Pl RGN e UV F Y ¥ 5 SGh
A Case-Based Planning Scheme to Support U-learning

Application Design

FE R T EMPE RN R R @Y S ARGRP
B BUMEYPREY ¢ 50 3F 5 BRSO BT Glde B Y Kk
Fes KA R SRR ﬂ?éﬁéﬁ’#&rs UtEY B B amkit S Ao a o
gt PR Ui Y A2t 3R — B RFEE A ML e
Bolaraerie & g i EAF U B A SRR R - BATUR Y AR5 AL
A 3 R Es e Ft o AP R BN R R R AT T AR g
A AR L P A B R RGIRE L FF P AR F NG KR
ﬁiﬁﬂ“ﬁﬁﬁ@?ﬁﬁﬂ?ﬁﬁ’ﬂﬁﬁﬂ—%%%\$W\%%ﬂﬁ”%
MUY AR L RO X M2 pE G KRR AT U B AR K At l‘%”éi

ORGP o P R R e i - B AR AR s 1 Y
H- B RN PR R gk JEY - BROES -

FEirerle s o @ F BESFR D - EIRIFITEA 5 pLoh > AP L R L X[EfrE

H - ek P Y RF U R AN E2 T - B A
AR - BRI EEGB I Nk AL P s

/7

\v

o
3‘?

B
b
- RS
e 3
ﬂ o

\m fx»
|

.5: "
b

_.
lagt

Zofo Efs o NP R - 'ﬁpq‘é‘%f’}ﬁﬁ?mﬁi’”@%?ﬁa%’ Mm% BT
FvVEX o

MiE: @ 26 B -H£Y-UEY

A Case-Based Planning Scheme to Support
U-learning Application Design

Student: Fu-Ming Wang Advisor: Shain-Shyong Tseng

Institute of Multimedia Engineering
National Chiao Tung University

Abstract

In recent year, due to the development of wireless network and embedded system,
researches about U-learning become more and more popular. However, the design of
U-learning application is costly and time consuming since cross domain technologies
are required such as software learning content system, handheld device, embedded
sensor, etc. With our surveys, many U-learning application designs can be
decomposed as a set of services and messages with similar Control Flow Knowledge.
Thus, it is helpful if we can reuse previous design ideas when designing a new
application. Therefore, the idea of Case Based Planning (CBP) approach is proposed
to support the new design. Moreover, different from the traditional CBP, the idea of
reusing fine-grained case is also proposed to adapt the requirement of new case design.
Consequently, in order to reuse the design ideas of existing applications, we propose a
Hierarchical-Case-based Planning (HCBP) scheme to store applications design as a
case and support new U-learning application design. In the HCBP scheme, a plan is
used to represent the Control Flow Knowledge of an application. To enable
fine-grained case reuse, a three-layer case hierarchy is defined, where a case is
composed of a set of tasks and each task is composed of a set of services. In the
HCBP scheme, we define a set of features to describe case and task in U-learning, and
a message ontology is constructed for the reference of existing U-learning
applications. In the HCBP scheme, the case retrieval, and case adaptation operations
are proposed to fulfill the requirement of the resulting plan. Finally, a trial experiment
about designing a new botanical garden guiding application using HCBP is done, and
the resulting plan is acceptable.

Keyword: CBR, Planning, U-learning

=
:‘!;:

> %L

Thme oz FALR Nl i > § F22EFF o GG AT
Eaho i R LA ALt 2 R
AARIT o BABAR Ry S 2 BIEL Y 2 A4 i e
RABD LA G o PR RPN T BL R PEERR T AR
FRMKE WP ARG IAFRTRL > E AR L FRAEEYE
FRERSLREHT L SRS EfoHE 2 L AR AP
FHRRE Pl BEImFEANGRTENER S B2 R A

E%Q o

Btk AL R Rl B A B RE A RF T
FEEF o PR EHIR T PR EHEP S kBT R h s A8
G B hipS EapERAE s 2 FAFE VAR ET o B iPRpEES
BREBETEMRLAE B8 I v ek HEE 3 7&1#%#?&@55‘1”
Ao B HU AL FHB AT A BREE A - - R A e AR
SRR O F A R B

Bofd &R HNE AR B R R FAUR > X7 RN £ AR
P RAAERL FEPIORE S o PR A g Ly PR 2 %
i o

Wik R h v prip s - A A Festat o

Tables of Content

N 1511 - ot APPSR iii
Tables of ConNtent......ccoviiiiiiiiiii v
LISE OF FIQUIES...eeeeeieeecee ettt e e e s Vi
LISt Of TADIES.....eeiieee e vii
LiSt Of AIGOMTtNMS....oeiiiiiieeeee e viii
Chapter 1. INtrodUCTIONcooiviieeiiee e 1
Chapter 2. Preliminaries........cueeeeiee e e 4
2.1, U-learning APPIICALIONccveiiieiiiceneeeeeeeeee e 4
2.2. Ontology IN U-1€ArNINGceeeiiiiienineneeeeeeee e 5
2.3, Case-based Planningccoceeieieienenineneeeeeee e e 6
Chapter 3. Hierarchical-Case-based Planningcccccceevecvvveeeecnnneenn. 8
3.1, DeSired Task FIOWcceevuieieeieie et 11
3.2, Case RePreSENtatiON..........coceereeereeueeiieitenieiesie s ste sttt etesee e sse e 14
3.3. Message Linking and Message Ontologycccccoeeererereeienienienieniennene 20
3.4, Case RetrieVal ... e s stossasmrs silssasnaamss o 0aieeccreesveereesesseesseesesssesens 21
3.5, Case AJapLationcccecererererieeneei ettt 28
Chapter 4. U-learning Application HCBP System...........cccoceeeevennneen. 35
4.1. Case Hierarchy for U-learning Application...........ccoceeveveeeeieieniencnene. 35
N |V (X157 Vo Tl @ 1 1 (0] [0SR 37
4.3. Features for U-1€arning.......ccccceveeiieriieneniescereceeeee e 38
Chapter 5. Application and DISCUSSION.........cc.eeeeevecvvreeeeeiieeeeeeeivreen. 41
51 BotaniCal Gardencccooeriririnirieeeteeeeee ettt 41
Chapter 6. CONCIUSION........ccoiiiiiiiieeeceee e e 48
RETEIENCE. ... s 49

List of Figures

FIGURE 3.1 DIFFERENCE BETWEEN COARSE AND FINE GRAINED CASE REUSEcoevueeiviesieesieesveenns 9
FIGURE 3.2: HIERARCHICAL-CASE-BASED PLANNING......cccttteiteestiteseeesieeesreessseesseessseessseessseessseessees 10
FIGURE 3.3: TASK FLOW OF MUSEUM GUIDING APPLICATION ...cccvtiiieertieesireenireesreessneessneensneesssesnsees 11
FIGURE 3.4: RELATIONS BETWEEN DESIRED TASKSccttiittteiteertteeseeestreeseeesseeessesssseesssesssseessesssees 13
FIGURE 3.5: A CASE SCHEMA IN HCBP ..ottt ettt sttt sttt saae s saae e saae e eneeaae s 17
FIGURE 3.6: CASE FEATURE TABLE GENERATIONtttiititiitteeiiteenieeestteesteeesereessseesaseessseessseensssesssesnsees 19
FIGURE 3.7: MESSAGE LINKING AND MESSAGE ONTOLOGYceeiuvieiieeiuieesireenieeesseessseesssessseeessesssees 20
FIGURE 3.8: CASE RETRIEVAL AND CASE ADAPTATION....uttiiieettieseeeitteesireestreesseessseessaeessseesssessseeas 22
FIGURE 3.9: SIMILARITY OF FEATURES VALUE TYPE “STRING IN CATEGORY”.....cccvvvvevveerriesreennenn 23
FIGURE 3.10: SIMILARITY FOR FEATURES VALUE TYPE “STRING IN MESSAGE ONTOLOGY” 24
FIGURE 3.11: SEQUENCE SIMILARITY ..uutiiiieeiitieiteeesteeestteesteeessaeesseeessseessesesseesnsssesssesssssessssssssessssesnsees 27
FIGURE 3.12: TASK (TASK FLOW) PLANNING OPERATION.c.crttteterteeeierieteresieneesesiesesessensesessensenes 29
FIGURE 3.13: MESSAGE PLANNING OPERATIONcccuttiitieeittteiteestreeseeessseessaeessseesssesssssssssesssseesssssnsees 30
FIGURE 3.14: SERVICE PLANNING OPERATIONccititiiiureeiteeeiieeesetesseessseessesssseessesssssessssssssassesssess 31
FIGURE 4.1: CASE HIERARCHY ...oecutiiuiietieitieiteeiteeitesaeetteseesteesseessesasesnseesaessseseesseensesssesasesssesssessesnsennns 36
FIGURE 4.2: CASE REPRESENTATION FOR MUSEUM GUIDINGcovveiuienrieneeereesreenreesteenseeresneseeesseesseensesnns 37
FIGURE 4.3: MESSAGE ONTOLOGY CONSTRUCTED FROM TWO APPLICATIONS......ccccveverreeireerreerenns 38
FIGURE 5.1: DESIRED TASKS. . uiiitiiitiitieeeetteeteeeteesteeiseseeseesseeaseessesssesssssssesssessesssesssessessessssssesssesssesnns 42
FIGURE 5.2: DESIRED TASK FLOWuviiiiiiiiitieiteeiteeitesaesseesseesseeeseessesseeseesseesseesseesesssesssesssesssessesnsesnns 42
FIGURE 5.3: DESIRED TASK METADATAocutiiiieieiestestesetesteeessansessessesssssesseessessessessessessessesssensessenses 43
FIGURE 5.4: POSSIBLE DESIRED CASE FEATURE TABLEocuvvteiieierietereeeteseeeeaestestessessesseessessessesses 44
FIGURE 5.5: COMPLETE CASE RETRIEVAL ...ecvveuteiieierienterteeteeeeetessessestesssssesssessessessessesssssessesssensessenses 44
FIGURE 5.6: THE RETRIEVED CASEuiitietiitietieteteiestestestessesseessessessessesssssessssssessessessessessessesssensessesses 45
FIGURE 5.7: THE RETRIEVED TASK ...ceiitttiiteiitteitte ettt erite ettt site et siee st e s satessbe e e satessbeeesaeessneeesanesnneees 46

