance from a point xi to the kth pattern is defined as 

|]cos)(sin)([                       

]sin)(cos)[(|),(
2

,,

2
,,

kkykikxkik

kykikxkikiik

fmymxb

mymxayxd

−−+−−

+−+−=

θθ

θθ
 (6)

 
Distance measure in (6) has a minimum d(xi, yi) = 0 when a = 0, b = 0, and f = 0. 

However, these are not our desired parameters. Also, the distance from a point to the 
pattern is affected by the scale of coefficients. So we have to normalize the parameter 
a and b. 

 
Fig. 6 (a) illustrates the distance from points to the circle, x2 + y2 = 1. Fig. 7 (a) 

shows the distance from points to the ellipse, 0.5x2 + 2y2 = 1. Fig. 8 (a) illustrates the 
distance from points to the hyperbola x2 - y2 = 1. Equal distance curves in those 
figures have corresponding distance 0.5, 1, 2, 5, 10, and 20. Fig. 6 (b) shows the 
distance from points to the circle 0.25x2 + 0.25y2 = 0.25, which has the same shape 
with that in Fig. 6 (a), but all coefficients are 0.25 times smaller. The resulting 
distance in Fig. 6 (b) is shorter than that in Fig. 6 (a). Fig. 7 (b) and Fig. 8 (b) are 
illustrations of the distance but the coefficients are 0.25 times smaller than those in 
Fig. 7 (a) and Fig. 8 (b). This distance measure in (6) has a minimum distance, zero, 
when a, b, and f are all zeros. So we have to normalize parameters b and a. The 

coefficients are normalized by || ab  so that |ab| = 1. This is similar to [8] where 

the pattern is in the form xTAx = r2 and in order to reflect r in the distance, A is 

normalized to ||det(A)|| = 1. Comparing this with (1), A = ⎥
⎦

⎤
⎢
⎣

⎡
b

a
0

0
, ||det(A)|| = 1 

implies |ab| = 1. 
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 (a) (b)  

Fig. 6. (a) Distance from points to the circle x2 + y2 = 1. (b) Distance from points to 
the circle 0.25x2 +0.25 y2 = 0.25 
 

 (a) (b)  
Fig. 7. (a) Distance from points to the ellipse 0.5x2 + 2y2 = 1. (b) Distance from points 
to the ellipse 0.125x2 + 0.5y2 = 0.25. 
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  (a) (b)  
Fig. 8. (a) Distance from points to the hyperbola x2 – y2 = 1. (b) Distance from points 
to the hyperbola 0.25x2 – 0.25y2 = 0.25. 
 

3.1.3 Distance from a point to K patterns 

Error or distance from a point to the patterns is defined as the geometric mean of 
the distances from the point to all patterns. The error of the ith point xi is 

[ ] ,)()...()...()()(
1

21 KiKikiiii ddddEE xxxxx ==  (7)

where K is the total number of patterns. If the point is on any pattern, the error of this 
point will be zero. Fig. 9 shows the error of a point to all patterns. The distance layer 
computes the distance from a point to each pattern by (6), and the error layer outputs 
the error from a point to all patterns by (7). 
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Distance Layer: 
distance from a point 
to each pattern 

Error layer 

Error from a point to 
all patterns 

xi yi 

Ei 

… …

Ei= [d1(xi) d2(xi)… dk(xi)…dK(xi)]1/K 

Parameter vectors 

p = [mk,x, mk,y, ak, bk, θk, fk]T 
m1,x 

m1,y

mk,x mk,y

mK,x

mK,y

d1(xi) dK(xi)dk(xi)
dk(xi)=|a[(xi-mk,x)cosθk+(yi-mk,y)sinθk ]2 

+b[-(xi-mk,x)sinθk+(yi-mk,y) cosθk]2-fk|

 
Fig. 9. Distance from a point to all patterns. i is the index of the input point. k is the 
index of the pattern, and K is the number of patterns. 
 

3.1.4 Error from N input data to K patterns in the system 

Fig. 10 illustrates the error or energy of the system from N input points to K 
patterns. The error or energy of the system is defined as the average of the error of 
points, 

∑
=

=
N

i
iE

N
E

1

1 . (8)

 

Total error E 

Decide to accept the new parameter 
vector or keep the original vector by 

simulated annealing algorithm. 

... 

E1 

(x1, y1) 

EN 

(xN, yN) Input point 

E2 

Distance from x2 
to all patterns 

(x2, y2) 

Distance from xN 
to all patterns 

Distance from x1 
to all patterns 

K pattern parameter 

vectors 

 
Fig. 10. Total error of the system and procedure of simulated annealing. 
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3.2 Simulated annealing parameter detection system 
 

We use SA to detect the parameter vector of each pattern. Our goal is to find a set 
of parameter vectors that can globally minimize the error of the system. Using the 
temperature decreasing function T(t) 

T(t) = Tmax × 0.98(t-1)    for t = 1, 2, 3, … (9)

as in [10]. 
 

Adjusting all parameters at one time is not efficient in convergence [8]. We use 
four steps in adjusting parameters also. The adjusting order is the center (mx, my), the 
major and minor axes, b and a, and then the rotation angle θ, followed by the size r. 
The followings is algorithm to detect ellipses, hyperbolas, and lines. Here, lines are 
considered as the asymptotes of hyperbolas. 

