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Simulated Annealing or Pattern Detection and Seismic Applications
Student: Kai-Ju Chen Advisor: Dr. Kou-Yuan Huang
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ABSTRACT

Keywords: simulated annealing, global optimization, neural network, Hough

transform, seismic pattern.

Simulated annealing algorithm is adopted to detect the parameters of ellipses,
hyperbolas and lines in images and applied to seismic pattern detection. We define the
distance from a point to a hyperbolic pattern such that the detection becomes feasible.
The proposed simulated annealing parameter detection system has the capability of
searching a set of parameter vectors with global minimal error with respect to the
input data. Based on the average of the, minimum distance, we propose a method to
determine the number of patterns automatically. Experiments on the detection of
ellipses, hyperbolas, circles and lines in-images. aré quite successful. The detection
system is also applied to detect the line pattern of direct wave and the hyperbolic
pattern of reflection wave in the simulated-and-real one-shot seismogram. The results

can improve seismic interpretations and further seéismic data processing.
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Chapter 1

Introduction

Traditionally, the Hough transform (HT) is used to detect the parametric patterns
such as lines and circles by mapping points in the image into the parameter space and
find the peak (maximum) in the parameter space [1]-[2]. The coordinate of the peak in

parameter space corresponds to a pattern in the image space.

Seismic pattern recognition plays an important role in oil exploration. In seismic
data, a line represents the direct wave and a hyperbola represents the reflection wave
[3]-[5]. In 1985, Huang et al. had applied the HT to detect line pattern of direct wave
and hyperbolic pattern of reflection wave in a one-shot seismogram [7]. However, it
was not easy to determine the peak in the parameter space and the large memory

requirement was also a problem.

The Hough transform neutal network (HTNN) was developed to solve the
traditional HT problem [8]. It -was designed to detect lines, circles, and ellipses by
gradient descent to minimize the diStance-between points and patterns. HTNN was
also adopted to detect lines and hyperbolas in a.one-shot seismogram by Huang et al.

[9]. The iterative method required less memory, but it had local minimum problem.

Simulated annealing (SA) was first proposed by Kirkpatrick in 1983 [10]. The
algorithm simulates the procedure of the substance frozen from melt to a perfect
crystal or low-energy state by careful annealing. The Metropolis criterion [11] which
conditionally allows the state of the system to higher energy condition is the key of
the SA algorithm to reach the global minimum. SA algorithm solves many
combinatorial problems such as traveling salesman problem, circuit wiring problem,
and clustering problem [10], [12]-[16]. In 1987, Corana et al. applied the SA
algorithm to solve the global optimal solution of the continuous function [17] and
compare it with simplex method [18] and adaptive random search [19]. The result

shows the power of SA algorithm.

Here, we take the advantage of global optimization in SA to minimize the distance
between points and patterns to detect parametric patterns: circles, ellipses, hyperbolas

and lines. Also the proposed detection system is applied to the detection of line



pattern of direct wave and hyperbolic pattern of reflection wave in the simulated and

real one-shot seismogram.




Chapter 2

Simulated Annealing

Optimization by SA is first proposed by Kirkpatrick et al. in 1983 to solve
combinatorial problem such as the placement and circuit wiring in chip design and
traveling salesmen problem [10]. The algorithm compares the optimization problem
to cooling a fluid. A regular crystal has all atoms in the ground state or the lowest
energy state by careful cooling procedure. In the procedure, the state of atoms is
conditionally allowed to a higher energy state. Similarly, to achieve the optimal
solution, the algorithm has to accept a solution with larger error in the procedure
based on a criterion, Metropolis criterion [11]. Fig. 1 illustrates the function F(x) and
the descent and ascent direction at x;. For the gradient descent algorithm, the direction
for the next step is always descent. On the other hand, SA algorithm conditionally
chooses ascent direction and this allows it te .reach global minimum. The main steps

of SA algorithm are in the following.

Algorithm: SA algorithm to get a configuration with lowest energy state.
Input: A system with unknown'minimmim=-energy configuration.

Output: A minimum-energy configuration.

Step 1: Initialization:
1. Set the initial temperature.
2. Set the initial configuration.
3. Define the temperature decreasing function.

4. Define the energy function.

Step 2: Give the configuration a random displacement then obtain a new configuration
and a resulting energy change AE. To accept the displaced configuration or not
is determined by Metropolis criterion. Metropolis criterion is a rule: IfAE <0,
the displaced configuration is accepted and treated as the starting
configuration of the next step.

On the other hand, if AE > 0, the acceptance of the displaced configuration is
treated probabilistically:

1. Calculate prob = exp[-AE/T(?)].

2. Generate a random number x. For convenience, random numbers uniformly

distributed over (0, 1) are chosen.
3



3. If prob is greater than x, the new configuration is retained. Otherwise, the
original configuration is used to the starting configuration of the next step.

Repeat this step until equilibrium condition.

Step 3: When the equilibrium condition is reached, cool the system using the

temperature decreasing function. Repeat this step until frozen condition.

In the SA algorithm, when to reach equilibrium condition and frozen condition is
determined prior. For example, in step 2, the system reaches equilibrium condition in
a specific temperature after 100 trials. Similarly, in step 3, frozen condition can be the
temperature 7< 0.001. Fig. 2 is the flowchart of the SA algorithm.

F(x) 4

»

Fig. 1. Illustration of descent and ascent direction.Dash arrow: ascent direction. Solid

arrow: descent direction.
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Chapter 3

Proposed System

Fig. 3 is the overview of the proposed system. The detection system takes the N
data as the input, followed by the SA parameter detection system to detect a set of
parameter vectors of K patterns. After convergence, patterns are recovered from the

detected parameter vectors.

Input | |Simulated annealing parameter Detected | Detected

A
A 4
A

N data detection system parameters K patterns

Fig. 3. The system overview.

SA parameter detection system consists:ef two main parts: 1. definition of system
error (energy, distance); 2. SA algorithm for detérmination of the parameter vectors
with minimum error. To obtain the system etror, we calculate the error or the distance
from a point to patterns, and combine the erfors from all points to patterns to be the

system error.

