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Abstract

This paper presents a uniform conceptual model based on the particle

swarm optimization (PSO) paradigm to. simulate crowds in computer graphics.

According to the mechanisms jof; PSO, each person (particle) in the crowd
(swarm) can adopt the information to search a path from the initial position to
the specified target (optimum) automatically. However, PSO aims to obtain the
optimal solution, while the purposerofithis study concentrates on the generated
paths of particles. Hence, in order to generate appropriate paths of people in a
crowd, we propose a method to employ the computational facilities provided in
PSO. The proposed model is simple, uniform, and easy to implement. The
results of simulations demonstrate that using PSO with the proposed technique
can generate appropriate non-deterministic, non-colliding paths in several
different scenarios, including static obstacles, moving targets, and multiple

crowds.
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Symbols

V, The velocity of the ith particle.
R The position of the ith particle.

D; * The direction of the ith particle.

S,  The speed of the ith particle.

@ *  The weight for the previous velocity.

Pass * The best position where particle had been.

Pacs * The overall global best position ever achieved by the swarm.
(o) *  The cognitive parameter.

c, *  The social parameter.
r * Random number

(Q4.Q,,Q,) : The position!6f thé object Q.
(GQX 10q, 100, ) * The scope; of the object Q-

0] * The set ofall obstacles.
g * The target-of.the-particle.

Cops * Aconstant to adjust the relative importance between O and g.
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. Introduction

Today, virtual crowds created with the techniques of computer graphics can
be oftentimes seen in movies, games, advertisements, and the like. It is applied
to our daily life largely but in fact, creating virtual human beings behaving like
human beings is not an easy task. Many research fields and sophisticated
techniques are involved. In order to create high quality virtual human beings or
animals, at least three facets must be taken into consideration [1]: The first one
Is appearance modeling. Lots of computer graphic techniques are developed to
create a vivid human including the shapes of face and body, skin textures,
hairstyle, and clothes. Appearance largely affects people to judge how much the
computer creation is similar to a person or not. Then, the second facet is to make
realistic, smooth, and flexible motions in any possible situation. Most existing
methods for creating motions are parameter-based models with several
parameters to control the motions. Itis difficult to have a flexible, versatile
model which can fit in all situations:iEinally, realistic high-level behaviors have
to be generated for the virtual human.being. It is undoubtedly a difficult problem
because defining what behaviors are human itself is worth a philosophical
debate. To resolve the issue technically, many artificial intelligence and
agent-based techniques are used to achieve the goal, while the techniques are

still being improved and enhanced.

1.1  Motivation

Particle swarm optimization (PSO) [2] is an optimization paradigm
proposed in the field of evolutionary computation for finding the global
optimum in the search space. The concept of PSO is easy to comprehend, and
the mechanism is easy to implement. The ability of PSO to reach the position of
the optimum creates the possibility to automatically generate non-deterministic

paths of virtual human beings from one specified position to another. On the



other hand, if the target is the best position, the movement of a person is a
process to find a walkable path to the destination. For these essential reasons, we

propose the model to work with the original PSO for path creation.

12  Goal

In this study, we focus on creating a realistic smooth and flexible motion for
virtual human beings by utilizing the computational facilities provided in PSO.
In particular, we present a uniform conceptual model based on particle swarm
optimization (PSO) to simulate the motion of all persons in a crowd according to
the analogy between a swarm and a crowd. A person can be considered as a
particle, which would like to find a way to reach the best solution. The proposed
model can be used in several scenarios, including static obstacles, moving

targets, multiple crowds and geography.

1.3  Organization

The remainder of this papeér is organizedas follows.

® Section 1 describes the related.works on the crowd control to give the readers
some backgrounds and briefly introduces swarm intelligence and the
methodology of particle swarm optimization.

@® Section Il proposes the idea as well as the framework to utilize PSO for
controlling crowds.
Section IV demonstrates the simulation results in several different scenarios.

® Finally, Section V concludes this paper.