 

3.2.1  Simulated annealing algorithm for parameter detection 

This algorithm is the general algorithm to detect ellipses, hyperbolas, and it treats 
lines as asymptotes of hyperbolas. Also, from Table I, the change of the signs of a, b, 
and f simultaneously makes the same patterns. So we have the constraint f ≥ 0 in the 
algorithm. 
 
Algorithm: SA algorithm to detect parameter vectors of K patterns including ellipses, 

circles, hyperbolas, and lines as asymptotes. 
Input: N points in an image. Set K as the number of patterns. 
Output: A set of detected K parameter vectors. 
 
Step 1: Initialization. 

In the initial step t = 1, choose T(1) = Tmax at high temperature, and define the 
temperature decreasing function as in (9), T(t) = Tmax × 0.98(t-1) 
Initialize parameter vectors p1, p2, ..., pk, …, pK, where pk = [mx,k, my,k, ak, bk, 
θk, fk]T, one p is for one pattern, and set P = (p1, p2, ..., pk, …, pK). 
Calculate energy E(P) as (6), (7), and (8). 
 

Step 2: Randomly change parameter vectors and decide the new parameter vectors in 
the same temperature. 
For m = 1 to Nt (Nt trials in a temperature) 
For k = 1 to K (k is the index of the pattern) 
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Start a trial, including (a), (b), (c), and (d) in the following. 
 
(a) Randomly change the center of the kth pattern: 

nm
T

ykxk
T

k,yxk mmm'm' α+= ] []  [ ,,, , (10)

where n = [n1 n2]T is a 2 × 1 random vector, n1 and n2 are Gaussian random 
variables with N(0, 1) and αm is a constant. Now, p’k = [m’k,x, m’k,y, ak, bk, θk, 
rk]T, and P’= (p1, p2, …, p’k, …, pK). 
Calculate the new energy E(P’) from N points to K patterns. Using Metropolis 
criterion decides whether or not to accept P’: If the new energy is less than or 
equal to the original one, ∆E = E(P’) - E(P) ≤ 0, accept P’. Otherwise, the new 
energy is higher than the original one, ∆E = E(P’) - E(P) > 0. In this case, it 
computes prob = exp[-∆E/T(t)], and generates a random number x uniformly 
distributed over (0, 1). If prob ≥ x, accept P’; otherwise, reject it, and keep P. 
 
(b) Randomly change the shape parameters: 

nabkkkk baba α+= ] [ ]' '[ , (11)

and normalize it by |''| kk ba , where n = [n1 n2]T is a 2 × 1 random vector, n1 

and n2 are Gaussian random variables with N(0, 1) and αab is a constant. Now, 
p’k = [mk,x, mk,y, a’k, b’k, θk, rk]T, and P’ = (p1, p2, …, p’k, …, pK). 
Similar to Step 2(a), calculate the new energy E(P’) from N points to K 
patterns. Using Metropolis criterion decides whether or not to accept P’. 
 
(c) Randomly change the angle: 

nkk θαθθ +=' , (12)

where n is a Gaussian random variable with N(0, 1) and αθ is a constant. Here, 
the angle is in degree. Now, p’k = [mk,x, mk,y, ak, bk, θ’k, rk]T, and P’ = (p1, 
p2, …, p’k, …, pK). 
Similar to Step 2(a), calculate the new energy E(P’) from N points to K 
patterns. Using Metropolis criterion decides whether or not to accept P’. 
 
(d) Randomly change the size: 

|| ' nff fkk α+= , (13)

where n is a Gaussian random variable with N(0, 1) and αf is a constant. Now, 
p’k = [mk,x, mk,y, ak, bk, θk, f’k]T, and P’ = (p1, p2, …, p’k, …, pK). 
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Similar to Step 2(a), calculate the new energy E(P’) from N points to K 
patterns. Using Metropolis criterion decides whether or not to accept P’. 
End for k 
End for m 
 

Step 3: Cool the System. 
Decrease temperature T according to the cooling function (9), T(t) = Tmax × 
0.98(t-1), for t = 1, 2, 3, …, and repeat Step 2, and 3 until the temperature is low 
enough, for examples, repeat 500 times. 
 

3.2.2  Simulated annealing algorithm to detect North-South opening 
hyperbolas 

For seismic applications, patterns of reflection wave are North-South opening 
hyperbolas. Besides, patterns of direct waves are asymptotes of hyperbolas [3]-[5]. 
Equation of a North-South opening hyperbola is 

fmybmxa yx =−+− 22 )()( . (14)

with a < 0, b > 0, f ≥ 0. So the parameters to be detected are p = [mx, my, a, b, f]T and 
the distance from a point to a pattern becomes 

|)()(| ),( 2
,

2
, kykixkiiik fmybmxayxd −−+−= . (15)

We consider these properties and modify the algorithm to be just for North-South 
opening hyperbolas. This algorithm proves the detected patterns have the properties of 
North-South opening hyperbolas. 
 
Algorithm: SA algorithm to detect parameter vectors of K North-South opening 

hyperbolas. 
Input: N points in an image. Set K as the number of patterns. 
Output: A set of detected K parameter vectors. 
 
Step 1: Initialization. 

