

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

以案例式規劃推論架構輔助 U 化學習應用系統設計

A Case-Based Planning Scheme to Support U-learning

Application Design

研 究 生：王芙民

指導教授：曾憲雄 博士

中 華 民 國 九 十 六 年 六 月

ii

以案例式規劃推論架構輔助U化學習應用系
統設計

學生：王芙民 指導教授：曾憲雄 博士

國立交通大學資訊學院
多媒體工程研究所

 摘 要

近年來由於無線網際網路與嵌入式系統的發展，使得 U化學習的研究愈來愈熱門，

而在一個 U化學習的環境中包含了許多跨領域的軟硬體技術，例如：學習教材系

統、手提設備、嵌入式感測器等等，提高了 U化學習應用程式的設計成本。然而，

根據我們的觀察，多數 U化應用程式都是由一些服務與其輸出入訊息，以及流程

控制知識所組成的，若能重複利用前人的設計構想對於設計一個新的應用程式是

相當有幫助的。因此，我們利用案例式規劃技術來協助設計新的應用程式，此外，

我們使用細顆粒的案例再用技術來修正案例使其更容易符合設計者的需求。為了

能重複利用現存的應用程式設計構想，我們提出一個階層式案例式規劃技術，將

現存的應用程式視為案例並將之儲存，來輔助新的 U化應用程式設計；在此階層

式案例式規劃技術中，我們利用計劃來描述一個應用程式的流程控制知識，並且

提出一個三層式的案例架構來輔助細顆粒的案例再用；其中，一個案例是由一組

任務所組成，而每個任務又由一組服務所組成，此外，我們分別為案例與任務定

義了一組特徵來描述之，並且參考現有的 U化應用程式建立了一個訊息本體論。

我們提出了一套案例擷取與案例修正的方式來使產生的計劃能夠符合設計者的

需求。最後，我們做了一個試驗性質的植物園導覽實驗，而結果顯示產生的計劃

是可接受的。

關鍵字： 案例式推論、規劃、U 化學習

iii

A Case-Based Planning Scheme to Support
U-learning Application Design

Student: Fu-Ming Wang Advisor: Shain-Shyong Tseng

Institute of Multimedia Engineering

National Chiao Tung University

Abstract

In recent year, due to the development of wireless network and embedded system,

researches about U-learning become more and more popular. However, the design of

U-learning application is costly and time consuming since cross domain technologies

are required such as software learning content system, handheld device, embedded

sensor, etc. With our surveys, many U-learning application designs can be

decomposed as a set of services and messages with similar Control Flow Knowledge.

Thus, it is helpful if we can reuse previous design ideas when designing a new

application. Therefore, the idea of Case Based Planning (CBP) approach is proposed

to support the new design. Moreover, different from the traditional CBP, the idea of

reusing fine-grained case is also proposed to adapt the requirement of new case design.

Consequently, in order to reuse the design ideas of existing applications, we propose a

Hierarchical-Case-based Planning (HCBP) scheme to store applications design as a

case and support new U-learning application design. In the HCBP scheme, a plan is

used to represent the Control Flow Knowledge of an application. To enable

fine-grained case reuse, a three-layer case hierarchy is defined, where a case is

composed of a set of tasks and each task is composed of a set of services. In the

HCBP scheme, we define a set of features to describe case and task in U-learning, and

a message ontology is constructed for the reference of existing U-learning

applications. In the HCBP scheme, the case retrieval, and case adaptation operations

are proposed to fulfill the requirement of the resulting plan. Finally, a trial experiment

about designing a new botanical garden guiding application using HCBP is done, and

the resulting plan is acceptable.