FIGURE 5.8: DIFFERENCE BETWEEN DESIRED TASK “RETRIEVE W & LA RELATED CONTENT” AND

TASK “RETRIEVE LA RELATED CONTENT” ...oviiiiiiiiiininee s 46
FIGURE 5.9: MESSAGE INSERTIONcocuitiiiiiiiiieieie ettt bttt 47
FIGURE 5.10: TASK INSERTIONcovitititiiiiiiiiiinie ettt ettt 47

vi

file:///C:\Documents%20and%20Settings\taj\My%20Documents\�ڤw�������ɮ�\Thesis_final.docx%23_Toc174
BT

List of Tables

TABLE 3.1: FEATURE TYPES FOR TASK ..vviiitiieiirieiieeeireeessseeasssesssssesssssssssssessssssssnseeens 18
TABLE 3.2: POSSIBLE CASE FEATURE TABLE......ccciiiiiiiiiiiieesitee e e sieeeesieeessieeesnineesnne e 18
TABLE 4.1: FEATURES FOR TASK DESCRIPTION ...vtiiiitiiieeiiiiiieeesirreeessssrneeessisneessnnsnenas 40
TABLE 4.2: FEATURES FOR CASE DESCRIPTION ...ecitviiiiiiieiiiieeeitieeesireessiseessseeesnsneesnneens 40

Vii

List of Algorithms

ALGORITHM 3.1 TIMATCH. ...etieiiie ettt e e ssae e nne e e e nnaeeanee e 25
ALGORITHM 3.2: SOMATCH....cttiiee ettt ettt et e e e e tbe e e e et e e e e e e ar e e e e e anareeas 26
ALGORITHM 3.3: CASE REUSEeiiiitiieitiie et e sttt e st e siee e ste e snteeesnteeasnaeesnnseesnnneesnneeens 33
ALGORITHM 3.4: CASE REVISEeiiiiiiieitiie et e ssteeestee e stee st e e snte e snte e s snseesnneaesnnneesneeeas 34

viii

Chapter 1. Introduction

In the past decade, E-learning becomes popular due to the widespread network
and computers, and enables learning activities progressing at anytime and anyplace.
Recently, with the development of wireless network, sensor technology and
embedded system, it becomes possible to cooperate the computing and information
powers in an environment. From the Weisor’s vision [18], he described that a variety
of computing and communication capability computers will be ubiquitous around our
environment and the associated technology is called the ubiquitous computing. In
recent years, the ubiquitous computing technology is further applied in seamless
learning and is called U-Learning.

The computing and communicating capabilities (such as sensors, robots or RFID
tags) can be embedded or attached to ordinary things and let them behave smartly to
provide intelligent services. This feature of context-aware reasoning mechanism for
the user centric service is called the ubiquitous intelligence [17]. In the U-Learning
domain, the context-aware property can provide more intelligent services than
E-learning. Therefore, we model the U-learning service design as a system composed
of reasoning systems used for context interpretation, content retrieval systems, and
devices used for context collection, content displaying, etc. In other words, a
U-learning service design is a heterogeneous environment composed of software and
hardware components to achieve context-aware.

Based on our observation, each component has the same model, which means
all of them composed of input message, operation and output message, therefore, we
take these components as service, then a U-learning application is the Control Flow
Knowledge that describes the sequence of services. In an application, a service is

triggered by an input message that happened in the environment, such as learner
1

approach, after the first service operation is done, it sends its output message to
another service to trigger it according to the Control Flow Knowledge, making a flow
of service. Notice that services can be triggered parallelized other than just a linear
sequence. Consequently, we can say that to design a U-learning application is actually
design a control flow of services. However, as mentioned above, a U-learning
application is composed of devices and systems, making it difficult and costly to
design a new application because all services including software systems and
hardware devices have their environmental and functional constraints, and to
construct Control Flow of U-learning application involves many kinds of domain
expertise such as education, software system and hardware device.

Many researches have been proposed to design some specific U-learning
applications, such as Japanese polite teaching [21], knowledge awareness map [11],
requirement satisfied learning [2], which will be introduced in next chapter. Since
most of them have some similar features, such as getting learner’s identity at the first
of the application or trying to provide the most suitable content to learner, how to
reuse the design ideas to of these features to reduce the cost of designing a new
application is a challenging and interesting issue. Nevertheless, each U-learning
application is an independent system, the design ideas only can be reused after
designer survey all the articles of relative researches, and when system becomes
larger and larger and paper becomes more and more, it is hard for a designer to afford
the huge amount of information. Moreover, it is also hard to integrate multiple
designs together and to fulfill each service’s requirement and constraints manually,
therefore, we want to propose a systematic mechanism to help retrieve and reuse
existing Control Flow Knowledge.

However, in order to reach this goal, there are three issues we have to overcome.

First, the Control Flow Knowledge is usually implicit and embedded in the system,
2

how to represent it is an issue. Second, how to find similar U-learning application for
reuse? Third, in order to integrate parts of different U-learning application, how to
find and integrate these applications becomes a problem. Hence, we propose
Hierarchical Case-based Planning (HCBP) scheme to solve the problems. In our
approach, plan is used in order to draw out Control Flow Knowledge that embedded
in U-learning application system originally; Case-based reasoning solves similar
application retrieval, and hierarchical planning solves application integration and
ensures the flow correctness. In the proposed scheme, designer is ask to give a task
flow of an application first, and then HCBP system is used to retrieve and integrate
applications, at last, an appropriate services set and Control Flow Knowledge is
produced.

In the next chapter, some related researches are introduced and discussed. The
HCBP scheme is introduced in Chapter3 and U-learning application is applied to
HCBP in Chapter 4. Evaluation and discussion are addressed in Chapter 5, and at last,

a conclusion about HCBP is given in Chapter 6.

Chapter 2. Preliminaries

In this chapter, some common U-learning Applications are introduced first. Since
ontology plays an important role in our research, previous researches using ontology
in U-learning are next reviewed. Finally, we will introduce several previous
researches about case-based planning and discuss the capability of existing case-based

planning systems.

2.1. U-learning Application

At present, there are many U-learning applications have been proposed. Among
them, several applications that are representative are introduced. More U-applications
are shown in [3][7][14][16][22].

The U-learning system for Japanese Polite Expression proposed in [21] can
provide learner proper polite expression should be used according to the occasion. In
which PDA is used as the content display device and each learner are asked to fill in
his or her own profile first. And learner’s location is confirmed by GPS or RFID
according to the environment is indoor or outdoor, or by schedule; therefore, the
occasion is judged by location and time. When a learner talks to a conversational
partner, the system gets the information for the person via the infrared data
communication of the PDA, and then suggests propriety polite expression for the
learner.

In [11], a personalized knowledge awareness map system is proposed to provide
a knowledge awareness map that shows the distance and relation degree of learning
materials and peer learners related to learner’s input from a PDA. In the application, a
leaner is asked to input a query topic that he or she is interested in, the system finds

out the related materials and peer learners who are familiar with the learner’s input
4

topic, and then the locations of the most related materials and peer learners chosen are
retrieved in location repository and distances between the learner and the retrieved
materials and peer learners are calculated. Finally, a related material and a peer
learner knowledge awareness map are generated respectively using the related degree
and distance, and then displayed to learner.

