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Abstract

To discover brain functionalities, we need to do brain source imaging. Magnetoen-

cephalography (MEG) can record brain signals non-invasively with superior temporal res-

olution and high Signal-to-Noise Ratio (SNR).

There are some issues about magnetic source imaging, like the amount of MEG record-

ings, the appropriate approach for signal analysis and source localization and head motion

correction. We propose some methods to overcome these difficulties. First, we use statis-

tical hypothesis test to reveal the discrimination between the selected active and baseline

states. By revealing their discrimination, we can set an evaluation criterion for the amount

of recordings.

Second, in order to conduct signal analysis, Independent Component Analysis (ICA) is

an powerful method which can retrieve independent components from the linear mixture

of sources, under the assumption that components are statistical independent. However,

the resolution of ICA topography distribution is in sensor space. If we want to achieve the

goal of source imaging, it is necessary to raise the resolution to tomography distribution in

source space .

Many algorithms are proposed to solve the problem of source localization. In recent

years, the most attracting method is Beamforming. It can obtain the activation magnitude

of the targeted source by imposing the unit-gain constraint while suppressing the contribu-

tion from other sources by applying the minimum variance criterion. Maximum Contrast

Beamformer (MCB) is an outstanding method that it can estimate the orientation of the

spatial filter from an analytical form which is generated from maximizing the contrast of

active state and control state. However, the major problems in beamformer are the parame-

ters needed to be well-selected, especially the regularization parameter. The inappropriate

value of the regularization parameter can result in inaccurate spatial filter estimation.

We get more accurate solution to source localization by combining ICA with MCB,

which is called Beamformer-based ICA. We consider filtered signals form the MCB spatial

filter as the output from the virtual sensor at each voxel of interest and take them as the

ICA input signals. As a result, with inappropriate regularization parameter of beamfermer,

we can use ICA to separate leakage from target source. Furthermore, we can raise ICA



from topography distribution to tomography distribution by the virtual sensor concept of

beamformer.

Third, there are still some factors that will affect the accuracy of source localization, like

the head motion during MEG experiments. This is unavoidable during MEG studies with

long signal recording time. Many algorithms are proposed to solve this problem. With

Stabilized Linear Model (SLIM), we can virtually increase the sensor number of MCB

model to reduce the localization error induced from head motion and improve the accuracy

of source localization simultaneously.

Experiments with simulation and real data are used to validate the proposed methods.

According to the experiments, by revealing the discrimination between the selected active

and baseline states, we can set an evaluation criterion for the amount of recordings. More-

over, as aforementioned, the expected advantages of Beamformer-based ICA are demon-

strated with simulation data. Applying SLIM into MCB is also validated that it is able to

reduce the localization error induced from head motion and improve the accuracy of source

localization by combining the different head poses.



摘   要 

 

為了探索人腦功能，腦部訊號源造影是必須的。腦磁波儀可以非侵入式地量

測腦波訊號，並且具有優越的時序解析度和高訊雜比。我們可以藉由腦磁波儀所

提供的腦波訊號時間及空間資訊來達到腦部功能探索的目的。 

腦部訊號源造影有很多相關的議題，例如腦磁波儀所擷取到的腦波訊號量、

何者為適當的訊號分析以及訊號源造影、以及一些影響訊號源估測的因素。我們

提出了一些方法來解決上列的問題。首先，我們利用統計檢定的方法，顯示活化

狀態和控制狀態的差異性。藉由顯示兩者的差異程度，當達到顯著差異的感應器

數量夠多時，我們可以得到一個判斷擷取到的訊號量已經足夠的依據。 

 第二，為了達到訊號分析的目的，獨立成分分析是一個很強大的方法，它可

以將線性組合的訊號分解成獨立成分。然而，用獨立成分分析時，我們通常會觀

察每個獨立成分的時序活動狀態和腦部地形圖的分佈狀態。當輸入訊號是腦磁波

儀量測到的腦波訊號時，腦部地形圖的解析度就會是在感應器層，我們希望提升

到斷層掃瞄的解析度。 

許多演算法被提出來為了解決訊號源位置估測的問題。以光束構成法為基礎

之空間濾波法進行腦磁波活動源估測近年來受到矚目。此法主要的優點在於針對

某一位置估算其腦部活動訊號時，能在維持其活動強度的條件下同時抑制其他訊

號源對估算所產生的影響。以最大對比為限制之改良式腦磁波光束構成法是一個

新穎的方法，利用最大化活化狀態和控制狀態的變異數之對比估算出一個空間濾

波器的最佳方向。但是光束構成法最大的問題就是有很多需要調整的參數，尤其

是正規化參數。不適合的正規化參數會導致不準確的空間濾波器。  

 我們結合了獨立成分分析和以最大對比為限制之改良式腦磁波光束構成

法，稱之為以光束構成法為基礎的獨立成分分析。將以最大對比為限制之改良式

腦磁波光束構成法得到的空間濾波器濾出的訊號當作獨立成分分析的輸入訊

號。因此，一些因為不適合的正規化參數所造成的漏電流，可以藉著獨立成分分

析將其分離。再者，我們可以藉由光束構成法之虛擬感應器的觀念來提升獨立成

分分析的結果達到斷層掃瞄的解析度。 

 第三，仍然有一些會影響訊號源位置估測的因素，例如在腦磁波儀實驗中的

頭部移動，很多演算法提出來為了解決這個問題。其中穩定線性模型不僅可以解

決頭部移動的問題，同時也因為具有虛擬增加感應器的能力而提升了訊號源位置

估測的正確性。 

 模擬訊號、假體和實際實驗的訊號同時用來檢測以上方法的正確性。我們使

用配對 t統計來檢測活化和控制狀態訊號的差異度，藉由這個結果，我們可以設

定一個評估訊號量是否足夠的準則。再者，以光束構成法為基礎的獨立成分分析

的優點也經由實驗被證實。最後，將穩定線性模型套入以最大對比為限制之改良

式腦磁波光束構成法，的確可以解決頭部移動的問題；並藉由結合各種不同頭部

位置的訊號，虛擬地增加感應器數量，而得到更準確的訊號源位置估測結果。 
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Chapter 1

Introduction



2 Introduction

1.1 Related Works of Magnetic Source Imaging

For Human beings, brain is the most important component to coordinate all parts of

our body. For thousands of years, people have devoted themselves to discover the accurate

brain functionalities. With the progress of the technologies, invasive anatomy becomes

non-invasive functional brain mapping, that ”non-invasive” means without physical harm.

In order to acquire brain signals non-invasively, we can measure electrophysiological,

hemodynamic, metabolic, and etc. Recently, Magnetoencephalography (MEG), Electroen-

cephalography (EEG), functional Magnetic Resonance Imaging (fMRI) and Near-Infrared

Reflectance Spectroscopy (NIRS) are four major modalities.

When neurons become active, they induce changes in blood flow and oxygenation lev-

els, which can be imaged related to neural activity. fMRI can detect hemodynamic changes

with spatial resolution as high as 1-3mm. However, because of the relatively slow hemo-

dynamic changes, fMRI has relatively poor temporal resolution (in the order of seconds)

compared with techniques such as EEG and MEG.

MEG and EEG are two complementary techniques that measure the magnetic induction

and the scalp electric potentials produced by the ensemble of neuronal activities inside the

brain. The major advantage of MEG and EEG is the higher temporal resolution (in the

order of milliseconds) compared to fMRI, because they measure electrical brain activity

directly. Furthermore, MEG is an imaging technique which measures the magnetic fields

produced by electrical activities inside the brain via extremely sensitive devices such as

superconducting quantum interference devices (SQUIDs) which has higher signal-to-noise

ratio (SNR) than EEG. Therefore, MEG is often used as the modality for source imaging.

However, the spatial resolutions of EEG and MEG are limited for two reasons. One is the

limited number of spatial measurements. EEG and MEG measure brain signal with limited

electrodes or sensors, usually tens or a few hundreds. Compared to fMRI, tens of thousands,

that’s relatively a small amount. The other reason is the inherent ambiguity of the inverse

problem, finding the distribution of sources when the recordings are given. Even with

infinite MEG and EEG sensors, a non-ambiguous solution to localization of the neuronal

activity inside the brain would not be possible. We can reach similar resolutions to those of

fMRI only by adding restrictive models on the sources of MEG and EEG signals [1]. We
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can see the MEG device in Figure 1.1.

Figure 1.1: This figure shows the MEG Device in Taipei Veterans General Hospital.

In order to discover brain functionalities, we need to conduct source imaging which is

also involved in the inverse problem. We can acquire the concept of inverse problem from

the Bayesian statistic framework.