Keyword: CBR, Planning, U-learning

iv

誌謝

 這篇論文的完成，首先要感謝我的指導教授，曾憲雄老師。在研究所兩

年的歲月裡，無論是在學術研究或是為人處世方面，皆讓我受益匪淺，尤其

是我學到了對一個知識領域的研究方法、邏輯思考及表達能力的訓練，這將

使我終生受用不盡。同時也感謝我的口試委員，楊鎮華教授、孫春在教授和

黃國禎教授，他們給予了我相當多的寶貴意見，讓本論文更有意義與價值。

 再來要感謝的是蘇俊銘學長、翁瑞峰學長和林喚孙學長，在這段期間內，

常常麻煩他們在百忙之中騰出時間與我討論並給我建議、想法，協助我修改

論文。此外，我也從他們身上學習了不少生活態度及為人處事的方法，在此

深表感激。同時也感謝實驗室的同窗夥伴們，昂叡、信男、雨杰、東權、曉

涵、嘉妮，在這兩年的時光裡，不管是學業上或是生活上，他們都陪伴著我

渡過這段碩士生涯，很高興能夠交到可以這樣同甘共苦、互相扶持鼓勵的朋

友。還有其他在身邊鼓勵我的朋友們，雖然無法在此一一提及，但我心裡真

的非常感激有你們在我身邊。

 最後要感謝的是我的家人，默默地支持與鼓勵，並不時地關心我，是我在

心力交瘁時還能保持鬥志的原動力。日後，我會更加努力地繼續前進，不辜

負他們的期望。

 僅將本篇論文獻給每一位支持與幫助我的人。

v

Tables of Content

Abstract .. iii

Tables of Content ... v

List of Figures ... vi

List of Tables ... vii

List of Algorithms ... viii

Chapter 1. Introduction ... 1

Chapter 2. Preliminaries .. 4

2.1. U-learning Application .. 4

2.2. Ontology in U-learning .. 5

2.3. Case-based Planning .. 6

Chapter 3. Hierarchical-Case-based Planning 8

3.1. Desired Task Flow ... 11

3.2. Case Representation ... 14

3.3. Message Linking and Message Ontology .. 20

3.4. Case Retrieval .. 21

3.5. Case Adaptation ... 28

Chapter 4. U-learning Application HCBP System 35

4.1. Case Hierarchy for U-learning Application ... 35

4.2. Message Ontology ... 37

4.3. Features for U-learning .. 38

Chapter 5. Application and Discussion.. 41

5.1 Botanical Garden ... 41

Chapter 6. Conclusion ... 48

Reference ... 49

vi

List of Figures

FIGURE 3.1 DIFFERENCE BETWEEN COARSE AND FINE GRAINED CASE REUSE 9

FIGURE 3.2: HIERARCHICAL-CASE-BASED PLANNING .. 10

FIGURE 3.3: TASK FLOW OF MUSEUM GUIDING APPLICATION ... 11

FIGURE 3.4: RELATIONS BETWEEN DESIRED TASKS ... 13

FIGURE 3.5: A CASE SCHEMA IN HCBP .. 17

FIGURE 3.6: CASE FEATURE TABLE GENERATION .. 19

FIGURE 3.7: MESSAGE LINKING AND MESSAGE ONTOLOGY .. 20

FIGURE 3.8: CASE RETRIEVAL AND CASE ADAPTATION .. 22

FIGURE 3.9: SIMILARITY OF FEATURES VALUE TYPE “STRING IN CATEGORY” 23

FIGURE 3.10: SIMILARITY FOR FEATURES VALUE TYPE “STRING IN MESSAGE ONTOLOGY” 24

FIGURE 3.11: SEQUENCE SIMILARITY .. 27

FIGURE 3.12: TASK (TASK FLOW) PLANNING OPERATION.. 29

FIGURE 3.13: MESSAGE PLANNING OPERATION .. 30

FIGURE 3.14: SERVICE PLANNING OPERATION .. 31

FIGURE 4.1: CASE HIERARCHY ... 36

FIGURE 4.2: CASE REPRESENTATION FOR MUSEUM GUIDING ... 37

FIGURE 4.3: MESSAGE ONTOLOGY CONSTRUCTED FROM TWO APPLICATIONS 38

FIGURE 5.1: DESIRED TASKS ... 42

FIGURE 5.2: DESIRED TASK FLOW ... 42

FIGURE 5.3: DESIRED TASK METADATA .. 43

FIGURE 5.4: POSSIBLE DESIRED CASE FEATURE TABLE ... 44

FIGURE 5.5: COMPLETE CASE RETRIEVAL .. 44

FIGURE 5.6: THE RETRIEVED CASE .. 45

FIGURE 5.7: THE RETRIEVED TASK .. 46

FIGURE 5.8: DIFFERENCE BETWEEN DESIRED TASK “RETRIEVE W & LA RELATED CONTENT” AND

TASK “RETRIEVE LA RELATED CONTENT” ... 46

FIGURE 5.9: MESSAGE INSERTION .. 47

FIGURE 5.10: TASK INSERTION ... 47

file:///C:\Documents%20and%20Settings\taj\My%20Documents\�ڤw�������ɮ�\Thesis_final.docx%23_Toc174
BT

vii

List of Tables

TABLE 3.1: FEATURE TYPES FOR TASK ... 18

TABLE 3.2: POSSIBLE CASE FEATURE TABLE .. 18

TABLE 4.1: FEATURES FOR TASK DESCRIPTION .. 40

TABLE 4.2: FEATURES FOR CASE DESCRIPTION .. 40

viii

List of Algorithms

ALGORITHM 3.1: TMATCH .. 25

ALGORITHM 3.2: SQMATCH.. 26

ALGORITHM 3.3: CASE REUSE .. 33

ALGORITHM 3.4: CASE REVISE ... 34

1

Chapter 1. Introduction

In the past decade, E-learning becomes popular due to the widespread network

and computers, and enables learning activities progressing at anytime and anyplace.

Recently, with the development of wireless network, sensor technology and

embedded system, it becomes possible to cooperate the computing and information

powers in an environment. From the Weisor’s vision [18], he described that a variety

of computing and communication capability computers will be ubiquitous around our

environment and the associated technology is called the ubiquitous computing. In

recent years, the ubiquitous computing technology is further applied in seamless

learning and is called U-Learning.

The computing and communicating capabilities (such as sensors, robots or RFID

tags) can be embedded or attached to ordinary things and let them behave smartly to

provide intelligent services. This feature of context-aware reasoning mechanism for

the user centric service is called the ubiquitous intelligence [17]. In the U-Learning

domain, the context-aware property can provide more intelligent services than

E-learning. Therefore, we model the U-learning service design as a system composed

of reasoning systems used for context interpretation, content retrieval systems, and

devices used for context collection, content displaying, etc. In other words, a

U-learning service design is a heterogeneous environment composed of software and

hardware components to achieve context-aware.

 Based on our observation, each component has the same model, which means

all of them composed of input message, operation and output message, therefore, we

take these components as service, then a U-learning application is the Control Flow

Knowledge that describes the sequence of services. In an application, a service is

triggered by an input message that happened in the environment, such as learner

2

approach, after the first service operation is done, it sends its output message to

another service to trigger it according to the Control Flow Knowledge, making a flow

of service. Notice that services can be triggered parallelized other than just a linear

sequence. Consequently, we can say that to design a U-learning application is actually

design a control flow of services. However, as mentioned above, a U-learning

application is composed of devices and systems, making it difficult and costly to

design a new application because all services including software systems and

hardware devices have their environmental and functional constraints, and to

construct Control Flow of U-learning application involves many kinds of domain

expertise such as education, software system and hardware device.

Many researches have been proposed to design some specific U-learning

applications, such as Japanese polite teaching [21], knowledge awareness map [11],

requirement satisfied learning [2], which will be introduced in next chapter. Since

most of them have some similar features, such as getting learner’s identity at the first

of the application or trying to provide the most suitable content to learner, how to

reuse the design ideas to of these features to reduce the cost of designing a new

application is a challenging and interesting issue. Nevertheless, each U-learning

application is an independent system, the design ideas only can be reused after

designer survey all the articles of relative researches, and when system becomes

larger and larger and paper becomes more and more, it is hard for a designer to afford

the huge amount of information. Moreover, it is also hard to integrate multiple

designs together and to fulfill each service’s requirement and constraints manually,

therefore, we want to propose a systematic mechanism to help retrieve and reuse

existing Control Flow Knowledge.

However, in order to reach this goal, there are three issues we have to overcome.

First, the Control Flow Knowledge is usually implicit and embedded in the system,

3

how to represent it is an issue. Second, how to find similar U-learning application for

reuse? Third, in order to integrate parts of different U-learning application, how to

find and integrate these applications becomes a problem. Hence, we propose

Hierarchical Case-based Planning (HCBP) scheme to solve the problems. In our

approach, plan is used in order to draw out Control Flow Knowledge that embedded

in U-learning application system originally; Case-based reasoning solves similar

application retrieval, and hierarchical planning solves application integration and

ensures the flow correctness. In the proposed scheme, designer is ask to give a task

flow of an application first, and then HCBP system is used to retrieve and integrate

applications, at last, an appropriate services set and Control Flow Knowledge is

produced.

In the next chapter, some related researches are introduced and discussed. The

HCBP scheme is introduced in Chapter3 and U-learning application is applied to

HCBP in Chapter 4. Evaluation and discussion are addressed in Chapter 5, and at last,

a conclusion about HCBP is given in Chapter 6.

4

Chapter 2. Preliminaries

In this chapter, some common U-learning Applications are introduced first. Since

ontology plays an important role in our research, previous researches using ontology

in U-learning are next reviewed. Finally, we will introduce several previous

researches about case-based planning and discuss the capability of existing case-based

planning systems.