In the requirement satisfied learning environment system [2], a teacher or a
parent has to set some requirement to the learner first, e.g., the learner is not permitted
to play video games without completing the homework. In the learning environment,
RFID tags are deployed on the objects in order to detect the learner’s behavior.
Afterwards, if something in conflict with the requirements was done, an alert is
showed to the learner, parent or teacher.

As U-learning applications introduced above, each application has its own
Control Flow Knowledge. To reuse the Control Flow knowledge in existing systems

will be helpful when designing a new large and complex application.

2.2. Ontology in U-learning

Ontology is a knowledge representation model that specifies the concepts and
relations of knowledge and has been used in various research domains, such as
knowledge engineering, natural language processing, knowledge management, etc. to
facilitate knowledge sharing and reuse. In [15], a context description model using
ontology is proposed for U-learning. The author conceived that context aware is an
interactive model between learners and service and two types of context ontology,
learner ontology and service ontology for describing learners and services are
proposed. The learner ontology contains learner profiles such as personnel profile,

accessibility and preferences, calendar profile, social profile, and location profile, and

the service ontology contains service profile such as input, output, pre-condition, and
effect of service execution. In our research, we construct a message ontology to
maintain the relations between messages used in U-learning and support case retrieval
and adaptation. The message and message ontology will be illustrated in next chapter

detailedly.

2.3. Case-based Planning

Case-Based Planning (CBP) is an approach that reuses existing plans to solve
new problems that similar to previous ones. Traditional CBP is single-shot, that is, a
single coarse-grained case is reused to solve the present problem. In general, a
coarse-grained case-based planning system generate new plans by retrieving and
adapting old ones in case base [4][6][13], and the retrieved plan should be the one that
need least adaptation to fit the current situation. The disadvantage of traditional CBP
is that it is inadequate to solve complex problems, and a more complicated adaptation
method has to be designed to adapt the retrieved plan to the new problem.

On the other hand, there are some researches about fine-grained CBP have been
proposed to enhance the capability of CBP and make multiple-case reuse possible.
In[1], a fine-grained case-based reasoning system used to generate simulation plans is
presented based on the concept that problem solving experiences can be partitioned
and used as independent cases. In the system, when the retrieved cases are not similar
enough, a secondary retrieval is executed. That is, the system tries to retrieve partial
plans that satisfy the new problem instead of retrieving a complete one. In research
[15], the author proposed an approach for plant-control design. Cases are used at
multiple levels of abstraction to represent complex problem solutions as hierarchies,

where abstract case solutions are used to act as problem decomposition knowledge,

and concrete case solutions are executable programs. This kind of case hierarchy
promotes the reuse of solution parts from different complete solutions to reduce the
adaptation overhead. However, both of them are used in pure domains that are not as
complicated as U-learning in which more information and constraints have to be
concerned; therefore, their planning approaches are not suitable for U-learning.

In [10], a novel framework to support workflow modeling and design by
adapting workflow cases from a repository of process models is proposed. In which
the authors proposed a conceptual model of workflow cases, a similarity flooding
algorithm for case retrieval and a domain-independent Al planning approach to
workflow case composition. Comparing to other general case-based planning systems,
the workflow modeling approach is special because it concerns the workflow when
retrieving similar cases instead of just concerning some features that utilized for case
description. However, when retrieving a similar section of workflow, only a totally
matched section will be considered; therefore, this approach is not proper for
U-learning application design because a U-learning application plan needs more

flexibility.

Chapter 3. Hierarchical-Case-based Planning

As mentioned in Chapter 1, there are three issues should be solved before the
Control Flow Knowledge in existing U-learning application could be reused. First,
how to represent the Control Flow Knowledge which is usually embedded in the
system code? Second, how to find a similar U-learning application for reuse? Third,
how to find and integrate some tasks of applications to construct a new application
according to designer’s requirement? Above all, in order to reuse Control Flow
Knowledge of U-learning application, case-based reasoning is the approach that
suitable for use, in which each application is considered as a case. Moreover, in our
approach, plan is used to represent the Control Flow Knowledge of U-learning
application, and a case adaptation algorithm is proposed to integrate and adapt the
retrieved cases.

In a U-learning application, there are a lot of components involved in, crossing
software and hardware domains. For example, sensors and RFIDs are needed to
gather information in the environment; programs are needed for context interpretation
and context-aware content retrieval; repositories are needed to store up learning
materials and information like learner’s portfolio; PDA, mobile phone, tablet PC, etc.
are needed for content displaying. Therefore, inter-domain communication between
these components to construct a U-learning environment is significant, and this kind
of domain complexity increases the difficulty of planning for U-learning application
design. Based on our observation, each component has the same operation pattern,
that is, an input message, an operation and an output message. In order to simplify the
planning process, each component is considered as a service here. Services are the
primitive component in our approach; in other words, the Control Flow Knowledge of

an application is actually a flow of services.

As mentioned in previous chapter, to construct a U-learning application is not an
easy work due to the complex domains involved in. Besides, a U-learning application
is adaptable to the situation of the environment; it may have different response in
different situations. That is to say, U-learning application is more changeable than
traditional E-learning application, and makes it even harder to generate a plan of
Control Flow Knowledge. Therefore, when using CBR to reuse previous designed
applications, a fine-grained approach is proposed. In a fine-grained approach, a new
plan can be generated through combination or modification of several retrieved cases
if needed, instead of reusing only the most similar coarse-grained case. The difference

between fine-grained and coarse-grained case reuse is shown in Figure 3.1.

Sub-plan 2
(from Case B)

Reused Case A
e =
Sub-plan 4

Figure 3.1 Difference between coarse and fine grained case reuse

Sub-plan 3
(from Case A)

It will take a lot of efforts for adaptation if only a coarse-grained case is reused in a
complex domain such as U-learning. As a consequence, we propose a hierarchical
case representation model let a case be reused in different layer of granularity, from
coarse to fine, hierarchically. In our proposed case model, we defined the case
granularity into three layers, where an application is considered as a case, a case is
composed of tasks, and a task is composed of services. The detail of case
representation will be illustrated in Section 3.2.

In order to reuse hierarchical-case, we proposed a Hierarchical-Case-based
Planning (HCBP) scheme, in which designer is first asked to input a Desired Task

Flow, the description of each Excepted Task, and the description about the whole case
9

in his or her mind. Subsequently, a Possible Desired Case Feature Table is generated
from the designer’s input. Afterward, a most similar and reusable case is retrieved
from the case base and then case adaptation is carried out according to the designer’s
input. In the proposed HCBP, the adaptation process includes case reuse and case
revise process in traditional CBR. When adapting the most similar case, a fine-grained
case retrieval is executed to retrieve parts of cases that suitable to be replaced or
added into it. Finally, a resulting new case satisfy designer’s input is generated, and
then the new case is retained in the case base. The whole process is shown in Figure

3.2.

Designer
Desired Task Flow Chart
Desired Desired
Task 1 Task 2 Desired
Desired Task 4
Task 3
Hierarchical Case-base Planning
> Case Retrieval Case base
Case Adaptation
Case Reuse .
- Case Retain
Case Revise
Resulting
Case

Figure 3.2: Hierarchical-case-based planning

10

3.1. Desired Task Flow

From user’s point of view, a U-learning application can be seen as a flow of

desired task. For example, when designing a museum guiding application, the

designer may intend to get learner’s ability first, and when learner approaches an

exhibition, the approached exhibition is confirmed. Afterwards, the system will

retrieve related materials or information about the exhibition that are suitable for the

learner according to the learner’s ability. At last, the retrieved material or information

about the exhibition is displayed to learner by a mobile device. In the example, each

step is considered as a desired task; the whole process of desired task flow of the

example is shown in Figure 3.3.

Get
Learner’s Implication
Ability Retrieve W & Display the
LA related —> (Contentto
Content learner
Get Plant
Type

Figure 3.3: Task flow of museum guiding application

The definition of Desired Task Flow is shown as follows:

Definition 3.1: Desired Task Flow

DTF = (DT, DSR), where

1. DT = {dty, dty, ..., dt,} is a finite set of desired tasks

2. DSR = {dsry, dsr, ..., dsrp} is a finite set of sequence relations, will be illustrated

later.

11

A U-learning application may be not always as simple as the one shown in
Figure 3.3. In many circumstances, the relations between tasks are not only the
“implication” but also some other relations. Here we defined several kinds of task
relations for the designer’s input desired task flow. The first kind of relation is
Implication, which is the most common relation appears in all applications, as shown
in Figure 3.4(a). Other relations are extensions of the Implication relation, such as
And, Or, and CJ'. For the And relation, there are two situation, the first one is shown
in Figure 3.4(b). In this situation, the subsequent task will be triggered only when all
of its antecedent tasks are done, and in the second situation, after the antecedent task
is executed, it will trigger all of its subsequent tasks as shown in Figure 3.4(c). For the
Or relation, there are also two situations. In first situation, the subsequent task will be
triggered when either one antecedent task has been done, as shown in Figure 3.4(d),
and in the second situation, after the antecedent task is executed, it will trigger one of
its subsequent tasks as shown in Figure 3.4(e). For the last relation CJ', the first
situation is shown in Figure 3.4(f). In this situation, only when n antecedent task of
the total m is done, the subsequent task is triggered. In the second situation, n
subsequent tasks out of m will be triggered after the antecedent task is done, as shown
in Figure 3.4(Q).