Il. Background

Collective behavior had been studied for a long time in many different research
domains but was applied to computer simulation only recently. The section digests some
related works and describes Swarm Intelligent and methods of particle swarm

optimization.

21  Related Works

In the field of computer graphics, Reynolds [3],[4] created a distributed behavior
model to simulate the aggregate motion of the flock. Bouvier [5] presented an
application specifically oriented to the visualization of urban space dedicated to
transportation. Brogan [6] described an algorithm for controlling the movements of
creatures that travel as a group.  Still {7]:developed a model to simulate the crowd as an
emergent phenomenon using -simulated -annealing and mobile cellular automata.
Helbing [8] used a model of pedestrian behavior to: investigate the mechanisms of panic
and jamming by uncoordinated-motioniincrowds.

Moreover, there are many studies.on-the realistic and real-time performance for
crowd control. Aubel [9] used a multi-layered approach to handle muscles of varying
shape, size, and characteristics and does not break in extreme skeleton poses. Tecchia
[10] showed a real-time visualization system based on image-based rendering
techniques for densely populated urban environments. Aubel [11] presented a
hardware-independent technique that improves the display rate of animated characters
by acting on the sole geometric and rendering information. Ulicny [12] defined a
modular behavioral architecture of a multi-agent system allowing autonomous and
scripted behavior of agents supporting variety. Treuille [13] presented a real-time crowd
model based on continuum dynamics. Stylianou [14] used a flow grid to measure flow
over an area and navigate the crowd.

Although there are many approaches for controlling crowds in computer graphics,

only a few researchers try to use evolutionary algorithms for the purpose. Kwong [15]



presented breeding experiments of dynamic swarm behavior patterns using an
interactive evolutionary algorithm. Kim [16] incorporated several specifically designed
mechanisms into the conventional particle swarm optimization methodology for

simulating decentralized swarm agents.

2.2 Swarm Intelligence

Swarm intelligence is a technique used in artificial intelligence, possibly first
proposed by Beni and Wang [17] in 1989. It studies the collective behaviors of agents
interacting in the environment. There is no centralized control to manage the agents, but
all agents exchange their information to cooperate and emerge group behaviors. Many
swarm intelligence systems are inspired by nature, including ant colonies, bird flocking,
and fish schooling. They have been adopted in a lot of applications, such as ant colony
optimization (ACO) [18], stochastic:diffusion search (SDS) [19], particle swarm
optimization (PSO) [2], and the'like.-.Even:for NP-hard problems, methods developed
based on swarm intelligence can'deliver good results. Among these swarm intelligence
systems, PSO models a solution asra-point on a surface and conducts continual

movements in the search space.

2.3  Particle Swarm Optimization

Particle swarm optimization (PSO) is proposed by Kennedy and Eberhart in 1995,
inspired by the social behavior of bird flocking or fish schooling. PSO is a
population-based optimization method and qualifies each potential solution as a particle.

In a D-dimensional problem, a particle can be represented as
X =[x, %, Xp [ (1)
Each particle has a position, a velocity, and an objective value determined by the

objective function. It uses the experiential and social metaphor to move toward

the currently known best solution. Table 1 shows the basic structure of a particle.



Table 1. The structure of a particle.

® Position

® \fector

® Objective Value

® Best Local Solution (BLS)

® Best Global Solution (BGS)

For per iteration, each particle updates its velocity and position. The
velocity is varied according to Equation (2) and the position can then be updated

according to Equation (3) :

Vi (t+1) =V, 1)+, 1, (Pys — P (t))+C, *1, *(Pygs — P (1)) )

P (t+1) =P(t) +V, (t +1) 3)

In Equation (2), P, and Py make‘particle move toward to the best position. c,
and c, are the cognitive and social parameters, controlling the level of influence of
P,s and P, to make different movements. r, and r, are random numbers

uniformly distributed in [0, 1]. The stochastic scheme makes the velocity more diverse.
The new position is evaluated by the given objective function, and an objective

value is assigned to the particle accordingly. Based on the objective value, P, . and
P, Might be updated and have influence in the next iteration. Figure 1 is a flowchart of

particle swarm optimization.