2.1. U-learning Application

At present, there are many U-learning applications have been proposed. Among

them, several applications that are representative are introduced. More U-applications

are shown in [3][7][14][16][22].

The U-learning system for Japanese Polite Expression proposed in [21] can

provide learner proper polite expression should be used according to the occasion. In

which PDA is used as the content display device and each learner are asked to fill in

his or her own profile first. And learner’s location is confirmed by GPS or RFID

according to the environment is indoor or outdoor, or by schedule; therefore, the

occasion is judged by location and time. When a learner talks to a conversational

partner, the system gets the information for the person via the infrared data

communication of the PDA, and then suggests propriety polite expression for the

learner.

In [11], a personalized knowledge awareness map system is proposed to provide

a knowledge awareness map that shows the distance and relation degree of learning

materials and peer learners related to learner’s input from a PDA. In the application, a

leaner is asked to input a query topic that he or she is interested in, the system finds

out the related materials and peer learners who are familiar with the learner’s input

5

topic, and then the locations of the most related materials and peer learners chosen are

retrieved in location repository and distances between the learner and the retrieved

materials and peer learners are calculated. Finally, a related material and a peer

learner knowledge awareness map are generated respectively using the related degree

and distance, and then displayed to learner.

In the requirement satisfied learning environment system [2], a teacher or a

parent has to set some requirement to the learner first, e.g., the learner is not permitted

to play video games without completing the homework. In the learning environment,

RFID tags are deployed on the objects in order to detect the learner’s behavior.

Afterwards, if something in conflict with the requirements was done, an alert is

showed to the learner, parent or teacher.

As U-learning applications introduced above, each application has its own

Control Flow Knowledge. To reuse the Control Flow knowledge in existing systems

will be helpful when designing a new large and complex application.

2.2. Ontology in U-learning

Ontology is a knowledge representation model that specifies the concepts and

relations of knowledge and has been used in various research domains, such as

knowledge engineering, natural language processing, knowledge management, etc. to

facilitate knowledge sharing and reuse. In [15], a context description model using

ontology is proposed for U-learning. The author conceived that context aware is an

interactive model between learners and service and two types of context ontology,

learner ontology and service ontology for describing learners and services are

proposed. The learner ontology contains learner profiles such as personnel profile,

accessibility and preferences, calendar profile, social profile, and location profile, and

6

the service ontology contains service profile such as input, output, pre-condition, and

effect of service execution. In our research, we construct a message ontology to

maintain the relations between messages used in U-learning and support case retrieval

and adaptation. The message and message ontology will be illustrated in next chapter

detailedly.

2.3. Case-based Planning

Case-Based Planning (CBP) is an approach that reuses existing plans to solve

new problems that similar to previous ones. Traditional CBP is single-shot, that is, a

single coarse-grained case is reused to solve the present problem. In general, a

coarse-grained case-based planning system generate new plans by retrieving and

adapting old ones in case base [4][6][13], and the retrieved plan should be the one that

need least adaptation to fit the current situation. The disadvantage of traditional CBP

is that it is inadequate to solve complex problems, and a more complicated adaptation

method has to be designed to adapt the retrieved plan to the new problem.

On the other hand, there are some researches about fine-grained CBP have been

proposed to enhance the capability of CBP and make multiple-case reuse possible.

In[1], a fine-grained case-based reasoning system used to generate simulation plans is

presented based on the concept that problem solving experiences can be partitioned

and used as independent cases. In the system, when the retrieved cases are not similar

enough, a secondary retrieval is executed. That is, the system tries to retrieve partial

plans that satisfy the new problem instead of retrieving a complete one. In research

[15], the author proposed an approach for plant-control design. Cases are used at

multiple levels of abstraction to represent complex problem solutions as hierarchies,

where abstract case solutions are used to act as problem decomposition knowledge,

7

and concrete case solutions are executable programs. This kind of case hierarchy

promotes the reuse of solution parts from different complete solutions to reduce the

adaptation overhead. However, both of them are used in pure domains that are not as

complicated as U-learning in which more information and constraints have to be

concerned; therefore, their planning approaches are not suitable for U-learning.

In [10], a novel framework to support workflow modeling and design by

adapting workflow cases from a repository of process models is proposed. In which

the authors proposed a conceptual model of workflow cases, a similarity flooding

algorithm for case retrieval and a domain-independent AI planning approach to

workflow case composition. Comparing to other general case-based planning systems,

the workflow modeling approach is special because it concerns the workflow when

retrieving similar cases instead of just concerning some features that utilized for case

description. However, when retrieving a similar section of workflow, only a totally

matched section will be considered; therefore, this approach is not proper for

U-learning application design because a U-learning application plan needs more

flexibility.

8

Chapter 3. Hierarchical-Case-based Planning

As mentioned in Chapter 1, there are three issues should be solved before the

Control Flow Knowledge in existing U-learning application could be reused. First,

how to represent the Control Flow Knowledge which is usually embedded in the

system code? Second, how to find a similar U-learning application for reuse? Third,

how to find and integrate some tasks of applications to construct a new application

according to designer’s requirement? Above all, in order to reuse Control Flow

Knowledge of U-learning application, case-based reasoning is the approach that

suitable for use, in which each application is considered as a case. Moreover, in our

approach, plan is used to represent the Control Flow Knowledge of U-learning

application, and a case adaptation algorithm is proposed to integrate and adapt the

retrieved cases.

In a U-learning application, there are a lot of components involved in, crossing

software and hardware domains. For example, sensors and RFIDs are needed to

gather information in the environment; programs are needed for context interpretation

and context-aware content retrieval; repositories are needed to store up learning

materials and information like learner’s portfolio; PDA, mobile phone, tablet PC, etc.

are needed for content displaying. Therefore, inter-domain communication between

these components to construct a U-learning environment is significant, and this kind

of domain complexity increases the difficulty of planning for U-learning application

design. Based on our observation, each component has the same operation pattern,

that is, an input message, an operation and an output message. In order to simplify the

planning process, each component is considered as a service here. Services are the

primitive component in our approach; in other words, the Control Flow Knowledge of

an application is actually a flow of services.

9

As mentioned in previous chapter, to construct a U-learning application is not an

easy work due to the complex domains involved in. Besides, a U-learning application

is adaptable to the situation of the environment; it may have different response in

different situations. That is to say, U-learning application is more changeable than

traditional E-learning application, and makes it even harder to generate a plan of

Control Flow Knowledge. Therefore, when using CBR to reuse previous designed

applications, a fine-grained approach is proposed. In a fine-grained approach, a new

plan can be generated through combination or modification of several retrieved cases

if needed, instead of reusing only the most similar coarse-grained case. The difference

between fine-grained and coarse-grained case reuse is shown in Figure 3.1.