3.1 Definition of the system error

To define the error or energy of the system, we first discuss the equation of the
quadratic curve and the distance from a point to the pattern. Seconds, the error from a
point to K patterns is the geometric mean of the distances from the point to all
individual patterns. Finally, the system error is the arithmetic mean of the error of N

points.

311 Equation of the parametric pattern

Circles, ellipses, and hyperbolas with rotations and translations can be expressed
in the standard form in the translated and rotated coordinate system. That is, in
translated and rotated coordinate system x"-)", circles, ellipses, and hyperbolas can be

expressed in the standard form as

ax"2+by”2=f, (1)



where a, b, and f control the graph of the equation. Table I lists the relation between
the graph of the equation and parameters a, b, and f. [fa >0, 5> 0, and > 0 or a <0,
b <0, and f< 0, the graph is an ellipse; ifa >0, b <0,and f#0ora <0, b >0, and f#
0 the graph is a hyperbola. If a >0, b <0, and f=0or a <0, b >0, and = 0, the
graph represents the asymptotes of the hyperbola.

Table I
Relation between graph and parameters in (1)

a b f Graph

+ + Ellipse
— — + No graph
+ — + Hyperbola
— + + Hyperbola
=+ — — Hyperbola
— + — Hyperbola
+ + — No graph
— — — Ellipse
+ — 0 Asymptote
— - 0 Asymptote
+ + 0 Point
— - 0 Point

Since x"-y" are the axes counter-clockwise rotated by # from x'- y’, the relations of
axes rotation are
x"=x'cos@+ y'sind

2
y'=—x'sin@+ y'cosb. @)
Fig. 4 illustrates the relation. The equation of ellipses and hyperbolas after axes being

rotated back to x'- y' becomes

a[x'cos @ + y'sin 8] + b[—x'sin @ + y'cosO]° = . 3)



Fig. 4. Illustration of axis rotation: rotate the axis counterclockwise by 6.

Since x’ and )" axes translates the origin of x-y coordinate system to (m., m,), the
relations of translation are
X'=x—m,
y'=y-m,
Fig. 5 illustrates the axes translation. And the equation in the x-y coordinate system is

4

a[(x—mx)c059+(y—my)sinH]2 +b[—(x—mx)sin¢9+(y—my)cos@]2 =f. (5)

This can completely express any translated and. rotated ellipse or hyperbola in 2D

space.

So we can use (5) to represents:any ellipse and hyperbola with the parameter, a, b,
£, 0, my, and m,. Parameter (m,, m,)1s the center; a, b, and 6 are concerned about the
shape; f'is related to the size. In the matrix form, a parameter vector, p = [m,, m,, a, b,
0, f]" represents a pattern. Since (5) represents the asymptotes or two crossing lines

when /= 0, we can use it to detect lines.

(0,0) g

Fig. 5. Illustration of translation: translate the origin to (m,, m,).



3.1.2 Distance from a point to a pattern
Here, the detected patterns include ellipses, circles, hyperbolas, and lines. The
distance from a point X; to the kth pattern is defined as

d (x;,y,)=a,[(x, —mij)cosﬁk +(; —m,{jy)sinﬁk]2 +

. (6)
b, [—(x, _mk,x)SInek +(; _mk,y)cosek]z —Jfil

Distance measure in (6) has a minimum d(x;, y;) = 0 when @ =0, » =0, and /= 0.
However, these are not our desired parameters. Also, the distance from a point to the
pattern is affected by the scale of coefficients. So we have to normalize the parameter
a and b.

Fig. 6 (a) illustrates the distance from points to the circle, Xt + y2 = 1. Fig. 7 (a)
shows the distance from points to the ellipse, 0.5x> + 2)* = 1. Fig. 8 (a) illustrates the
distance from points to the hyperbola x* - y* = 1. Equal distance curves in those
figures have corresponding distance 0.5, 1, 2, 5, 10, and 20. Fig. 6 (b) shows the
distance from points to the circle 0,25%*4+0:25)° = 0.25, which has the same shape
with that in Fig. 6 (a), but all‘coefficients-are 0,25 times smaller. The resulting
distance in Fig. 6 (b) is shorter than that in Fig. 6 (a). Fig. 7 (b) and Fig. 8 (b) are
illustrations of the distance but the coefficients are 0.25 times smaller than those in
Fig. 7 (a) and Fig. 8 (b). This distance measure in'(6) has a minimum distance, zero,

when a, b, and f are all zeros. So.we have to normalize parameters b and a. The
coefficients are normalized by M so that |ab| = 1. This is similar to [8] where
the pattern is in the form x'Ax = /* and in order to reflect r in the distance, A is
normalized to ||det(A)|| = 1. Comparing this with (1), A :{g 2}, ||det(A)|| = 1

implies |ab| = 1.
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(a) (b)
Fig. 8. (a) Distance from points to the hyperbola x* — y* = 1. (b) Distance from points
to the hyperbola 0.25x* — 0.25)* = 0.25.

3.1.3 Distance from a point to K patterns |

Error or distance from a poiiit to the patterns. is defined as the geometric mean of

the distances from the point to all patterns. The error of the ith point X; is

E = E(X.)=[d, (x)d,(X,).-d, (X,)od (xi)]%, (7)

where K is the total number of patterns. If the point is on any pattern, the error of this
point will be zero. Fig. 9 shows the error of a point to all patterns. The distance layer
computes the distance from a point to each pattern by (6), and the error layer outputs
the error from a point to all patterns by (7).
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Error from a point to E,
all patterns /]\

Error layer | Ei=[d)(X) dy(X)).... di(%))...dx(x)]"® |

L di(%)=lal (xi-my ) cosOt(v-my,,)sindy 17

< +b[-(xi-my, ) sinOt(yi-my. ) cosOi]* A

Distance Layer:
distance from a point
to each pattern

Parameter vectors

p = [mk,xa My y, A, bka Hkaﬁ]r

Xi Yi

Fig. 9. Distance from a point to all patterns. i is the index of the input point. & is the

index of the pattern, and K is the number of patterns.