In the initial step t = 1, choose T(1) = Tmax at a high temperature, and define 
the temperature decreasing function as in (9), T(t) = Tmax × 0.98(t-1). 
Initialize parameter vectors p1, p2, ..., pk, …, pK, where pk = [mk,x, mk,y, ak, bk, 
fk]T, one p is for one North-South opening hyperbola, and set P = (p1, p2, ..., 
pk, …, pK). 
Calculate energy E(P) as (15), (7), and (8). 
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Step 2: Randomly change parameter vectors and decide the new parameter vectors in 
the same temperature. 
For m = 1 to Nt (Nt trials in a temperature) 
For k = 1 to K (k is the index of the pattern) 
Start a trial, including (a), (b), and (c) in the following. 
 
(a) Randomly change the center of the kth pattern: 

nm
T

ykxk
T

k,yxk mmm'm' α+= ] []  [ ,,, , (16)

where n = [n1 n2]T is a 2 × 1 random vector, n1 and n2 are Gaussian random 
variables with N(0, 1) and αm is a constant. Now, p’k = [m’k,x, m’k,y, ak, bk, fk]T, 
and P’= (p1, p2, …, p’k, …, pK). 
Calculate the new energy E(P’) from N points to K patterns. Using Metropolis 
criterion decides whether or not to accept P’: for the new energy less than or 
equal to the original one, ∆E = E(P’) - E(P) ≤ 0, accept P’. Otherwise, new 
energy is higher than the original one, ∆E = E(P’) - E(P) > 0. In this case, 
compute prob = exp[-∆E/T(t)], and generate a random number x uniformly 
distributed over (0, 1). If prob ≥ x, accept P’; otherwise, reject it, and keep P. 
 
(b) Randomly change the shape parameters: 

nabkkkk baba α+= ] [ ]' '[  (17)

and normalize it by |''| kk ba , where n = [n1 n2]T is a 2 × 1 random vector, n1 

and n2 are Gaussian random variables with N(0, 1) and αab is a constant. If a’k 
> 0 or b’k < 0, regenerate ak and bk. Now, p’k = [mk,x, mk,y, a’k, b’k, fk]T, and P’ 
= (p1, p2, …, p’k, …, pK). 
Similar to Step 2(a), calculate the new energy E(P’) from N points to K 
patterns. Using Metropolis criterion decides whether or not to accept P’. 
 
(c) Randomly change the size: 

||  ' nff fkk α+= , (18)

Where n is a Gaussian random variable with N(0, 1) and αf is a constant. Now, 
p’k = [mk,x, mk,y, ak, bk, f’k]T, and P’ = (p1, p2, …, p’k, …, pK). 
Similar to Step 2(a), calculate the new energy E(P’) from N points to K 
patterns. Using Metropolis criterion decides whether or not to accept P’. 
End for k 
End for m 
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Step 3: Cool the System. 

Decrease temperature T according to the cooling function (9), T(t)= 
Tmax×0.98(t-1), for t = 1, 2, 3, …, and repeat Step 2, and 3 until the temperature 
is low enough, for examples, repeat 500 times. 

 
   Fig. 11 - Fig. 14 illustrate a possible procedure of SA algorithm. The example has 
some points on an ellipse. There is only one pattern K = 1, so P = p1. Fig. 11 shows 
the trial of the center. 
 

In the step 1, at a certain temperature, the center (mx, my) is randomly displaced to 
(m’x, m’y), and the parameter vector changes from P = p1 = [m1,x, m1,y, a1, b1, f1]T to P’ 
= p1’ = [m’1,x, m’1,y, a1, b1, θ1, f1]T. The resulting energy E(P’) is less than the original 
energy E(P). In this case, the trial parameter vector is accepted and set it as the 
starting parameter vector in the step 2, P ← P’ = p1’ = [m’1,x, m’1,y, a1, b1, θ1, f1]T. 

 
 

 

 

 

 

E(P) E(P’) 0)()'( ≤−=Δ PP EEE  
Accept P’ 

(a) (b) (c)  
Fig. 11. A trial of the center (mx, my). (a): original parameter. (b): trial parameter. (c): 
preserved parameter. 
 

In the step 2, as shown in Fig. 12, the shape parameters b and a are randomly 
changed to b’ and a’, and the parameter vector p1 becomes p1’, and this results in the 
energy E(P’) > E(P). In this case, Metropolis criterion decides whether or not to 
accept the trial parameter by comparing prob = exp[-∆E/T(t)] and random number x. 
Assuming prob ≥ x, the trial parameter vector with a higher energy is still preserved 
and set it as starting parameter vector in step 3, P  ← P’= p1’ = [m1,x, m1,y, a’1, b’1, θ1, 
f1]T. 
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E(P) E(P’) 0)()'( >−=Δ PP EEE  
prob=exp[-∆E/T(t)] ≥ r 

Accept P’ 
(a) (b) (c)  

Fig. 12. A trial of shape parameters b and a. (a): original parameter. (b): trial 
parameter. (c): preserved parameter. 
 

In the step 3, the trial of the rotation angle gives the trial parameter vector P’ = 
[m1,x, m1,y, a1, b1, θ’1, f1]T, and the resulting energy E(P’) < E(P). The trial parameter 
vectors is preserved and set as the starting parameter vector in the step 4, P ← P’. Fig. 
13 illustrates the step 3. 
 