P (x|y) =
P (x)P (y|x)

P (y)
(1.1)

P (x|y) is the conditional probability of x, given y. It is also called the posterior proba-

bility because it is derived from or depends upon the specified value of y. P (y|x) is the

conditional probability of y given x. P (y) is the prior or marginal probability of y, and acts

as a normalizing constant. P (x) is the prior probability or marginal probability of x. It is

”prior” in the sense that it does not take into account any information about y. Applying the

Bayesian statistic framework to MEG inverse problem and let x represent the distribution

of the sources in the head and y represent the recordings from the MEG sensors. P (x|y)

can describe the inverse problem that to get the distribution of the sources while given MEG

recordings. From the Bayesian equation, we can simplify the inverse problem as the form
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of the right side of the equal sign if we want to know parameters of the source distribution

from the recordings. Therefore, P (y|x) is the key to the solution. P (y|x) describes the

probability of the recordings when given parameters of the source distribution and that is

the forward problem.

However, there are many difficulties of robust source imaging, like the amount of MEG

recordings, the appropriate approach for signal analysis and source localization and head

motion correction. First, we discuss about the amount of recordings. For robust source

imaging, we need large enough SNR of recordings and SNR can be enhanced with suffi-

cient number of acquired trials. Because there are no explicit criteria or rules for experi-

mentalist to follow, the number of recordings is always determined with the experimental-

ist’s rule of thumb. This is very subjective.

Even the amount of recordings is enough for data analysis, what is the appropriate ap-

proaches for source analysis and localization is another important issues. To signal analysis,

Independent Component Analysis (ICA) is an powerful method that can retrieve indepen-

dent components from the linear mixture of sources, under the assumption that components

are statistical independent. There are many algorithms proposed to solve the problem of

source localization. Source localization is an ill-posed problem because the number of

sources is much larger than the number of the sensors, additional constraints are necessary

to solve this problem. Among the approaches for source localization, beamformer is more

focal and accurate. Therefore, beamformer is the most attracting method in recent years.

There are still some situations that will affect the accuracy of source localization, like

the head motion during MEG experiments. If there is head motion during experiments,

the relative position between head and sensors will be changed and induce errors of source

localization. However, to MEG studies, head motion during MEG experiments is unavoid-

able in the long signal recording time. We need to solve this crucial problem for higher

accuracy of source localization.

We discuss the three issues in detail in the following sections.
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1.1.1 Amount of Recordings

To get event-related potential for signal analysis and source localization, we usually

need tens or hundreds of trials of brain signals for large enough SNR. To our knowledge,

there is still no on-line evaluation method in the literature to realize whether the amount of

MEG recordings is enough.

The easiest way is the visual inspection of on-line averaged waveform. While the ex-

pected (or well-known) features of averaged waveform exist, we can determine that the

amount of recordings is enough. But this is a subjective method and what we need is an

objective formal criterion.

For some methods of statistical thresholding of source activities, they extract target

source activities by comparing the discrimination between the target and non-target source

activities [2, 3]. Following this concept, in this thesis, we display the discrimination be-

tween the selected active and control states from MEG recordings to give the experimen-

talist a concept about the amount of recordings and saves the unnecessary time and effort.

We use statistical hypothesis test to get this discrimination.

1.1.2 Signal Analysis and Source Localization

Signal Analysis

For signal analysis, ICA is an powerful method. Originally, ICA is proposed to solve

the problem of blind source separation. In the following statements, we express the concept

of ICA.

We want to recover N independent source signals s = {s1(t), . . . , sN(t)} after they are

linearly mixed by a mixing matrix A.

x = {x1(t), . . . , xN(t)} = As (1.2)

Given x, we will estimate an unmixing matrix W which can recover x to original sources

u = Wx under the assumption that the estimated sources u are as statistically independent

as possible. Here u contains independent components.

In advance, we should know that uncorrelated is not independent. Independence is a

stronger constraint than uncorrelation. Two random variables are said to be uncorrelated if
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their covariance is zero.

E{y1y2} − E{y1}E{y2} = 0 (1.3)

If the random variables are independent, they are uncorrelated. However, that the random

variables are uncorrelated cannot imply they are independent. Take sin(x) and cos(x) for

example, they are both dependent on x, but they are uncorrelated since cov(sin(x), cos(x)) =

0. Moreover, uncorrelatedness is a relation between only two random variables, whereas

independence can be a relationship between more than two random variables.

Decorrelation methods, like PCA can give uncorrelated output components. While

PCA decorrelates the outputs, ICA attempt to make the outputs statistically independent.

First, we should know that there are some assumptions in ICA [4].

I. The independent components are assumed to be statistically independent.

This is the main assumption that ICA requires. We say that random variables

y1, y2, . . . , yn are independent if the information of yi does not give any informa-

tion of yj for all i 6= j. To represent this concept as a mathematical form, we can

formulate it as the form of probability density function.

p(y1, y2, . . . , yn) = p1(y1)p2(y2) . . . pn(yn) (1.4)

where p(y1, y2, . . . , yn) is the joint probability density function of yi and pi(yi) is the

marginal probability density function of yi.

II. Gaussian variables are forbidden.

The higher-order cumulants for gaussian distribution are zero, but such higher-

order information for estimation of the ICA model is necessary. One can prove that

the distribution of any orthogonal transformation of gaussian random variables gives

exactly the same information. Thus, in the case of gaussian variables, we can only

estimate the ICA model up to an orthogonal transformation. In other words, the

matrix is not identifiable for gaussian independent components. (Actually, if just one

of the independent components is gaussian, the ICA model can still be estimated.)

Second, there are some ambiguities in the ICA algorithm. We explain it in the below

statements:
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I. The variances of independent components are unknown.

We cannot determine the variance of the independent components. Because both

A and s are unknown, any scalar multiplier in one of the sources si of s could always

be canceled out by dividing the corresponding column ai of A by the same scalar.

II. The order of the independent components is unknown.

We cannot determine the order of the independent components. We can always

apply a permutation matrix P to Eq (1.2), x = AP−1Ps. Then Ps is still like the

original signals and AP−1 is just a new unknown mixing matrix and can also be

solved by ICA algorithm.

Since we have got the concept from ICA and understood its assumptions, we should go

on for its optimization algorithm. The major concept is that to make the output component

as statistically independent as possible. This leads to another problem about how to mea-

sure the independence. We should know in advance that non-gaussian is independent. By

the central limit theorem (CLT), the distribution of a sum of independent random variables

tends toward a gaussian distribution. In other words, the mixing of two independent signals

usually has a distribution that is closer to gaussian distribution than any of the two original

signals. From this concept, u = Wx = WAs that u must be more gaussian than s because

of CLT. But we want u is a copy of s so that u must be the least gaussian. That equals to

maximize the non-gaussianity of Wx.

Usually kurtosis is used as a measure of the non-gaussianity. The kurtosis of a gaussian

random variable is zero. But existing a problem about kurtosis that it is very sensitive to

outliers. As a result we use the negentropy to replace the kurtosis. From the information

theory, a gaussian variable is that it has the largest entropy among all random variables. We

can take the entropy as a measure of non-gaussianity. For computation simplicity, we use

an approximation to calculate the negentrophy.

J(u) ≈ c[E{G(u)} − E{G(ν)}] (1.5)

where c is some constant, E is the expectation value, ν is a gaussian variable of zero mean

and unit variance and G is a non-quadratic function, called a contrast function. There are

some choices about G, like tanh, exp and the power function [5].
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In ICA algorithm, the contrast function G is a parameter that we should choose for every

different condition [5]. Furthermore, we need to do preprocessing to make the problem of

ICA estimation simpler and better conditioned. Whitening is a preprocessing step that can

make the input x uncorrelated and unit variance. We can see that the effect of the whitening

processing in Figure 1.2. Figure 1.2 (a) is the joint density function of original independent

signal with uniform distribution. After uncorrelated mixtures of the independent signals,

the distribution is as Figure 1.2 (b), is no more independent. Figure 1.2 (c), we can see

the effect of whitening that the square defining the distribution is now clearly a rotated

version of the original square in Figure 1.2 (a). Whitening can be achieved with principal

component analysis (PCA) or singular value decomposition (SVD).

(a) (b) (c)

Figure 1.2: This graph shows the effect of whitening. (a) is the joint probability density
function of original independent signal with uniform distribution. (b) is the distribution
after uncorrelated mixtures of the independent signals from (a). (c) is the joint distribution
of the whitened mixtures.

We can have an overview of ICA algorithm in Figure 1.3. The first step is whitening

to make the problem of ICA estimation simpler and better conditioned. The second is to

optimize the un-mixing matrix W iteratively by maximizing the non-gaussianity, approxi-

mated by calculating the negentrophy with the contrast function G. This optimization step

can reach the purpose of ICA, making the output components as statistically independent

as possible.

There exists many kinds of ICA algorithms, including FastICA, Infomax, JADE, and
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whitening

estimate W

input measurement x

un-mixing matrix W

optimization

maximize the non-gaussianity

Figure 1.3: This graph shows the overview of ICA algorithm. The first step is whitening
to make the problem of ICA estimation simpler and better conditioned. The second is to
optimize the un-mixing matrix W iteratively by maximizing the non-gaussianity.

etc. All of them have some advantages and disadvantages. Since we want to solve the

problem efficiently, we choose FastICA [5, 6] algorithm as our method.