3.1.4 Error from N input data to K patterns in the system

Fig. 10 illustrates the error or energy-of the system from N input points to K
patterns. The error or energy of the System is defined as the average of the error of

points,

E:iﬁ:Ei. (8)

Decide to accept the new parameter
vector or keep the original vector by
simulated annealing algorithm.

Total error E \ 4
ﬂ\ K pattern parameter|
/ vectors

E ] E 2 EN

Ar A A
Distance from X; Distance from X, Distance from Xy P
to all patterns to all patterns to all patterns <

Y 7} A

(1, ¥1) (x2,¥2) Input point (N> V)

Fig. 10. Total error of the system and procedure of simulated annealing.
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3.2 Simulated annealing parameter detection system

We use SA to detect the parameter vector of each pattern. Our goal is to find a set
of parameter vectors that can globally minimize the error of the system. Using the

temperature decreasing function 7(¢)
T(£) = Tax < 0.98Y  forr=1,2,3, ... 9)
as in [10].

Adjusting all parameters at one time is not efficient in convergence [8]. We use
four steps in adjusting parameters also. The adjusting order is the center (m,, m,), the
major and minor axes, b and a, and then the rotation angle 6, followed by the size r.
The followings is algorithm to detect ellipses, hyperbolas, and lines. Here, lines are

considered as the asymptotes of hyperbolas.

3.21 Simulated annealing algorithm for parameter detection

This algorithm is the general algorithm:-to.detect ellipses, hyperbolas, and it treats
lines as asymptotes of hyperbolas. Also, from.Table 1, the change of the signs of a, b,
and f simultaneously makes the same pattérns. So we have the constraint /> 0 in the

algorithm.

Algorithm: SA algorithm to detect parameter vectors of K patterns including ellipses,
circles, hyperbolas, and lines as asymptotes.

Input: N points in an image. Set K as the number of patterns.

Output: A set of detected K parameter vectors.

Step 1: Initialization.
In the initial step # = 1, choose 7(1) = Thax at high temperature, and define the
temperature decreasing function as in (9), 7(¢) = Tmax ¥ 0.98
Initialize parameter vectors P, Po, ..., Pk, --., Pk, Where px = [myx, myk, ar, bi,
O, fr]", one p is for one pattern, and set P = (p;, P2, ..., Pk -+, Px)-
Calculate energy E(P) as (6), (7), and (8).

Step 2: Randomly change parameter vectors and decide the new parameter vectors in
the same temperature.
For m =1 to Nt (V¢ trials in a temperature)
For k=1 to K (k is the index of the pattern)

13



Start a trial, including (a), (b), (c¢), and (d) in the following.

(a) Randomly change the center of the kth pattern:
('m0 =[m omy )" +a,n, (10)

where n = [n; I’lz]T 1s a 2 x 1 random vector, n; and n, are Gaussian random
variables with N(0, 1) and a,, 1s a constant. Now, P’y = [m kx, m 'k, ak, bi, Ok,
)", and P’= (P1, P2, -.os Phs - --» PK)-

Calculate the new energy E(P’) from N points to K patterns. Using Metropolis
criterion decides whether or not to accept P’: If the new energy is less than or
equal to the original one, AE = E(P’) - E(P) <0, accept P’. Otherwise, the new
energy is higher than the original one, AE = E(P’) - E(P) > 0. In this case, it
computes prob = exp[-AE/T(¢)], and generates a random number x uniformly

distributed over (0, 1). If prob > x, accept P’; otherwise, reject it, and keep P.

(b) Randomly change the shape parameters:
[a', byd=laibel+ a0, (11)

and normalize it by /| a*; b', |, Where n.= [n; n;]"is a 2 x 1 random vector, n;

and n, are Gaussian random variables with N(0, 1) and o, is a constant. Now,

D’k = [Mixs Miyy @ ks D1y Ot 5] and P*= (01 P21 .., P'ss - +-» PK).
Similar to Step 2(a), calculate the new energy E(P’) from N points to K

patterns. Using Metropolis criterion decides whether or not to accept P’.

(c¢) Randomly change the angle:

9'k=(9k +ayn, (12)
where 7 is a Gaussian random variable with N(0, 1) and ayis a constant. Here,
the angle is in degree. Now, P’x = [myy, miy, ar, bk, Ok, rk]T, and P’ = (p,,

P2, ooy Pks -5 PK)-
Similar to Step 2(a), calculate the new energy E(P’) from N points to K

patterns. Using Metropolis criterion decides whether or not to accept P’.
(d) Randomly change the size:
Te=1 e ragni, (13)

where 7 1s a Gaussian random variable with N(0, 1) and a,is a constant. Now,
p’k = [mk,x:» mk,ya A, bka Hkaf,k]T, and P’ = (p]: p25 ey p,k, ey pK)

14



Similar to Step 2(a), calculate the new energy E(P’) from N points to K
patterns. Using Metropolis criterion decides whether or not to accept P’.

End for k£

End for m

Step 3: Cool the System.
Decrease temperature 7" according to the cooling function (9), 7(¢) = Tiax X
0.98(”1), fort=1, 2,3, ..., and repeat Step 2, and 3 until the temperature is low

enough, for examples, repeat 500 times.

3.2.2 Simulated annealing algorithm to detect North-South opening
hyperbolas

For seismic applications, patterns of reflection wave are North-South opening
hyperbolas. Besides, patterns of direct waves are asymptotes of hyperbolas [3]-[5].
Equation of a North-South opening hyperbola is

a(x—m,)’ +3b(y=mi)’ = f. (14)

with a <0, 5> 0, f> 0. So the parameters to be detected are p = [m,, m,, a, b, j]T and

the distance from a point to a pattern becomes
di(x,,y,) =l a(x zmp Y+ —my )" — [, |. (15)

We consider these properties and modify the algorithm to be just for North-South
opening hyperbolas. This algorithm proves the detected patterns have the properties of
North-South opening hyperbolas.