24  Summarization

This section introduces the related works about group behaviors and the basic
method of particle swarm optimization. In general, particle swarm optimization is
usually used to find the best “result” in search space. But we can find the fundamental

concept of PSO is quite similar to that of the movement of pedestrians according to

5



section 2.3. We would like to simulate a crowd with the optimization process that
particles move toward the expected and currently known best solutions. Instead
of modifying the conventional PSO and designing different mechanisms for different
Issues, we propose a conceptual model to work with PSO to create a non-deterministic,
non-colliding path for each agent with a uniform approach. The characteristics of PSO

can make the particles act as a group and simulate crowds by these particle groups.

Initial
L Set the position and the velocity of each particle.

Evaluate
L Compute the objective value by the objective function.

P
Update PgLs
L Update the Pg g% 0Of each particle by its objective value.

P
Update Pgas
L Update the Pggs.in.the swarm.

¥

_[ Update Velocity and Position }

Update the velocity and the position of each particle.

Figure 1. A flow chat of particle swarm optimization.



I11. Proposed Model

Although PSO does possess some characteristics of the crowd behavior, it is still
incompatible with the use for crowd control. Firstly, the particle in PSO is absolutely
free to fly through everywhere in the given multidimensional space. However, the
environment for a crowd may have obstacles, and the pedestrians in the crowd must
avoid collisions, including the collision with the given obstacles and the collision with
the fellow pedestrians, where other pedestrians can be considered as dynamic obstacles.
These dynamic obstacles are not predictable and may appear and disappear in the
environment at any moment. Moreover, it is important to make a virtual pedestrian to
walk smoothly and naturally, instead of just oscillate uncertainly and strangely. The
walking path must be reasonable and appropriate. To resolve the aforementioned
incompatibility issues, we propose,a framework to work with PSO such that the

movement of particles can be similar to'that:of real people.

3.1  PSO Essence

In the light of the analogy between.swarms and crowds, we may consider a person
as a particle and a group as a swarm. The structure of a particle is similar the Table 1.,
but we separate the velocity into a direction component D and a speed component S for
convenience. Each particle holds the information about itself, including a position, a
direction, a speed, and an objective value. The position and the direction can be

represented by 3D vectors®.

P =[PPy RS ()

D,=[D,.D,.D,] 5)

! Because the objects are simulated in 3D space, we observe the behaviors in x, y and z axes.

7



The direction and position are computed as

D;(t+1) =@ *D;(t)+c, *1, *(Py s — P (t))+C, 1, * (Pags — P (1)) (6)

P(t+1) = P,(t) + D, (t+1) *S, (t +1) )

where (P, —P(t)) and (P, — P (t)) are both unit vectors for indicating the direction

only. Other parameters are defined as the same parameters of the velocity in PSO.
The speed component S models and matches the variant paces of different people

and has a maximum limit. The range of speed is [0,V ]| and scales by the particle's
objective value. The Vv, is set by a step size with a random number. It is able to fit the

different pace of each person and to make the environment more dynamic. If a particle
approaches an obstacle, the speed will be slower to avoid it. The speed also decreases
gradually when a particle is close to the specified goal. The mechanism can eliminate
the collision issues and reduce the oscillatory situation that occurs near the optimal
solution in PSO.

At each step, each particle gets an objective value to measure the current position. It
is synchronous to update the local best position and the global best position based on the
objective value. Such a PSO mechanism will make the particles in the group converge
to the target. Moreover, we can adopt different objective functions to arrange the final

state of a group, such as a line, a circle, or other possible shapes.

3.2  Objective function

As a matter of fact, PSO is only interested in the final state of particles and cares
nothing about the particle paths at each step. It is very different from crowds in the real
world. In the real world, not everywhere on the ground can be stepped on or gone
through. There are obstacles, such as holes and buildings. Moreover, a person normally
also cannot step on another person. These situations contribute to the incompatibility of

PSO for crowd control. In order to resolve these incompatibility issues with an uniform



approach, we design an objective function to represent the specified target, the static

obstacle, as well as other particles.

