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利用球面輻射基底函數對 BRDF 及環境光源 

之重要性取樣 

 

 

研究生：江慶臻              指導教授：施仁忠 教授 

 

 

國立交通大學多媒體工程研究所 

 

 

 

摘       要 

 

我們藉由球面輻射基底函數（SRBF）的特性，針對高動態範圍（HDR）環境

光源以及經由測量所得的雙向反射分佈函數（BRDF）這兩種函數的乘積，提出一

種新的重要性取樣技術。在前處理時，我們透過非線性最佳化的演算法，將高動

態範圍環境光源貼圖以及雙向反射分佈函數轉換成球面輻射基底函數的表示形

式。在執行顯像運算時，我們先計算出兩個球面輻射基底函數的乘積，然後根據

球面輻射基底函數的表示形式，提出有效率的重要性取樣方法，其產生出來的取

樣分佈可以契合球面輻射基底函數所描述的資料分佈。此方法可以在全域光源照

射的環境下，有效率地繪製包含多種複雜材質以及高動態範圍環境光源的場景。 
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ABSTRACT 
 

We propose a new technique for importance sampling products of the complex 

high-dynamic range lighting environment and the measured BRDF data using 

Spherical Radial Basis Functions (SRBFs). In the pre-process, we transform the 

complex HDR environment map and the measured BRDF data into the scattered 

SRBF representation by using the non-uniform and non-negative SRBF fitting 

algorithm. In the run time rendering process, we first evaluate the product of the two 

SRBFs. As this product is evaluated, we present an efficient sampling algorithm on 

the unit sphere, and the generated point distribution can match the SRBF 

representation. As a consequence, our method can efficiently render images with 

multiple measured BRDFs and HDR environment maps under global illumination. 
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Chapter 1  
Introduction 
 
1.1 Motivation 

In order to improve the quality of realistic rendered images, more and more 

researches focus on efficient rendering with measured BRDF data and image-based 

illumination. The main reason for this attention is that measured BRDF data can 

contain real-world material property and image-based illumination, such as HDR 

environment maps, can capture complex real-world lighting. For example, a glossy 

surface is illuminated by an HDR environment map containing small light sources. 

However, there is a major challenge in the Monte-Carlo based global illumination 

approach incorporating with complex BRDF models and HDR environment map. 

When tracing each ray in the scene, the tracing path of the ray is desired to be selected 

by the product distribution of the BRDF and illumination as much as possible. It 

would waste a lot of samples if we generate samples randomly or uniformly, because 

only few sampling paths get the intensity. On the other hand, if we could generate 

samples against the high energy direction of the product distribution, it would achieve 

low variance and increase the efficiency of rendering. Therefore, how to find the 

importance sampling direction with product of the BRDF and illumination plays a 

critical role in efficient realistic image rendering. 
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In the past few years, many researchers transformed environment map and the 

original measured BRDF data into other representation forms, such as wavelet [3] [4] 

[11] [13], factored representation [12], … etc. Then they analyzed the original data to 

find the probability distributions of sampling directions. They generated sampling 

directions according to the probability distribution found in the specified 

representation. The concept of our method is similar to previous researches. We 

represent the environment map and the measured BRDF data by using spherical radial 

basis functions. Then we find the product distribution on the unit sphere to render 

realistic images. 

 

The spherical radial basis functions (SRBFs) proposed by Narcowich and Ward 

[14] are special radial basis functions (RBFs) defined on the unit sphere. There are 

some intrinsic potential make SRBF more suitable to represent the spherical data, 

such as environment map and BRDF data. We use SRBFs as the basis functions 

having the following benefits: 

‧ Since SRBFs are defined in the spherical domain, we can directly fit our 

illumination and BRDF model to the data without re-parameterization. 

Therefore, we could avoid the inaccuracy probably produced from the 

re-parameterization process. 

‧ High-frequency signals can be handled efficiently since the spatial localization 

property of SRBFs. 