It is worth to mention that the relations defined here is the most frequent
relations may appear in a U-learning application, they are not powerful enough to
handle complex circumstances. In this thesis, only the relations defined above are

discussed.

12

Implication

Antecedent Consequent
Task Task

Antecedent
Task A

Antecedent
Task B

Consequent
Task

Antecedent
Task N

(a) The Implication relation

Antecedent

Task A Or

Antecedent
Task B

Consequent
Task

Antecedent
Task N

(d) The Or relation 2

Consequent
Task A

C(m,n)

Consequent
Task B

Antecedent
Task

Consequent
Task N

(9) The C™ relation 1

(b) The And relation 1

Consequent
Task A

And

Consequent
Task B

Antecedent
Task

Consequent
Task N

(c) The And relation 2

Consequent
Task A

Consequent
Task B

Consequent
Task N

Antecedent
Task

Antecedent

Task A C(m,n)

Antecedent
Task B

Consequent
Task

Antecedent
Task N

(e) The Or relation 2

(f) The C* relation 1

Figure 3.4: Relations between desired tasks

For each Desired Task in a Desired Case, a Desired Task Metadata is used to

describe the task, and the Metadata is actually a set of features; for a Desired Case, a

13

Possible Desired Case Feature Table is used to describe the Case. After the Desired
Task Flow is constructed, the designer is asked to fill in the feature tables for each
Excepted Task and some feature values about the Desired Case. And then a complete
Possible Desired Case Feature Table is generated by aggregating designer’ input.
Notice that the features for Desired Task are the same as Metadata of Task in case
base, and the features for Desired Case are the same as Cases in case base. Details of
these features and the aggregation process will be discussed in next section. The
definition of Desired Task Metadata and Possible Desired Case Feature Table are

shown below:

Definition 3.2: Desired Task Metadata

DTMD = (<F, V>, ..., <F, V>), F is the features that used for task description, and

V is the values of features.

Definition 3.3: Possible Desired Case Feature Table

PDCFT = (<F, V>, ..., <F, V>,), F is the features that used for case description, and

V is the values of features.

3.2. Case Representation

As mentioned above, we represent case in three layers --- Application, Task and
Service. And in our HCBP scheme, a case is composed of Input Message, Output
Message, a Possible Case Feature Table, a Task Flow and a set of Service Flow,
where Input Message is the message that triggers a Task and Output Message is the

message that generated from a Task, the definition of Message is shown as below.

14

Definition 3.4 Message

M ={my, my, ..., my} is a finite set of messages

Possible Case Feature Table is a set of features that give extra information about
a case and they are the same as features in PDCFT; Task Flow is the Control Flow
Knowledge of an application represented in task level granularity, and Service Flow is
the Control Flow Knowledge of an application represented in service level granularity.
Each Service Flow is mapped to a task, as shown in Figure 3.5, where Task 1
mapping to a Service Flow that composed of Services 1, 2, and 3. Each Task has
Input Message and Output Message, and Task Metadata for task description, where
the feature defined for Task Metadata are the same as features in DTMD; each service
has its own Input Message and Output Message but no metadata because service is the
primitive component, and we consider that 1/0 message is enough to describe a
service’s function. In the proposed scheme, Case base maintains a repository to store
services, tasks, messages and the application cases which link to the tasks and
services, and when a generated new application has to be retained, it will be stored as
a case and decomposed into a set of tasks with corresponding services. Service, Task

and Case are defined as follows and case structure is shown in Figure 3.5.

Definition 3.5 A Service is a three-tuple

S = (SIM, SOM, RD), where
1. SIM ={imy, imy, ..., im,}, where imj e M
2. SOM = {om;, omy, ..., omy}, where om; € M

3. RD is the Resource Description of service

15

Definition 3.6 A Task is a four-tuple

T=

1.

2.

(TIM, TOM, SF, TMD), where

TIM = {imy, imy, ..., imp}, where imj e M

TOM = {om;, omy, ..., om,}, Wwhere om; € M

SF = (S, SSR), SSR includes relations “Implication” and “And”

TMD = (<F, V>, ..., <F, V>.)), F is the features that used for case description,

and V is the values of features.

Definition 3.7 A Case is a four-tuple

C = (AIM, AOM, TF, PCFT), where

1.

2.

AIM = {imy, imy, ..., im,}, where im; e M

AOM = {om;, omy, ..., om,}, where om; € M

TF = (T, TSR), TSR includes relations “Implication” and “And”

PCFT = (<F, V>4, ..., <F, V>, F is the features that used for case description,

and V is the values of features.

It is worth to mention that, for PDCFT to PCFT, they are almost the same despite of

PDCFT is in the Desired Case that designer inputs and PCFT in Cases that in case

base, and so as DTMD to TMD.

16

Case Possible Case

Feature Table

Task 1 —> Task2
C > Task 4)

Message Task 3) .
Aggregation
Task Task
Metadata Metadata D

Task 1 %Q O% Task 3 <

Service 1 M Service 2 9@% Service 3 @

Figure 3.5: A case schema in HCBP

Here we defined the features for case and task description, respectively, as
shown in Table 3.1 and Table 3.2. For task, there are three kinds of features in the
feature table, where the first kind is for human reading, and their data type of feature
value is string that can be input by designer. The second kind of feature is used to
indicate input and output messages, where their data type is String that selected from
the message ontology. The third kind of feature is used to record some other
information about a task, their data types are String defined in category that selected
from the message ontology. Case has an additional feature type that used to record
information about a whole case, and the feature value data type is String defined in

category.

17

Table 3.1: Feature Types of task

Human Reading

String

I/O Message

String selected from Message Ontology

Task Feature

Category or String selected from Message Ontology

Table 3.2: Feature Types of case

Human Reading

Designer Input

Case Feature

Designer Input

I/O Message

Union of "Input Message” of first tasks and “"Output
Message” of last tasks in Desired Task Flow

Task Feature

Union of "Task Feature” of task in Desired Task Flow

To generate a case feature table, the main process is to aggregate the feature

values in task metadata, as shown in Table 3.2, column “Data Resource”. For Input

Message of a case, the feature value is union of Input Message value of leading tasks

in the task flow; for Output Message of a case, the feature value is union of Output

Message value of end tasks in the task flow; and for features belong to “Task Feature”,

value of each feature is generated by union of corresponding feature value in task

metadata, as shown in Figure 3.6.

18

Task A And Reference
Task C —)U——> Task D
Task B
Task A Task B
Human Reading | HRF, Human Reading | HRF,
HRF, HRF,
I/O Message M Ma I/O Message M Mc, Md
oM Mb oM Me
Task Feature TF1 TFVa Task Feature TF1 TFVc, TFVd
TF2 TFVb TF2 X
TF3 X TF3 TFVe
Task C Task D
Human Reading | HRF,; Human Reading | HRF,
HRF, HRF,
I/O Message IM Mb, Me I/O Message IM Mf
oM Mf oM Mg
Task Feature TF1 TRVE Task Feature TF1 X
TF2 TFVg, TFVh TF2 X
TF3 TFVi TF3 TFVj

Case Feature Table

Designer Input

/!

Human Reading | HRF;
HRF,
Case Feature CF, CFVa, CFVb
CF, CFVc
I/O Message IM Ma, Mc, Md
oM Mg
Task Feature TF1 TFVa, TFVc, TRVd, TRVE
TF2 TFVb, TFVg, TFVh
TF3 TFVe, TFVi, TFVj

Figure 3.6: Case feature table generation

19

3.3. Message Linking and Message Ontology

In the whole hierarchical planning process, how to make sure that the service
flows retrieved from different cases could be linked together is a critical problem.
Therefore, we define a message ontology to maintain the relations between messages.
Assume that the similarity between two messages can be traced through the distance
between their positions in the Message Ontology, similar messages will be placed
under the same parent, forming a hierarchical relationship between messages.
Moreover, the relations between messages can help us to check if two services or
tasks could be linked together. For example, personal context is a kind of context;
learner profile and learner portfolio are both personal context. If a service A has an
input message type Personal Context, and a service B has an output message type
Learner Profile, then we can know these two services could be linked together
because Personal Context and Learner Profile are compatible by checking the relation

in the ontology. The example is shown in Figure 3.7.

