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Importance Sampling from Product of the BRDF and the

[llumination using Spherical Radial Basis Functions

Student: Qing-Zhen Jiang Advisor: Prof. Zen-Chung Shih

Institute of Multimedia Engineering
National Chiao Tung University

ABSTRACT

We propose a new technique forimportance sampling products of the complex
high-dynamic range lighting environment and the measured BRDF data using
Spherical Radial Basis Functions (SRBFs). In the pre-process, we transform the
complex HDR environment map and the measured BRDF data into the scattered
SRBF representation by using the non-uniform and non-negative SRBF fitting
algorithm. In the run time rendering process, we first evaluate the product of the two
SRBFs. As this product is evaluated, we present an efficient sampling algorithm on
the unit sphere, and the generated point distribution can match the SRBF
representation. As a consequence, our method can efficiently render images with

multiple measured BRDFs and HDR environment maps under global illumination.
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Chapter 1
Introduction

1.1 Motivation

In order to improve the quality of realistic rendered images, more and more
researches focus on efficient rendering with measured BRDF data and image-based
illumination. The main reason for this attention is that measured BRDF data can
contain real-world material property and imagesbased illumination, such as HDR
environment maps, can capture-complex real-world-lighting. For example, a glossy
surface is illuminated by an HDR environment map containing small light sources.
However, there is a major challenge in.the Monte-Carlo based global illumination
approach incorporating with complex BRDF models and HDR environment map.
When tracing each ray in the scene, the tracing path of the ray is desired to be selected
by the product distribution of the BRDF and illumination as much as possible. It
would waste a lot of samples if we generate samples randomly or uniformly, because
only few sampling paths get the intensity. On the other hand, if we could generate
samples against the high energy direction of the product distribution, it would achieve
low variance and increase the efficiency of rendering. Therefore, how to find the
importance sampling direction with product of the BRDF and illumination plays a

critical role in efficient realistic image rendering.



In the past few years, many researchers transformed environment map and the
original measured BRDF data into other representation forms, such as wavelet [3] [4]
[11] [13], factored representation [12], ... etc. Then they analyzed the original data to
find the probability distributions of sampling directions. They generated sampling
directions according to the probability distribution found in the specified
representation. The concept of our method is similar to previous researches. We
represent the environment map and the measured BRDF data by using spherical radial
basis functions. Then we find the product distribution on the unit sphere to render

realistic images.

The spherical radial basis functions (SRBFs) proposed by Narcowich and Ward
[14] are special radial basis functions (RBFs) defined on the unit sphere. There are
some intrinsic potential make SRBF more suitable-to represent the spherical data,
such as environment map and-BRDF data.-We use SRBFs as the basis functions
having the following benefits:

+ Since SRBFs are defined in the spherical domain, we can directly fit our
illumination and BRDF model to the data without re-parameterization.
Therefore, we could avoid the inaccuracy probably produced from the
re-parameterization process.

« High-frequency signals can be handled efficiently since the spatial localization
property of SRBFs.

- Since SRBFs are circularly axis-symmetric and rotation-invariant functions, it
is simple to rotate functions represented in SRBFs.

« The convolution of two SRBF kernels in some situations has a simple
mathematical form. Thus we can use this property to evaluate the integral for

probability estimation without extra processes to construct the probability

2



density function (PDF).

Additionally, the approximated results are accurate enough to represent most
features of the original data, and we can directly estimate the probability for
importance sampling with the simple form of convolution by choosing the appropriate
SRBF kernels. The potential benefits of SRBFs would make the importance sampling

more efficient.

1.2 System Overview

The goal of this thesis is to demonstrate that the scattered SRBFs are appropriate
to represent the HDR environment map. and. the complex measure BRDF data. With
some useful properties of SRBF, we can-easily apply the resulting representation in
the Monte Carlo importance sampling technigue. Finally, we show that the efficiency
of importance sampling from product distribution can be improved with our sampling
scheme. Figure 1 gives an overview of our:new sampling technique for sampling the

product of an environment map and a BRDF.