 

 

 

 

 

E(P) E(P’) 0)()'( <−=Δ PP EEE  
Accept P’ 

(a) (b) (c)  
Fig. 13. A trial of rotation angle θ. (a): original parameter. (b): trial parameter. (c): 
preserved parameter. 
 

In the step 4, the trial of the size gives the trial parameter vector P’ = [m1,x, m1,y, a1, 
b1, θ1, f’1]T, and the resulting energy E(P’) > E(P). Metropolis criterion decides the 
preserved parameter vector in the same way, and this time, prob < x, so the trial 
parameter vector P’ is rejected. The starting parameter vector in the next step is still 
the original one, P ← P. Fig. 14 illustrates the step 4. 
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E(P) E(P’) 0)()'( >−=Δ PP EEE  
prob=exp[-∆E/T(t)] < r 

Reject P’; keep P 
(a) (b) (c)  

Fig. 14. A trial of f. (a): original parameter. (b): trial parameter. (c): preserved 
parameter. 
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Chapter 4 

Implementation and Experimental Results 

 
The experiments are first on simulated pattern detections in images with size 50 × 

50. First, we use the general algorithm to detect hyperbolas, ellipses, and consider 
lines as asymptotes of hyperbolas. Then, we use the algorithm just for North-South 
opening hyperbolas. Experiments on determination of the number of patterns are also 
shown. In seismic applications, we detect line pattern of direct wave and hyperbolic 
pattern of reflection wave in the simulated and real seismic data. 

 

4.1 Detection of ellipses, hyperbolas, and lines 
 

The general algorithm can detect circles, ellipses, hyperbolas, and treats line as 
asymptote. 
 

In initial stage, mx and my are randomly distributed over (0, 50), fk = 0, ak = 1, bk = 
1, and θk = 0. The cooling function is as (9) with a high enough temperature, Tmax = 
500. We have 100 trials in the same temperature. The temperature decreases 500 
times to T = 0.0209, and this temperature is low enough. Constants αm = 1, αab = 1, αθ 
= 2, and αf = 2. 

 

Simulation 1: ellipses 

Fig. 15 and Fig. 16 show the results of detecting ellipses. There are two ellipses in 
each figure and each ellipse has 50 points. Data are disturbed by Gaussian noise with 
zero mean and variance is 0.5, N(0, 0.5) × N(0, 0.5). The error vs. cooling cycles 
shows that the error oscillates at high temperature and goes toward lower energy and 
becomes stable as the temperature decreasing. 
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(a) 

 

(b)  
Fig. 15. Detection of ellipses – (a): 2 ellipses with noise. (b): error plot of (a) with 
cooling cycles. 
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(a) 

 
(b)  

Fig. 16. Detection of ellipses – (a): 1 ellipse and 1 circle with noise. (b): error plot of 
(a) with cooling cycles. 
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Simulation 2: hyperbolas 

Result of detecting hyperbolas are shown in Fig. 17 where K = 2. Patterns are with 
Gaussian noise N(0, 0.5)×N(0, 0.5). Figures of energy vs. cooling cycles are also 
shown. 

 
(a) 

 

(b)  
Fig. 17. Detection of hyperbolas − (a): 2 hyperbolas with noise. (b): error plot of (a) 
with cooling cycles. 
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(a) 

 

(b)  
Fig. 18. Detection of hyperbolas − (a): 2 hyperbolas with noise. (b): error plot of (a) 
with cooling cycles. 
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Simulation 3: an ellipse and a hyperbola 

Result of detecting ellipses and hyperbolas are shown in Fig. 19. Patterns are with 
Gaussian noise N(0, 0.5) × N(0, 0.5). Figures of energy vs. cooling cycles are also 
shown. 

 
(a) 

 
(b)  

Fig. 19. Detection of ellipses and hyperbolas − (a): 1 ellipse and 1 hyperbola with 
noise. (b): error plot of (a) with cooling cycles. 



26 
 

Simulation 4: a line and an ellipse 

Result of detecting ellipses and hyperbolas are shown in Fig. 20 where K = 2. 
Pattern are with Gaussian noise N(0, 0.5) × N(0, 0.5). Figures of energy vs. cooling 
cycles are also shown. 

 
(a) 

 
(b)  

Fig. 20. Detection of ellipses and hyperbolas − (a): 1 ellipse and 1 hyperbola with 
noise. (b): error plot of (a) with cooling cycles. 
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Simulation 5: a line and a hyperbola 

Result of detecting ellipses and hyperbolas are shown in Fig. 21 where K = 2. 
Patterns are with Gaussian noise N(0, 0.5) × N(0, 0.5). Figures of energy vs. cooling 
cycles are also shown. 