(a) Coarse-grained case reuse (b) Fine-grained case reuse

It will take a lot of efforts for adaptation if only a coarse-grained case is reused in a

complex domain such as U-learning. As a consequence, we propose a hierarchical

case representation model let a case be reused in different layer of granularity, from

coarse to fine, hierarchically. In our proposed case model, we defined the case

granularity into three layers, where an application is considered as a case, a case is

composed of tasks, and a task is composed of services. The detail of case

representation will be illustrated in Section 3.2.

 In order to reuse hierarchical-case, we proposed a Hierarchical-Case-based

Planning (HCBP) scheme, in which designer is first asked to input a Desired Task

Flow, the description of each Excepted Task, and the description about the whole case

Plan

Reused Case A

Sub-plan 1

(from Case A)

Sub-plan 3

(from Case A)

Sub-plan 4

(from Case C)

Sub-plan 2

(from Case B)

Figure 1: Difference between coarse and fine grained case reuse Figure 3.1 Difference between coarse and fine grained case reuse

10

in his or her mind. Subsequently, a Possible Desired Case Feature Table is generated

from the designer’s input. Afterward, a most similar and reusable case is retrieved

from the case base and then case adaptation is carried out according to the designer’s

input. In the proposed HCBP, the adaptation process includes case reuse and case

revise process in traditional CBR. When adapting the most similar case, a fine-grained

case retrieval is executed to retrieve parts of cases that suitable to be replaced or

added into it. Finally, a resulting new case satisfy designer’s input is generated, and

then the new case is retained in the case base. The whole process is shown in Figure

3.2.

Figure 3.2: Hierarchical-case-based planning

11

3.1. Desired Task Flow

From user’s point of view, a U-learning application can be seen as a flow of

desired task. For example, when designing a museum guiding application, the

designer may intend to get learner’s ability first, and when learner approaches an

exhibition, the approached exhibition is confirmed. Afterwards, the system will

retrieve related materials or information about the exhibition that are suitable for the

learner according to the learner’s ability. At last, the retrieved material or information

about the exhibition is displayed to learner by a mobile device. In the example, each

step is considered as a desired task; the whole process of desired task flow of the

example is shown in Figure 3.3.

Figure 3.3: Task flow of museum guiding application

The definition of Desired Task Flow is shown as follows:

Definition 3.1: Desired Task Flow

DTF = (DT, DSR), where

1. DT = {dt1, dt2, …, dtn} is a finite set of desired tasks

2. DSR = {dsr1, dsr2, …, dsrn} is a finite set of sequence relations, will be illustrated

later.

12

A U-learning application may be not always as simple as the one shown in

Figure 3.3. In many circumstances, the relations between tasks are not only the

“implication” but also some other relations. Here we defined several kinds of task

relations for the designer’s input desired task flow. The first kind of relation is

Implication, which is the most common relation appears in all applications, as shown

in Figure 3.4(a). Other relations are extensions of the Implication relation, such as

And, Or, and Cn
m . For the And relation, there are two situation, the first one is shown

in Figure 3.4(b). In this situation, the subsequent task will be triggered only when all

of its antecedent tasks are done, and in the second situation, after the antecedent task

is executed, it will trigger all of its subsequent tasks as shown in Figure 3.4(c). For the

Or relation, there are also two situations. In first situation, the subsequent task will be

triggered when either one antecedent task has been done, as shown in Figure 3.4(d),

and in the second situation, after the antecedent task is executed, it will trigger one of

its subsequent tasks as shown in Figure 3.4(e). For the last relation Cn
m , the first

situation is shown in Figure 3.4(f). In this situation, only when n antecedent task of

the total m is done, the subsequent task is triggered. In the second situation, n

subsequent tasks out of m will be triggered after the antecedent task is done, as shown

in Figure 3.4(g).

It is worth to mention that the relations defined here is the most frequent

relations may appear in a U-learning application, they are not powerful enough to

handle complex circumstances. In this thesis, only the relations defined above are

discussed.

13

(a) The Implication relation (b) The And relation 1 (c) The And relation 2

(d) The Or relation 2 (e) The Or relation 2 (f) The 𝐂𝐧
𝐦 relation 1

(g) The 𝐂𝐧
𝐦 relation 1

Figure 3.4: Relations between desired tasks

For each Desired Task in a Desired Case, a Desired Task Metadata is used to

describe the task, and the Metadata is actually a set of features; for a Desired Case, a

Consequent

Task

Antecedent

Task A

Antecedent

Task B

Antecedent

Task N

.

.

.

And

Antecedent

Task

Consequent

Task A

Consequent

Task B

Consequent

Task N

.

.

.

And

Consequent

Task

Antecedent

Task A

Antecedent

Task B

Antecedent

Task N

.

.

.

Or

Antecedent

Task

Consequent

Task A

Consequent

Task B

Consequent

Task N

.

.

.

Or

Consequent

Task

Antecedent

Task A

Antecedent

Task B

Antecedent

Task N

.

.

.

C(m,n)

Antecedent

Task

Consequent

Task A

Consequent

Task B

Consequent

Task N

.

.

.

C(m,n)

Consequent

Task
Antecedent

Task

Implication

14

Possible Desired Case Feature Table is used to describe the Case. After the Desired

Task Flow is constructed, the designer is asked to fill in the feature tables for each

Excepted Task and some feature values about the Desired Case. And then a complete

Possible Desired Case Feature Table is generated by aggregating designer’ input.

Notice that the features for Desired Task are the same as Metadata of Task in case

base, and the features for Desired Case are the same as Cases in case base. Details of

these features and the aggregation process will be discussed in next section. The

definition of Desired Task Metadata and Possible Desired Case Feature Table are

shown below:

Definition 3.2: Desired Task Metadata

DTMD = (<F, V>1, …, <F, V>n), F is the features that used for task description, and

V is the values of features.

Definition 3.3: Possible Desired Case Feature Table

PDCFT = (<F, V>1, …, <F, V>n), F is the features that used for case description, and

V is the values of features.

3.2. Case Representation

As mentioned above, we represent case in three layers --- Application, Task and

Service. And in our HCBP scheme, a case is composed of Input Message, Output

Message, a Possible Case Feature Table, a Task Flow and a set of Service Flow,

where Input Message is the message that triggers a Task and Output Message is the

message that generated from a Task, the definition of Message is shown as below.

15

Definition 3.4 Message

M = {m1, m2, …, mn} is a finite set of messages

Possible Case Feature Table is a set of features that give extra information about

a case and they are the same as features in PDCFT; Task Flow is the Control Flow

Knowledge of an application represented in task level granularity, and Service Flow is

the Control Flow Knowledge of an application represented in service level granularity.