)

Context Context —»| Service A —— Content
—_—

kind of EE—

Learner ID — Service B —> Learner Profile
~—

Personal
Context

is a

Compatible

Learner
Portfolio

Learner ID —>[Service B]—{ Service A]—> Content

Link together

Learner
Profile

Figure 3.7: Message linking and message ontology

20

The message ontology is defined as below:

Definition 3.8: Message Ontology

MO = (M, R), where
1. M={mi, my, ..., my} is a finite set of message in case

2. R={ry,r,...,ry} is a finite set of relations

3.4. Case Retrieval

In case retrieval, similarity measurement is the main process and it determines if
the retrieved cases are good enough to generate a new case satisfy designer’s input.
Based upon the proposed hierarchical case representation model, we propose a
similarity measurement method, in which a case similarity is the combination of
feature similarity and task flow similarity. As shown in Figure 3.8, after the designer
provides the information about a new application, a complete case retrieval process is
executed. It results in that the feature and task flow similarities between the desired
case and cases in case base are calculated, and the most similar case is chosen.
Afterward, if the retrieved case is not good enough, the system will try to adapt the
case in Case Reuse by task or task flow Insertion, Deletion and Replacement, where
the task or task flow retrieval is done by the partial case retrieval. However, in case
adaptation process, if the retrieved task is not similar enough to the needed desired
task, the retrieved task is revised by Message Insertion, Deletion and Service Insertion,
Deletion, and Chaining according to the needed desired task in Case Revise process.
After that, the revised task is used in the retrieved case and the case similarity is

calculated again to see if it satisfies the designer’s demand. This process will continue

21

until the retrieved case adapted to the designer’s demand and then returned to

designer.

Designer

1 10

Case Retrieval Interface

2 9
6. If partial case not
3 Task & similar enough
Message
Complete Case Retrieval Task Flow
8. If case
similar enough
4. If case not Service
| similar enough Similarity 7
Partial Case Retrieval Measurement
5
Case Reuse Case Revise
Case Retrieval Case Adaptation

Figure 3.8: Case Retrieval and Case Adaptation

As mentioned in Section 3.2, despite of the features for human reading, there are
only two kinds of feature value type --- String in category and String in Message
Ontology. To calculate similarity of features that have feature value type “String in
category”, a general string matching approach is used, that is, if matched, similarity
equals to 1; otherwise it equals to 0. For features that have more than one feature
value, the similarity is the average of similarity of each value, as shown in Figure 3.9.
To calculate similarity of features that have feature value type “String in Message
Ontology”, an Ontology-based similarity measurement approach is used, where the

similarity between two strings is 1/(d+1), and d is the distance between them in the

22

ontology. And for features that have more than one feature value, the similarity is the
average of similarity of each value too, as shown in Figure 3.10. The definition of

similarity calculation is shown as below:

Definition 3.9 Category-based Feature Similarity

|[FVA N FVy/| . . .
CBFS = —————— (Jaccard similarity coefficient) , where
|[FVa U FVy/|

1. FVa is the Feature Value of Feature A in one Case and FV 4 is the Feature Value

of Feature A in the compared Case

Definition 3.10 Ontology-based Feature Similarity

OBFS = w where
FVPN

1. FVPN is the number of Feature Value Pair, which means for a Feature in two
Cases A, B, if a feature value in A and a feature value in B are the same or their
distance in ontology > threshold and less than any other combination, then they
become a Feature Value Pair. If a value is not in any Feature Value Pair, it
becomes a Pair with an “empty value”.

2. d; is the distance of Feature Value Pair i

B Sy, S¢ \/A, Similarity = 1

B Scr Sd

Figure 3.9: Similarity of features value type “String in Category”

23

Message Type M
A M,
B M., My } Similarity = 1/(1+1)
A M, / Mc
B Mbl Mc

Ma Mb
Figure 3.10: Similarity for features value type “String in Message Ontology”

On the other hand, task flow similarity is composed of Coverage Similarity and
Sequence Similarity[9], where the coverage means the number of similar tasks
between the Desired Task Flow and the compared Task Flow in case base, and the
sequence means the similarity of task order between the Desired Task Flow and the
compared Task Flow. In order to calculate task flow similarity, the similar task pairs
between the desired task flow and the compared flow must be found first, where the
similar task pair means two tasks, one in desired task flow and the other in compared
task flow, are similar enough and we take them as the same when calculating task
flow similarity. According to the physical meaning of coverage, the coverage
similarity is the number of similar task pair among the total number of task in desired
task flow or in compared task flow (depends on different situations), defined as

follows:

Definition 3.11 Coverage Similarity

Y. TMatch(Ty)

1. CvS= — is the coverage similarity between the query desired task

flow and the compared case task flow, where
® TMatch() is shown in Algorithm 3.1

® TN is the total number of task in the compared task flow

24

Definition 3.12 Coverage Similarity’

_ X TMatch(Ty)
- TN’

1. CvS Is the coverage similarity between the query desired task

flow and the compared case task flow, where

® TN'is the total number of task in the desired task flow

Algorithm 3.1: TMatch

Input: T

Output: Match

Definition of Symbols:

CT;: The Compared Task i in the Compared Task Flow

Step 1. Compare T with the tasks in the case task flow, if Max(Similarity(T,CT;)) >

threshold, then set (T, CT,,) a Task Pair and set Match = 1, else Match =0

Step 2. Return Match

And for sequence similarity, the main idea is to find similar possible sequence, where
the possible sequence means the combination of every two tasks in task flow. For
example, for task flow A->B->D, there are three combinational pairs A>B, B>D,
and A->D. In order to calculate sequence similarity, the first thing to do is to find
similar sequence pairs, which means two sequences A>B and A’>B’, A>B is in
desired task flow and A’>B’ is in the compared task flow, where (A, A’) and (B, B”)
are two similar task pairs. The similarity of a similar sequence pair is the average of
similarity of the two similar task pair, as shown in Figure 3.11, and the overall
sequence similarity for a case is the average of each similar sequence pair among all

possible sequence. The definition is shown as follows:

25

Definition 3.13 Sequence Similarity

Y. SqMatch(Sqy)
1. SS= a !

is the sequence similarity the query desired task flow and

the compared case task flow, where
® SgMatch() is shown in Algorithm 3.2
® Sq = (ST, DT) is the possible sequence generate from the query desired task
flow
B ST ={ty, tp, ..., t,}, where t; € T is the source task in task sequence
B DT ={t, ty, ..., t,}, where t; € T is the destination task in task sequence
® CIN is the total number of possible sequence generate from the desired task

flow

Algorithm 3.2: SgMatch

Input: Sq

Output: SgMatchS

Step 1. Find if there is a matched sequence in the compared case task flow, if found then go
to step 2, else end.

Step 2. SqMatchS = (TSSimilarity(ST)+TSSimilarity(DT))/2

Step 3. Return SqMatchS

26

Desired Task Flow A = D — E

Task Pair Task Pair Task Pair
S =0.78 S =0.93 S= 0.82

AN — C(C
Compared Task Flow) DD —» F
B

Coverage Similarity = 3/5
Sequence Similarity A>D & A>D’ = (0.78+0.93)/2

Figure 3.11: Sequence Similarity

In Complete Case Retrieval, a complete case similarity is calculated to retrieve
an integral case that is most similar to the desired case, in which both Case Feature
Table Similarity and Task Flow Similarity are used. The Case Feature Table
Similarity indicated the similarity between the Possible Desired Case Feature Table
and the Possible Case Feature Table, that is, the average similarity of each feature in
the feature table. In Partial Case Retrieval, a Partial Case Similarity is calculated to
retrieve a part of a case that is most similar to a part of Desired Task Flow, in which
only Task Flow Similarity is used. The Complete Case Similarity and Partial Case

Similarity are defined as below:

Definition 3.14: Complete Case Similarity (CCS)

1. CCS=CFTS + TFS, where
® CFTS isthe similarity of Case Feature Table

® TFS is the similarity of Task Flow

Y CFS; xCFW;
2. CFTS= =————— where
CFN

® CFS;is the similarity of Case Feature i

27

® CFW, is the weight of Case Feature i
® CFN is the total number of Case Feature

3. TFS=CvS+SS

Definition 3.15 Partial Case Similarity (PCS)

PCS = CvS'+SS

3.5. Case Adaptation

In Case Adaptation, there are two main processes --- Case Reuse and Case
Revise, as shown in Figure 3.8. Case Reuse includes some planning operations that
adapt the plan in task level, such as Task (Task Flow) Insertion, Deletion, and
Replacement, where Task Insertion is an operation used to insert tasks according to
the demands in the Desired Case when the retrieved case lack some tasks, as shown in
Figure 3.12 (a); Task Deletion is an operation used to delete tasks according to the
demands in the Desired Case when the retrieved case has some tasks unnecessary, as
shown in Figure 3.12 (b); Task Replacement is an operation used to replace tasks by
more suitable ones according to the demands in the Desired Case, as shown in Figure

3.12 (c).