Source Localization

As aforementioned, because the electromagnetic field recorded by MEG sensors is the

ensemble of neuronal activities within the whole brain, we can determine the recorded

electromagnetic field from forward solutions. Therefore, the inverse problem can be trans-

formed to estimate the neuronal activities inside the brain by Eq 1.1. But these inverse

problems are ill-posed problems because the number of sources is much larger than the

number of the sensors, additional constraints are necessary. A lot of algorithms had been

proposed [1] to solve the inverse problem.

The most widely-used method is least square dipole fitting [7, 8]. It assumes the neu-

ronal activities are composed of a fixed number of Equivalent Current Dipoles (ECD) and
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finding out the best solution by minimizing the error between the electromagnetic field

generated by ECDs and by MEG/EEG recordings. However, two difficulties of this al-

gorithm are a priori number of sources and trapping in local minimum. Multiple Signal

Classification (MUSIC) [9–11] is another kind of method. It can avoid trapping in local

minimum by searching through the region of interest and determining the locations with

peak projections of forward models in the signal subspace. Because there is no perfect head

model and MEG/EEG recordings, how to determine the best signal subspace is an impor-

tant issue. Minimum Norm Estimation (MNE) [12] will set dipole orientation either to be

on the tangential plane or normal to the local cortical surface. But the major problem is

that because of the minimum norm constraint, the result will tend to emphasize the cortical

regions closer to the MEG sensors.

The most attracting method for inverse problem in recent years is Beamforming [13,14].

We can think that the beamformer creates a virtual sensor at a specified position in the

source space by the information recorded from MEG sensors to measure the signals with

a specified orientation. It can obtain the activation magnitude of the targeted source by

imposing the unit-gain constraint while suppressing the contribution from other sources by

applying the minimum variance criterion. This property can improve the spatial resolution

and the accuracy of the spatial filter.

There are two kinds of Beamformer, vector-type beamformer [15] and scalar-type beam-

former [16]. The vector-type beamformer decomposes the dipole into three orthogonal

components. Every component has its own spatial filter. There is only one spatial filter in

scalar-type beamformer and it determines the direction by maximizing the Z-value. Com-

pared to scalar-type beamformer, it is more efficient to calculate the spatial filter by using

vector-type beamformer because all the involved procedures are deterministic. But the ma-

jor advantage of scalar-type beamformer is the higher Signal-to-Noise Ratio (SNR) and

higher spatial resolution [17, 18].

We can think that the beamformer creates a virtual sensor at a specified position in the

source space by the information recorded from MEG sensors to measure the signals with

a specified orientation. There are two types of beamformers, vector-type [15] and scalar-

type beamformer [16]. The scalar-type and vector-type beamformer give exactly the same

output power and output SNR when the orientation is optimum. However, the theoretical
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output SNR of a vector-typed beamformer is significantly degenerated without optimum

orientation [17].

We describe the theorem of scalar beamformer in the below statements.

I. Scalar Beamformer

First, involving Sarvas forward model [19–21], the MEG recordings can be writ-

ten as considering a target unit dipole with parameter θ = {rq,q} where rq is the

dipole location and q is the dipole orientation. We can further separate m(t) into

three components

m(t) = mθ(t) + mδ(t) + n(t) (1.6)

where mθ(t) denotes the contribution from target source, mδ(t) denotes the mag-

netic recordings generated from all other sources and n(t) denotes the noises in real

environment. While merging mδ(t) + n(t) into mn(t) and replacing the mθ(t) with

the form of lead filed, the above equation becomes

m(t) = lθsθ(t) + mn(t) (1.7)

sθ is the dipole moment and lθ is the lead field which means the predicted recordings

of the unit dipole with q orientation.

Here lθ is the combination of lead field matrix Lr and dipole orientation q,

lθ = Lrq (1.8)

The output signal y(t) can be formulated by filtering the MEG recordings with the

spatial filer wθ, denoting by

y(t) = wθ
tm(t) (1.9)

We further apply Eq (1.7) into Eq (1.9). We can get the concept about unit-gain and

minimum variance constraints from Figure 1.4. With unit-gain constraint, the spatial

filter at the location of the target source (r,q) will preserve the most strength and

impress the contribution form other sources by minimum variance constraint.
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wTl=1

wTl=0 r,j

Figure 1.4: With unit-gain constraint, the spatial filter at the location of the target
source(r,q) will preserve the most strength and impress the contribution form other sources
by minimum variance constraint.

Therefore, we can write the formula as:

y(t) = wθ
tm(t)

= wθ
tmθ(t) + wθ

tmn(t)

= sθ(t)wθ
tlθ + wθ

tmn(t)

= sθ(t) + wθ
tmn(t) (1.10)

From the above, in order to approximate the output signal y(t) as source strength

sθ, we must suppress the leakage of sources from other locations, wθ
tmn(t), corre-

sponding to minimize variance of y(t). Therefore, we can obtain the optimal spatial

filter from

ŵθ = arg min
wθ

E{‖y(t)−E{y(t)}‖2}+α‖wθ‖2 subject to wθ
tlθ = 1 (1.11)

where E represents the expectation value and α represents the parameter of Tikhonov

regularization [22]. Here α is a parameter to adjust the tradeoff between specificity

and noise sensitivity, corresponding to the shape of beamformer spatial filter.

Substituting the equation Eq (1.10) into Eq (1.11), we can solve this equation by

Lagrange multipliers then get the solution to wθ:

ŵθ = arg min
wθ

wθ
t(C + αI)wθ subject to wθ

tlθ = 1

=
(C + αI)−1lθ

lθ
t(C + αI)−1lθ

(1.12)

where C is the covariance matrix of the MEG recordings m(t) and I is the NxN

identity matrix.
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II. Statistical Mapping

Because the SNR of the recordings is often small, the effect from the non-task-

related sources is necessary to be considered. At every target position rq, we can get

the spatial filter from Eq (1.12). The norm of the spatial filter is location-dependent.

The lead field norm of a deeper source is bigger than that of a superficial source and

because of the unit-gain constraint, the norm of spatial filter is inversely-squared-

proportional to the norm of the lead field. Therefore, if we take only the filtered

source power as the measure of the source distribution may contain strong non-task-

related source distribution. This phenomenon is shown in Figure 1.5. If we display

only the filtered source power, the power variance will focus on the deep part within

the brain (Figure 1.5 (a)). We can reduce this problem by normalizing the filtered

source power with the noise [15] (Figure 1.5 (b)).

Figure 1.5: (a) is the filtered source power with beamformer spatial filter. The power
variance will focus on the deep part within the brain. (b) is the result of normalizing the
filtered source power with the noise. The problem is reduced clearly in the figure. [17]

Fθ =
E{‖wθ

tma(t) − E{wθ
tma(t)}‖2}

E{‖wθ
tmc(t) − E{wθ

tmc(t)}‖2}

=
wθ

tCawθ

wθ
tCcwθ

(1.13)

where Ca is the covariance matrix estimated from the MEG recordings in active state

ma and Cc is the covariance matrix estimated from the MEG recordings in control

state mc.
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As a result, the value of Fθ represents that at the target location rq with orientation

q, the probability of existing a statistically significant brain activity. By F-statistical

map of MCB, we can get the solution to the inverse problem.

III. Maximum Contrast Beamformer

There is a parameter θ in Eq (1.12) needed to be estimate in advance. If we can

estimate θ more accurately, the spatial filter will be closer to optimum. Instead of the

exhaustive search or the sub-optimal nonlinear search, a newly-proposed method,

Maximum Contrast Beamformer (MCB) [23], has the very outstanding advantage.

It can estimate the orientation of the spatial filter from an analytical form which is

generated from the criterion that maximizing the variance of active state and control

state, and preserve the advantage of scalar-type beamformer simultaneously. Effi-

ciency and accuracy are the most attracting properties of MCB.

In order to estimate an optimum dipole orientation in analytical form, first we substi-

tute Eq (1.8) into Eq (1.12) to separate the dipole orientation q, then

ŵθ =
(C + αI)−1Lrqq

qtLt
rq(C + αI)−1Lrqq

=
Arqq

qtBrqq

where Arq = (C + αI)−1Lrq and Brq = Lt
rqArq (1.14)

Then substituting Eq (1.14) into Eq (1.13) and maximizing the value of F-statistic,

we get

q̂ = arg max
q

(
Arqq

qtBrqq
)tCa(

Arqq

qtBrqq
)

(
Arqq

qtBrqq
)tCc(

Arqq

qtBrqq
)

= arg max
q

qtAt
rqCaArqq

qtAt
rqCcArqq

= arg max
q

qtPrqq

qtQrqq

(1.15)
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where Prq = Arq
tCaArq and Qrq = Arq

tCcArq

The solution to q̂ in Eq (1.15) is the eigenvector corresponding to the maximum

eigenvalue of the matrix Q−1
rq Prq .