‧ Since SRBFs are circularly axis-symmetric and rotation-invariant functions, it 

is simple to rotate functions represented in SRBFs. 

‧ The convolution of two SRBF kernels in some situations has a simple 

mathematical form. Thus we can use this property to evaluate the integral for 

probability estimation without extra processes to construct the probability 
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density function (PDF). 

 

Additionally, the approximated results are accurate enough to represent most 

features of the original data, and we can directly estimate the probability for 

importance sampling with the simple form of convolution by choosing the appropriate 

SRBF kernels. The potential benefits of SRBFs would make the importance sampling 

more efficient. 

 

1.2 System Overview 
The goal of this thesis is to demonstrate that the scattered SRBFs are appropriate 

to represent the HDR environment map and the complex measure BRDF data. With 

some useful properties of SRBF, we can easily apply the resulting representation in 

the Monte Carlo importance sampling technique. Finally, we show that the efficiency 

of importance sampling from product distribution can be improved with our sampling 

scheme. Figure 1 gives an overview of our new sampling technique for sampling the 

product of an environment map and a BRDF. 

 

Figure 1.1 System overview 

SRBF representation 

BRDF data Environment map

Pre-process 

Run-time 
process 

Product of two functions 

Sampling from product distribution 

Rendering of pixels 
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1.3 Thesis Organization 
The following chapters are organized as follows. In Chapter 2, we review some 

of the related works in sampling from environment maps, BRDFs and product 

distributions for global illumination. In Chapter 3, we briefly introduce the 

background of SRBFs and the advantages of scattered SRBFs. Chapter 4 presents 

how we fit scattered SRBFs to the BRDF data as well as the environment map, and 

how we generate sample directions at run-time efficiently. The implementation and 

results will be demonstrated in Chapter 5. Finally, the conclusions and future work are 

given in Chapter 6. 
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Chapter 2  
Related Works 
 

In this chapter, we survey previous works on importance sampling. The goal of 

global illumination is to solve the rendering equation which was first formulated by 

Kajiya [7]: 

( ) ( ) ( ) ( )( ) iiiioioeo dnxLxxLxL ωωωωωρωω ⋅+= ∫Ω ,,,,, ,   (1) 

where iL  is the incident radiance, and ρis the BRDF. To evaluate this integral, it is 

common to use Monte Carlo approaches. They solve the integrals by computing the 

average of random samples of the integrand, accumulating these values and taking the 

average. Importance sampling is a variance reduction technique of Monte Carlo 

approaches. Most Monte Carlo approaches use importance sampling of either iL  or 

ρ to solve the rendering equation. When sampling from BRDFs but do not take into 

account the lighting in the scene, they become inefficient with complex lighting. 

Similarly, when sampling only from environment lighting, it will be inefficient if the 

materials get increasingly specular. Thus, we attempt to sample from product of the 

BRDF and the illumination. 

 

2.1 BRDF Importance Sampling 
BRDF importance sampling is a technique to reduce the image variance in 

physically-based rendering. Its concept is to find the distribution based on the 
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representation of BRDF. Simple analytical models such as diffuse, Phong, or 

generalized cosine models can be sampled analytically. Shirley demonstrated how to 

sample the traditional Phong BRDF model efficiently [20], Lafortune also presented 

importance sampling schemes for the modified Phong model [9]. Ward [24] showed 

the stochastic sampling method for the BRDF models composed of elliptical Gaussian 

kernels. Lafortune [10] used multiple cosine-lobes for representing the BRDF, he 

used non-linear fitting algorithm to fit sums of cosine-lobes to an analytical model or 

to actual measurements. Though this representation is simple and can be applied for 

Monte Carlo importance sampling efficiently, it is hard to approximate the complex 

BRDF by using his fitting process. 