28

Desired Case

DT A
TA TC TD
DTC —— DTD

DTB TB Task Insertion

(a) Task Insertion

Desired Case T A

DTA —— DIB —— DTC TB TC

>< Task Deletion

(b) Task Deletion

Desired Case ><
T Ar 7 T C.r
DTA ——> DIB —— DTC

Task Replacem&%
TB

(c) Task Replacement

Figure 3.12: Task (Task Flow) Planning Operation

Case Revise includes planning operations that adapt the plan in Service level, such as
Message Insertion, Message Deletion, Service Insertion, Service Deletion, and
Service Chaining, where Message Insertion is used to add Input Message or Output
Message to a Service as shown in Figure 3.13(a), and Message Deletion is used to
delete Input or Output Messages that are unnecessary, as shown in Figure 3.13(b),
notice that some constraints must be defined in advance to prevent from generating
strange services. Service Insertion and Deletion are the operations that are used to add
demanded services and to delete services that are not necessary according to the

description in the Desired Task Metadata, as shown in Figure 3.14 (a)(b). Service

29

Chaining is the last means if no similar task in case base could be reused, this
operation will try to find a service flow between Input and Output Message by support
of Message Ontology, as shown in Figure 3.14 (c). For example, to find a service flow
between Input Message A and Output Message B, the system will select a service S
that has Output Message B first, and then try to find another service has the Output
Message Type that is compatible to the Input Message Type of service S, as shown in
Example 3.3. This process will continue until a service flow is found to connect Input
Message A and Output Message B, or the process is failed if there is no service flow
could be found and it means that new task or new service has to be added into

repository.

Desired Task Metadata

Ma SA Mc SB Md

Input Message | Ma, Mb Message Insertion
Mb

(a) Message Insertion

Desired Task Metadata

Ma

Mc SB Md

SA
)(Message Deletion

(b) Message Deletion

Input Message | Ma

Figure 3.13: Message Planning Operation

30

Desired Task Metadata Ma SA Mc SB Md

Service Insertion

Input Message | Ma, Mb

Mb SC Me

(a) Service Insertion

Desired Task Metadata

Ma Mc

Service Deletion SB Md

Input Message | Mb

Mb SC Me

(b) Service Deletion

Desired Task Metadata

Mc SB Md

-

Service Chaining

Mb Search for services
that its output Message
Type is compatible to Mc

Input Message | Ma

Output Message | Md Ma SA

(c) Service Chaining

Figure 3.14: Service Planning Operation

In the whole Case Adaptation process, similarity between the retrieved case and
designer’s input is confirmed first. If the retrieved case is similar enough, then no
adaptation has to be done, else Case Reuse process will compare the Task Flow of the
retrieved case and the Desired Task Flow from the designer. Afterward, the most
dissimilar part will be found, where the dissimilar part could be a single Task or a
Task Flow, and then planning operations in task level is executed to adapt the
retrieved case to designer’s input. If Task Insertion or Task Replacement is needed,

the Partial Case Retrieval process mentioned in last section is executed to find Task or

31

Task Flow that are similar to the query Desired Tasks or Desired Task Flow for Case
Adaptation. However, if the retrieved Task or Task Flow itself is not similar enough
to the query Desired Task or Desired Task Flow, it will be helpless to insert or replace
the retrieved Task or Task Flow in the retrieved Case. Therefore, a Task itself must be
adapted first before inserted or replaced in the retrieved Case, that is, the Case Reuse
process is executed to adapt the retrieved Task to the query Desired Task. In which
the retrieved Task is revised by the service level planning operations mentioned above
according to the Desired Task Metadata. Afterward, the adapted Task could be used
for Task Insertion and Task Replacement. On the other hand, for the retrieved Task
Flow that itself is not similar enough, the Desired Task Flow is decomposed into
single Desired Tasks and corresponding Tasks are retrieved respectively. The one that
has the highest similarity among the all retrieved Tasks is chosen, and then it will be
inserted or replaced in the retrieved Case if its similarity is high enough, or it will be
adapted by Case Revise first, and then used for Task Insertion and Task Replacement.
The adaptation process will be repeated until the retrieved Case reaches an acceptable

status. The algorithm of Case Reuse and Case Revise is shown as follows:

32

Algorithm 3.3: Case Reuse

Input: Retrieved Case, Designer’s Input(PDCFT, DTF, DTMDs of Desired Tasks in DTF)
Output: Adapted Case
Definition of Symbols:
PoDTF: part of DTF
RTN: Task number of the retrieved case
DTN: Task number of the desired case
Step 1: Test if similarity of the Retrieved Case > a threshold.
Yes =» Return the Retrieved Case
Step 2: Find PoDTF that is most dissimilar to Retrieved Case
Step 3: Call PartialCaseRetrieval(PoDTF, DTMDs of PoDTF)
Step 4: Test if Similarity of the Retrieved Partial Case similar > a threshold.
Yes = Do Operations according to Designer’s Input.
® |f some Desired Tasks have no similar Task Pair, Task Insertion is
executed.
® FElse If the (RTN >DTN) & CS is low) or (RTN > DTN) & SS is
low), Task Deletion is executed
® Else If TS of an Similar Task Pair < threshold, Task Replacement is
executed
® gotoStepl
No => If Partial Case is a Desired Task Flow, go to Step 5.
If Partial Case is a Desired Task, go to Step 6
Step 5: Retrieve a similar task for each Desired Task in the flow, select the most similar
one, then go to Step 4.

Step 6: Call Revise(Retrieved Task, corresponding DTMD), then go to Step 4 > Yes.

33

Algorithm 3.4: Case Revise

Input: Retrieved Task, corresponding DTMD
Output: Adapted Task

Step 1: Do Operations to the Retrieved Task according to DTMD

Step 2: Test if the Adapted Task similar enough (Similarity > threshold)
Yes =» Return

No = Use Service Chaining to generate a plan, in which its Input & Output

If the retrieved Task in a Similar Task Pair lack 1/0 Message which is in the
Desired Task, Message Insertion is executed

If the retrieved Task in a Similar Task Pair has extra /0 Message which is not
in the Desired Task, Message Deletion is executed

If the retrieved Task in a Similar Task Pair lack some Task Feature Value
which is in the Desired Task, Service Insertion is executed

If the retrieved Task in a Similar Task Pair has extra Task Feature Value which
is not in the Desired Task, Service Insertion is executed

If Task Similarity < a threshold, Service Chaining is executed

Messages are conform to description in DTMD.

34

Chapter 4. U-learning Application HCBP System

In this Chapter, we apply the proposed HCBP scheme to U-learning.

4.1. Case Hierarchy for U-learning Application

As mentioned before, a case is represented as three layers of hierarchical-case
representation model, where the first layer is the application layer of representing a
case in the case base; the second layer is the task layer and the third layer is the
services layer.

Based on our observation, most U-learning applications nowadays have the same
process model; that is, at the beginning of an application, the system will collect
context information that is needed in the environment first, afterwards the collected
contexts are used to help retrieve the most suitable content for the learner, and at last,
the retrieved content is displayed to the learner in varies ways. In order to simplify the
Desired Task Flow construction process for application designer, we divided tasks
into three kinds --- Context Collection & Interpretation, Context Retain &Content
Retrieval and Output, as shown in Figure 4.1. Context Collection & Interpretation is a
group of tasks that are used to gather contexts from the environment and interpret the
gathered context according to different use; Context Retain & Context Retrieval
include tasks that retain the gathered context in repository and tasks that retrieve
context-aware content; Output is a group of tasks that are used for adaptable content
display to learners according to the situation of an environment. These three kinds of
tasks are used for a designer to design a desired task flow of a new application.

As shown in Figure 4.2, a museum guiding example is given to illustrate the

hierarchical-case representation model for U-learning. In the museum guiding

35

application, in order to provide a learner with suitable information about an exhibition
according to the learner’s ability, there are two tasks in type Context Collection &
Interpretation, “Get Learner Ability” and “Get Exhibition Identity”, where in type
“Context Retain & Content Retrieval”, a task “Retrieve Learner-Ability-related
content” is needed to retrieve content about the exhibition that suitable for the learner.
At last, a task ”Display Learner-Ability-related Content” is in type Output to show the
content to learner by web pages. Furthermore, each task is mapping to a flow of
services. Take “Get Learner Ability” for example, it is composed of three services, at
first the learner’s identity is detected by a “Detect Learner ID” service, and then the
learner ID is used to retrieve Learner Portfolio in repository by a service “Get Learner

Portfolio”, and finally, Learner Ability is determined by a service “Ability Judgment”.