After replacing Arq and Brq into Prq and Qrq , we can get

Prq = Lrq
t(C + αI)−tCa(C + αI)−1Lrq (1.16)

Qrq = Lrq
t(C + αI)−tCc(C + αI)−1Lrq (1.17)

An overview process of MCB is shown in Figure 1.6. With MEG recordings and the

control state, the active state and the regularization parameter are well-selected, we can

calculate the spatial filter at each voxel location of interest by Eq (1.12) and the orientation

of the spatial filter is estimated by maximizing the contrast of active and control states

in Eq (1.15). The solution to the inverse problem is revealed as the F-statistical map in

Eq (1.13).

The below is the result of MCB algorithm. There are three simulated sources and their

strength and frequency are shown as Figure 1.7 (b), three different sinusoidal signals. Their

locations in the cortical area are shown as Figure 1.7 (a). The electromagnetic mapping of

brain activities calculated by MCB is shown as Figure 1.7 (c). It can be demonstrated that

the three sources are correctly displayed by comparing Figure 1.7 (a) to Figure 1.7 (c).
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Figure 1.6: This flowchart shows the whole analysis process of MCB.

(a)

(b) (c)

Figure 1.7: This figure shows the MCB result of the simulated data. (a) is the ground truth
of this simulated data. (b) is their waveforms. And (c) is the solution to inverse problem
calculated by MCB algorithm. [23]
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1.1.3 Head Motion Correction

To MEG studies, head motion during MEG recordings acquisition is still a major prob-

lem. To avoid this problem, one can just fix the subject’s head. However, this may cause

many other problems. Keeping subject’s head fixed during MEG experiments may cause

huge fatigue to the subject and this will disturb the quality of recordings. In Fig 1.8, a stroke

patient’s head is fix during the experiment. This treatment is not only without humanity but

also cause lots of fatigue. Furthermore, to many people, like Parkinson’s patients or to

children, it is difficult for them to keep heads fixed. For these reasons, many algorithms are

proposed to solve this problem.

Figure 1.8: This figure shows the stroke patient’s head is fix by the special device during
experiments.

The easiest way is to discard the recordings with head motion. But this leads to longer

time for experiments, may cause many other artifacts. Another approach is to correct head

motion by incorporating the effect of the head motion into the magnetic field forward cal-

culations [24, 25]. This may cause another problem of information loss.

Usually, the resolution of the solution to the MEG inverse problem can be improved

by increasing the number of MEG sensors. The sensor number can only increase to some

limited number. But this phenomenon is different to beamformer. To the problem about the

sensor number needed [26, 27], we can understand that the sensor number of beamformer

can be significantly large. The detailed description is stated in Chapter 4.
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1.2 Thesis Scope

In this thesis, we have three major topics about how to reach the goal of source imaging

with MEG modality. In the following, we briefly describe the topics in this thesis.

I. Statistical Evaluation of the Amount of Recordings

We take paired t-test as statistical hypothesis test to display the discrimination

between the selected active and control states. By showing the p-value, we can find

out some concepts about the amount of recordings.

II. Beamformer-based ICA

Our motivation is to combine MCB and ICA to get higher accuracy while keep-

ing the information. By the concept of virtual sensors, we consider the filtered signal

form the MCB spatial filter as the output from the virtual sensor at each voxel of

interest and take them as the ICA input signal. In our thesis, we find out some ad-

vantages for combining these two models and demonstrate it in the later sections.

III. Head Motion Correction

With a simple linear model applying to MCB, we can correct the problem caused

from head motion easily and improve the accuracy of source localization by concep-

tually increasing the sensor number. We will demonstrate the effect of this linear

model in the later sections.

In this work, we implemented the proposed methods in C/C++ language on Win32 plat-

form. The simulation of MEG recordings is conducted to validate the proposed algorithm.

We also apply our methods to the recordings from real finger lifting, phamtom data and

gender discrimination experiments.

1.3 Thesis Organization

At the later chapters, we will describe our methods in detail. First, we will depict how

to find out the concept of the amount of MEG recordings by a statistical hypothesis test.
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Then, we describe why and how to combine MCB and ICA for source localization. And

we give a detail description of the problem about how to correct the head motion during

MEG experiments. Finally, the discussion and a short conclusion for the thesis is given at

the last chapter.
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Chapter 2

Robust Magnetic Source Imaging
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2.1 Statistical Evaluation of the Amount of Recordings

When conducting the event-related MEG experiment, we usually repeat the experiment

many times and retrieve tens or hundreds of recordings to go on synchronized-averaging or

single-trial analysis. If the amount of recordings is enough, we can get the more accurate

solution to the inverse problem. But how to understand whether the amount of recordings

is ”enough” is still an issue. There is still no criteria for the experimentalist to follow.

Therefore, the number of recordings is usually manually determined by the experimentalist.

Besides, there are many variations during experiments, including the condition of the

subject, the various recordings between different subjects, different experimental paradigms,

and interferences from the environment. As existing such many variations, it is difficult for

the experimentalist to understand whether the amount of recordings is enough. We use

statistical hypothesis test to reveal the discrimination between the selected active and con-

trol states that the experimentalist can have some reference indicators about the amount of

recordings.

2.1.1 Statistical Hypothesis Test

One may be faced with the problem of making a definite decision with respect to an

uncertain hypothesis which is known only through its observable consequences. The hy-

pothesis can be divide into two categories, research hypothesis and statistical hypothesis.

Research hypothesis is also called scientific hypothesis that the scientists raise their ratio-

nal hypothesis to their problems, according to theorems or documentations. The research

hypothesis is represented by a statement.

When we express the research hypothesis with statistical terms or symbols, it becomes

the statistical hypothesis. The statistical hypothesis includes null hypothesis and alternative

hypothesis. We call a false hypothesis as null hypothesis and the alternative hypothesis is

the opposite.

The statistical hypothesis must be stated in statistical terms and is able to calculate the

probability of possible samples assuming the hypothesis is correct. Applying the statis-

tical hypothesis, we often decide a null hypothesis which is opposite to our expectation.
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Then test the abnormality with this null hypothesis by some statistical methods and decide

whether this null hypothesis is hold. If this null hypothesis is rejected, our expectation is

proved; otherwise, rejected. Therefore, how to state the null hypothesis is very important.

However, no matter rejection or acceptance of the null hypothesis, false decision still

exists. If the null hypothesis is true, we still decide to accept it from the result of statistical

test, and this is called Type I error. Type II error is just the opposite. The probability of

type I error is often denoted as α and is called level of significance. The probability of type

II error is often denoted as β. We often set the value of α as 0.05 or 0.01. In real world,

Type I error is more serious than Type II error. As a result, we pay more attention to α than

β.

Following the concept and purpose of statistical hypothesis test, we want to transform

our problem about the amount of recordings into hypothesis for evaluation.

2.1.2 Evaluation of the Amount of Recordings with Statistical Hy-

pothesis Test

Assuming that the control state and the active state of brain signal are both random pro-

cesses. Furthermore, the baseline state is weakly stationary and ergodic. We take a period

of pre-stimulus recordings as the baseline state and a period of post-stimulus recordings

as the active state, and take advantage of some statistical hypothesis test to reveal whether

there is a significant difference between these two states.

We can follow the below procedure to construct a correct and reliable hypothesis test

[28].

1. From the defined problem, identify the parameter of interest.

2. State the null hypothesis, H0 and specify an appropriate alternative hypothesis, H1.

3. Specify an appropriate test statistic.

4. Choose a significance level α and state the rejection region for the statistic.

5. Compute any necessary sample quantities, substitute these into the equation for the test

statistic, and compute that value.
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6. Decide whether or not H0 should be rejected and report that in the defined problem and

retrieve the results.

Applying our problem into the above procedure, we can get the below statements.

1. The parameter of interest is the difference in mean between two different states, µc and

µa. For each MEG channel i, the mean µci is calculated by averaging the recordings

mi during the selected control period, t = tcs . . . tce. The mean µai is calculated by

averaging the recordings during the selected control period, t = tas . . . tae.

For each channel i,

µci = E{|mi(t)|}, t = tcs . . . tce (2.1)

µai = E{|mi(t)|}, t = tas . . . tae (2.2)

where

µc = {µc1, µc2, . . . , µcN} (2.3)

µa = {µa1, µa2, . . . , µaN} (2.4)

and N is the number of MEG sensors.

2. H0:µc = µa, H1:µc 6= µa

3. There are many kinds of statistical hypothesis tests (Table 2.1), we need to examine

the data to be tested carefully to find the most appropriate hypothesis test. From 1.,

we want to test the difference in mean between two different states where the states

are selected from each channel of recordings. We want to investigate whether there

is a meaningful one-to-one correspondence between the data points in one state and

those in the other. In the other words, we compare the data points of one channel in

one state to those of the same channel in the other state by the statistical hypothesis

test. Because of this special relationship, we take paired t-test as our hypothesis test.

4. α=0.05

5. Compute t- and p-value from the control and active states under this significant level.
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6. From 5, we can get whether the null hypothesis is rejected or accepted to get the

solution to our problem.