/BRDFdata/ Environment map

Pre-process SRBF representation
Run-time Product of two functions

process l

Sampling from product distribution

1

Rendering of pixels

Figure 1.1 System overview
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1.3 Thesis Organization

The following chapters are organized as follows. In Chapter 2, we review some
of the related works in sampling from environment maps, BRDFs and product
distributions for global illumination. In Chapter 3, we briefly introduce the
background of SRBFs and the advantages of scattered SRBFs. Chapter 4 presents
how we fit scattered SRBFs to the BRDF data as well as the environment map, and
how we generate sample directions at run-time efficiently. The implementation and
results will be demonstrated in Chapter 5. Finally, the conclusions and future work are

given in Chapter 6.



Chapter 2
Related Works

In this chapter, we survey previous works on importance sampling. The goal of
global illumination is to solve the rendering equation which was first formulated by
Kajiya [7]:

L(x,0,)=L.(x0,)+ | plxo,0,)(xo0)o-n)do,
where L, isthe incident radiance;iand p is the BRDF. To evaluate this integral, it is
common to use Monte Carlo approaches. They solve the integrals by computing the
average of random samples of the integrand,-accumulating these values and taking the

average. Importance sampling is “a wariance: reduction technique of Monte Carlo

approaches. Most Monte Carlo approaches use importance sampling of either L, or
o to solve the rendering equation. When sampling from BRDFs but do not take into
account the lighting in the scene, they become inefficient with complex lighting.
Similarly, when sampling only from environment lighting, it will be inefficient if the
materials get increasingly specular. Thus, we attempt to sample from product of the

BRDF and the illumination.

2.1 BRDF Importance Sampling

BRDF importance sampling is a technique to reduce the image variance in

physically-based rendering. Its concept is to find the distribution based on the



representation of BRDF. Simple analytical models such as diffuse, Phong, or
generalized cosine models can be sampled analytically. Shirley demonstrated how to
sample the traditional Phong BRDF model efficiently [20], Lafortune also presented
importance sampling schemes for the modified Phong model [9]. Ward [24] showed
the stochastic sampling method for the BRDF models composed of elliptical Gaussian
kernels. Lafortune [10] used multiple cosine-lobes for representing the BRDF, he
used non-linear fitting algorithm to fit sums of cosine-lobes to an analytical model or
to actual measurements. Though this representation is simple and can be applied for
Monte Carlo importance sampling efficiently, it is hard to approximate the complex

BRDF by using his fitting process.

For measured BRDFs, Lalonde [11] used wavelets to represent the BRDF and
proposed an importance sampling.scheme by binary searching the tree constructed
against the coefficients of each wavelet-basis. Matusik [13] also used a wavelets
representation of BRDF, and he presented.a numerical sampling method based on
wavelets analysis. Lawrence et al. [12] demonstrated an importance sampling method
based on a factored representation. They reparameterized the BRDF by using
half-angle [19], then used non-negative matrix factorization (NMF) twice to
decompose the BRDF data for efficient importance sampling. Weng and Shih [25]
represented the measured BRDF data with scattered SRBFs and estimated the
probability distribution for importance sampling. Unfortunately, such approaches will

not perform well for high-frequency illumination.

2.2 Environment Map Importance Sampling

Environment map importance sampling is another technique for increasing the



efficiency of ray tracing based algorithms, under complex lighting captured in a
high-dynamic range environment map. In some previous work, the environment maps
are transformed into finite basis functions, such as wavelets [15] and spherical

harmonics [17] [18] [21].

Some researchers have used importance sampling techniques to distribute
samples according to the energy distribution in the environment map [1] [5] [8] [16].
The importance sampling is often implemented based on clustering algorithm or
hierarchical tiling scheme. Similarly, such an approach performs poorly for highly
specular surfaces, since samples chosen this way do not take specular lobe into

account.