Application
Cont_ext Context retain &
Collection & Content retrieve
nterpretatio

Layer 2
Task
Layer

Layer 3
Service
Layer

Figure 4.1: Case Hierarchy

36

Museum Guiding:
| Display ability related |-.._
content about exhibition

Context Retain & Output
Content Retrieval

Context Collection &
Interpretation

Get Learner
Ability

\ Retrieve Learner Display Learner
y | Ability-related |._ . Ability-related |
I Content She % Content
4 Get Exhibition !
D

“/Ability-
\ related
Content

\ " OO_ Content

Detect \ Content List List "\
Exhibition ID, Content
Selection

Ability- Content

rEIaIEd
Learner Detect Learner Get Learner Learner Ability | [Learner Content, 1Y
Approach Learner ID ID Portfolio Portfolio Judgment / [\ Ability

Figure 4.2: Case representation for museum guiding

4.2. Message Ontology

In order to utilize the message ontology to support case retrieval and planning for
U-learning application, we designed a base skeleton of the message ontology aiming
at U-learning.

We divided messages into four kinds, external message, content message,
context message and computing messages, respectively, where external message
denotes messages accepted from real environment; for example, weather of an
environment, learner approach, physical location, etc. Content message denotes the
contents that are suitable to be displayed of to learner, for example, map,
context-aware content, alert, etc. Context message denotes context that provides
information about learner and environment, such as learner profile, location, time, etc.
Computing message denotes the communication messages used between some
components in the system, such as a dump query to a learner profile repository. In

Figure 4.3, a message ontology constructed from a weather information probing

37

application and a museum guiding application is demonstrated, in which the nodes
that written in bold text are the base skeleton we designed for U-learning, and the
other nodes are inserted into the ontology during application analysis. Notice that
when designing a new application, the designer can add new message nodes into the

message ontology if there is no proper existing message to use.

AKO

Figure 4.3: Message Ontology constructed from two applications

4.3. Features for U-learning

As mentioned in previous chapter, each Task contains a TMD for task
description and each case contains a PCFT for case description. Both TMD and PCFT
are a set of Feature-Value pairs, and some feature values in PCFT are generated from
TMD as illustrated in Section 3.2. Here we define a set of Feature for TMD and PCFT
based on demands of U-learning, respectively. Notice that DTMD and PDCFT are
almost the same with TMD and PCFT despite that they are input by designer for

query. Table 4.1 shows the Features that we defined for Task description, where

38

“Name” and “Goal Specification” are the Features belong to type Human Reading
defined in Section 3.2 and their values are strings inputted by designer arbitrarily;
“Input Message Type” and “Output Message Type” belong to I/O Message and their
values are selected from the Message Ontology; “Collect”,
“Retain”, “ContentRelated”, “Target” and “ContextCollectionType” are Features
belong to type Task Feature, where “Collect” denotes what contexts should be
collected by the output of a task; “Retain” denotes what kind of information should be
retained in a repository such as learner’s location; “ContentRelated” denotes what
kind of contexts are used to retrieved content; “Target” denotes whom should the
content displayed to, such as a learner or a learner’s supervisor;
“ContextCollectionType” denotes the needed context are collected actively by the
system or input by learner directly. Table 4.2 is the Features defined for Case
description, where there are four additional Features defined. “Interaction” denotes
the interaction type in the application, such as interaction between people or between
a person and an object; “Environment” denotes surrounding information such as
indoor or outdoor; “Network” denotes the available network in the environment of the
application, such as Bluetooth, 802.11, WiMax, etc. It is worth to mention that these
Features may be insufficient for new complex applications, and new Features could

be added into the Feature Table if there is a demand.

39

Table 4.1: Features for Task Description

Name String X

Goal Specification String X

Input Message Type String Select from message ontology
Output Message Type | String Select from message ontology
Collect String Select from message ontology
Retain String Select from message ontology
ContentRelated String Select from message ontology
Target String(Category) | Learner, supervisor
ContextCollectionType | String(Category) | Active, passive

Table 4.2: Features for Case Description

Name String X

Goal Specification String X

Input Message Type String Select from message ontology
Output Message Type | String Select from message ontology
Collect String Select from message ontology
Retain String Select from message ontology
ContentRelated String Select from message ontology
Target String(Category) | Learner, supervisor
ContextCollectionType | String(Category) | Active, passive

Interaction String(Category) | Person-person, person-location, person-object
Environment String(Category) | Indoor, Outdoor

Network String(Category) | Bluetooth, 802.11, WiMax, ...

40

Chapter 5. Application and Discussion

In this Chapter, a new U-learning application --- Botanical Garden is designed by

means of the proposed HCBP scheme.

5.1 Botanical Garden

Assume that there is a botanical garden, in which there are about a hundred kinds
of plants. For each kind of plants there is a RFID Tag used to identify the plants, and
each learner in the garden use a PDA that has RFID Reader function. When a learner
approaches some plant, the RFID Reader will trigger the RFID Tag to get the ID of
the plant for further use such as searching for learning content in repository about the
plant.

To design a U-learning application, a designer will imagine a scenario in his or
her mind first. Suppose that if there is a scenario of botanical garden in a designers
mind, such as “when a learner approaches a plant in the botanical garden, get the
learner’s ability and detect weather type first, and retrieve content about the plant
according to the learner’s ability and the weather type, then display the retrieved
content to the learner”. To construct the task flow of the botanical garden guiding
application, the designer is asked to construct the Desired Tasks belonging to each
task type first, as shown in Figure 5.1. Afterward, the designer is asked to construct

the relations between the desired tasks, as shown in Figure 5.2.

41

Context Collection & Context retain &

Interpretation Content Retrieval Output
Get
Weather
Information
Get Retrieve W & Display the
Learner’s LA related Content to
Ability Content learner
Get Plant
Type
Figure 5.1: Desired Tasks
Context Collection & Context retain & Output
Interpretation Content Retrieval
Get
Weather
Information And Implication
Get Retrieve W & Display the
Learner’s > LA related Content to
Ability Content learner
Get Plant
Type

Figure 5.2: Desired Task Flow

Next, the Desired Task Metadata has to be filled for each desired task and a several
feature values that describe the whole application, as shown in Figure 5.3, and then
the Possible Desired Case Feature Table is generated by aggregating the tables in

Figure 5.3 as illustrated in Section 3.2, and the result table is shown in Figure 5.4.

42

Feature Name Feature Value

Name

Get Weather Information

Name

Get Learner's Ability

Goal Specification

Get the weather type

Goal Specification

Judge the learner’s ability

Input Message Type

Weather

Input Message Type

Learner Approach

Output Message Type

Weather Information

Output Message Type

Learner Ability

Collect

Humidity, Temperature

Collect

Learner Profile

Retain X Retain X
ContentRelated X ContentRelated X
Target X Target X
ContextCollectionType | Active ContextCollectionType | Active

Feature Name Feature Value Feature Name Feature Value

Name

Get Plant Type

Name

Retrieve W & LA related Content

Goal Specification

Detect the plant’s type

Goal Specification

Retrieve proper content about ..

Input Message Type | Learner Approach Input Message Type | Weather, Learner Ability, Object ID
Output Message Type | Object ID Output Message Type | Context-aware Content
Collect X Collect X

Retain X Retain X

ContentRelated X ContentRelated Weather, Learner Ability
Target X Target X

ContextCollectionType | Active ContextCollectionType | X

Name

Display the Content to learner

Goal Specification

Display the content ...

Input Message Type

Context-aware Content

Name

Botanical Garden Guiding

Output Message Type

Context-aware Content

Collect

X

Goal Specification

When a learner approach a
plant, display content about
the plant according the
learner ability and weather

| Interaction

Person-Object

Environment

Qutdoor

Retain X
ContentRelated X
Target Learner
ContextCollectionType | X

Network

Wimax

Figure 5.3: Desired Task Metadata

43

Name Botanical Garden Guiding

Goal Specification When a learner approach a plant, display content about
the plant according the learner ability and weather

Input Message Type Weather, Learner Approach

Output Message Type Context-aware Content

Collect Humidity, Temperature, Learner Profile

Retain X

ContentRelated Weather, Learner Ability

Target Learner

ContextCollectionType Active

Interaction Person-Object
Environment QOutdoor
Network Wimax

Figure 5.4: Possible Desired Case Feature Table

After the PDCFT is generated, a most similar case in the case base could be retrieved
by the PDCFT and the DTF, as shown in Figure 5.5. To simplify the calculation,
assume that each Feature Weight here is the same, the retrieved case is shown in

Figure 5.6.