We apply the statistical hypothesis to the selected control and active states from the

recordings and examine how the discrimination between two states variate as the number

of recordings increase. From this variation, we can generate some reference indicators to

help the experimentalist understand the amount of recordings.
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Table 2.1: This Table lists some major statistical hypothesis tests, its assumption and
formula.

Name Formula Assumptions

Two-sample z-test z = (x̄1−x̄2)−(µ1−µ2)√
σ2
1

n1
+

σ2
2

n2

Normal distribution and independent ob-

servation and (σ1 and σ2 known)

Two sample pooled t-test t = (x̄1−x̄2)−(µ1−µ2)

sp

√
1

n1
+ 1

n2

s2
p =

(n1−1)s2
1+(n2−1)s2

2

n1+n2−2

df = n1 + n2 − 2

Normal population or n1 and n2 > 30 and

independent observations and σ1 = σ2

and σ1 and σ2 unknown

Two sample unpooled t-test t = (x̄1−x̄2)−(µ1−µ2)√
s21
n1

+
s22
n2

df = (n1−1)(n2−1)
(n2−1)c2+(n1−1)(1−c2)

or df = min(n1, n2)

c =
s21
n1

s21
n1

+
s22
n2

Normal population or n1 and n2 > 30 and

independent observations and σ1 6= σ2

and σ1 and σ2 unknown

Paired t-test t = x̄1−x̄2

sx̄1−x̄2

sx̄1−x̄2 =

√
s2
1+s2

2

n

Each data point in one group corresponds

to a matching data point in the other group
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2.2 Beamformer-based ICA

We propose a new method, Beamformer-based ICA, combining ICA with MCB to get

higher accuracy source localization. Following the concept of virtual sensors from beam-

former, we can combine MCB and ICA as Beamformer-based ICA. We consider filtered

signals form the MCB spatial filter as the output from the virtual sensor at each voxel of in-

terest and take them as the ICA input signal. We can obtain some advantages by combining

MCB and ICA.

From section 1.1.2, we know that MCB is an efficient and accurate algorithm for source

localization. However, the major problems in beamformer are the parameters needed to be

well-selected, especially the regularization parameter α. α is a parameter to adjust the

tradeoff between specificity and noise sensitivity. The inappropriate value of the regular-

ization parameter can result in inaccurate spatial filter estimation. If we want a spatial filter

with perfect spatial specificity, that α is 1 and the gain of the filter is 0 at every location

expect the target one. This will result in that the norm of the spatial filter is too large and

the leakage contributed from all other sources and sensor noise will make the spatial filter

very unstable and sensitive to noises. If we take the utility of ICA into consideration, even

with some inappropriate α, we can still use ICA to separate leakage from target source.

Although ICA is often used as the approach for noise separation [29, 30], it is a pow-

erful method to separate signals into independent components. When we conduct signal

analysis with ICA, we often observe temporal activations and the contribution to MEG

sensors as topographic mapping of each independent component, when the input data is

MEG recordings. From Eq (1.2), the topographic mapping corresponds to the column of

W−1. As a result, the resolution of topographic mapping is limited with the input data.

If we want to apply ICA for source localization problem, we must raise the resolution to

tomographic mapping instead of using only recordings with limited number of sensors.

Recently a method for ICA component topographic mapping is proposed [31], which is

called Electromagnetic Spatiotemporal Independent Component Analysis (EMICA). It de-

composes the mixing matrix A into L and B where L is the contribution of the tessellation

element on the cortex to sensors, the same as lead field and B specifies the contribution

of the source component to the tessellation element on the cortex. Instead of optimizing
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A, this algorithm optimizes B as ICA components to reach the purpose of topographic

mapping. Because it reconstruct the contribution in the brain cortex, EMICA still gets the

result of topographic mapping.

If we take sources filtered from MCB filter, because of the concept of virtual sensors,

we can raise the dimension of ICA input signals and accomplish tomographic mapping.

However, there exist a problem that if we take too many filtered signals as the ICA input,

it will interfere the optimization in ICA because of too many noises. Using this method, we

can use only target source activities as ICA input for reliable and accurate ICA components.

Therefore, we need a threshold to remove the unnecessary noises. We calculate a threshold

to extract only target source activities by a simple nonparametric statistical approach [3].

This approach uses maximum statistics [32] to address the multiple comparison problem

[33]. It first standardize the empirical distribution of the filtered control recordings and

then calculate the maximum T value at each pixel location. Finally, an empirical probability

distribution from the maximum T value at each pixel location is obtained. By this empirical

probability distribution with some significance level α, the threshold to extract only target

source activities is generated.

The critical issue about ICA is the component selection. This is very subjective. Fur-

thermore, ICA is sensitive to noise thus tends to incorrect selection of components. ICA

component selection depends on temporal activities and topographic distribution. We can-

not separate sources outside the brain, in which we are uninterested, according to the tem-

poral and topographic information. If we apply MCB first and then ICA, like the algorithm

of Beamformer-based ICA, we are able to separate sources outside the brain by using brain

region information obtained from MRI. Then applying ICA further can result in indepen-

dent brain activities by reducing leakage activities in MCB procedure. That’s the rea-

son about the order of applying Maximum Contrast Beamformer (MCB) and Independent

Component Analysis (ICA) in the algorithm of Beamformer-based ICA.

Therefore, by combining ICA with MCB, we use ICA to separate sources that fil-

tered from MCB spatial filter to get more accurate solution to source localization. Using

Beamformer-based ICA, we can ignore some inappropriate adjustment of the regulariza-

tion parameter because the leakage is separated by ICA. Moreover, we can raise the ICA

resolution of topography distribution in sensor space to the resolution of tomography dis-
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tribution in source space using virtual sensor concept of beamformer. The overview of

Beamformer-based ICA algorithm is in Figure 2.1.
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Figure 2.1: This graph shows the overview of Beamformer-based ICA algorithm.
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2.3 Head Motion Correction

The head motion during MEG experiments will affect the accuracy of source localiza-

tion. The simplest solution is that fixing the subject’s head. However, this may cause many

other problems such as fatigue. And to many people, like Parkinson’s patients or to chil-

dren, it is difficult for them to keep heads fixed. For the above reasons, many algorithm

proposed to solve this problem.

The easiest way is to discard the recordings with head motion. But this leads to longer

time for experiments and may cause many other artifacts. Another approach is to correct

head motion by incorporating the effect of the head motion into the magnetic field forward

calculations [24, 25]. This may cause another problem of information loss.

Usually, the resolution of the solution to the MEG inverse problem can be improved

by increasing the number of MEG sensors. The sensor number can only increase to some

limited number. But this phenomenon is different to beamformer. To the problem about the

sensor number needed [26, 27], we can understand that the sensor number of beamformer

can be significantly large. The detail description is stated in Chapter 4.

A newly-proposed novel method can improve the localization accuracy by conceptually

increasing sensor numbers, instead of using motion correction [34]. By combining record-

ings of different head poses, this algorithm can not only reduce the error induced from head

motion but simultaneously improve the accuracy of source localization by conceptually in-

creasing sensor numbers; i.e., super resolution. We describe this algorithm in the below

sections.

2.3.1 Stabilized Linear Model

Starting from the same simplified form of MEG recordings, we assume that there are E

epochs measured in an MEG study and there are N data samples collected for each epoch.

Let mj be the SxN matrix that denotes the epoch j of recordings and S is the MEG sensor

number, then

mj = Ljqs + nj, j = 1, . . . , E (2.5)
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where Lj is the lead field matrix and s represents the dipole moment at each dipole loca-

tion. If there exists head motion during the period of recordings acquisition, Lj and s will

not remain the same for each epoch. Consequently, that directly averaging all epochs of

recordings is incorrect and that may blurs the data and leads to a location bias.

In [34], a proposed method, Stabilized Linear Model (SLIM), can solve the problem

of head motion. By continuously tracking the head pose, we can get the relationship of

magnetic MEG sensors to the head with different poses and this relationship can be mod-

eled as the forward problem which is necessary for the inverse problem [21]. Using SLIM,

we can ransform the head motion during recordings acquisition into the increase of MEG

sensor number. And by this concept, we can consider the dipole moment remains the same

and ignore the subindex j. We can see this concept in Figure 2.2. Then, we can virtually

have multiple sets of sensors measuring the MEG signals, mj , j = 1, ..., E, generated

from dipoles with moment s. The stabilized linear model is then obtained by combining

the forward model for each epoch
m1

m2

...

mE

 =


L1

L2

...

LE

qs +


n1

n2

...

nE

 (2.6)

Using SLIM, we can improve the accuracy of source localization by conceptually in-

creasing the sensor number. Even the recordings with head motion, by combining multiple

set of recordings with different head poses, we can transform the localization bias induced

by head motion into the improvement of the accuracy of source localization.

2.3.2 Solutions to Inverse Problem with Maximum Contrast Beam-

former

Because the resolution of the solution to the MEG inverse problem can be improved by

increasing the number of MEG sensors, we apply the stabilized linear model into MCB to

get higher accuracy of source localization.