Algorithm: SA algorithm to detect parameter vectors of K North-South opening
hyperbolas.
Input: N points in an image. Set K as the number of patterns.

Output: A set of detected K parameter vectors.

Step 1: Initialization.
In the initial step # = 1, choose 7(1) = Tmax at a high temperature, and define
the temperature decreasing function as in (9), 7(f) = Tiax % 0.98"Y.
Initialize parameter vectors P, P2, ..., Pk --., Pk, Where Py = [my, myy, ar, bi,
7", one p is for one North-South opening hyperbola, and set P = (p;, pa, ..,

Pi .-, pK)
Calculate energy E(P) as (15), (7), and (8).
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Step 2: Randomly change parameter vectors and decide the new parameter vectors in
the same temperature.
For m =1 to Nt (Vt trials in a temperature)
For k=1 to K (k 1s the index of the pattern)
Start a trial, including (a), (b), and (¢) in the following.

(a) Randomly change the center of the kth pattern:
[m,k,x m,k,y]r =[mk,x mk,y]T +amn’ (16)

where n = [n; ng]T is a 2 X 1 random vector, n; and #n, are Gaussian random
variables with N(0, 1) and a,, is a constant. Now, pP’x = [m iy, Mk, ak, by, fk]T ,
and P’= (P, P2, --» P'k» - - +» PK)-

Calculate the new energy E(P’) from N points to K patterns. Using Metropolis
criterion decides whether or not to accept P’: for the new energy less than or
equal to the original one, AE = E(P’) - E(P) < 0, accept P’. Otherwise, new
energy is higher than the original one, AE = E(P’) - E(P) > 0. In this case,
compute prob = exp[-AE/T(¢)];and 'generate a random number x uniformly

distributed over (0, 1). If prob > x,.accept P’; otherwise, reject it, and keep P.

(b) Randomly change the shape parameters:
(@' bl =laibgl+ ;N (17)

and normalize it by /| a', b"/|5 where N'= [n; n;]"is a 2 x 1 random vector, n;

and n; are Gaussian random variables with N(0, 1) and a,; is a constant. If a’
>0 or b’y <0, regenerate a; and by. Now, pP’x = [myyx, My, @'k, b’k,fk]T, and P’
= (pla p25 ceey p’ka ceey pK)

Similar to Step 2(a), calculate the new energy E(P’) from N points to K

patterns. Using Metropolis criterion decides whether or not to accept P’.

(¢) Randomly change the size:
f'k:|fk+a_,"n|9 (18)

Where 7 is a Gaussian random variable with N(0, 1) and ayis a constant. Now,
P’k = [Py Miyy Aty b £417, and P> = (D1, P25 ooy P s - - -» PK).

Similar to Step 2(a), calculate the new energy E(P’) from N points to K
patterns. Using Metropolis criterion decides whether or not to accept P’.

End for k£

End for m
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Step 3: Cool the System.
Decrease temperature 7 according to the cooling function (9), 7(¢)=
T, max><0.98(t'1), fort=1, 2,3, ..., and repeat Step 2, and 3 until the temperature

1s low enough, for examples, repeat 500 times.

Fig. 11 - Fig. 14 illustrate a possible procedure of SA algorithm. The example has
some points on an ellipse. There is only one pattern K = 1, so P = p;. Fig. 11 shows

the trial of the center.

In the step 1, at a certain temperature, the center (m,, m,) is randomly displaced to
(m’y, m’,), and the parameter vector changes from P = p; = [m;, m;,, a;, by, ﬁ]T to P’
=p; =[m’1x, m 1y, ay, by, ej,ﬁ]T. The resulting energy E(P’) is less than the original
energy E(P). In this case, the trial parameter vector is accepted and set it as the

starting parameter vector in the step 2, P «— P’ =p;” = [m’;, m’,, a;, by, ej,ﬁ]T.

® o
: o ° . ® ’._\. . “ [ ) °
O (B &
° ® | ..‘, ([ ®
o P .. N A .' e _©®
E(P) E(P) AE=EP)-EP)<0
Accept P’
(a) (b) (c)

Fig. 11. A trial of the center (m,, m,). (a): original parameter. (b): trial parameter. (c):

preserved parameter.

In the step 2, as shown in Fig. 12, the shape parameters b and a are randomly
changed to b’ and a’, and the parameter vector p; becomes p;’, and this results in the
energy E(P’) > E(P). In this case, Metropolis criterion decides whether or not to
accept the trial parameter by comparing prob = exp[-AE/1(t)] and random number x.
Assuming prob > x, the trial parameter vector with a higher energy is still preserved

and set it as starting parameter vector in step 3, P «— P’=p;” = [m;, m;,, a’1, b1, 0,

e
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c%e c%e e®e
° .. o .. .. ..‘
. S
e s G
EP) EP) AE=EMP")-EP)>0
prob=exp[-AE/T(t)] > r
Accept P’
(a) (b) (c)

Fig. 12. A trial of shape parameters b and a. (a): original parameter. (b): trial
parameter. (c): preserved parameter.

In the step 3, the trial of the rotation angle gives the trial parameter vector P’ =
(mix, mpy, ar, by, 04, 711", and the resulting energy E(P’) < E(P). The trial parameter
vectors is preserved and set as the starting parameter vector in the step 4, P < P’. Fig.

13 illustrates the step 3.

®9 ® 9 oo
o. o .. ? ® .. o. L ..
[) \ e °
®. .‘ \:::‘. ® :. % ° ..
EP) E(P?) AE=EP')-EP)<0
Accept P’
(a) (b) (c)

Fig. 13. A trial of rotation angle 6. (a): original parameter. (b): trial parameter. (c):
preserved parameter.