Each Service Flow is mapped to a task, as shown in Figure 3.5, where Task 1

mapping to a Service Flow that composed of Services 1, 2, and 3. Each Task has

Input Message and Output Message, and Task Metadata for task description, where

the feature defined for Task Metadata are the same as features in DTMD; each service

has its own Input Message and Output Message but no metadata because service is the

primitive component, and we consider that I/O message is enough to describe a

service’s function. In the proposed scheme, Case base maintains a repository to store

services, tasks, messages and the application cases which link to the tasks and

services, and when a generated new application has to be retained, it will be stored as

a case and decomposed into a set of tasks with corresponding services. Service, Task

and Case are defined as follows and case structure is shown in Figure 3.5.

Definition 3.5 A Service is a three-tuple

S = (SIM, SOM, RD), where

1. SIM = {im1, im2, …, imn}, where imi  M

2. SOM = {om1, om2, …, omn}, where omi  M

3. RD is the Resource Description of service

16

Definition 3.6 A Task is a four-tuple

T = (TIM, TOM, SF, TMD), where

1. TIM = {im1, im2, …, imn}, where imi  M

2. TOM = {om1, om2, …, omn}, where omi  M

3. SF = (S, SSR), SSR includes relations “Implication” and “And”

4. TMD = (<F, V>1, …, <F, V>n), F is the features that used for case description,

and V is the values of features.

Definition 3.7 A Case is a four-tuple

C = (AIM, AOM, TF, PCFT), where

1. AIM = {im1, im2, …, imn}, where imi  M

2. AOM = {om1, om2, …, omn}, where omi  M

3. TF = (T, TSR), TSR includes relations “Implication” and “And”

4. PCFT = (<F, V>1, …, <F, V>n), F is the features that used for case description,

and V is the values of features.

It is worth to mention that, for PDCFT to PCFT, they are almost the same despite of

PDCFT is in the Desired Case that designer inputs and PCFT in Cases that in case

base, and so as DTMD to TMD.

17

Figure 3.5: A case schema in HCBP

Here we defined the features for case and task description, respectively, as

shown in Table 3.1 and Table 3.2. For task, there are three kinds of features in the

feature table, where the first kind is for human reading, and their data type of feature

value is string that can be input by designer. The second kind of feature is used to

indicate input and output messages, where their data type is String that selected from

the message ontology. The third kind of feature is used to record some other

information about a task, their data types are String defined in category that selected

from the message ontology. Case has an additional feature type that used to record

information about a whole case, and the feature value data type is String defined in

category.

18

Table 3.1: Feature Types of task

Table 3.2: Feature Types of case

 To generate a case feature table, the main process is to aggregate the feature

values in task metadata, as shown in Table 3.2, column “Data Resource”. For Input

Message of a case, the feature value is union of Input Message value of leading tasks

in the task flow; for Output Message of a case, the feature value is union of Output

Message value of end tasks in the task flow; and for features belong to “Task Feature”,

value of each feature is generated by union of corresponding feature value in task

metadata, as shown in Figure 3.6.

19

Task A Task B

Task C Task D

Case Feature Table

Figure 3.6: Case feature table generation

20

3.3. Message Linking and Message Ontology

In the whole hierarchical planning process, how to make sure that the service

flows retrieved from different cases could be linked together is a critical problem.

Therefore, we define a message ontology to maintain the relations between messages.

Assume that the similarity between two messages can be traced through the distance

between their positions in the Message Ontology, similar messages will be placed

under the same parent, forming a hierarchical relationship between messages.

Moreover, the relations between messages can help us to check if two services or

tasks could be linked together. For example, personal context is a kind of context;

learner profile and learner portfolio are both personal context. If a service A has an

input message type Personal Context, and a service B has an output message type

Learner Profile, then we can know these two services could be linked together

because Personal Context and Learner Profile are compatible by checking the relation

in the ontology. The example is shown in Figure 3.7.

Figure 3.7: Message linking and message ontology

21

The message ontology is defined as below:

Definition 3.8: Message Ontology

MO = (M, R), where

1. M = {m1, m2, …, mn} is a finite set of message in case

2. R = {r1,r2,…,rn} is a finite set of relations

3.4. Case Retrieval

In case retrieval, similarity measurement is the main process and it determines if

the retrieved cases are good enough to generate a new case satisfy designer’s input.

Based upon the proposed hierarchical case representation model, we propose a

similarity measurement method, in which a case similarity is the combination of

feature similarity and task flow similarity. As shown in Figure 3.8, after the designer

provides the information about a new application, a complete case retrieval process is

executed. It results in that the feature and task flow similarities between the desired

case and cases in case base are calculated, and the most similar case is chosen.

Afterward, if the retrieved case is not good enough, the system will try to adapt the

case in Case Reuse by task or task flow Insertion, Deletion and Replacement, where

the task or task flow retrieval is done by the partial case retrieval. However, in case

adaptation process, if the retrieved task is not similar enough to the needed desired

task, the retrieved task is revised by Message Insertion, Deletion and Service Insertion,

Deletion, and Chaining according to the needed desired task in Case Revise process.

After that, the revised task is used in the retrieved case and the case similarity is

calculated again to see if it satisfies the designer’s demand. This process will continue

22

until the retrieved case adapted to the designer’s demand and then returned to

designer.

Figure 3.8: Case Retrieval and Case Adaptation

As mentioned in Section 3.2, despite of the features for human reading, there are

only two kinds of feature value type --- String in category and String in Message

Ontology. To calculate similarity of features that have feature value type “String in

category”, a general string matching approach is used, that is, if matched, similarity

equals to 1; otherwise it equals to 0. For features that have more than one feature

value, the similarity is the average of similarity of each value, as shown in Figure 3.9.

To calculate similarity of features that have feature value type “String in Message

Ontology”, an Ontology-based similarity measurement approach is used, where the

similarity between two strings is 1/(d+1), and d is the distance between them in the

23

ontology. And for features that have more than one feature value, the similarity is the

average of similarity of each value too, as shown in Figure 3.10. The definition of

similarity calculation is shown as below:

Definition 3.9 Category-based Feature Similarity

CBFS =
 𝐅𝐕𝐀 ∩ 𝐅𝐕𝐀′

 𝐅𝐕𝐀 ∪ 𝐅𝐕𝐀′
 (Jaccard similarity coefficient) , where

1. FVA is the Feature Value of Feature A in one Case and FVA’ is the Feature Value

of Feature A in the compared Case

Definition 3.10 Ontology-based Feature Similarity

OBFS =
 𝟏 𝐝𝐢+𝟏

𝐅𝐕𝐏𝐍
, where

1. FVPN is the number of Feature Value Pair, which means for a Feature in two

Cases A, B, if a feature value in A and a feature value in B are the same or their

distance in ontology > threshold and less than any other combination, then they

become a Feature Value Pair. If a value is not in any Feature Value Pair, it

becomes a Pair with an “empty value”.