Then we modified Eq (2.6) by l = Lrq where L is lead field matrix and l is lead field,
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Figure 2.2: This graph shows the concept of the algorithm of Stabilized Linear Model.
If two epochs of MEG recordings with head motion are measured, we can represent the
recordings as (a). If we transform the head motion into the increase of the MEG sensor
number, by aligning the head in gray and in black in (a), we get (b). [34]

we can get

mj = Ljqs + nj = ljs + nj j = 1, . . . , E (2.7)

Eq (2.6) becomes 
m1

m2

...

mE

 =


L1

L2

...

LE

qs +
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n1

n2

...

nE

 (2.8)

=


l1

l2
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lE

 s +


n1

n2

...

nE

 (2.9)

m̃ = l̃s + ñ (2.10)

where m̃, l̃ and ñ are all the combination from multiple sets of epochs with different head

poses.

With Eq (2.7), the Beamformer spatial filter becomes

w̃θ =
(C̃ + αI)−1l̃θ

l̃tθ(C̃ + αI)−1l̃θ
(2.11)
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where C̃ = cov{m̃(t)}.

With this linear model, we can virtually increase the sensor number of MCB model

and get higher source localization accuracy, which can be called as ”super resolution”.

Simultaneously, it can solve the problem induced from head motion.



Chapter 3

Experiment Results
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3.1 Material

We used three kinds of data to verify the proposed methods depicted in Chapter 2,

including simulation, phantom and the real measurement from the experiment of gender

discrimination. For each proposed method, we select the appropriate data for validation.

We will describe some information of these data in the below statements.

I. MEG Device

A whole head MEG system at the Taipei Veterans General Hospital (Neuromag

Vectorview 306 , Neuromag Ltd., Helsinki, Finland) is used for recording of the

minute magnetic field generated by electrical activity within the living human brain.

The MEG system is placed in a magnetically shielded room and has capability of 306

channels simultaneous recording at 102 distinct sites, 24 bits analog to digital con-

version, and up-to-8 kHz sampling rate which is sufficient to probe the fast dynamic

changes inside human brains.

II. Anatomical Data

The Magnetic Resonance Imaging (MRI) images were from the 1.5T GE scanner

at the Taipei Veterans General Hospital with TR = 8.672 ms, TE=1.86 ms, FOV =

26x26x10cm3, matrix size = 256x256, slices = 124, voxel size = 1.02x1.02x1.5mm3.

III. Simulations

We simulate the MEG recordings by the forward model adding some noises

with a dipole or dipoles given in advance. There are two kind of noises, background

sources and sensor noises. We simulate background sources as random dipoles with

zero-mean Gaussian strength and uniformly distributed in the putative sphere of head

model. The variances of sensor noises are estimated from the empty room recordings

of the MEG system. We also use 1 kHz sampling rate as sampling frequency of the

simulated recordings. Before data analysis, we do preprocessing depicted in Section

3.2.

IV. Phantom Data
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We use MEG phantom (Neuromag Ltd., Finland) to validate the localization ac-

curacy of the proposed methods. Eight fixed current dipoles located on two orthogo-

nal planes were activated sequentially to generate magnetic recordings. The strength

of each dipole was set to be 100 nAm. For each dipoles, there are four combination

of 20 trials from total 80 trials.We processed the phantom signals with bandpass filter

and baseline correction. The device and configuration of MEG phantom are shown

in Figure 3.1.

Figure 3.1: The device of MEG phantom. We can activate the dipole at the location of
interest and retrieve the recordings of phantom data.

V. Experiment Paradigm of Gender Discrimination

Twenty normal subjects and twelve bipolar disorder patients participate this ex-

periment. Face images are grayscale photographs of faces, depicting neutral, angry,

happy and sad (Table 3.1). 306 channels were recorded during passive observation of

face images in a electrically shielded MEG room. The task is to specify the gender of

the presented faces that prevents the subject’s explicit recognition or categorization

of the emotion expressed. Subjects are instructed to lift the right or left index finger

while recognizing the presented face image as female or male. For each condition,
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Figure 3.2: The dipole of phantom is generated by a triangular conductor with two radial
lines connected by a tangential line. The location of each dipole is shown in this figure.

about 288 trials, 20 minutes are retrieved. The whole experiment paradigm is shown

in Figure 3.3. We take the recordings of one normal subject for analysis. We also

measure the finger lifting recordings while the subject is discriminating the gender

of the presented faces. Both two kinds of data are included for the validation of our

algorithms.

Figure 3.3: The experiment paradigm of gender discrimination. The task was to specify the
gender of the presented faces. Subjects were instructed to lift the right or left index finger
while recognizing the presented face image as female or male
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Table 3.1: The stimuli were grayscale photographs of faces, depicting neutral, angry, happy
and sad. Every kind of stimuli can also separate into male and female. The number of
female stimuli is larger than the number of male stimuli.

state stimuli

neutral
male

female

angry
male

female

happy
male

female

sad
male

female
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3.2 Data Preprocessing

The brain signal is comparatively small than the environmental noises. For signal-to-

noise ratio (SNR) enhancement, preprocessing for the recordings is necessary before the

further processing [35]. Generally, because the brain signal is usually modeled by ran-

dom signals, we repeat the experiment several times to obtain sufficient amount of record-

ings. The preprocessing steps we use for MEG recordings are as below statements. First,

while conducting experiment, artifacts, body action and eye blinking can induce signifi-

cant noises, compared to the real measurement. Hence, we can reduce artifact noise by

finding out the abnormal scale of electric ocular graph (EOG) channels. Second, signal

space projection (SSP) is often exploited to eliminate the unbalanced noise effect on dif-

ferent sensors [36]. SSP is accomplished by calculating individual basis vectors for each

term of the functional expansion to create a signal basis covering all measurable signal

vectors. By this method, we can transform the interesting signals to virtual sensor config-

urations [37]. Third, there are some unavoidable external artifacts, heartbeat, breath and

power line noises. The artifact of heartbeat and breath is about one time per second (1

Hz), and power line is 60 Hz and its harmonic. Therefore, we use bandpass filter to ex-

clude these artifacts. Moreover, the recordings on each sensors may drift along with time

because of the device, so we need to conduct baseline correction. To take mean or peak

recordings into analysis, any noise in the baseline will add noise to the input recordings.

We conduct the baseline correction by subtracting a baseline from the recordings. The

baseline is usually estimated by the mean of the recordings in the control state period, at

which it assumes the recordings are unaffected by the stimulus. Finally, if the activation of

interest is time- and phase-locked, according to the central limit theorem, we can eliminate

the variance of the recordings contributed by the random noises, in proportion to the square

root of trial numbers. We can align each trial of recordings by the onset time and average

them synchronously. The all preprocessing steps are shown in Figure 3.4.
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Figure 3.4: This graph shows the all preprocessing steps for MEG recordings. For SNR
enhancement, preprocessing for the recordings is necessary before the further processing.
First removing artifacts by finding out the abnormal scale of EOG channels. Then elimi-
nating the unbalanced noise effect on different sensors by applying SSP. The next step is
applying bandpass filter to remove the other artifacts like heartbeat and breath and some
environmental noises like power line noises. The next step is to conduct the baseline cor-
rection to eliminate the drift of recordings. After the whole process of preprocessing, we
can go on for further analysis with enhanced SNR of recordings.
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3.3 Statistical Evaluation of the Amount of Recordings

We use statistical analysis described in Chapter 2 to find a reference indicator to show

the concept about the amount of recordings. We take the recordings of the left index finger

lifting for statistical analysis. After preprocessing mentioned in Section 3.2, we select -

350 ms to -200 ms as the control state and 0 ms to 150 ms as the active state. Then we

apply paired t-test to the selected control and active states. We test two kinds of the control

and active states. The one is after synchronously averaging from every trial of the raw

recordings and the other is only the combination of every trial of the raw recordings. After

applying paired t-test, we display the p-value under the significance level of 0.05 with

increasing number of trials.

We find that the number of trials actually affects the p-value generated fro, applying

average recordings of control and active states to paired t-test. The same effect also appears

in raw recordings. The results are shown in Figure 3.5 and Figure 3.6. We sort the MEG

sensors by their p-values and represents the corresponding p-value of each MEG sensor at

the vertical axis. From this figure, we can find out that for both situations when the number

of trials increase, the p-value becomes smaller, which also means more significant. Because

of this phenomenon, we can set a evaluation criterion that when the number of sensors

that reaches some significant level is as large as we expect, the amount of recordings is

statistically sufficient.
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Figure 3.5: Synchronously averaging recordings with increasing number of trials, for a
period of 30 trials. Selecting the control and active states, and then applying the two states
to paired t-test. From this figure, we can also find out that the p-value becomes smaller
while the number of trials increase.
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Figure 3.6: Selecting the control and active states from the raw recordings, without syn-
chronously averaging. Then we apply the two states to paired t-test. From this figure, we
can find out that the p-value becomes smaller while the number of trials increase.
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3.4 Beamformer-based ICA

Following the concept of virtual sensors from beamformer, we can combine Maximum

Contrast Beamformer (MCB) and Independent Component Analysis (ICA) as Beamformer-

based ICA. We consider filtered signals form the MCB spatial filter as the output from the

virtual sensor at each voxel of interest and take them as the ICA input signal. By com-

bining ICA with MCB, we can use ICA to separate sources that filtered from MCB spatial

filter to get more accurate solution. Using Beamformer-based ICA, we can ignore some

inappropriate adjustment of the regularization parameter. Moreover, we can raise the reso-

lution of ICA input data using Beamformer-based ICA to reach the purpose of topographic

mapping.