2.3 Sampling from RProeduct Distributions

More recently, several researchers have-worked on this problem by drawing
samples from the product distribution of the illumination and the BRDF. These
approaches produce high quality images with a small number of samples. Burke et al.
[2] introduced a technique which is called bidirectional sampling. They take into
account both the surface BRDF and energy of incident illumination in the sampling
process. Two Monte Carlo algorithms for sampling from the product distribution are
presented — one based on refection sampling and the other based on

sampling-importance re-sampling (SIR).

Clarberg et al. [3] present a technique for importance sampling products of the
BRDF and the illumination using a hierarchical wavelet representation. Their method

is very efficient for measured BRDF data but requires significant precomputation for



environment maps. Our approach use SRBFs instead of wavelets. Tsai and Shih [22]
have shown this representation performs better than wavelets in data analysis.
Furthermore, we can directly fit scattered SRBFs to BRDF data without
re-parameterization. We also propose an efficient importance sampling method based
on this representation. In the following chapters, we will describe how we represent
the environment map and the measured BRDF data with scattered SRBFs and how we

estimate the probability distribution for importance sampling.



Chapter 3
Background of SRBFs

The spherical radial basis functions (SRBFs) are special radial basis functions
defined on the unit sphere. Since SRBFs are defined in the spherical domain and have
some properties, such as rotational invariance and positive definiteness, it makes
SRBFs appropriate for modeling and analyzing spherical data without any artificial

boundaries or distortions. In this chaptér, we'introduce the background of SRBFs that
had been developed by previous:?éééarchéﬂé:’.'-m-'-ﬁ-a._

- - i W
) i .—__' L ' ;:.}I

=

SRBFs is recognized as an c""ii:g_;u.lgﬁy"e{xi's'-'s'ygi'rﬁetric reproducing kernel function
defined on S™ , which is the unit sphere in R™. The kernel functions only depend
on the spherical distance between unit vectors. Figure 3.1 gives an example of the 3D

plot of a Gaussian SRBF.

Center

Coefficient

Figure 3.1 3D plot of a Gaussian SRBF



Let » and £ betwo pointson S™,andlet & (7, &) be the geodesic distance
between 7 and & on S™,i.e. the arc length of the great circle joining the 7 and
£ . The kernel functions of SRBFs are depending on & and can be expressed in the
expansions of Legendre polynomials:

G(cos0)=Gn-&)=> GP(n-¢), @)

1=0
where P,(77~§) is the Legendre polynomials of degree /, and G, is the Legendre

coefficients satisfy the following two conditions:

G, >0

ZG, <00

1=0

When all G, are positive, a spherical function, (1) can be represented in SRBF
e,

;
o

expansions as follows:

©)

=

‘ ".‘.'";'"‘.I T L
Thus, the SRBFs behave as reproducing kernels for interpolating F(;) on S”.

Figure 3.2 shows an example of SRBF representation for a spherical function F(n).

Figure 3.2 SRBF representation for a spherical function (k = 4)

10



Since SRBF can be expressed in terms of expansions in Legendre polynomials, it
facilitates the convolution of two SRBFs. Based on the orthogonal property of

Legendre polynomials in [-1, 1], the spherical singular integral is
(Gl * Gz)(égl ng) = J. " G(77 ' gl)H(ﬂ : 52) da)(n)
:zGllelac,o_sz(éfl 52) J @
1=0

m,l
where ,, is the total surface area of S, d,, is the dimension of the space of

order-/ spherical harmonicson S™, and dw denotes the differential surface element
on S™. Please refer to [14] and [6] for more details about spherical radial basis

functions.

One example of SRBFs is the Gaussian SRBF kernel. The definition of Gaussian

SRBF kernel is

G (77 - &, /1) —e M) 450, (5)
where A denotes the parameter called bandwidth and controls the coverage of the
SRBF. We adopt Gaussian SRBF kernel as the kernel function for following reasons.