2. di is the distance of Feature Value Pair i

Figure 3.9: Similarity of features value type “String in Category”

24

Figure 3.10: Similarity for features value type “String in Message Ontology”

 On the other hand, task flow similarity is composed of Coverage Similarity and

Sequence Similarity[9], where the coverage means the number of similar tasks

between the Desired Task Flow and the compared Task Flow in case base, and the

sequence means the similarity of task order between the Desired Task Flow and the

compared Task Flow. In order to calculate task flow similarity, the similar task pairs

between the desired task flow and the compared flow must be found first, where the

similar task pair means two tasks, one in desired task flow and the other in compared

task flow, are similar enough and we take them as the same when calculating task

flow similarity. According to the physical meaning of coverage, the coverage

similarity is the number of similar task pair among the total number of task in desired

task flow or in compared task flow (depends on different situations), defined as

follows:

Definition 3.11 Coverage Similarity

1. CvS =
 𝐓𝐌𝐚𝐭𝐜𝐡(𝐓𝐱)

𝐓𝐍
 is the coverage similarity between the query desired task

flow and the compared case task flow, where

 TMatch() is shown in Algorithm 3.1

 TN is the total number of task in the compared task flow

25

Definition 3.12 Coverage Similarity’

1. CvS′ =
 𝐓𝐌𝐚𝐭𝐜𝐡(𝐓𝐱)

𝐓𝐍′
 is the coverage similarity between the query desired task

flow and the compared case task flow, where

 TN′ is the total number of task in the desired task flow

Algorithm 3.1: TMatch

Input: T

Output: Match

Definition of Symbols:

CTi: The Compared Task i in the Compared Task Flow

Step 1. Compare T with the tasks in the case task flow, if Max(Similarity(T,CTi)) >

threshold, then set (T, CTm) a Task Pair and set Match = 1, else Match = 0

Step 2. Return Match

And for sequence similarity, the main idea is to find similar possible sequence, where

the possible sequence means the combination of every two tasks in task flow. For

example, for task flow ABD, there are three combinational pairs AB, BD,

and AD. In order to calculate sequence similarity, the first thing to do is to find

similar sequence pairs, which means two sequences AB and A’B’, AB is in

desired task flow and A’B’ is in the compared task flow, where (A, A’) and (B, B’)

are two similar task pairs. The similarity of a similar sequence pair is the average of

similarity of the two similar task pair, as shown in Figure 3.11, and the overall

sequence similarity for a case is the average of each similar sequence pair among all

possible sequence. The definition is shown as follows:

26

Definition 3.13 Sequence Similarity

1. SS =
 𝐒𝐪𝐌𝐚𝐭𝐜𝐡(𝐒𝐪𝐲)

𝐂𝟐
𝐓𝐍 is the sequence similarity the query desired task flow and

the compared case task flow, where

 SqMatch() is shown in Algorithm 3.2

 Sq = (ST, DT) is the possible sequence generate from the query desired task

flow

 ST = {t1, t2, …, tn}, where ti  T is the source task in task sequence

 DT ={t1, t2, …, tn}, where ti  T is the destination task in task sequence

 𝐂𝟐
𝐓𝐍 is the total number of possible sequence generate from the desired task

flow

Algorithm 3.2: SqMatch

Input: Sq

Output: SqMatchS

Step 1. Find if there is a matched sequence in the compared case task flow, if found then go

to step 2, else end.

Step 2. SqMatchS = (TSSimilarity(ST)+TSSimilarity(DT))/2

Step 3. Return SqMatchS

27

Figure 3.11: Sequence Similarity

 In Complete Case Retrieval, a complete case similarity is calculated to retrieve

an integral case that is most similar to the desired case, in which both Case Feature

Table Similarity and Task Flow Similarity are used. The Case Feature Table

Similarity indicated the similarity between the Possible Desired Case Feature Table

and the Possible Case Feature Table, that is, the average similarity of each feature in

the feature table. In Partial Case Retrieval, a Partial Case Similarity is calculated to

retrieve a part of a case that is most similar to a part of Desired Task Flow, in which

only Task Flow Similarity is used. The Complete Case Similarity and Partial Case

Similarity are defined as below:

Definition 3.14: Complete Case Similarity (CCS)

1. CCS = CFTS + TFS, where

 CFTS is the similarity of Case Feature Table

 TFS is the similarity of Task Flow

2. CFTS =
 𝐂𝐅𝐒𝐢× 𝐂𝐅𝐖𝐢

𝐂𝐅𝐍
 where

 CFSi is the similarity of Case Feature i

28

 CFWi is the weight of Case Feature i

 CFN is the total number of Case Feature

3. TFS = CvS+SS

Definition 3.15 Partial Case Similarity (PCS)

PCS = CvS′+SS

3.5. Case Adaptation

In Case Adaptation, there are two main processes --- Case Reuse and Case

Revise, as shown in Figure 3.8. Case Reuse includes some planning operations that

adapt the plan in task level, such as Task (Task Flow) Insertion, Deletion, and

Replacement, where Task Insertion is an operation used to insert tasks according to

the demands in the Desired Case when the retrieved case lack some tasks, as shown in

Figure 3.12 (a); Task Deletion is an operation used to delete tasks according to the

demands in the Desired Case when the retrieved case has some tasks unnecessary, as

shown in Figure 3.12 (b); Task Replacement is an operation used to replace tasks by

more suitable ones according to the demands in the Desired Case, as shown in Figure

3.12 (c).

29

(a) Task Insertion

(b) Task Deletion

(c) Task Replacement

Figure 3.12: Task (Task Flow) Planning Operation

Case Revise includes planning operations that adapt the plan in Service level, such as

Message Insertion, Message Deletion, Service Insertion, Service Deletion, and

Service Chaining, where Message Insertion is used to add Input Message or Output

Message to a Service as shown in Figure 3.13(a), and Message Deletion is used to

delete Input or Output Messages that are unnecessary, as shown in Figure 3.13(b),

notice that some constraints must be defined in advance to prevent from generating

strange services. Service Insertion and Deletion are the operations that are used to add

demanded services and to delete services that are not necessary according to the

description in the Desired Task Metadata, as shown in Figure 3.14 (a)(b). Service

30

Chaining is the last means if no similar task in case base could be reused, this

operation will try to find a service flow between Input and Output Message by support

of Message Ontology, as shown in Figure 3.14 (c). For example, to find a service flow

between Input Message A and Output Message B, the system will select a service S

that has Output Message B first, and then try to find another service has the Output

Message Type that is compatible to the Input Message Type of service S, as shown in

Example 3.3. This process will continue until a service flow is found to connect Input

Message A and Output Message B, or the process is failed if there is no service flow

could be found and it means that new task or new service has to be added into

repository.