When conducting experiments for Beamformer-based ICA evaluation, we take the cor-

relation between sources into consideration. While there exists an implicit assumption in

beamformer techniques that the time courses of the source activities should be orthogonal to

each other; in the other word, all source activities should be completely uncorrelated [38].

We test Beamformer-based ICA for the utility of correlated sources. The experiment results

are shown in the following statements.

We conduct the simulation data to validate Beamformer-based ICA. The strength of the

two sources is both 30 nAm. Frequencies of the temporal profiles for the two sources are

w′
1 and w′

2, where w′
1 is composed of w1 and w2, related to a coefficient ξ. We can adjust

the correlation between two sources with specified values of ξ. In this simulation data, we

set w1 and w2 as 7 Hz and 17 Hz sinusoid signal.

w′
1 = (1 − ξ)w1 + ξw2

w′
2 = w2

We added background sources with 3000 random dipoles with the standard deviation of 10

nAm. The variances of sensor noises are estimated from the empty room recordings of the

MEG system. Taking -500 ms to 0 ms as the control state and 0 ms to 500 ms as the active

state, we calculate the MCB spatial filter. Under some specified regularization parameters,

we take the filtered signals from MCB spatial filter as the ICA input. The α-significance

level is set as 0.05 to extract only target source activities because too many filtered signals
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as the ICA input will disturb the optimization. All settings for the simulated recordings is

shown in Figure 3.7.

Figure 3.7: (a) the ground truth location in anatomical image of the simulated recordings
(b) the temporal profiles of w1 and w2.

The result of Beamformer-based ICA with the regularization parameter of 0.0003 is

shown in Table 3.2. If sources are uncorrelated, it can reveal two sources in the MCB F-

statistical map. We can further separate sources into two components using Beamformer-

based ICA. This effect exists in the situation that two sources are partially correlated. When

two sources are fully correlated, the MCB F-statistical map cannot reveal two sources

clearly because of correlated source cancellation [15] and Beamformer-based ICA can-

not separate sources into two components, wither. But we can find it has a tendency toward

two sources.

The result of Beamformer-based ICA when the regularization parameter of 0.003 is

shown in Table 3.3. The major difference is that when the regularization parameter is set as

0.003, the MCB F-statistical map can no more reveal two sources as clearly as in Table 3.2.

However, after applying Beamformer-based ICA, we can still separate sources into two

components when two sources are uncorrelated and partially correlated, which is similar to

the result in Table 3.2.

From the above experiment results, we can see the utility of Beamformer-based ICA.

First, we can ignore some inappropriate adjustment of the regularization parameter. Sec-
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Table 3.2: This table shows results of Beamformer-based ICA when the regularization
parameter of 0.0003. If sources are uncorrelated, we can separate sources into two com-
ponents using Beamformer-based ICA. This effect exists in the situation that two sources
are partially correlated. When two sources are fully correlated, we cannot separate sources
into two components. But we can find it has a tendency toward two sources.

ξ correlation

coefficient

MCB Beamformer-based ICA

0.0 0.0000

0.3 0.3939

0.5 0.7071
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Table 3.3: This table shows results of Beamformer-based ICA when the regularization pa-
rameter of 0.003. If sources are uncorrelated, we can separate sources into two components
using Beamformer-based ICA. This effect exists in the situation that two sources are par-
tially correlated. When two sources are fully correlated, we cannot separate sources into
two components. But we can find it has a tendency toward two sources.

ξ correlation

coefficient

MCB Beamformer-based ICA

0.0 0.0000

0.3 0.3939

0.5 0.7071
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ond, we can raise the resolution of ICA input data using Beamformer-based ICA to reach

the purpose of topographic mapping. Even with inappropriate regularization parameter,

we still can get accurate solution to source localization. Like Table 3.2 and Table 3.3,

even if the MCB F-statistical map cannot reveal actual source distribution because of in-

appropriate regularization parameters, the topographic distribution of Beamformer-based

ICA can reveal more detail information. And Beamformer-based ICA also works with par-

tially correlated sources even when MCB fails (Table 3.3). For fully correlated sources,

Beamformer-based ICA can separate into two components in temporal activation but fails

in tomographic distribution.
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3.5 Head Motion Correction

We use three kinds of data to validate the proposed algorithm, SLIM, which is described

in Chapter 2.3. We will describe the result using Stabilized Linear Model (SLIM) in the

below sections.

3.5.1 Simulations

We simulate the recordings of two sources, front and back, with different head poses.

One head pose is slightly leaning forward than the other. From the spatial profiles of simu-

lated recordings, shown in Figure 3.8, we can see the front source of simulated recordings

with head leaning forward is stronger than the back sources. The other is just the opposite.

The strengths of the two sources are both 30 nAm. Frequencies of the two sources are 7

Hz and 10 Hz, respectively. We added background sources with 3000 random dipoles with

standard deviation is 5 nAm. The variances of sensor noises is estimated from the empty

room recordings of the MEG system.

We set the active state as 0 ms to 500 ms and control state as -500 ms to 0 ms. The value

of α is 0.0003 and 0.0008. The result is shown in Figure 3.10 and Figure 3.9. From the

result of applying SLIM algorithm and not applying SLIM algorithm, we can see that if we

just apply MCB in different head poses will tend to have higher F value in the location of

stronger sources (Figure 3.9 (a) and (b)). However, the stronger sources are so ”strong” is

because of different head poses, not because of stronger strength–the closer the sources are

to the MEG sensors, the stronger the sources are. Using SLIM, we can combine different

head poses to solve this problem. From Figure 3.10 (c) and Figure 3.9 (c), we can see that

both two sources have almost the same F-value.

From the results, we can see the utility of SLIM in this simulated data.

3.5.2 Phantom

We apply MCB and SLIM with phantom data for comparing the differences of synchronized-

averaging with the same head poses and different head poses, and SLIM. Although the

dipole strength of phantom data is 100 nAm, in order for reliability of validation, we select
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  Lean 

Backward

(a) (c) (e)

 Lean

Forward

(b) (d) (f)

Figure 3.8: (a) the ground truth location in anatomical image of the simulated recordings
(b) the temporal profiles of the two sources (c)(d) the temporal profiles of the simulated
recordings (e)(f) the spatial profiles of the simulated recordings during a specific time.

the time period of weaker strength, the time period before the strongest peak, as active

time. We compare the localization error of the proposed SLIM methods and synchronized-

averaging recordings with the same head poses, all with the same number of trial. We use

a bandpass filter with 7.5Hz to 35Hz. Then we set 40 ms to 80 ms as active state and iden-

tity as control state. The value of α is set as 0.001. The result is shown in Table 3.4 and

Figure 3.11. In Figure 3.11, ’o’ and ’♦’ marks represent SLIM and averaging respectively.

The horizontal axis represents the increasing trial number and the vertical axis represents

the localization error in mm.

From Table 3.4 and Figure 3.11, we can see that in the phantom experiment, the error

when using SLIM is slightly worse than using synchronized-averaging because the selected

active state is too strong to make the effect of SLIM attenuate. But the tendency is similar

that when the number of trial increases, localization becomes lower.
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(a) (b) (c)

SLIM

Figure 3.9: (a) simulated recordings with head leaning forward (b) simulated recordings
with head leaning (c) the F-statistical map after applying SLIM algorithm

  Lean

Backward

 Lean

Forward

(a) (b) (c)

SLIM

Figure 3.10: (a) simulated recordings with head leaning forward (b) simulated recordings
with head leaning (c) the F-statistical map after applying SLIM algorithm
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Table 3.4: Localization error evaluation among the SLIM, and synchronized-averaging are
listing in the table, showing the mean and standard deviation.

Averaging SLIM

(mm) Mean Std Mean Std

20 trials 5.3624 3.6533 5.0472 4.0128

40 trials 2.8690 2.7068 3.4033 3.1971

60 trials 2.0866 2.0564 3.3481 3.2960

80 trials 1.3868 1.1983 2.4119 2.0286

Figure 3.11: This figure shows the localization error evaluation among the SLIM, and
Averaging. SLIM and Averaging have the similar tendency.
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3.5.3 Experiment of Gender Discrimination

We also take the recordings of gender discrimination for validation. The visual pathway

in the human brain has been well-surveyed. First at the visual area in occipital lobe and

then divide into two paths. The upper one is about the perception of actions and the lower

one is about objects recognition (Figure 3.12). From the spatial profiles of the recordings

(Figure 3.13 and Figure 3.14), the brain activation map is first at occipital lobe, visual area

inside the brain. Then passing through the temporal lobe for further recognition work.