First, Tsai and Shih [22] have proved that the convolution of two Gaussian SRBFs has

a mathematically simple form for small =. It can be written as

(GlGau o GzGau)(étl '52;/11112)

-4+ m+1 B
S oo TG ) B

where r=A4,¢ +4,&,. Second, the product of two Gaussian SRBFs is easy to

N

evaluate. For more details about the proof of the Eq. 6, please refer to [22].
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Distribution of the SRBFs’ centers on the sphere affects the compression
efficiency significantly. It would waste lots of basis kernels on the region without any
data if we use uniform SRBFs to represent the data with sparse distribution. We can
locate the SRBF kernels based on the data distribution on the sphere by using
scattered SRBFs, i.e. adapting the center, bandwidth and coefficient of each basis.
Therefore, scattered SRBFs can capture the feature of the original data with much

fewer bases than those used in uniform SRBFs.

12



Chapter 4
Off-Line SRBF Fitting Process

Our approach contains two major processes, one is the pre-process and the other
is the run-time rendering process. In the pre-process, we use scattered SRBF to
represent the HDR environment maps and the measured BRDF data. In this chapter,
we will introduce the non-uniform and non-negative SRBF fitting algorithm which we
use to transform the HDR environment maps .and the measured BRDF data into

scattered SRBFs.

Weng and Shih [25] have presented an approach to fit the measured BRDF data
using SRBFs representation. We use their approach to represent our BRDF data with
SRBFs. On the other hand, we fit the HDR environment maps with SRBFs using
non-uniform and non-negative optimization. There are three sets of parameters we
want to optimize: the set of coefficients L, the set of centers =,, and the set of
bandwidth parameters A,. Our objective is to minimize the square error with the

original data:

~

L(I]i)— L(nl.)rda) (771- ),

{L’ By Ay } = atrg:mlzr}] Lz

- n

L(Ui):ZLkG(Ui 'fz,k;}“z,k) (7)

k=1
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Tsai and Shih [22] have presented a novel method to solve this objective
function when modeling the lighting environment. We modify their method a little bit
to make fitting result more suitable for importance sampling. In their fitting approach,
the coefficients of each kernel basis are computed by ordinary least-squares (OLS) or
regularized least-squares (RLS). Unfortunately, the coefficients would become
negative in some situations when computing by OLS or RLS. We must constrain all
coefficients to be positive because we need to use coefficients to estimate the
probability distribution. Therefore, we use L-BRFS-B solver [26] to optimize the

coefficients. Figure 4.1 gives a flow chart of fitting process.

Initial Guess

v
optimize centers

\ 4

)4
optimize bandwidths

No \ 4

optimize coefficients

squared error <t
iteration > n

terminate

Figure 4.1 Flow chart of fitting process
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The non-uniform and non-negative SRBF fitting algorithm composes of follow
main steps:

1. Using L-BFGS-B solver to optimize the set of centers from a given initial
guess or the results of the previous iteration.

2. Using L-BFGS-B solver to optimize the set of bandwidth parameters and the
set of coefficients respectively.

3. The process is terminated if the difference of squared errors between current
and previous iteration are less than a threshold, or the count of iteration

exceeds a user-defined threshold.

This process is one kind of non-linear optimization. The fitting results are highly
dependent on the initial guess, i.e.ithe initial guess would dominate the accuracy of
the representation. Tsai and Shih [22] also have presented a reasonable guess based
on some heuristics to decrease approximation-errors and accelerate the computation.
The principle of their initial guess'is to.make the initial centers of each kernel basis
locate at all local peaks of the original data as close as possible, and to estimate a
reasonable bandwidth according to the coverage of each initial center. Based on this
principle, they generate lots of candidate guesses sorted by the coverage-weighted
intensity, and then attempt to choose guesses which avoid the initial centers gathering
in local area. This scheme works well for the data with high dynamic range property.

For more detail about initial guess, please refer to [22].

After fitting process, we have represented the HDR environment map with

SRBFs:
K
L(ni)zszG(ni°§k;ﬂk)’ (8)
k=1
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where L(n,) is the incident radiance, G is the SRBF kernel function, &, is the
center of basis on unit sphere, A, is the bandwidth of the basis, F, is the basis
coefficient, and K is the number of the basis function. Figures 4.2 and 4.3 show the
two reconstructed results of HDR environment maps obtained using SRBFs

representation with 300 basis functions.