In the step 4, the trial of the size gives the trial parameter vector P’ = [m; ., m;,, ay,
by, 65, £11", and the resulting energy E(P”) > E(P). Metropolis criterion decides the
preserved parameter vector in the same way, and this time, prob < x, so the trial
parameter vector P’ is rejected. The starting parameter vector in the next step is still

the original one, P «— P. Fig. 14 illustrates the step 4.
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° .‘ .. ° [ ] °
° e ° *
&'0 ° \\\‘_\'o o %' °*
E(P) E(P") AE = E(P') = E(P) > 0

prob=exp[-AE/T(t)] <r
Reject P’; keep P
(a) (b) (c)
Fig. 14. A trial of f. (a): original parameter. (b): trial parameter. (c): preserved

parameter.
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Chapter 4

Implementation and Experimental Results

The experiments are first on simulated pattern detections in images with size 50 x
50. First, we use the general algorithm to detect hyperbolas, ellipses, and consider
lines as asymptotes of hyperbolas. Then, we use the algorithm just for North-South
opening hyperbolas. Experiments on determination of the number of patterns are also
shown. In seismic applications, we detect line pattern of direct wave and hyperbolic

pattern of reflection wave in the simulated and real seismic data.

4.1 Detection of ellipses, hyperbolas, and lines

The general algorithm can detect circles, ellipses, hyperbolas, and treats line as

asymptote.

In initial stage, m, and m, ate randomly distributed over (0, 50), i =0, ar = 1, by =
1, and 6, = 0. The cooling func¢tion is-as (9). with a high enough temperature, T =
500. We have 100 trials in the “same temperature. The temperature decreases 500
times to 7= 0.0209, and this temperature is low enough. Constants a,, = 1, a.p = 1, 0

=2, and ay=2.

Simulation 1: ellipses

Fig. 15 and Fig. 16 show the results of detecting ellipses. There are two ellipses in
each figure and each ellipse has 50 points. Data are disturbed by Gaussian noise with
zero mean and variance is 0.5, N(0, 0.5) x N(0, 0.5). The error vs. cooling cycles
shows that the error oscillates at high temperature and goes toward lower energy and

becomes stable as the temperature decreasing.
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Fig. 15. Detection of ellipses — (a): 2 ellipses with noise. (b): error plot of (a) with

cooling cycles.
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(b)
Fig. 16. Detection of ellipses — (a): 1 ellipse and 1 circle with noise. (b): error plot of

(a) with cooling cycles.
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Simulation 2: hyperbolas
Result of detecting hyperbolas are shown in Fig. 17 where K = 2. Patterns are with
Gaussian noise N(0, 0.5)xN(0, 0.5). Figures of energy vs. cooling cycles are also

shown.
50

45

40

35

30

25

20

15

10

1200 *

1000 B

800 B

Energy

600 B

400 B

200+ B

| | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Cooling Cycle

(b)
Fig. 17. Detection of hyperbolas — (a): 2 hyperbolas with noise. (b): error plot of (a)

with cooling cycles.
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Fig. 18. Detection of hyperbolas — (a): 2 hyperbolas with noise. (b): error plot of (a)

0 50

with cooling cycles.
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Simulation 3: an ellipse and a hyperbola

Result of detecting ellipses and hyperbolas are shown in Fig. 19. Patterns are with
Gaussian noise N(0, 0.5) x N(0, 0.5). Figures of energy vs. cooling cycles are also

shown.

50 T T T T

45

40

35

30

25

20

2000 - B

1500 - B

Energy

1000 |- B

500 B
0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Cooling Cycle
(b)

Fig. 19. Detection of ellipses and hyperbolas — (a): 1 ellipse and 1 hyperbola with

noise. (b): error plot of (a) with cooling cycles.
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Simulation 4: a line and an ellipse

Result of detecting ellipses and hyperbolas are shown in Fig. 20 where K = 2.
Pattern are with Gaussian noise N(0, 0.5) x N(0, 0.5). Figures of energy vs. cooling

cycles are also shown.
50 : — : —
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40

35

30

25

20

15

10

2000

1800

1600 - B

1400 |- .

1200+ B

Energy

800

600 B

400} 4

200 B

0 ! ! ! ! ! i I T T
0 50 100 150 200 250 300 350 400 450 500

Cocling Cycle

(b)
Fig. 20. Detection of ellipses and hyperbolas — (a): 1 ellipse and 1 hyperbola with

noise. (b): error plot of (a) with cooling cycles.
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Simulation 5: a line and a hyperbola

Result of detecting ellipses and hyperbolas are shown in Fig. 21 where K = 2.
Patterns are with Gaussian noise N(0, 0.5) x N(0, 0.5). Figures of energy vs. cooling

cycles are also shown.
50

45 S
40, ." / + -
351 ) . . ]
ol | ", |
25} . 1
20} ’ 1
155 o i

10+ / |

1600 - |
1400 - .
1200 -
1000 w :

800 |

600 |- B

Energy

400+ .

200 B

! I ! ! ! | 1 |
0 50 100 150 200 250 300 350 400 450 500

Cooling Cycle

(b)
Fig. 21. Detection of line and hyperbola — (a): 1 line and 1 hyperbola with noise. (b):

error plot of (a) with cooling cycles.
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Simulation 6: two lines

Detected line patterns in Fig. 20 and Fig. 21 have parameter /' = 0.245 and f =
0.065 respectively, but the ideal result is /= 0. To make detections more precise, we
can put a constraint, = 0, on detection of lines. Fig. 22 and Fig. 23 show the result of
detecting lines data are also disturbed by Gaussian noise N(0, 0.5). In Fig. 22, two
lines are crossing at (0, 0). Since asymptotes of a hyperbola are two crossing lines, we
can set K = 1 for Fig. 22. In Fig. 23, we set K = 2, so two additional lines appear.
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Fig. 22. Detection of lines by setting = 0 — (a): 2 lines with noise. (b): error plot of (a)

with cooling cycles.
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Fig. 23. Detection of lines by setting /= 0 — (a): 2 lines with noise. (b): error plot of (a)

with cooling cycles.