The recognition-related brain region is at frontal lobe, but its strength is much weaker than

the visual-related activation. In this experiment, we set the subject’s head lean forward for

stronger activation in frontal lobe and lean backward for stronger activation in occipital lobe

with the same experiment paradigm. From the spatial profiles we can see such phenomena

actually exists. After applying SLIM algorithm, both frontal and temporal or occipital

activation appeared in the F-statistical map (Figure 3.13 and Figure 3.14). For simplicity,

we call the head pose of leaning backward as pose 1 and the head pose of leaning forward

as pose 2 in the later statements.

Figure 3.12: This figure shows the visual pathway. Starting at the occipital visual area
inside the brain and then separating into two paths about perception of actions and objects
recognition.

In order to recognize the source location within the time period of interest, we select



3.5 Head Motion Correction 55

the time with 103 ms in occipital area for vision and 139 ms in temporal area for objects

recognition. The waveform and topography is shown in Figure 3.13 and Figure 3.14. The

active state is set as a period of 40 ms with the time of interest, and the control state is set

as 800 ms to 1000 ms or the empty room measurement. The value of α is set as 0.003.

Table 3.5: The results of MCB and SLIM with different head poses and the control state
is set as 800 ms to 1000 ms. We can see that the higher F-value of pose 1 at 103 ms is
strengthened after applying SLIM.

Pose F-statistical Map at 103 ms F-statistical Map at 139 ms

Lean Backward

Lean Forward

SLIM

From the result, the proposed SLIM algorithm can correct the inaccurate source lo-

calization caused by head motion. Furthermore, by combining the different head poses,

we can virtually increase the sensor number of MCB model and gmore accurate source
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Table 3.6: The results of MCB and SLIM with different head poses and the control state is
set as the empty room recordings.

Pose F-statistical Map at 103 ms F-statistical Map at 139 ms

Lean Backward

Lean Forward

SLIM

localization result to reach the gaol of super resolution.
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103139

Figure 3.13: The topography and waveform of the pose of leaning backward.
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103139

Figure 3.14: The topography and waveform of the pose of leaning forward.



Chapter 4

Discussion
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In this chapter, we discuss some points we discovered while we conducted research. In-

cluding (1) the parameters in Maximum Contrast Beamformer (MCB), (2) practical Issues

of Beamformer-based Independent Component Analysis and (3) the sensor number issue

of MEG.

4.1 Parameters in Maximum Contrast Beamformer

There are many parameters in MCB. One is the selection of control states. We have

three choices of control states, the recordings of non-target sources Cc, the identity matrix

I and the empty room recordings of the MEG system. Because each of them has different

physical meanings, choosing which one could be appropriate to various recordings. If we

select the control state as Cc that means we want to reveal the contrast between target and

non-target sources. If we select the control state as I, we assume the sensors have uniform

gain and the sensor noises are independent and identically distributed. If select the control

state as the empty room recordings of the MEG system, we want to reveal all sources by

maximizing the contrast between the recordings with sources and the recordings with only

sensor noises. The selection is recording-dependent and we should try to get the most

appropriate one.

Another parameter in MCB is the choice of the regularization parameter. This is an

important and difficult determination. Once we select an inappropriate regularization pa-

rameter, it may result in very strange and irrational result, because of leakage. But the

selection of regularization parameter is usually following the user’s rule of thumb. In [23],

they proposed some rules as a reference with regularization parameter selection. This rules

is that with higher Signal-to-Noise Ratio (SNR), the regularization parameter should be

smaller, and vice versa. However, this is just a reference and there are many variation in

real recordings. From the proposed method, Beamformer-based ICA, we can have more

information about the regularization parameter selection. But there is still some limitations

and will be discussed in the later section. We can take these references into account and fol-

lowing the concepts to try and test for the most appropriate parameter. With these reference

rules, we can still save much effort for try and error.
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4.2 Practical Issues of Beamformer-based Independent Com-

ponent Analysis

Continuing with the experiment in Section 3.4, the result of Beamformer-based ICA

with the regularization parameter of 0.03 is shown in Table 4.1. From the F-statistical

map of MCB, all of them cannot reveal the actual two sources and so as the topographic

distribution of Beamformer-based ICA. This is caused by very inappropriate regularization

parameter. With a too large regularization parameter, the leakage from the location of non-

target sources is strong. Therefore, the spatial filter cannot be estimated well for each target

source location and leads to the result that every MCB filtered signal is similar. Because

the MCB filtered signals are similar, it is more difficult for ICA to separate independent

sources.

From the result, although Beamformer-based ICA can separate into two components in

temporal activation but fails in tomographic distribution. Beamformer-based ICA is limited

because of MCB, especially for very inappropriate regularization parameter.

4.3 Sensor Number Issue of MEG

We may consider that the resolution of the solution to the MEG inverse problem can

be improved by increasing the number of MEG sensors. However, this is only correct to

the recordings with only uncorrelated noises. With only uncorrelated noises, the accuracy

of Equivalent Current Dipole (ECD) reconstruction is improved inverse proportionally to

the square root of the sensor number. Once the correlated noises exist, the inter-channel

separation is comparable to the brain noise correlation distance and increasing the sensor

number does no help. The correlation distance is defined as a distance along the scalp at

which the correlation coefficient is reduced to 0.5 [27]. In [26, 27], they demonstrate this

phenomenon with ECD reconstruction. They simulate the MEG recordings with different

sensor numbers for ECD source localization and the localization error is no more improved

above some number of channels.

The above phenomenon is different to beamformer. The spatial filter of beamformer
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Table 4.1: The result of Beamformer-based ICA when the regularization parameter of
0.03. Because of very inappropriate regularization parameter, both results of MCB and
Beamformer-base ICA cannot reveal actual two sources.

ξ correlation

coefficient

MCB Beamformer-based ICA

0.0 0.0000

0.3 0.3939

0.5 0.7071
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exploits the correlation between sources to minimize the output variance by canceling the

correlated portion of the source of interest [15]. Therefore, the beamformers can remove

most of the correlated noises, that is, beamformers are affected only by uncorrelated noises.

Therefore, the performance of beamformers is not limited with the number of sensors.

In [26, 27], they also simulate MEG recordings with increasing sensor number, from 75

to 2000. Applying Synthetic Aperture magnetometry (SAM) [16], the significantly larger

sensor number is still beneficial. As a result, the MEG system can benefit from significantly

larger number of sensors while applying beamformers.

From above statements, the utility of Stabilized Linear Model (SLIM), described in

Chap 2.3, is more remarkable. Applying SLIM, we can conceptually increase the sen-

sor number by combining MEG recordings with different head poses. Moreover, we can

actually improve the accuracy of Maximum Contract Beamformer (MCB) localization by

increasing sensor numbers that the sensor number can be very large. Therefore, we can im-

prove the accuracy of MCB localization by combining MEG recordings of different poses.
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In 2.1, we propose a method that can reveal the amount of recordings. We apply the

statistical hypothesis to the selected control and active states from MEG recordings and

examine how the discrimination between two states variate as the number of recordings in-

crease. By showing corresponding p-values of each sensor, we can find out some concepts

about the amount of recordings.

In 2.2, we combine Maximum Contrast Beamformer (MCB) and Independent Compo-

nent Analysis (ICA) as Beamformer-based ICA following the concept of virtual sensors

from beamformer. We consider filtered signals form the MCB spatial filter as the output

from the virtual sensor at each voxel of interest and take them as the ICA input signals.

There are some advantages of Beamformer-based ICA. We can use ICA for MCB filtered

source separation to get more accurate solution even with some inappropriate regularization

parameters of beamformer. Furthermore, with the concept of virtual sensors from beam-

former, we can raise the ICA resolution of topography distribution in sensor space to the

resolution of tomography distribution in source space.

In 2.3, we apply Stabilized Linear Model (SLIM) into MCB. By combining record-

ings of different head poses, we can not only reduce the error induced from head motion

but simultaneously improve the accuracy of source localization by conceptually increasing

sensor numbers.

In Chapter 4, the simulation, phantom and real experiment data are used to validate and

demonstrate the proposed algorithm. For statistical evaluation of the amount of record-

ings, from the p-values, we can get a criteria that when the number of sensors reaching

some significant level is as large as we expect, the amount of acquired recordings is statis-

tically enough. Furthermore, both of the expected advantages of Beamformer-based ICA

are demonstrated with simulation data. Beamformer-based ICA also works with correlated

sources even when MCB fails. From the results of simulation, phantom and real exper-

iment data for validation of head motion correction and super resolution, we can correct

the inaccurate source localization caused by head motion and get more accurate source

localization result by combining the different head poses using SLIM.
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