A TFn
/
-— 4
:
/
Designer I,/’ - 7 TF o
| Complete k’z ‘
DTF Case Retrieval [\ Case Base
\\
AN
\
\
AN
A\
AN
TFn

Figure 5.5: Complete Case Retrieval
44

PCFT

Name

Museum Guiding

Goal Specification

When a learner approach a exhibition, display content about the
exhibition according the learner ability

Input Message Type

Learner Approach

Output Message Type Context-aware Content
Collect Learner Profile

Retain X

ContentRelated Learner Ability

Target Learner
ContextCollectionType Active

Interaction Person-Object
Environment Indoor

Network Wimax

Feature Similarity = (1/2+1+1/3+1+1/2+1+1+1+04+1)/10 = 0.7333

TF
Get
Learner’s And Implication
Abilit
Y Retrieve W & Display the
LA related Content to
Get Content learner
Exhibition
Type

Task Flow Similarity = 4/5 * 0.5 + 5/7 * 0.5 = 0.757

Figure 5.6: The Retrieved Case

By comparing the Desired Task Flow and the Task Flow of the retrieved case, we can
discover that one more task similar to “Get Weather Information” has to be inserted
into the retrieved case. Therefore, the system will try to retrieve a partial case by the
DTMD of the Desired Task “Get Weather Information”. The most similar one
retrieved is shown in Figure 5.7, and no adaptation to the retrieved Task has to be
carried out. After that, there is still one problem, that is, the Input Message of the
Desired Task “Retrieve W & LA related Content” and Task “Retrieve LA related
Content” in the retrieved case is different as shown in Figure 5.8; this will make tasks

unable to link together. Therefore, an operation “Message Insertion” is executed and

45

the result is shown in Figure 5.9. Afterward, operation “Task Insertion” could be

carried and the finally, resulting Case is shown in Figure 5.10.

The Desired Task “Get Weather Information”

Feature Name Feature Value Feature Name Feature Value

Name

Get Weather Information

Name

The Retrieved Task “Weather Detection”

Weather Detection

Goal Specification

Get the weather type

Goal Specification

Get the weather type

Input Message Type

Weather

Input Message Type

Weather

Output Message Type

Weather Information

Output Message Type

Weather Information

Collect Humidity, Temperature Collect Humidity, Temperature
Retain X Retain X

ContentRelated X ContentRelated X

Target X Target X
ContextCollectionType | Active ContextCollectionType | Active

Feature Name
Name

Similarity = (1+1+1+1+1+1+1)/7 = 1

Figure 5.7: The Retrieved Task

Feature Value
Retrieve W & LA related Content

Name

Feature Name Feature Value

Retrieve LA related Content

Goal Specification

Retrieve proper content about ..

Goal Specification

Retrieve proper content about ..

Input Message Type

Weather, Learner Ability, Object ID

Input Message Type

Learner Ability, Object ID

Output Message Type

Context-aware Content

Output Message Type

Context-aware Content

Collect X Collect X
Retain X Retain X
ContentRelated Weather, Learner Ability ContentRelated Learner Ability
Target X Target X
ContextCollectionType | X ContextCollectionType | X

Figure 5.8: Difference Between Desired Task “Retrieve W & LA related Content”
and Task “Retrieve LA related Content”

46

Obiect Content Content
jec s onten
s —> Repository > "¢

Management

Learner Content Context:
I 3 —> aware
Ability - Selection Content
Weather)
Information

Figure 5.9: Message Insertion

Okiect Content ot
IJDeC —> Repository > °GS:"
Management
Learner Content C:";I?r?'
Ability | Selection i
Task “Retrieve W & LA Weather

Information

related Content”

Temperature
> Humidi
Detector b
Weather Weather
Weather Judgment Information
Humidity

Detector ——> Temperature
Task “Get Weather Information”

Figure 5.10: Task Insertion

In this section, we give a new Botanical Garden Guiding application, and we
apply the proposed HCBP scheme to retrieve a plan for the Botanical Garden Guiding
application. The resulting plan is a combination of two U-applications, a museum
guiding application and a weather type detection application, and the result shows that

it is rational and applicable.

47

Chapter 6. Conclusion

In this thesis, we propose a Hierarchical-Case-based Planning scheme, in which
we design a hierarchical-case representation model, a hierarchical-case retrieval and
case adaptation approach to support fine-grained case reuse. In our approach,
ontology is used to support case-based planning processes, where an ontology-based
case similarity measurement is utilized to retrieve similar case in case base, and an
ontology-based service or tasks chaining approach is proposed to sustain the planning
process. Afterwards, we apply the HCBP scheme to support U-learning application
design, and a message ontology is constructed for U-learning. With the HCBP, an
application designer can reuse the design ideas in existing systems to construct a new
application, by means of constructing a desired task flow in his or her mind and filling
in some tables to retrieve similar cases in the case base.

In the near future, we will try to enhance the ability to handle more complex
relations between tasks and then designers can create complicated new applications.
On the other hand, we will also try to adopt heuristic adaptation rule in Case
Adaptation process, such as in order to get learner’s location, GPS is better when in
an outdoor scenario and RFID is more suitable in an indoor scenario, to enhance the

reliability of the resulting plan.

48

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

P. Alexander, J. Holtman, G. Minden, "Case-Based Planning for Simulation,"
presented at Expert Planning Systems, Brighton, 1991.

Z. Cheng, S. Sun, M. Kansen, et al., "A Proposal on a Learner's Context-aware
Personalized Education Support Method based on Principles of Behavior
Science,” presented at Internation Conference on Advanced Information
Networking and Application (AINA), 2006.

J. Cho, "An Exhibition Reminiscent System for Ubiquitous Environment,"
presented at IEEE International Conference on Computer and Information
Technology (CIT), 2006.

K. Hammond, "Case-Based Planning: Viewing Planning as a Memory Task,"
presented at Academic Press, 1989.

Gwo-Jen Hwang, “Criteria and Strategies of Ubiquitous Learning”, IEEE
International Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC), 2006

J. Kolodner, Simpson, R., and Sycara, K., "A process model of case-based
reasoning in problem solving," presented at proceedings of the Ninth IJCAI,
1985.

Goro Kunito, Naoharu Yamada, Tatsuo Takakashi, "Architecture for Providing
Services in the Ubiquitous Computing Environment,"” presented at IEEE Internal

Conference on Distributed Computing Systems Workshops (ICDCSW), 2006.

Luyi Li, Yanlin Zheng, Hiroaki Ogata, et al., “A Framework of Ubiquitous
Learning Environment” Computer and Information Technology, 2004

Yi-Huang Lin, Shian-Shyong Tseng, “A Recommendation Scheme of
Personalized Learning Activities Based on Learning Design Standard”, 2005

49

[10] T. Madhusudan, B. Marshall, "A case-based reasoning framework for workflow
model management,” Data & Knowledge Engineering vol. 50, pp. 87 - 115
2004.

[11] H. O., Y. Y, Moushitr M. El-Bishouty, "Personalized Knowledge Awareness
Map in Computer Supported Ubiquitous Learning,” presented at International
Confernece on Advanced Learning Technologies (ICALT), 2006.

[12] Reinhard Oppermann, Marcus Specht, “Adaptive mobile museum guide for
information and learning on demand,” Human Computer Interaction (HCI),
1999.

[13] C. Riesbeck, and Schank, R., Inside Case-Based Reasoning: Erlbaum, Hillsdale,
NJ, 1989.

[14] K. Sakamura, "Ubiquitous Computing Technologies for Ubiquitous Learning,"
presented at IEEE International Workshop on Wireless and Moblie
Techinologies in Education (WMTE), 2005.

[15] B. Smyth, Mark T. Keane, and Padraig Conningham, "Hierarchical Case-Based
Reasoning Integrating Case-Based and Decompositional Problem-Solving
Techniques for Plant-Control Software Design,” IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, vol. 13, pp. 793 - 812 2001.

[16] Y. Vogiazou, B. Raijmakers, M. Eisenstadt, "A research process for designing
ubiquitous social experiences,” Nordic conference on Human-computer
interaction, 2006.

[17] J. F Weng, S. S. Tseng, and N.K. Si, “Constructing the Ubiquitous Intelligence
Model based on Frame and High-Level Petri Nets for Elder Healthcare”, 2006

[18] Xi Yali, Yang Weigiang, Yamauchi Noriyoshi, et al., “Real-time Data
Acquisition and Processing in a Miniature Wireless Monitoring System for
Strawberry during Transportation”, TENCON, 2006

[19] J. H. Yang, "Context Aware Ubiquitous Learning Environments for Peer-to-Peer
Collaborative Learning ", Journal of Educational Technology and Society, vol. 9,
no. 1, pp. 188-201, Jan, 2006. (SSCI)

50

[20] Stephen J.H. Yang, Angus Huang, Rick Chen, et al, “Context Model and Context
Acquisition for Ubiquitous Content Access in Ubiquitous Learning
Environments” IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC), 2006

[21] C. Yin, Y. Yano, "Ubiquitous-Learning System for the Japanese Polite
Expressions™ presented at International Workshop on Wireless and Mobile
Technologies in Education (WMTE), 2005.

[22] G. Zhang, M. Lin, "A Framework of Social Interaction Support for Ubiquitous

Learning,"” presented at International Conference on Advanced Information
Networking and Application (AINA), 2005.

51