 
(a) 

 

(b)  
Fig. 21. Detection of line and hyperbola − (a): 1 line and 1 hyperbola with noise. (b): 
error plot of (a) with cooling cycles. 
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Simulation 6: two lines 

Detected line patterns in Fig. 20 and Fig. 21 have parameter f = 0.245 and f = 
0.065 respectively, but the ideal result is f = 0. To make detections more precise, we 
can put a constraint, f = 0, on detection of lines. Fig. 22 and Fig. 23 show the result of 
detecting lines data are also disturbed by Gaussian noise N(0, 0.5). In Fig. 22, two 
lines are crossing at (0, 0). Since asymptotes of a hyperbola are two crossing lines, we 
can set K = 1 for Fig. 22. In Fig. 23, we set K = 2, so two additional lines appear. 
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(a) 

 

(b)  
Fig. 22. Detection of lines by setting f = 0 − (a): 2 lines with noise. (b): error plot of (a) 
with cooling cycles. 
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(a) 

 

(b)  
Fig. 23. Detection of lines by setting f = 0 − (a): 2 lines with noise. (b): error plot of (a) 
with cooling cycles. 
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4.2 Detection of North-South Opening Hyperbolas 
 

North-South opening hyperbolas have the properties a < 0, b > 0, and θ = 0 in (5). 
We put these constraints in the algorithm to meet the properties. The algorithm used 
here is just for North-South opening hyperbola. The detected parameter vector pk = 
[mk,x, mk,y, ak, bk, fk]T. 

 
In the initial step, mk,x and mk,y are randomly distributed over (0, 50), ak = -1, bk = 

1, and fk = 0 for hyperbolic pattern detection. The cooling function is as (9) with a 
high enough temperature, Tmax = 500. We have 100 trials in the same temperature. 
The temperature decreases 500 times to T = 0.0209, and this temperature is low 
enough. Constants αm = 1, αab = 1, and αf = 2. 

 
Fig. 24 and Fig. 25 show the results of North-South opening hyperbolic pattern 

detection, where Fig. 24 (a) has 187 points and Fig. 25 (a) has 148 points. Each data is 
with Gaussian noise N(0, 0.5) × N(0, 0.5). 
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(a) 

 

(b)  
Fig. 24. Detection of hyperbolas − (a): 2 hyperbolas with noise. (b): Corresponding 
plot of error vs. cooling cycles of (a). 
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(a) 

 

(b)  
Fig. 25. Detection of hyperbolas − (a): 2 hyperbolas with noise. (b): Corresponding 
plot of error vs. cooling cycles of (a). 
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4.3 Determination of the Number of Patterns 
 

In HTNN [8], the number of patterns was chosen by comparing the results from 
different number of patterns. Here we propose a method to determine the number of 
patterns, K, in the image. We define the detection error as 

∑
=

=
N

i
iKii ddd

N
S

1
21 ))( ..., ),( ),(min(1 xxx , (19)

where N is the number of input points. Equation (19) implies that the detection error is 
the average of the minimum distance from N points to their nearest patterns. 
Algorithm runs from pattern number K = 1, 2, …, until the detection error has a 
minimum and no improvement or lower than a threshold. At that time, the best choice 
of K is determined. Fig. 26 has three circles and shows the result of getting K 
automatically. In Fig. 26 (e), the detection error greatly decreases and no significant 
improvement after K = 3. So we choose K = 3. Table II lists the detection error in Fig. 
26 (a)-(d).  
 

The algorithm runs on Matlab 7.2 with Intel Duo Core CPU 1.66GHz and 1G 
RAM. Time consumption of SA algorithm is shown in Fig. 27. When K = 1, we have 
6 dimensional parameter space and in the case of K = 2, that has 12 dimension. CPU 
time grows with the size of parameter space. 
 

Table II 
DETECTION ERROR IN Fig. 26 

K 1 2 3 4 5 

Detection error 218.9 49.2 7.50 7.21 7.20 

 
Table III 

CPU Time in Fig. 26 
K 1 2 3 4 5 

CPU time (seconds) 69.5 167.7 292.2 423.7 572.0 
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               (a)                              (b) 

 
(c)                              (d) 

               (e)                              (f)  
Fig. 26. Determination of number of patterns K. (a): K=1. (b): K=2. (c): K=3. (d): K=4. 
(e): K=5. (f): Detection error of (a), (b), (c), (d) and (e). 
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Fig. 27. CPU time (in seconds) vs. number of patterns K. 
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4.4 Seismic Applications on Simulated data 
 

Experiments on simulated one-shot seismogram have two cases: horizontal 
reflection layer and dipping reflection layer. Two lines are the asymptote of the 
hyperbola [3]-[5], and the asymptote is a hyperbola with the same shape but size zero. 
So a line can be treated as a hyperbola. Here, we use the algorithm just for 
North-South opening hyperbolas. 
 
   Fig. 28 is the simulated horizontal reflection layer where the depth of the 
reflection layer is 500m and the velocity of the p-wave in the sedimentary rock is 
about 2,500m/sec [6]. There are 65 receiving stations on both side of explosion with 
50m between each others. The sampling interval is 0.004 sec. The impulse response is 
25 Hz Ricker wavelet. Reflection coefficient is 0.2 and noise is band-passed noise, 
10.2539Hz ~ 59.5703Hz, with uniform distributed over (-0.2, 0.2). 

 
Fig. 29 (a) shows a one-shot seismogram from horizontal reflection layer in Fig. 

28. The horizontal axis in Fig. 29 is the trace number and the vertical axis stands for 
time t. The one-shot seismogram is first preprocessed by envelope processing in Fig. 
29 (b) and thresholding [7] in Fig. 30 with the threshold 0.15. The image size is 512 × 
65 where the origin is on the top-left corner with horizontal x-axis and vertical y-axis. 
The points are then used as the input to the parameter detection system. 