 

For measured BRDFs, Lalonde [11] used wavelets to represent the BRDF and 

proposed an importance sampling scheme by binary searching the tree constructed 

against the coefficients of each wavelet basis. Matusik [13] also used a wavelets 

representation of BRDF, and he presented a numerical sampling method based on 

wavelets analysis. Lawrence et al. [12] demonstrated an importance sampling method 

based on a factored representation. They reparameterized the BRDF by using 

half-angle [19], then used non-negative matrix factorization (NMF) twice to 

decompose the BRDF data for efficient importance sampling. Weng and Shih [25] 

represented the measured BRDF data with scattered SRBFs and estimated the 

probability distribution for importance sampling. Unfortunately, such approaches will 

not perform well for high-frequency illumination. 

 

2.2 Environment Map Importance Sampling 
Environment map importance sampling is another technique for increasing the 
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efficiency of ray tracing based algorithms, under complex lighting captured in a 

high-dynamic range environment map. In some previous work, the environment maps 

are transformed into finite basis functions, such as wavelets [15] and spherical 

harmonics [17] [18] [21]. 

 

Some researchers have used importance sampling techniques to distribute 

samples according to the energy distribution in the environment map [1] [5] [8] [16]. 

The importance sampling is often implemented based on clustering algorithm or 

hierarchical tiling scheme. Similarly, such an approach performs poorly for highly 

specular surfaces, since samples chosen this way do not take specular lobe into 

account. 

 

2.3 Sampling from Product Distributions 
More recently, several researchers have worked on this problem by drawing 

samples from the product distribution of the illumination and the BRDF. These 

approaches produce high quality images with a small number of samples. Burke et al. 

[2] introduced a technique which is called bidirectional sampling. They take into 

account both the surface BRDF and energy of incident illumination in the sampling 

process. Two Monte Carlo algorithms for sampling from the product distribution are 

presented – one based on refection sampling and the other based on 

sampling-importance re-sampling (SIR). 

 

Clarberg et al. [3] present a technique for importance sampling products of the 

BRDF and the illumination using a hierarchical wavelet representation. Their method 

is very efficient for measured BRDF data but requires significant precomputation for 
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environment maps. Our approach use SRBFs instead of wavelets. Tsai and Shih [22] 

have shown this representation performs better than wavelets in data analysis. 

Furthermore, we can directly fit scattered SRBFs to BRDF data without 

re-parameterization. We also propose an efficient importance sampling method based 

on this representation. In the following chapters, we will describe how we represent 

the environment map and the measured BRDF data with scattered SRBFs and how we 

estimate the probability distribution for importance sampling. 

 



 9

 
 
Chapter 3  
Background of SRBFs 
 

The spherical radial basis functions (SRBFs) are special radial basis functions 

defined on the unit sphere. Since SRBFs are defined in the spherical domain and have 

some properties, such as rotational invariance and positive definiteness, it makes 

SRBFs appropriate for modeling and analyzing spherical data without any artificial 

boundaries or distortions. In this chapter, we introduce the background of SRBFs that 

had been developed by previous researchers. 

 

SRBFs is recognized as an circularly axis-symmetric reproducing kernel function 

defined on mS  , which is the unit sphere in 1+mR . The kernel functions only depend 

on the spherical distance between unit vectors. Figure 3.1 gives an example of the 3D 

plot of a Gaussian SRBF. 

 

 

 

 

 

 

 

Figure 3.1 3D plot of a Gaussian SRBF 

Center 

Bandwidth 
Coefficient 
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Let η and ξ be two points on mS , and let θ(η,ξ) be the geodesic distance 

between η and ξ on mS , i.e. the arc length of the great circle joining the η and 

ξ. The kernel functions of SRBFs are depending on θ and can be expressed in the 

expansions of Legendre polynomials: 

( ) ( ) ( )∑
∞

=

⋅=⋅=
0

cos
l

ll PGGG ξηξηθ ,                          (2) 

where ( )ξη ⋅lP  is the Legendre polynomials of degree l , and lG  is the Legendre 

coefficients satisfy the following two conditions: 

⎪⎩

⎪
⎨

⎧

∞<

≥

∑
∞

=0

0

l
l

l

G

G

. 