30



4.2 Detection of North-South Opening Hyperbolas

North-South opening hyperbolas have the properties a <0, b > 0, and € = 0 in (5).
We put these constraints in the algorithm to meet the properties. The algorithm used

here is just for North-South opening hyperbola. The detected parameter vector py =

T
(M, My, ar, b, fi] -

In the initial step, m;, and my, are randomly distributed over (0, 50), a; = -1, by =
1, and f; = 0 for hyperbolic pattern detection. The cooling function is as (9) with a
high enough temperature, Tmax = 500. We have 100 trials in the same temperature.
The temperature decreases 500 times to 7' = 0.0209, and this temperature is low

enough. Constants a,, = 1, aep = 1, and oy = 2.
Fig. 24 and Fig. 25 show the results of North-South opening hyperbolic pattern

detection, where Fig. 24 (a) has 187 points and Fig. 25 (a) has 148 points. Each data is
with Gaussian noise N(0, 0.5) x N(0, 0.5):
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Fig. 24. Detection of hyperbolas — (a): 2 hyperbolas with noise. (b): Corresponding

plot of error vs. cooling cycles of (a).
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Fig. 25. Detection of hyperbolas — (a): 2 hyperbolas with noise. (b): Corresponding

plot of error vs. cooling cycles of (a).
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4.3 Determination of the Number of Patterns

In HTNN [8], the number of patterns was chosen by comparing the results from
different number of patterns. Here we propose a method to determine the number of

patterns, K, in the image. We define the detection error as
1 & .
S:ﬁzmm(dl(xi), dy(X,)sr di (X)), (19)
i=1

where N is the number of input points. Equation (19) implies that the detection error is
the average of the minimum distance from N points to their nearest patterns.
Algorithm runs from pattern number K = 1, 2, ..., until the detection error has a
minimum and no improvement or lower than a threshold. At that time, the best choice
of K is determined. Fig. 26 has three circles and shows the result of getting K
automatically. In Fig. 26 (e), the detection error greatly decreases and no significant
improvement after K = 3. So we choose K = 3. Table II lists the detection error in Fig.
26 (a)-(d).

The algorithm runs on Matlab 7.2 with Intel-Duo Core CPU 1.66GHz and 1G
RAM. Time consumption of SAtalgorithi is shown'in Fig. 27. When K = 1, we have
6 dimensional parameter space-and in the case of K= 2, that has 12 dimension. CPU

time grows with the size of parametet:.space:

Table'll
DETECTION ERROR IN Fig. 26
K 1 2 3 4 5
Detection error 218.9 49.2 7.50 7.21 7.20
Table III
CPU Time in Fig. 26
K 1 2 3 4 5
CPU time (seconds) 69.5 167.7 292.2 423.7 572.0
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Fig. 26. Determination of number of patterns K. (a): K=1. (b): K=2. (c): K=3. (d): K=4.
(e): K=5. (f): Detection error of (a), (b), (¢), (d) and (e).
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4.4 Seismic Applications on Simulated data

Experiments on simulated one-shot seismogram have two cases: horizontal
reflection layer and dipping reflection layer. Two lines are the asymptote of the
hyperbola [3]-[5], and the asymptote is a hyperbola with the same shape but size zero.
So a line can be treated as a hyperbola. Here, we use the algorithm just for
North-South opening hyperbolas.

Fig. 28 is the simulated horizontal reflection layer where the depth of the
reflection layer is 500m and the velocity of the p-wave in the sedimentary rock is
about 2,500m/sec [6]. There are 65 receiving stations on both side of explosion with
50m between each others. The sampling interval is 0.004 sec. The impulse response is
25 Hz Ricker wavelet. Reflection coefficient is 0.2 and noise is band-passed noise,
10.2539Hz ~ 59.5703Hz, with uniform distributed over (-0.2, 0.2).

Fig. 29 (a) shows a one-shot seismogram. from horizontal reflection layer in Fig.
28. The horizontal axis in Fig. 294is the trace number and the vertical axis stands for
time ¢. The one-shot seismogram is first preprocessed by envelope processing in Fig.
29 (b) and thresholding [7] in Fig. 30 with the threshold 0.15. The image size is 512 x
65 where the origin is on the top-left corner-with horizontal x-axis and vertical y-axis.

The points are then used as the input to the parameter detection system.

The initial parameter my, and my, are random between 0 and 50, a, = —1, b = 1,
and f; = 1. The cooling function is as (9) with a high enough temperature, 7i,.x = 600.
There are Nt = 100 trials in a temperature. The temperature decreases 500 times.
Constants a,, = 1, a4, = 0.5, and ay= 5. Since lines of direct wave is asymptotes of a
hyperbola, we set f; = 0. The result and the error plot are shown in Fig. 31 (a) and (b).

Receiving station

Ground

Reflection wave

7 Horizontal reflection layer

Fig. 28. Illustration of horizontal reflection layer.
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Fig. 30. (a): Result of thresholding from Fig. 29 with the threshold 0.15. The origin is
at the top-left corner. (b): Detected peak from (a).
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Fig. 32. Illustration of dipping reflection layer.

Fig. 32 illustrates the reflection layer, where the dipping angle is 10° and the
depth of the reflection layer is 500m and the velocity of the p-wave in the sedimentary
rock is about 2,500m/sec [6]. There are 65 receiving stations on both side of explosion
with 50m between each others. The sampling interval is 0.004 sec. The impulse
response is 25 Hz Ricker wavelet.+Refleetion coefficient is 0.2 and noise is
band-passed noise, 10.2539Hz ~ §9.5703Hz,. with tniform distributed over (-0.2, 0.2).
Fig. 33 (a) is the simulated one-shot seismogram..Fig, 33 (b) shows the envelope. Fig.
34 (a) is the result of threshold with the thréshold 0.15 and Fig. 34 (b) plots the detect
peaks.

Points in Fig. 34 (b) are the inputs to the algorithm. The initial parameters m;, and
my,, are random between 0 and 50, ar = —1, b = 1, and f; = 1. The cooling function is
as (9) with a high enough temperature, 7.« = 600. There are Nt = 100 trials in a
temperature. The temperature decreases 500 times. Constants a,, = 1, o, = 0.5, and oy
= 5. Number of patterns is K = 2, and we set f; = 0 for line patterns of direct wave. Fig.
35 (a) is the detection result of Fig. 34 (b) and Fig. 35 (b) is the corresponding error
plot.