 
The initial parameter mk,x and mk,y are random between 0 and 50, ak = −1, bk = 1, 

and fk = 1. The cooling function is as (9) with a high enough temperature, Tmax = 600. 
There are Nt = 100 trials in a temperature. The temperature decreases 500 times. 
Constants αm = 1, αab = 0.5, and αf = 5. Since lines of direct wave is asymptotes of a 
hyperbola, we set f1 = 0. The result and the error plot are shown in Fig. 31 (a) and (b). 

 

 

2 Ground k

O’ 

Receiving station 

Reflection wave 

Horizontal reflection layer 

1

 
Fig. 28. Illustration of horizontal reflection layer. 
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(a) 

 
(b)   

Fig. 29. Simulated seismic patterns − (a): Simulated one-shot seismogram (horizontal 
reflection layer). (b): After envelope processing. 
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(a) 

 

(b)  
Fig. 30. (a): Result of thresholding from Fig. 29 with the threshold 0.15. The origin is 
at the top-left corner. (b): Detected peak from (a). 
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(a) 

 
(b)  

Fig. 31. Detection of seismic patterns in Fig. 29 − (a): Detection result. (b): Error plot 
with the cooling cycles. 
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Fig. 32. Illustration of dipping reflection layer. 

 
Fig. 32 illustrates the reflection layer, where the dipping angle is 10° and the 

depth of the reflection layer is 500m and the velocity of the p-wave in the sedimentary 
rock is about 2,500m/sec [6]. There are 65 receiving stations on both side of explosion 
with 50m between each others. The sampling interval is 0.004 sec. The impulse 
response is 25 Hz Ricker wavelet. Reflection coefficient is 0.2 and noise is 
band-passed noise, 10.2539Hz ~ 59.5703Hz, with uniform distributed over (-0.2, 0.2). 
Fig. 33 (a) is the simulated one-shot seismogram. Fig. 33 (b) shows the envelope. Fig. 
34 (a) is the result of threshold with the threshold 0.15 and Fig. 34 (b) plots the detect 
peaks.  

 
Points in Fig. 34 (b) are the inputs to the algorithm. The initial parameters mk,x and 

mk,y are random between 0 and 50, ak = −1, bk = 1, and fk = 1. The cooling function is 
as (9) with a high enough temperature, Tmax = 600. There are Nt = 100 trials in a 
temperature. The temperature decreases 500 times. Constants αm = 1, αab = 0.5, and αf 
= 5. Number of patterns is K = 2, and we set f1 = 0 for line patterns of direct wave. Fig. 
35 (a) is the detection result of Fig. 34 (b) and Fig. 35 (b) is the corresponding error 
plot. 

 
Table IV and Table V list the detected parameters for the simulated seismic data. 
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(a) 

 
(b)  

Fig. 33. Simulated seismic patterns − (a): Simulated one-shot seismogram (dipping 
reflection layer). (b): After envelope processing. 
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(a) 

 

(b)  
Fig. 34. (a): result of thresholding from Fig. 33(b) with the threshold 0.15. The 
original is at the top-left corner. (b): detected peak from (a). 
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(a) 

 
(b)  

Fig. 35. Detection of seismic patterns in Fig. 33 − (a): Detection result. (b): Error plot 
with the cooling cycles. 
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Table IV 
Detected parameters in Fig. 31 (a) in image space 512×65 

 mx my a b f 

Direct wave 33.01 8.21 -5.031 0.198 0 (preset) 

Reflection wave 32.95 40.09 -4.412 0.226 1040.99 

 
Table V 

Detected parameters in Fig. 35(a) in image space 512×65 
 mx my a b f 

Direct wave 33.00 8.96 -5.00 0.199 0 (preset) 

Reflection wave 29.29 -1.46 -5.115 0.195 2300.17 
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4.5 Seismic Applications on Real Seismic Data 
 

The system is also applied to detect direct wave and reflection wave in real 
seismic data. We obtain data from Seismic Unix System developed by Colorado 
School of Mine [5]. 

 
The real data with the size 3100×48 showed in Fig. 36 (a) is from Canadian Artic, 

which has 48 traces and 3100 samples per trace with sampling interval 0.002 seconds. 
The horizontal axis is the trace number and the vertical axis is time t. 

 
After envelope and threshold preprocessing [7], Fig. 36 (b) shows the result of 

envelope and Fig. 37 (a) shows the result of thresholding with the threshold 0.15. The 
result of peak detection is in Fig. 37 (b). We only choose points with y < 700 which 
includes points from direct wave, first reflection wave and second reflection wave as 
in Fig. 38 (a) where there are 88 points. Detected curves are plotted in Fig. 38 (b) with 
K = 3 and we preset f1 = 0. Here, the initial parameters mk,x and mk,y are random 
number between 0 and 50, ak = −1, bk = 1, and fk = 0. The cooling function is as (9) 
with a high enough temperature, Tmax = 1,000. There are Nt = 100 trials in a 
temperature, and the temperature decreases 500 times. Constants settings: αm = 1, αab 

= 0. 5, and αf = 10. 
 