Similarly, the measured BRDF data is represented in scattered SRBFs for each

fixed outing direction:
K

Py (wi)zszG(wi°§k;/lk)’ 9)

k=1

where p, (e,) is the BRDF with a fixed outgoing direction w,, and G is the SRBF

kernel function.

(a) Reference (b) Reconstructed from SRBFs

Figure 4.2 HDR environment map — St. Peter’s Basilica

16



(a) Reference (b) Reconstructed from SRBFs

Figure 4.2 HDR.environment map — Uffizi Gallery

17



Chapter 5
Run-Time Rendering Process

In the run-time rendering process, we first evaluate the product of the two
SRBFs. Then we determine how many samples should be taken from each SRBF.
Since each SRBF kernel can be taken as some kind of the density distribution
function, we can easily generate samples based on the probability density function
(PDF) calculated from each SRBF,Finally, we combine the sampling results with

multiple importance sampling technigque presented by Veach and Guibas [23].

Figure 5.1 illustrates the flow of our run-time-rendering process. When the view
ray hits the object in the scene, we first calculate the product of the BRDF and the
environment map represented in SRBFs. Next, we determine the number of the
samples of each SRBF according to its integral. Then we generate samples from each

SRBF and combine the results by multiple importance sampling technique.

The following sections are organized as follows. In Section 5.1 we describe how
we calculate the product of two SRBFs. In Section 5.2, we briefly introduce the
multiple importance sampling technique. Finally, we describe how to determine the
number of samples of each SRBF kernel and how to generate samples from each

SRBF kernel.

18



BRD V Environment map

Viewing Direction . L—J
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¥
Allocate Samples of each SRBF
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Generate Samples from each SRBF

¥

Combine sampling results by
multiple importance sampling

Figure 5.1 Run-time rendering process
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5.1 Product of the lllumination and the BRDF

As mentioned before, we take Gaussian SRBF as the kernel function for some
benefits. One reason is that the product of two Gaussian SRBFs is easy to calculate.
Ignore the normalized term, the product of two Gaussian SRBFs is

Fleﬂi(fré) ,eriz(ﬂ'fz) — Fgeﬂs(ﬂfs)

Fy=F - F

/13 = ‘/1151 + /1252‘

_AG + A6,
&3 = 7

where F; is the coefficient of product result, A, is the bandwidth of product result,

(10)

and &, is the center of product result. The product of the BRDF and the illumination

is shown as follows:

M _ - N
L(a)i )pwo (a)l) ~ Z Frrlt”u mma""”G(a)i i égm ’ /Im )z FnbrdfG(a)i ) 511 ’ /In ) (11)
m=1 n=1

where L(w,) is the incident radiance and'p, (w,) is the BRDF with a fixed

outgoing direction o, .

After calculating the product of two SRBFs, the number of basis functions
becomes M x N . If we take the whole basis functions to generate the samples, it will
cause considerable computation cost. Thus, we reserve these basis functions which
contain large coefficients and prune the basis functions that contain small coefficients.
Since most of energy is distributed in a few basis functions that contain large
coefficients, a good approximation for original data is obtained even if only the n

largest coefficients are kept.

20



5.2 Multiple Importance Sampling
After calculating the product of the BRDF and the environment map, it is
desirable to generate rays distributed according to the density of the product. We are

interested in evaluating the integral of the incident illumination for a fixed outgoing

direction @, located at x with normal =,
Lx,0,)=] L(x o0)pkx 0,0, o, 1) (xo)do,. @
The Monte Carlo estimator for the above integral can be written as:

U5,0,)= [ 5. ). 0,0, Yoo, n (5, 0) doy

1

_Z{ Jolx, o, wo)}(ws W (vw) (13

a)|a))