3.2.1 Cost function for a unit obstacle

The objective value of a particle is affected by two factors: the target and the
obstacles. For the purpose to use the optimization ability of PSO, we make the target as
the minimum in the mathematical search space. If a particle approaches the target, it
should get a lower (better) objective value. All particles move toward the lower region
just like water flows downward. On the other hand, the objective value goes up as
penalty if the particle comes close to or even touches obstacles. Since PSO used in this
study for solving a minimization problem, we will view the objective value as “cost” in
the remainder of this paper.

We use an exponential function:to: represent everything in the search space,
including the target and the obstacles. The function for calculating the cost for an object

P relative to an object Q can be given as

Cost(P.Q) = exp{_[((Px QYR -Q)  (P-Q )22 D o

2 2
O-PX+0QX) (GPY+O-QY) (O'F,Z+O'QZ

Q can be a target, an obstacle, or a particle. For example, if an obstacle's area is 30, 40,

and 50, we can set (o, .0, .0, )=(30,4050) or set each edge with smaller
combinations. If it is the target, (o, .o, .0, ) is set to the whole search area. Figure 2

shows the exponential model for an obstacle.

The proposed exponential model is similar to the 3D normal distribution with a
mean and a standard deviation>. The difference is that every exponential function
representing an object in the system has its own volume size, while the volume size is

always one for the normal distribution. The different sizes in volume make it relatively

2 (Qx.Qy.Q; ) isthemeanand (o +0g ,0p +0q, .0y +0g, ) is the sandard deviation

9



easy to model the landscape for the pedestrians to go through. Overlaying these
exponential functions, a bumpy landscape with a minimum position as the target can be
created. Therefore, the overall objective function proposed in this study can be described

as Equation (9).

1
Cost(P,G) )

Fyp; (P) = Cgy; * max(Cost(P, 0))+

It has to be noticed that the set O contains not only all the specified obstacles, such

as holes and buildings, on the landscape but also other people in the crowd. We adopt
the identical model for everything in the scenario instead of developing different models
for objects of different kinds. By doing so, no extra models have to be introduced into
the system when new objects are included, such as moving cars or running animals.
Furthermore, the proposed madel induces. an-.interesting situation for PSO. Every
particle actually “sees” a different landscape-due to-the relative relations among particles.
Such a situation does not exist in-common optimization applications. Under this
condition, according to the results of this study;,-PSO can still appropriately accomplish

its assigned task, and the particles converge to the desired goal via reasonable paths.

T T
===pbstacle
—e—P1 (scope 10)
—EB— P2 (scope 20)| |

Penalty

Distance

Figure 2. The exponential model for an obstacle. The box indicates the obstacle to
be represented by the function with different object P;.

10



3.2.2 Local search for collision avoidance

Even with the carefully design objective function, the possibility for a particle to
pass through an obstacle still need to be eliminated. In this study, we implement this
functionality as a form of local search, which is a common operator used with PSO.
When we get the cost for a new position of a particle, whether or not the new position is
accepted should be checked. We use a stochastic mechanism to decide whether the new
position should be accepted according to the cost. The probability to accept a newly

generated position is computed by

prob(f) ~1-—- (10)

The shape of the exponential function is quite appropriate for estimate whether or not a
particle is too close to an obstacle: It helps tﬁe barticle to avoid collisions and makes the
path smoother. Moreover, there eX|Sts a ‘hard- boundary when k=1 according to
Equation (8), because the probablhty W||I be zero if f =e. Therefore, we can
theoretically verify that coII|S|0ns under thls checklng mechanism can never happen.

Figure 3 shows the probability to accept a new position around an obstacle.