Since the second reflection wave is not a hyperbola in theory [3], we remove the 

points from the second-layer reflection wave. That is, we remove the points nearest to 
the bottom pattern in Fig. 38 (b). Remaining 65 points are plotted in Fig. 39 (a). We 
redo the experiment, and this time K = 2. Fig. 39 (b) shows the result. The detected 
parameters in Fig. 38 (b) and Fig. 39 (b) are listed in Table VI and Table VII. 

 
Table VI 

Detected parameters in Fig. 38 (b) with fixed f1 = 0 in image space 3100×48 
 mx my a b f 

Direct wave 24.48 8.59 -25.69 0.038 0 (preset) 

Reflection wave 24.83 28.83 -22.91 0.044 2,441.7 

Second Reflection wave 24.74 49.59 -23.10 0.043 8,942.7 

 



47 
 

Table VII 
Detected parameters in Fig. 39 (b) with fixed f1 = 0 in image space 3100×48 

 mx my a b f 

Direct wave 24.53 11.20 -25.59 0.039 0 (preset) 

Reflection wave 24.62 -2.81 -24.13 0.041 2,978.05 

 
As mentioned in [3]-[5], two lines of direct wave is a pair of asymptotes of the 

hyperbola and a pair of asymptotes is a hyperbola with size zero. From the detected 
parameters in Table VIII, we obtain the equation of the direct wave 

)20.11(039.0)53.24(59.25
0)20.11(039.0)53.24(59.25

2

22

−=−⇒

=−+−−

yx
yx

 (20)

Rearrange (20) and take square root on both sides, the equations of two lines in image 
space are 

3019.1261975.00587.5
8779.1211975.00587.5

=+
=−

yx
yx

 (21)
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(a) 

 
(b)  

Fig. 36. Experiment on real data -- (a): Real seismic data from Canadian Artic. (b): 
Plot of envelope. 
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(a) 

 

(b)  
Fig. 37. Experiment on real data -- (a): Threshold 0.15. (b): Detect peak. 
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(a) 

 
(b)  

Fig. 38. Experiment on real data -- (a): Choose peak with y < 700. (b): Detection 
result of (a). 
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(a) 

 
(b)  

Fig. 39. Experiment on real data -- (a): Remove points nearest to the bottom pattern. 
(b): Detection result. 
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(a) 

 
(b)  

Fig. 40. Plot detected curve on the original data -- (a): Detection result from Fig. 38 
(b). (b): Detection result from Fig. 39 (b). 
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The other real data is Gulf of Cadiz’s seismic data. There are 48 traces and 2050 
samples in a trace with sampling interval 0.004 seconds. Fig. 41 (a) shows the real 
data. The horizontal axis is the trace number and the vertical axis is time t. 

 
After envelope and threshold preprocessing [7], Fig. 41 (b) shows the envelope 

and Fig. 42 shows the thresholding result with threshold 0.5. The detected peak in Fig. 
42 are plotted in Fig. 43 (a) where there are 66 points and the size of image is 
2050×48, where the horizontal axis is x and the vertical axis is y. The initial 
parameters mk,x and mk,y are random number between 0 and 50, ak = −1, bk = 1, and fk 
= 0. The cooling function is as (9) with a high enough temperature, Tmax = 1,000. 
There are Nt = 100 trials in a temperature. The temperature decreases 500 times. 
Constants settings: αm = 1, αab = 0.5, and αf = 10. Number of patterns is K = 2. The 
detection result is in Fig. 43 (b). 

 
Since the points nearest to the pattern around y = 800 are from second-layer 

reflection wave. In theory, the second-layer reflection wave is not a hyperbola [3]. We 
remove those points and remaining 48 points are plotted in Fig. 44 (a). Fig. 44 (b) 
shows the detection result and Fig. 45 plots the detected curve in the original data. 
Table VIII and Table IX list the detected parameters in image space in Fig. 43 (b) and 
Fig. 44 (b). 
 

Table VIII 
Detected parameters in Fig. 43 (b) in image space 2050×48 

 mx my a b f 

Reflection wave 44.57 187.84 -6.93 0.144 2,116.8 

Second-layer reflection 

wave 

21.64 56.27 -25.13 0.040 12,537.7 

 
Table IX 

Detected parameters in Fig. 44 (b) in image space 2050×48 
 mx my a b f 

Reflection wave 45.58 174.02 -7.00 0.143 2,519.30 
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(a) 

 
(b)  

Fig. 41. Experiment on real data -- (a): Real seismic data from Gulf of Cadiz. (b): Plot 
of envelope. 
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(a)  
Fig. 42. Experiment on real data – Thresholding result of the envelope in Fig. 41 (b) 
with threshold 0.5. 
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(a) 

 
(b)  

Fig. 43. Experiment on real data -- (a): Detected peak from Fig. 42. (b): Detection 
result of (a), K = 2. 
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(a) 

 
(b)  

Fig. 44. Experiment on real data -- (a): Remove points nearest to the pattern around y 
= 800 in Fig. 43 (b). (b): Detection result of (a), K = 1. 
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Fig. 45. Plot the detected curve in Fig. 44 (b) on the original data. 
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Chapter 5 

Conclusions and Discussions 

 