Table IV and Table V list the detected parameters for the simulated seismic data.
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Table IV
Detected parameters in Fig. 31 (a) in image space 512x65

my m, a b f
Direct wave 33.01 8.21 -5.031 0.198 0 (preset)
Reflection wave 32.95 40.09 -4.412 0.226 1040.99

Table V
Detected parameters in Fig. 35(a) in image space 512x65

m, m, a b v
Direct wave 33.00 8.96 -5.00 0.199 0 (preset)
Reflection wave 29.29 -1.46 -5.115 0.195 2300.17
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4.5 Seismic Applications on Real Seismic Data

The system is also applied to detect direct wave and reflection wave in real
seismic data. We obtain data from Seismic Unix System developed by Colorado
School of Mine [5].

The real data with the size 3100x48 showed in Fig. 36 (a) is from Canadian Artic,
which has 48 traces and 3100 samples per trace with sampling interval 0.002 seconds.

The horizontal axis is the trace number and the vertical axis is time ¢.

After envelope and threshold preprocessing [7], Fig. 36 (b) shows the result of
envelope and Fig. 37 (a) shows the result of thresholding with the threshold 0.15. The
result of peak detection is in Fig. 37 (b). We only choose points with y < 700 which
includes points from direct wave, first reflection wave and second reflection wave as
in Fig. 38 (a) where there are 88 points. Detected curves are plotted in Fig. 38 (b) with
K =3 and we preset f; = 0. Here, the, initial parameters my, and my, are random
number between 0 and 50, a; = —1, by = 1, and fi-= 0. The cooling function is as (9)
with a high enough temperatute, TF.x =-1,000.: There are Nt = 100 trials in a
temperature, and the temperature decreases 500 times. Constants settings: o, = 1, o
=0.5, and a,= 10.

Since the second reflection wave 1§ not'a hyperbola in theory [3], we remove the
points from the second-layer reflection wave. That is, we remove the points nearest to
the bottom pattern in Fig. 38 (b). Remaining 65 points are plotted in Fig. 39 (a). We
redo the experiment, and this time K = 2. Fig. 39 (b) shows the result. The detected
parameters in Fig. 38 (b) and Fig. 39 (b) are listed in Table VI and Table VII.

Table VI
Detected parameters in Fig. 38 (b) with fixed f; = 0 in image space 3100x48
my m, a b f
Direct wave 24.48 8.59 -25.69 0.038 0 (preset)
Reflection wave 24.83 28.83 -22.91 0.044 2,441.7
Second Reflection wave 24.74 49.59 -23.10 0.043 8,942.7
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Table VII
Detected parameters in Fig. 39 (b) with fixed f; = 0 in image space 3100x48

m, m, a b f
Direct wave 24.53 11.20 -25.59 0.039 0 (preset)
Reflection wave 24.62 -2.81 -24.13 0.041 2,978.05

As mentioned in [3]-[5], two lines of direct wave is a pair of asymptotes of the
hyperbola and a pair of asymptotes is a hyperbola with size zero. From the detected

parameters in Table VIII, we obtain the equation of the direct wave

—25.59(x —24.53)> +0.039(y —11.20)> = 0

. (20)
= 25.59(x — 24.53)> = 0.039(y —11.20)

Rearrange (20) and take square root on both sides, the equations of two lines in image

space are
5.0587x—-0.1975y =121.8779

5.0587x+0.1975y =126.3019 @0

47



trace

20 25 30
: il
: ==
T 4 ==
R T
 trace
0 5‘ 10 1|5 20 2]5 3[0 3|5 4P 45
'
1 u ;Tfi" Ef{ E 5{5 F f'g' i
2_ -
$°] ’
4- B
5_ -
6, L

(b)
Fig. 36. Experiment on real data -- (a): Real seismic data from Canadian Artic. (b):

Plot of envelope.

48



|.'!||"‘ \‘ T T
Lt Tty .
TR T T T
500 po ! RS TT T N I O Fiyy .
NISETIIA L AR TRY
;i! . [ ot ll!!|
LSRR L SAREE S ¥
;‘. [ * ]
1000—i !E: ii - . !
[N A
;'.: i :i
] 1 .
:‘! . H
1500 + . b
. .t *
. .
, : 4
Y L] . .
2000 - ’ 4
2500 - 4
3000_ | | | | | | | | | ]
0 5 10 15 20 25 30 35 40 45
(@)

0 T T ¥ T
s0r L.t Cee e el A
1000 - .. B
1500 R
2000 - ) 4
2500 - 4
3000 - 4

| | | | | | | | |

0 5 10 15 20 25 30 35 40 45

(b)

Fig. 37. Experiment on real data -- (a): Threshold 0.15. (b): Detect peak.

49



...........

. .
P . .,

L . .

500 . e, CER . +
. . +
. .
.
. .

1000

1500

2000 - B

2500

3000

500

1000

1500

2000 - f

2500

3000 *

0 5 10 15 20 25 30 35 40 45
(b)
Fig. 38. Experiment on real data -- (a): Choose peak with y < 700. (b): Detection

result of (a).

50



s L, .00 ERPTE
1000 |- ]
1500 |- ]
2000 - ]

2500

3000 - *

500

1000 - —

1500 - —

2000

2500+ B

3000 T
I I \ \ \ \ I I I

0 5 10 15 20 25 30 35 40 45
(b)
Fig. 39. Experiment on real data -- (a): Remove points nearest to the bottom pattern.
(b): Detection result.

51



trace

25 3]0 3‘5 4[0 45
5 =
r— = "“'i:-;,.,__ .|
23 } ’ n
a

4 L

5 - -

6 - -

T T
trace
0 5 10 15 20 25 30 35 40 45
4} I 1 | T ] | |
aezstiiliiin:
; et =l
Ac_éf'—*‘__ 2 4 33 3 ::.: e,

14 L o e Piid ES + s ‘-:5:'5:-3_.:;___ B3 & _._.__-:;_ iy L
348 3 % ==
2R E : ;

24 : L
83 -
@

- ]

4 L

5 (HH I

6 - -

(b)
Fig. 40. Plot detected curve on the original data -- (a): Detection result from Fig. 38
(b). (b): Detection result from Fig. 39 (b).