When all lG  are positive, a spherical function ( )ηF  can be represented in SRBF 

expansions as follows: 

( ) ( )∑
=

⋅=
N

k
kk GFF

1

ληη .                                         (3) 

Thus, the SRBFs behave as reproducing kernels for interpolating ( )ηF  on mS . 

Figure 3.2 shows an example of SRBF representation for a spherical function ( )ηF . 

 

 

 

 

 

 

 

 

Figure 3.2 SRBF representation for a spherical function (k = 4) 
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Since SRBF can be expressed in terms of expansions in Legendre polynomials, it 

facilitates the convolution of two SRBFs. Based on the orthogonal property of 

Legendre polynomials in [-1, 1], the spherical singular integral is 

( )( ) ( ) ( ) ( )

( ) ,
0

21
,

21

212121

∑

∫
∞

=

⋅=

⋅⋅=⋅∗

l
l

lm

m
ll

Sm

P
d

GG

dHGGG
m

ξξω

ηωξηξηξξ

             (4) 

where mω  is the total surface area of mS , lmd ,  is the dimension of the space of 

order-l spherical harmonics on mS , and ωd  denotes the differential surface element 

on mS . Please refer to [14] and [6] for more details about spherical radial basis 

functions. 

 

One example of SRBFs is the Gaussian SRBF kernel. The definition of Gaussian 

SRBF kernel is 

( ) ( ) ,0,; >=⋅ ⋅− λλξη ξηλλeeGGau
                            (5) 

where λ denotes the parameter called bandwidth and controls the coverage of the 

SRBF. We adopt Gaussian SRBF kernel as the kernel function for following reasons. 

First, Tsai and Shih [22] have proved that the convolution of two Gaussian SRBFs has 

a mathematically simple form for small m. It can be written as 

( ) ( )

( ) ( )
2

1

2
1

212121

2
2

1

,;

21

−

−
+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

Γ=

⋅∗
m

mm

Gau
m

Gau

r
rIme

GG

ωλλ

λλξξ

        (6) 

where 2211 ξλξλ +=r . Second, the product of two Gaussian SRBFs is easy to 

evaluate. For more details about the proof of the Eq. 6, please refer to [22]. 
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Distribution of the SRBFs’ centers on the sphere affects the compression 

efficiency significantly. It would waste lots of basis kernels on the region without any 

data if we use uniform SRBFs to represent the data with sparse distribution. We can 

locate the SRBF kernels based on the data distribution on the sphere by using 

scattered SRBFs, i.e. adapting the center, bandwidth and coefficient of each basis. 

Therefore, scattered SRBFs can capture the feature of the original data with much 

fewer bases than those used in uniform SRBFs. 
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Chapter 4  
Off-Line SRBF Fitting Process 
 

Our approach contains two major processes, one is the pre-process and the other 

is the run-time rendering process. In the pre-process, we use scattered SRBF to 

represent the HDR environment maps and the measured BRDF data. In this chapter, 

we will introduce the non-uniform and non-negative SRBF fitting algorithm which we 

use to transform the HDR environment maps and the measured BRDF data into 

scattered SRBFs. 