(a) Message Insertion

(b) Message Deletion

Figure 3.13: Message Planning Operation

31

(a) Service Insertion

(b) Service Deletion

(c) Service Chaining

Figure 3.14: Service Planning Operation

In the whole Case Adaptation process, similarity between the retrieved case and

designer’s input is confirmed first. If the retrieved case is similar enough, then no

adaptation has to be done, else Case Reuse process will compare the Task Flow of the

retrieved case and the Desired Task Flow from the designer. Afterward, the most

dissimilar part will be found, where the dissimilar part could be a single Task or a

Task Flow, and then planning operations in task level is executed to adapt the

retrieved case to designer’s input. If Task Insertion or Task Replacement is needed,

the Partial Case Retrieval process mentioned in last section is executed to find Task or

32

Task Flow that are similar to the query Desired Tasks or Desired Task Flow for Case

Adaptation. However, if the retrieved Task or Task Flow itself is not similar enough

to the query Desired Task or Desired Task Flow, it will be helpless to insert or replace

the retrieved Task or Task Flow in the retrieved Case. Therefore, a Task itself must be

adapted first before inserted or replaced in the retrieved Case, that is, the Case Reuse

process is executed to adapt the retrieved Task to the query Desired Task. In which

the retrieved Task is revised by the service level planning operations mentioned above

according to the Desired Task Metadata. Afterward, the adapted Task could be used

for Task Insertion and Task Replacement. On the other hand, for the retrieved Task

Flow that itself is not similar enough, the Desired Task Flow is decomposed into

single Desired Tasks and corresponding Tasks are retrieved respectively. The one that

has the highest similarity among the all retrieved Tasks is chosen, and then it will be

inserted or replaced in the retrieved Case if its similarity is high enough, or it will be

adapted by Case Revise first, and then used for Task Insertion and Task Replacement.

The adaptation process will be repeated until the retrieved Case reaches an acceptable

status. The algorithm of Case Reuse and Case Revise is shown as follows:

33

Algorithm 3.3: Case Reuse

Input: Retrieved Case, Designer’s Input(PDCFT, DTF, DTMDs of Desired Tasks in DTF)

Output: Adapted Case

Definition of Symbols:

PoDTF: part of DTF

RTN: Task number of the retrieved case

DTN: Task number of the desired case

Step 1: Test if similarity of the Retrieved Case > a threshold.

 Yes  Return the Retrieved Case

Step 2: Find PoDTF that is most dissimilar to Retrieved Case

Step 3: Call PartialCaseRetrieval(PoDTF, DTMDs of PoDTF)

Step 4: Test if Similarity of the Retrieved Partial Case similar > a threshold.

 Yes  Do Operations according to Designer’s Input.

 If some Desired Tasks have no similar Task Pair, Task Insertion is

executed.

 Else If the ((RTN >DTN) & CS is low) or ((RTN > DTN) & SS is

low), Task Deletion is executed

 Else If TS of an Similar Task Pair < threshold, Task Replacement is

executed

 go to Step 1

No  If Partial Case is a Desired Task Flow, go to Step 5.

If Partial Case is a Desired Task, go to Step 6

Step 5: Retrieve a similar task for each Desired Task in the flow, select the most similar

one, then go to Step 4.

Step 6: Call Revise(Retrieved Task, corresponding DTMD), then go to Step 4 Yes.

34

Algorithm 3.4: Case Revise

Input: Retrieved Task, corresponding DTMD

Output: Adapted Task

Step 1: Do Operations to the Retrieved Task according to DTMD

 If the retrieved Task in a Similar Task Pair lack I/O Message which is in the

Desired Task, Message Insertion is executed

 If the retrieved Task in a Similar Task Pair has extra I/O Message which is not

in the Desired Task, Message Deletion is executed

 If the retrieved Task in a Similar Task Pair lack some Task Feature Value

which is in the Desired Task, Service Insertion is executed

 If the retrieved Task in a Similar Task Pair has extra Task Feature Value which

is not in the Desired Task, Service Insertion is executed

 If Task Similarity < a threshold, Service Chaining is executed

Step 2: Test if the Adapted Task similar enough (Similarity > threshold)

Yes  Return

No  Use Service Chaining to generate a plan, in which its Input & Output

Messages are conform to description in DTMD.

35

Chapter 4. U-learning Application HCBP System

In this Chapter, we apply the proposed HCBP scheme to U-learning.

4.1. Case Hierarchy for U-learning Application

As mentioned before, a case is represented as three layers of hierarchical-case

representation model, where the first layer is the application layer of representing a

case in the case base; the second layer is the task layer and the third layer is the

services layer.

Based on our observation, most U-learning applications nowadays have the same

process model; that is, at the beginning of an application, the system will collect

context information that is needed in the environment first, afterwards the collected

contexts are used to help retrieve the most suitable content for the learner, and at last,

the retrieved content is displayed to the learner in varies ways. In order to simplify the

Desired Task Flow construction process for application designer, we divided tasks

into three kinds --- Context Collection & Interpretation, Context Retain &Content

Retrieval and Output, as shown in Figure 4.1. Context Collection & Interpretation is a

group of tasks that are used to gather contexts from the environment and interpret the

gathered context according to different use; Context Retain & Context Retrieval

include tasks that retain the gathered context in repository and tasks that retrieve

context-aware content; Output is a group of tasks that are used for adaptable content

display to learners according to the situation of an environment. These three kinds of

tasks are used for a designer to design a desired task flow of a new application.

As shown in Figure 4.2, a museum guiding example is given to illustrate the

hierarchical-case representation model for U-learning. In the museum guiding

36

application, in order to provide a learner with suitable information about an exhibition

according to the learner’s ability, there are two tasks in type Context Collection &

Interpretation, “Get Learner Ability” and “Get Exhibition Identity”, where in type

“Context Retain & Content Retrieval”, a task “Retrieve Learner-Ability-related

content” is needed to retrieve content about the exhibition that suitable for the learner.

At last, a task ”Display Learner-Ability-related Content” is in type Output to show the

content to learner by web pages. Furthermore, each task is mapping to a flow of

services. Take “Get Learner Ability” for example, it is composed of three services, at

first the learner’s identity is detected by a “Detect Learner ID” service, and then the

learner ID is used to retrieve Learner Portfolio in repository by a service “Get Learner

Portfolio”, and finally, Learner Ability is determined by a service “Ability Judgment”.