0.8+

0.6

Probability

0.4

I obstacle
—_—k=-0.5
-—-k=1
—eo—k=2

|

80 100

0.2

’? 00 Bb

Distance

Figure 3. The probability to accept a new position around an obstacle with
different k. The scope of object P is 10.
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If the cost is not accepted, another direction must be taken to create a
smooth path. We use two steps to find an acceptable position. First, according to
the direction decided by Equation (6), a random angle less than 90 degrees is
added to or subtracted from the direction vector of the particle. This kind of the
random direction would be generated several times and the position with the
lowest cost is chosen. Following, based on this direction, do a grid search with a
fixed angle. The better position is chosen to be the new position. If only with
random angle to do local search, it is possible to find no way to walk. Particles
often stop if meeting an obstacle. On the contrary, if only fixed angle, it is
changeless when particles locate in same position. Therefore, we integrate both.
The random search can be regard as a viewpoint to find a walkable area. The
grid search can be regard as eyeshot to find a walkable position in the area.
Figure 4 shows the local search area: The gray area is the range of random search
base on V determined by PSQ. The yellow area is the range of grid search base

on V" which is selected by random search.

<<

Mu*nﬂwﬂmw-mmwmmm”nmnnuy

V‘l

Figure 4. The local search methods in our system.
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3.3 Summarization

This section dwells on our proposed model and methods. It is reliable to guide
particles toward their target with particle swarm optimization. An identical model makes
the system more flexible. The mechanisms designed in local search allow particles to
qualify the ability to avoid collisions. Hence, particles in our model can move with a

reasonable path.

13



IV. Moving Path Generation

With the proposed framework, we simulate several showcases on the x-z plane®,
just like to have a bird's eye view on the top of people's heads. For expediently
observing, we show the walking paths generated by PSO in 2D space. Each simulation
includes two cases. There are two kinds of figures to show our results. Path figure
displays the paths of all particles in whole process. State figure depicts the condition in a
moment. By these two kinds of figures, we can image the dynamic scenery in the
simulation. Each simulation has one state figure at least. For convenience, we collect the

state figures in appendix. Table 2. The Indication for each symbol in figures.

Table 2. The Indication for each symbol in figures.

Symbols Indication

Start Goal Position

Solid:line A-path of a particle.

Filled area Obstacles.

Circle A person.

Quiver | The direction of a person.

4.1  Crowd Simulation by using the Original PSO
We first attempt to simulate a crowd by using the original PSO. The parameter
settings for PSO are @ =1.0, ¢, =0.5 and c, =0.5. The population size is 20, and the

initial positions are assigned. The velocities are initialized at random.

¥ Because the y-axis represents the height in the 3D space, the ground surface is the x-z plane.
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4.1.1 Without Obstacles

Figure 5 shows an influx. Each solid line indicates a path of a person. People
initially are scattered and finally converge to the target. Figure 6 shows a stream. People
who on the left side move toward the right side. e can observe that they converge first
and move toward the target together. For an influx or a stream, the appropriate paths can

be created under the mechanism of the original PSO.

Figure 5. The paths of influxes can be simulated by: the original PSO. The curves indicate the
paths of people in the crowd.

A

Figure 6. The paths of streams are generated by the original PSO. They simulate that a crowd
moves from position A to position B.
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4.1.2 With Obstacles

The original PSO can make all persons to reach the goal automatically, but it does
not have the ability to make the particles to avoid obstacles as shown in Figure 7. We set
an obstacle on the way from position A to position B. It can be observed that the original
PSO with the mechanism of the penalty can guide the crowd to select a better way to
avoid the obstacle. Sometimes it is successful to avoid the obstacle successfully, but it is

not implicit.

7
Y<=#An obstacle

[}
[}
I
[ ¥

- A-n-ol:i>stacle

Figure 7. The original PSO can guide the crowd to find a better way, but it is still like to have
a collision.

4.2 Crowd Simulation with Collision Avoidance

The collision avoidance mechanism has to be employed in the same situation.