 

Weng and Shih [25] have presented an approach to fit the measured BRDF data 

using SRBFs representation. We use their approach to represent our BRDF data with 

SRBFs. On the other hand, we fit the HDR environment maps with SRBFs using 

non-uniform and non-negative optimization. There are three sets of parameters we 

want to optimize: the set of coefficients L , the set of centers 2Ξ , and the set of 

bandwidth parameters 2Λ . Our objective is to minimize the square error with the 

original data: 

{ }
{ }

( ) ( ) ( ),~minarg,,
2

22

2

,,
22 ∫ −=ΛΞ

ΛΞ S iii
L

dLLL ηωηη  

( ) ( )∑
=

⋅=
ln

k
kkiki GLL

1
,2,2 ;~ λξηη                                  (7) 
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Tsai and Shih [22] have presented a novel method to solve this objective 

function when modeling the lighting environment. We modify their method a little bit 

to make fitting result more suitable for importance sampling. In their fitting approach, 

the coefficients of each kernel basis are computed by ordinary least-squares (OLS) or 

regularized least-squares (RLS). Unfortunately, the coefficients would become 

negative in some situations when computing by OLS or RLS. We must constrain all 

coefficients to be positive because we need to use coefficients to estimate the 

probability distribution. Therefore, we use L-BRFS-B solver [26] to optimize the 

coefficients. Figure 4.1 gives a flow chart of fitting process. 

 

Figure 4.1 Flow chart of fitting process 

 

Initial Guess

optimize centers 

optimize bandwidths

optimize coefficients

terminate

No 

Yes

squared error < t 
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The non-uniform and non-negative SRBF fitting algorithm composes of follow 

main steps: 

1. Using L-BFGS-B solver to optimize the set of centers from a given initial 

guess or the results of the previous iteration. 

2. Using L-BFGS-B solver to optimize the set of bandwidth parameters and the 

set of coefficients respectively. 

3. The process is terminated if the difference of squared errors between current 

and previous iteration are less than a threshold, or the count of iteration 

exceeds a user-defined threshold. 

 

This process is one kind of non-linear optimization. The fitting results are highly 

dependent on the initial guess, i.e. the initial guess would dominate the accuracy of 

the representation. Tsai and Shih [22] also have presented a reasonable guess based 

on some heuristics to decrease approximation errors and accelerate the computation. 

The principle of their initial guess is to make the initial centers of each kernel basis 

locate at all local peaks of the original data as close as possible, and to estimate a 

reasonable bandwidth according to the coverage of each initial center. Based on this 

principle, they generate lots of candidate guesses sorted by the coverage-weighted 

intensity, and then attempt to choose guesses which avoid the initial centers gathering 

in local area. This scheme works well for the data with high dynamic range property. 

For more detail about initial guess, please refer to [22]. 

 

After fitting process, we have represented the HDR environment map with 

SRBFs: 

( ) ( ) ,;
1
∑
=

⋅≈
K

k
kkiki GFL λξηη                                     (8) 
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where ( )iL η  is the incident radiance, G is the SRBF kernel function, kξ  is the 

center of basis on unit sphere, kλ  is the bandwidth of the basis, kF  is the basis 

coefficient, and K is the number of the basis function. Figures 4.2 and 4.3 show the 

two reconstructed results of HDR environment maps obtained using SRBFs 

representation with 300 basis functions. 

 

Similarly, the measured BRDF data is represented in scattered SRBFs for each 

fixed outing direction: 

( ) ( ) ,;
1
∑
=

⋅≈
K

k
kkiki GF

o
λξωωρω                                 (9) 

where ( )io
ωρω  is the BRDF with a fixed outgoing direction oω , and G is the SRBF 

kernel function. 

 

(a) Reference                    (b) Reconstructed from SRBFs 

Figure 4.2 HDR environment map – St. Peter’s Basilica 
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(a) Reference                    (b) Reconstructed from SRBFs 

Figure 4.2 HDR environment map – Uffizi Gallery 

 



 18

 
 
Chapter 5  
Run-Time Rendering Process 
 

In the run-time rendering process, we first evaluate the product of the two 

SRBFs. Then we determine how many samples should be taken from each SRBF. 

Since each SRBF kernel can be taken as some kind of the density distribution 

function, we can easily generate samples based on the probability density function 

(PDF) calculated from each SRBF. Finally, we combine the sampling results with 

multiple importance sampling technique presented by Veach and Guibas [23]. 