52



The other real data is Gulf of Cadiz’s seismic data. There are 48 traces and 2050
samples in a trace with sampling interval 0.004 seconds. Fig. 41 (a) shows the real

data. The horizontal axis is the trace number and the vertical axis is time ¢.

After envelope and threshold preprocessing [7], Fig. 41 (b) shows the envelope
and Fig. 42 shows the thresholding result with threshold 0.5. The detected peak in Fig.
42 are plotted in Fig. 43 (a) where there are 66 points and the size of image is
2050%48, where the horizontal axis is x and the vertical axis is y. The initial
parameters my, and my ), are random number between 0 and 50, a, = -1, by = 1, and f;
= 0. The cooling function is as (9) with a high enough temperature, Ti.x = 1,000.
There are Nt = 100 trials in a temperature. The temperature decreases 500 times.
Constants settings: a,, = 1, o= 0.5, and ay= 10. Number of patterns is K = 2. The
detection result is in Fig. 43 (b).

Since the points nearest to the pattern around y = 800 are from second-layer
reflection wave. In theory, the second-layer reflection wave is not a hyperbola [3]. We
remove those points and remaining 48 points.are plotted in Fig. 44 (a). Fig. 44 (b)
shows the detection result and Fig. 45 plots the detected curve in the original data.
Table VIII and Table IX list the*detected parameters in image space in Fig. 43 (b) and
Fig. 44 (b).

Table VI
Detected parameters in Fig. 43 (b) in image space 2050x48
m, m, a b f
Reflection wave 44.57 187.84 -6.93 0.144 2,116.8
Second-layer reflection 21.64 56.27 -25.13 0.040 12,537.7
wave
Table IX
Detected parameters in Fig. 44 (b) in image space 205048
m, m, a b v
Reflection wave 45.58 174.02 -7.00 0.143 2,519.30
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Chapter 5

Conclusions and Discussions

5.1 Conclusions

This paper is about a proposed system, which adopted the simulated annealing
algorithm to detect patterns such as lines, circles, ellipses, and hyperbolas by finding
their parameters in an unsupervised manner and global minimum fitting error related
to points in an image. The iterative adjustment requires less memory space. Also, we
define the distance from a point to a pattern and this makes the computation feasible,
especially for hyperbola. Using four steps to adjust parameters from center, shape,
angle to the size of the pattern can get fast convergence. Based on the average
minimum distance from points to patterns, we have proposed a method to determine
the number of patterns automatically. Experimental results on the detection of line,
circle, ellipse, and hyperbola in-images Jare suecessful. The detection results of line
pattern of direct wave and hyperbolic pattern of reflection wave in one-shot
seismogram are good, and can-improve seismic interpretations and further seismic

data processing.

5.2 Discussions

Parameter settings. In the cooling schedule, the value of Tn.x, and Nt, are set

prior.

For a trial which includes a change of center, a change of » and a, a change of 8,
and a change of f for every pattern, there are three possible results to accept or reject
the change determined by Metropolis criterion:

1. The new parameter has smaller error and it is accepted.

2. The new parameter has larger error and it is still accepted.

3. The new parameter has larger error and it is rejected.

The determination of Tpmax, we considered the accept ratio of the larger-error trials. If

the Tmax 1s not high enough, the trial with larger error will almost reject, that is, it

always accept trial with smaller error, so it is possible to reach local minimum. Fig. 46

shows this situation, where Ti.x = 1,500 iterations, initial center (0,0),a=1,b=1, 6
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=0, and /= 1. Fig. 47 shows the result when Ty,,x = 10. In Fig. 47 (b), the accept ratio
of canter, angle, and size has increased and shows the good result for this simple
example. Fig. 48 show the result when T, = 100,000. After 500 iterations, 7' = 4.1,
but this temperature is not low enough and the high accept ratio of larger-error
parameters results in the instability. To solve this problem, we can increase the
number of iterations to 1,000 and show the result in Fig. 49. This still shows good
result, but it takes more time. In conclusions, for temperature 71, we have to choose
a high enough temperature that gives a high accept ratio of larger-error parameters.

Besides, we need many enough iterations to cool the temperature to ensure stability.

Also we find the setting of Ti,ax 1s proportional to the scale of input points. In Fig.
47, Tmax = 10 provides good result. In Fig. 50, we enlarge the scale of data by two.
Fig. 50 (a) with T,.x = 10 cannot give good result, but Fig. 50 (a) with T;,x = 100 can
give good result. In our simulation experiments, we choose Ty.x = 500 and 500
iterations to ensure high enough initial temperature and lower final temperature 7' =
0.02.

As for M, if trials are not many enough,.we'cannot get good result. Larger Nt
takes more time but gives more'chances. So'we can have as many trials as possible if
the computational power is strong enough. Fig. 51 shows too few trials cannot
provide good result and for this simple example we need only Nt = 10 to obtain a

good result.
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Time consumption. As for the time consumption, Table III shows that the CPU
time is proportional to the number of patterns or the number of parameters. The larger

number of parameters, the algorithm takes more time to obtain the solution.

Memory requirement. For traditional HT, it needs an accumulation matrix. The

size of accumulation matrix grows as the number of parameters increases. Besides,
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the higher precision, the larger accumulator matrix is needed. On the other hand, SA
algorithm for parameter detection needs only memories for the original parameters
and the trials parameters. This depends on the number of patterns K. Furthermore, the
parameters can be presented by SA algorithm with high precision since we do not

need to quantize the parameter space as in the traditional HT.

Preprocessing. In seismic application, we have no constraint on the center.
However, for ideal case, the hyperbola has the center on x-axis, i.e. £ = 0. In simulated
seismic data, we can find that the center does not lie on the x-axis, since convolution
produces a shift. So preprocessing is quite critical. Wavelet and deconvolution

processing may be needed in the preprocessing to improve the detection result.
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