5.1 Conclusions 
 

This paper is about a proposed system, which adopted the simulated annealing 
algorithm to detect patterns such as lines, circles, ellipses, and hyperbolas by finding 
their parameters in an unsupervised manner and global minimum fitting error related 
to points in an image. The iterative adjustment requires less memory space. Also, we 
define the distance from a point to a pattern and this makes the computation feasible, 
especially for hyperbola. Using four steps to adjust parameters from center, shape, 
angle to the size of the pattern can get fast convergence. Based on the average 
minimum distance from points to patterns, we have proposed a method to determine 
the number of patterns automatically. Experimental results on the detection of line, 
circle, ellipse, and hyperbola in images are successful. The detection results of line 
pattern of direct wave and hyperbolic pattern of reflection wave in one-shot 
seismogram are good, and can improve seismic interpretations and further seismic 
data processing. 

 

5.2 Discussions 
 

Parameter settings. In the cooling schedule, the value of Tmax, and Nt, are set 
prior. 
 

For a trial which includes a change of center, a change of b and a, a change of θ, 
and a change of f for every pattern, there are three possible results to accept or reject 
the change determined by Metropolis criterion: 
1. The new parameter has smaller error and it is accepted. 
2. The new parameter has larger error and it is still accepted. 
3. The new parameter has larger error and it is rejected. 
The determination of Tmax, we considered the accept ratio of the larger-error trials. If 
the Tmax is not high enough, the trial with larger error will almost reject, that is, it 
always accept trial with smaller error, so it is possible to reach local minimum. Fig. 46 
shows this situation, where Tmax = 1,500 iterations, initial center (0,0), a = 1, b = 1, θ 
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= 0, and f = 1. Fig. 47 shows the result when Tmax = 10. In Fig. 47 (b), the accept ratio 
of canter, angle, and size has increased and shows the good result for this simple 
example. Fig. 48 show the result when Tmax = 100,000. After 500 iterations, T = 4.1, 
but this temperature is not low enough and the high accept ratio of larger-error 
parameters results in the instability. To solve this problem, we can increase the 
number of iterations to 1,000 and show the result in Fig. 49. This still shows good 
result, but it takes more time. In conclusions, for temperature Tmax, we have to choose 
a high enough temperature that gives a high accept ratio of larger-error parameters. 
Besides, we need many enough iterations to cool the temperature to ensure stability. 
 

Also we find the setting of Tmax is proportional to the scale of input points. In Fig. 
47, Tmax = 10 provides good result. In Fig. 50, we enlarge the scale of data by two.  
Fig. 50 (a) with Tmax = 10 cannot give good result, but Fig. 50 (a) with Tmax = 100 can 
give good result. In our simulation experiments, we choose Tmax = 500 and 500 
iterations to ensure high enough initial temperature and lower final temperature T ≈ 
0.02. 

 
As for Nt, if trials are not many enough, we cannot get good result. Larger Nt 

takes more time but gives more chances. So we can have as many trials as possible if 
the computational power is strong enough. Fig. 51 shows too few trials cannot 
provide good result and for this simple example we need only Nt = 10 to obtain a 
good result. 
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(a) 

 
(b)  

Fig. 46. Illustration of low initial temperature Tmax: (a) Detection result of Tmax = 1. (b) 
Accept ratio of larger-error parameters. 
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(a) 

 
(b)  

Fig. 47. Illustration of low initial temperature Tmax: (a) Detection result of Tmax = 10. 
(b) Accept ratio of larger-error parameters. 
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(a) 

 
(b)  

Fig. 48. Illustration of high initial temperature Tmax: (a) Detection result of Tmax = 
100,000. (b) Accept ratio of larger-error parameters. 
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(a) 

 
(b)  

Fig. 49. Illustration of high initial temperature Tmax with more iterations: (a) Detection 
result of Tmax = 100,000. (b) Accept ratio of larger-error parameters. 
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(a) 

 
(b)  

Fig. 50. Enlarge the scale of points by two: (a) Detection result of Tmax = 10. (b) 
Detection result of Tmax = 100. 
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(a) 

 
(b)  

Fig. 51. Relationship between Nt and detection result Tmax = 500: (a) Detection result 
of Nt = 1. (b) Detection result of Nt = 10. 
 

Time consumption. As for the time consumption, Table III shows that the CPU 
time is proportional to the number of patterns or the number of parameters. The larger 
number of parameters, the algorithm takes more time to obtain the solution. 

 
Memory requirement. For traditional HT, it needs an accumulation matrix. The 

size of accumulation matrix grows as the number of parameters increases. Besides, 
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the higher precision, the larger accumulator matrix is needed. On the other hand, SA 
algorithm for parameter detection needs only memories for the original parameters 
and the trials parameters. This depends on the number of patterns K. Furthermore, the 
parameters can be presented by SA algorithm with high precision since we do not 
need to quantize the parameter space as in the traditional HT. 

 
Preprocessing. In seismic application, we have no constraint on the center. 

However, for ideal case, the hyperbola has the center on x-axis, i.e. t = 0. In simulated 
seismic data, we can find that the center does not lie on the x-axis, since convolution 
produces a shift. So preprocessing is quite critical. Wavelet and deconvolution 
processing may be needed in the preprocessing to improve the detection result. 
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