 

Figure 5.1 illustrates the flow of our run-time rendering process. When the view 

ray hits the object in the scene, we first calculate the product of the BRDF and the 

environment map represented in SRBFs. Next, we determine the number of the 

samples of each SRBF according to its integral. Then we generate samples from each 

SRBF and combine the results by multiple importance sampling technique. 

 

The following sections are organized as follows. In Section 5.1 we describe how 

we calculate the product of two SRBFs. In Section 5.2, we briefly introduce the 

multiple importance sampling technique. Finally, we describe how to determine the 

number of samples of each SRBF kernel and how to generate samples from each 

SRBF kernel. 
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Figure 5.1 Run-time rendering process 
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5.1 Product of the Illumination and the BRDF 
As mentioned before, we take Gaussian SRBF as the kernel function for some 

benefits. One reason is that the product of two Gaussian SRBFs is easy to calculate. 

Ignore the normalized term, the product of two Gaussian SRBFs is 

( ) ( ) ( )

3

2221
3

22113

213

321
332211

λ
ξλξλξ

ξλξλλ

ξηλξηλξηλ

+
=

+=

⋅=
=⋅ ⋅⋅⋅

FFF
eFeFeF

                              (10) 

where 3F  is the coefficient of product result, 3λ  is the bandwidth of product result, 

and 3ξ  is the center of product result. The product of the BRDF and the illumination 

is shown as follows: 

( ) ( ) ( ) ( )∑∑
==

⋅⋅≈
N

n
nni

brdf
n

M

m
mmi

ationillu
mii GFGFL

o
11

min ;; λξωλξωωρω ω (11) 

where ( )iL ω  is the incident radiance and ( )io
ωρω  is the BRDF with a fixed 

outgoing direction oω . 

 

After calculating the product of two SRBFs, the number of basis functions 

becomes NM × . If we take the whole basis functions to generate the samples, it will 

cause considerable computation cost. Thus, we reserve these basis functions which 

contain large coefficients and prune the basis functions that contain small coefficients. 

Since most of energy is distributed in a few basis functions that contain large 

coefficients, a good approximation for original data is obtained even if only the n 

largest coefficients are kept. 
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5.2 Multiple Importance Sampling 
After calculating the product of the BRDF and the environment map, it is 

desirable to generate rays distributed according to the density of the product. We are 

interested in evaluating the integral of the incident illumination for a fixed outgoing 

direction oω  located at x  with normal n , 

( ) ( ) ( )( ) ( )∫Ω ⋅= iiioiiio dxVnxxLxL ωωωωωρωω ,,,,, .     (12) 

The Monte Carlo estimator for the above integral can be written as: 

( ) ( ) ( )( ) ( )
( ) ( )

( ) ( ) ( )∑

∫

=

Ω

⋅⎥
⎦

⎤
⎢
⎣

⎡
≈

⋅=

n

s
ss

os

oii

iiioiiio

xVnxxL
n

dxVnxxLxL

1

i ,
|

,,,1

,,,,,

ωω
ωωγ

ωωρω

ωωωωωρωω

.           (13) 

 

However , it is hard to construct a single PDF ( )os ωωγ |  that follows the shape 

of the complex product of the BRDF and the illumination. We adopt a technique for 

importance sampling presented by Veach and Guibas [23] called multiple importance 

sampling. By combining several potentially good estimators, this technique makes 

Monte Carlo integration more robust. These estimators calculated by different PDFs 

may have different qualities in different regions of the integration domain. Veach and 

Guibas make a weighted-average of all estimators where the weights depend on the 

sampling positions. If we want to evaluate the integral of ( )xf : 

( )∫Ω dxxf , 

and we have n different estimators, the combined estimator is then given by 
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where ip  is the PDF for each estimator, in  denotes the number of samples from 
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ip , jiX ,  are the samples from ip , for inj ,...,1= , and all samples are assumed to 

be independent. iw  is the weighting function which satisfies the following two 

conditions: 

( )
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==
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=

00
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ii

n
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.                           (15) 

Then, the expected value of the combined estimator F would be equal to the integral 

of ( )xf  which we want to evaluate. 