4.2.1 With Dynamic Obstacles

Avoiding collisions between persons in a crowd is a necessity for generating
reasonable paths. In this study, we do not resort to any extra method or mechanism to
solve this problem. In the proposed framework, each person is considered as an obstacle
with & =5. If two persons come close, the cost of each person will be checked, and an
acceptable position for each person will be determined. Stream cases are simulated in

Figure 8. It holds a distance between particles, and don’t converge first.
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Figure 8. Two stream cases are displayed in our system.

4.2.2  With Static Obstacles

We also place an obstacle between bds‘ition A and position B. Figure 9 shows a
crowd passing by a static obstacle in our isyst?e‘m. :Based on the paths, we can see that the
crowd can avoid the obstacle éﬁd reach the “goal. 'ﬁhe crowd will keep a distance to the

obstacle, because the solid line is the position Center of a particle, not the volume.

Figure 9. The situations for collision avoidance in our system are presented.
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4.3  Other Crowd Simulations
Three types of crowds are simulated in our system, including Dynamic Target,

Multiple Crowds and Geography.

4.3.1 Dynamic Target

In addition to the fundamental path generation presented in the previous sections,
we also conducted experiments on the crowd simulation with a dynamic target in our
proposed framework. As the goal moves, the crowd is capable of following the moving

target as shown in Figure 10.
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Figure 10. A circle crowd and a wave crowd are simulated.
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4.3.2 Multiple Crowds

Furthermore, in our framework, simulating multiple crowds going toward different
targets is a trivial extension. Multiple groups can be overlaid on the same area such that
more complex scenes are made possible. Figure 17 and Figure 18 demonstrate that four
groups in the four corners move toward their opposite corners. The different symbol
represents the person in the different group, and each group consists of ten members.
There are four obstacles with different sizes at different positions. As time goes by, each

group can pass by these obstacles and reach their respective targets.

4.3.3 Geography

It is feasible to simulate a crowd in different topography in our system. \We adjust
the parameter k in Equation (10) to fit different situations. Figure 11 exhibits different
topographies for people move from.left:side to right side. We present 3D scenery and
each sphere represents a person: It is.explicit to-find the altitude is higher, the accept

probability of people is lower.
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Figure 11. Three different topographies.
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V. Conclusions

This paper proposed a uniform model to simulate crowd movements based on
particle swarm optimization. We considered that people finding a walkable path to their
goal as the process to find the optimal solution by PSO. The advantages of PSO are
simple, fast, and easy to implement. By the PSO mechanism, each person can search for
a path automatically. However, particles controlled by the original PSO may penetrate
an obstacle. Hence, we developed the collision avoidance mechanism in a form of local
search to work with PSO. Static obstacles, dynamic obstacles, and the target were all
modeled with an exponential function. Combining these exponential functions, the
scenario environments were constructed, and the particle paths were generated by the
proposed framework.

The proposed method in this study.is.compact, coherent and controls the crowd
movement easily. Based on the .uniform maodel, we can demonstrate a complex
crowd-space to stack up several different crowds, and the created paths are more
dynamic, non-deterministic. Althoughithis=study is not the first to apply the concept of
swarm intelligence on crowd control; to.the best of our limited knowledge, it retains the
most design of the original PSO and almost leaves PSO unmodified. The proposed
model is flexible, versatile and can be used to represent a variety of objects.

The future work includes understanding how the parameters affect the paths,
determining whether functions of other classes can be employed for creating better paths,
and integrating the framework into the existing computer graphics systems. Theoretical
insights into the crowd behavior might also be obtained through the development of the

proposed framework.
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Figure 12. The conditions for a influx by the original PSO.
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Figure 13. The conditions for a stream by the original PSO.
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Figure 14. The conditions for collictions by the original PSO.
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Figure 15. The conditions for a stream in our system.
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Figure 17. Four groups in the four corners move toward their opposite corners. (Case 1)
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Figure 18. Four groups in the four corners move toward their opposite corners. (Case 2)
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Figure 19. The condition for a crowd moves following a dynamic target.
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