However , it is hard to construct a single.PDF ' ¥(w, | »,) that follows the shape
of the complex product of the BRDFE.and-the-tHumination. We adopt a technique for
importance sampling presented by Veach and -Guibas [23] called multiple importance
sampling. By combining several potentially good estimators, this technique makes
Monte Carlo integration more robust. These estimators calculated by different PDFs
may have different qualities in different regions of the integration domain. Veach and
Guibas make a weighted-average of all estimators where the weights depend on the

sampling positions. If we want to evaluate the integral of f (x):
jﬂ f (x) dx

and we have n different estimators, the combined estimator is then given by

Z 23w (x, )p();’j) (14)

=1 l j=1 i i,

where p, is the PDF for each estimator, », denotes the number of samples from

21



p:» X, are the samples from p,, for j=1..,n, and all samples are assumed to

be independent. w, is the weighting function which satisfies the following two

conditions:

gwi(x)zl

w,(x)=0 whenever p,(x)= O.

1

(15)

Then, the expected value of the combined estimator F would be equal to the integral

of f(x) which we want to evaluate.

So far, we have represented the product of the BRDF and the illumination using
scattered SRBFs. Now we apply this technique to importance sampling from product

distribution, and the Equation (13).would become:

L) Li (x’ ; )p(x, w;, 0, )(wi ) n) V(x’ oF ) dwi

R 12[ np(X,,) }{LI-(XJX,;J-)p(x,Xi,j:wo)}(

X, . -n)VixX,.
IENACH] It e,

L]
where n is the number of SRBFs, n, denotes the number of samples from each

(16)

SRBF, and p, is the PDF calculated from each SRBF kernel function, for i =1,...,n.

X, are the samples from each SRBF kernel function, for j=1...,n,.

There are two issues to compute the Equation (16) in run-time rendering process.

One is how to determine #,, the number of samples should be taken from each SRBF

kernel, the other is how to generate X, , the sampling directions distributed

according to each SRBF kernel. These two issues will be discussed in the following

section.
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5.3 Sampling Algorithm

We now describe how to use our representation for multiple importance
sampling. Intuitively, each scattered SRBF covers a part of the entire product region.
Although there would be two or more SRBFs overlap in the same regions, we can still
gather the intensity of multiple sampling directions within a pixel using multiple

importance sampling approach.

As mentioned before, we first calculate the product of the BRDF and the
environment map for a given viewing direction in the run-time rendering process.
Then, we have multiple SRBF kernel functions, now we should decide how many
samples should be taken from each SRBF. kernel. Let’s recall that SRBF is defined on
the unit sphere, and its integral is'easy tobe calculated by using the spherical singular
integral property of SRBF. The“integral of each SRBF can be taken as its total energy
gathered from all directions. Therefore, it-is straightforward to allocate samples
according to the ratio of the integral of‘each SRBF to the sum of all SRBFs’ integrals.
Furthermore, we want to allocate more samples in the SRBFs which contain higher
energies. Thus, we emphasize the energy by squaring the influence of integral. The

probability of choosing the SRBF / for each sample is given by:

1.

>
i=1

P(l)= (17)
We calculate a 1D CDF over / from these probabilities. In the dispatching process, we
initially generate a uniform variable in [0, 1] and jitter this variable with a random
number for each sample. Then, we traverse the CDF to determine where the sample

should be taken from.
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Next, we generate a sample direction in each SRBF kernel by sequentially
selecting the elevation angle 6 and the azimuth angle ¢ defined on the plane

whose normal is parallel to the SRBF kernel’s center (Figure 5.2).

Figure 5.2 The elevation angle and the azimuth angle defined against SRBF

For the elevation angle 6 We l;éé r@trbpollsrandom walk algorithm to generate
samples with a desired density;'i;_'lg shf)?m-be-notedthat the SRBF kernel itself only
describes 1D density, while the.r-é'ééjr;;q_ dgrllﬁityi-'c;i‘- sampling is the density over the
sphere. Therefore, when we select the elevation angle & by this approach, we
should consider the influence of the circumference around the center of SRBF kernel
especially. For the azimuth angle ¢, each SRBF kernel is symmetric against the
vector that defined by its center and the origin of the unit sphere. Therefore, the
distribution of azimuth angle ¢ is uniform, and we can simply generate a random

number in [0, 2 7 ] to evaluate ¢ .
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Chapter 6
Implementation and Results

This chapter demonstrates the results of our new sampling technique. All results
are generated on an AMD Athlon64 FX-60 PC with NVIDIA GeForce 7900 GTX.
We illustrate the rendering results of several measured BRDF data and complex HDR

environment map.