 

So far, we have represented the product of the BRDF and the illumination using 

scattered SRBFs. Now we apply this technique to importance sampling from product 

distribution, and the Equation (13) would become: 
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  (16) 

where n is the number of SRBFs, in  denotes the number of samples from each 

SRBF, and ip  is the PDF calculated from each SRBF kernel function, for ni ,...,1= . 

jiX ,  are the samples from each SRBF kernel function, for inj ,...,1= . 

 

There are two issues to compute the Equation (16) in run-time rendering process. 

One is how to determine in , the number of samples should be taken from each SRBF 

kernel, the other is how to generate jiX , , the sampling directions distributed 

according to each SRBF kernel. These two issues will be discussed in the following 

section. 
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5.3 Sampling Algorithm 
We now describe how to use our representation for multiple importance 

sampling. Intuitively, each scattered SRBF covers a part of the entire product region. 

Although there would be two or more SRBFs overlap in the same regions, we can still 

gather the intensity of multiple sampling directions within a pixel using multiple 

importance sampling approach. 

 

As mentioned before, we first calculate the product of the BRDF and the 

environment map for a given viewing direction in the run-time rendering process. 

Then, we have multiple SRBF kernel functions, now we should decide how many 

samples should be taken from each SRBF kernel. Let’s recall that SRBF is defined on 

the unit sphere, and its integral is easy to be calculated by using the spherical singular 

integral property of SRBF. The integral of each SRBF can be taken as its total energy 

gathered from all directions. Therefore, it is straightforward to allocate samples 

according to the ratio of the integral of each SRBF to the sum of all SRBFs’ integrals. 

Furthermore, we want to allocate more samples in the SRBFs which contain higher 

energies. Thus, we emphasize the energy by squaring the influence of integral. The 

probability of choosing the SRBF l for each sample is given by: 

( )
∑
=

= n

i
i

i

I

I
lP

1

.                                                  (17) 

We calculate a 1D CDF over l from these probabilities. In the dispatching process, we 

initially generate a uniform variable in [0, 1] and jitter this variable with a random 

number for each sample. Then, we traverse the CDF to determine where the sample 

should be taken from. 
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Next, we generate a sample direction in each SRBF kernel by sequentially 

selecting the elevation angle θ and the azimuth angle ψ defined on the plane 

whose normal is parallel to the SRBF kernel’s center (Figure 5.2). 

 

 

 

 

 

 

 

Figure 5.2 The elevation angle and the azimuth angle defined against SRBF 

 

For the elevation angle θ, we use metropolis random walk algorithm to generate 

samples with a desired density. It should be noted that the SRBF kernel itself only 

describes 1D density, while the desired density of sampling is the density over the 

sphere. Therefore, when we select the elevation angle θ by this approach, we 

should consider the influence of the circumference around the center of SRBF kernel 

especially. For the azimuth angle ψ, each SRBF kernel is symmetric against the 

vector that defined by its center and the origin of the unit sphere. Therefore, the 

distribution of azimuth angle ψ is uniform, and we can simply generate a random 

number in [0, 2π] to evaluate ψ. 

 

ψ

θ
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Chapter 6  
Implementation and Results 
 

This chapter demonstrates the results of our new sampling technique. All results 

are generated on an AMD Athlon64 FX-60 PC with NVIDIA GeForce 7900 GTX. 

We illustrate the rendering results of several measured BRDF data and complex HDR 

environment map. 

 

We compare our method to SRBFs-based BRDF importance sampling presented 

by Weng and Shih [25], i.e., not using the SRBF product. Figures 6.1~6.3 show the 

comparisons between BRDF importance sampling and our approach with varying 

number of samples. The Buddha model in ‘Grace Cathedral’ rendered with different 

measured BRDF data. From Figures 6.1 to 6.3, the materials are ‘Garnet Red’, 

‘Krylon Blue’, and ‘Cayman’ measured by Cornell University. From (a) to (e) is the 

sampling results from SRBF product with vary different number of samples. And (f) 

is the rendered results using SRBFs-based BRDF importance sampling. Performing 

the SRBFs product sampling in the run-time process obviously adds some overhead. 

In our current implementation, our method increase 40 percent computation time than 

SRBFs-based BRDF importance sampling for equal number of samples. But the 

quality of the rendered images with our method is much better than with 

SRBFs-based BRDF importance sampling. 
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    (a) 10 samples             (b) 40 samples             (c) 60 samples 

 

    (d) 80 samples            (b) 100 samples        (c) 100 samples (BRDF) 

Figure 6.1 Sampling results with material ‘Garnet Red’ 
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    (a) 10 samples             (b) 40 samples             (c) 60 samples 

 

    (d) 80 samples            (b) 100 samples        (c) 100 samples (BRDF) 

Figure 6.2 Sampling results with material ‘Krylon Blue’ 
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    (a) 10 samples             (b) 40 samples             (c) 60 samples 

 

    (d) 80 samples            (b) 100 samples        (c) 100 samples (BRDF) 

Figure 6.3 Sampling results with material ‘Cayman’ 
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We also render complex scene with three different measured BRDF data and two 

complex HDR environment maps with 60 samples per pixel in figures 6.4~6.7. We 

represent each BRDF measurements in scattered SRBFs with 5 Gaussian kernels and 

each environment map in scattered SRBFs with 100 Gaussian kernels. After 

computing the products, we reserve 100 Gaussian kernels to generate samples. 

 

 

Figure 6.4 A ‘GarnetRed’ Buddha and a ‘Cayman’ plane  

in ‘Uffizi Gallery’ HDR environment 
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Figure 6.5 A ‘KrylonBlue’ Buddha and a ‘Cayman’ plane in ‘Uffizi Gallery’ 

 

Figure 6.6 A ‘KrylonBlue’ Buddha and a ‘Cayman’ plane in ‘St. Peter’s Basilica’ 



 31

 

Figure 6.7 A ‘Cayman’ Buddha and a ‘GarnetRed’ plane in ‘St. Peter’s Basilica’ 
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Chapter 7  
Conclusions and Future Works 
 

We propose a new technique for importance sampling products of the BRDF and 

the illumination. Based on the scattered SRBFs representation, we can generate 

samples following the desired densities efficiently. Furthermore, this representation is 

easy to be applied to the multiple importance sampling technique. Finally, we use our 

sampling scheme to render scenes with multiple complex materials and HDR 

environment maps. Although our approach would increase the computation time of 

density estimations, we can generate much smaller samples than the approach 

considering BRDF only to get the same rendering quality. And we reduce the number 

of visibility tests required to obtain good image quality. 

 

Compared with previous methods, SRBF representation can significantly 

decrease pre-computed data storage. For example, wavelet importance sampling 

presented by Clarberg et al. [3] requires significant precomputation for environment 

maps when rotating lighting environment. In order to get a smooth result, they must 

bilinearly interpolate between the four nearest wavelets in the environment map. 

Since a SRBF is rotation-invariant function, rotating functions in SRBF representation 

is as straightforward as rotating the centers of SRBF. We can simply get correct 

SRBFs by one rotation operation. 
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Our approach achieves low variance in non-occluded regions. However, the 

resulting images still have noise in partially occluded regions as our approach does 

not take visibility into account during the sampling process. On the other hand, the 

major computation cost for ray tracing is the visibility testing. In the future, we would 

like to generate samples smarter based on some heuristic approach. We would 

improve the efficiency of importance sampling and the quality of rendered images. 
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