We compare our method to:SRBEs-based BRDF importance sampling presented
by Weng and Shih [25], i.e., not using the SRBF product. Figures 6.1~6.3 show the
comparisons between BRDF importance sampling and our approach with varying
number of samples. The Buddha model in *‘Grace Cathedral’ rendered with different
measured BRDF data. From Figures 6.1 to 6.3, the materials are ‘Garnet Red’,
‘Krylon Blue’, and ‘Cayman’ measured by Cornell University. From (a) to (e) is the
sampling results from SRBF product with vary different number of samples. And (f)
is the rendered results using SRBFs-based BRDF importance sampling. Performing
the SRBFs product sampling in the run-time process obviously adds some overhead.
In our current implementation, our method increase 40 percent computation time than
SRBFs-based BRDF importance sampling for equal number of samples. But the
quality of the rendered images with our method is much better than with

SRBFs-based BRDF importance sampling.
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(b) 40 samples (c) 60 samples

(@) 10 samples

(c) 100 samples (BRDF)

(b) 100 samples

(d) 80 samples

Figure 6.1 Sampling results with material ‘Garnet Red’
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(d) 80 samples (b) 100 samples (c) 100 samples (BRDF)

Figure 6.2 Sampling results with material ‘Krylon Blue’
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(d) 80 samples (b) 100 samples (c) 100 samples (BRDF)

Figure 6.3 Sampling results with material ‘Cayman’
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We also render complex scene with three different measured BRDF data and two
complex HDR environment maps with 60 samples per pixel in figures 6.4~6.7. We
represent each BRDF measurements in scattered SRBFs with 5 Gaussian kernels and
each environment map in scattered SRBFs with 100 Gaussian kernels. After

computing the products, we reserve 100 Gaussian kernels to generate samples.

Figure 6.4 A ‘GarnetRed’ Buddha and a ‘Cayman’ plane

in ‘Uffizi Gallery’ HDR environment
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Figure 6.5 A ‘KrylonBlue’-Buddha and a-*Cayman’ plane in “Uffizi Gallery’

Figure 6.6 A ‘KrylonBlue’ Buddha and a ‘Cayman’ plane in “St. Peter’s Basilica’
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Figure 6.7 A ‘Cayman’ Buddha.and a'i‘Gz}t_'m'e"tRed"z,plane in ‘St. Peter’s Basilica’
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Chapter 7
Conclusions and Future Works

We propose a new technique for importance sampling products of the BRDF and
the illumination. Based on the scattered SRBFs representation, we can generate
samples following the desired densities efficiently. Furthermore, this representation is
easy to be applied to the multiple importance sampling technique. Finally, we use our
sampling scheme to render scenes:with multiple complex materials and HDR
environment maps. Although our approach: would increase the computation time of
density estimations, we can generate .much smaller samples than the approach
considering BRDF only to get the:same rendering quality. And we reduce the number

of visibility tests required to obtain good image quality.

Compared with previous methods, SRBF representation can significantly
decrease pre-computed data storage. For example, wavelet importance sampling
presented by Clarberg et al. [3] requires significant precomputation for environment
maps when rotating lighting environment. In order to get a smooth result, they must
bilinearly interpolate between the four nearest wavelets in the environment map.
Since a SRBF is rotation-invariant function, rotating functions in SRBF representation
is as straightforward as rotating the centers of SRBF. We can simply get correct

SRBFs by one rotation operation.
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Our approach achieves low variance in non-occluded regions. However, the
resulting images still have noise in partially occluded regions as our approach does
not take visibility into account during the sampling process. On the other hand, the
major computation cost for ray tracing is the visibility testing. In the future, we would
like to generate samples smarter based on some heuristic approach. We would

improve the efficiency of importance sampling and the quality of rendered images.
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