Figure 4.1: Case Hierarchy

37

Museum Guiding:

Display ability related

content about exhibition

 Learner

Approach
Detect

Learner ID

Get Learner

Portfolio

Learner

ID

Learner

Portfolio

Ability

Judgment
Learner

Ability

Content

Display

Ability-

related

Content

html

Detect

Exhibition ID
 Learner

Approach

Object

ID

Get Learner
 Ability

Get Exhibition
ID

Retrieve Learner
Ability-related

Content

Display Learner
Ability-related

Content

Content

Selection
Learner

Ability

Ability-

related

Content

OO

Content

List

Get OO

Content List

Object

ID

Context Collection &

Interpretation
Context Retain &

Content Retrieval
Output

Figure 4.2: Case representation for museum guiding

4.2. Message Ontology

In order to utilize the message ontology to support case retrieval and planning for

U-learning application, we designed a base skeleton of the message ontology aiming

at U-learning.

We divided messages into four kinds, external message, content message,

context message and computing messages, respectively, where external message

denotes messages accepted from real environment; for example, weather of an

environment, learner approach, physical location, etc. Content message denotes the

contents that are suitable to be displayed of to learner, for example, map,

context-aware content, alert, etc. Context message denotes context that provides

information about learner and environment, such as learner profile, location, time, etc.

Computing message denotes the communication messages used between some

components in the system, such as a dump query to a learner profile repository. In

Figure 4.3, a message ontology constructed from a weather information probing

38

application and a museum guiding application is demonstrated, in which the nodes

that written in bold text are the base skeleton we designed for U-learning, and the

other nodes are inserted into the ontology during application analysis. Notice that

when designing a new application, the designer can add new message nodes into the

message ontology if there is no proper existing message to use.

Content Context

Content

List
Map

OOCL

Person Time Evm Loc

WI

ComptExternal

LApr

WD

Hmt Tmpr

AKO

AKO AKO

AKO

AKO

AKO AKO AKO AKO

AKO

AKO AKO

AKO AKO

AKO

AKO

Message

Ctx-Awr

Cnt

OOC

AKO

AKO

Weather

AKO

WeatherLAbilityLPortfolioLID

AKO AKOAKO

Figure 4.3: Message Ontology constructed from two applications

4.3. Features for U-learning

As mentioned in previous chapter, each Task contains a TMD for task

description and each case contains a PCFT for case description. Both TMD and PCFT

are a set of Feature-Value pairs, and some feature values in PCFT are generated from

TMD as illustrated in Section 3.2. Here we define a set of Feature for TMD and PCFT

based on demands of U-learning, respectively. Notice that DTMD and PDCFT are

almost the same with TMD and PCFT despite that they are input by designer for

query. Table 4.1 shows the Features that we defined for Task description, where

39

“Name” and “Goal Specification” are the Features belong to type Human Reading

defined in Section 3.2 and their values are strings inputted by designer arbitrarily;

“Input Message Type” and “Output Message Type” belong to I/O Message and their

values are selected from the Message Ontology; “Collect”,

“Retain”, ”ContentRelated”, “Target” and “ContextCollectionType” are Features

belong to type Task Feature, where “Collect” denotes what contexts should be

collected by the output of a task; “Retain” denotes what kind of information should be

retained in a repository such as learner’s location; “ContentRelated” denotes what

kind of contexts are used to retrieved content; “Target” denotes whom should the

content displayed to, such as a learner or a learner’s supervisor;

“ContextCollectionType” denotes the needed context are collected actively by the

system or input by learner directly. Table 4.2 is the Features defined for Case

description, where there are four additional Features defined. “Interaction” denotes

the interaction type in the application, such as interaction between people or between

a person and an object; “Environment” denotes surrounding information such as

indoor or outdoor; “Network” denotes the available network in the environment of the

application, such as Bluetooth, 802.11, WiMax, etc. It is worth to mention that these

Features may be insufficient for new complex applications, and new Features could

be added into the Feature Table if there is a demand.

40

Table 4.1: Features for Task Description

Table 4.2: Features for Case Description

41

Chapter 5. Application and Discussion

In this Chapter, a new U-learning application --- Botanical Garden is designed by

means of the proposed HCBP scheme.

5.1 Botanical Garden

Assume that there is a botanical garden, in which there are about a hundred kinds

of plants. For each kind of plants there is a RFID Tag used to identify the plants, and

each learner in the garden use a PDA that has RFID Reader function. When a learner

approaches some plant, the RFID Reader will trigger the RFID Tag to get the ID of

the plant for further use such as searching for learning content in repository about the

plant.

To design a U-learning application, a designer will imagine a scenario in his or

her mind first. Suppose that if there is a scenario of botanical garden in a designers

mind, such as “when a learner approaches a plant in the botanical garden, get the

learner’s ability and detect weather type first, and retrieve content about the plant

according to the learner’s ability and the weather type, then display the retrieved

content to the learner”. To construct the task flow of the botanical garden guiding

application, the designer is asked to construct the Desired Tasks belonging to each

task type first, as shown in Figure 5.1. Afterward, the designer is asked to construct

the relations between the desired tasks, as shown in Figure 5.2.

42

Figure 5.1: Desired Tasks

Figure 5.2: Desired Task Flow

Next, the Desired Task Metadata has to be filled for each desired task and a several

feature values that describe the whole application, as shown in Figure 5.3, and then

the Possible Desired Case Feature Table is generated by aggregating the tables in

Figure 5.3 as illustrated in Section 3.2, and the result table is shown in Figure 5.4.

43

Figure 5.3: Desired Task Metadata

44

Figure 5.4: Possible Desired Case Feature Table

After the PDCFT is generated, a most similar case in the case base could be retrieved

by the PDCFT and the DTF, as shown in Figure 5.5. To simplify the calculation,

assume that each Feature Weight here is the same, the retrieved case is shown in

Figure 5.6.

Figure 5.5: Complete Case Retrieval

45

Figure 5.6: The Retrieved Case

By comparing the Desired Task Flow and the Task Flow of the retrieved case, we can

discover that one more task similar to “Get Weather Information” has to be inserted

into the retrieved case. Therefore, the system will try to retrieve a partial case by the

DTMD of the Desired Task “Get Weather Information”. The most similar one

retrieved is shown in Figure 5.7, and no adaptation to the retrieved Task has to be

carried out. After that, there is still one problem, that is, the Input Message of the

Desired Task “Retrieve W & LA related Content” and Task “Retrieve LA related

Content” in the retrieved case is different as shown in Figure 5.8; this will make tasks

unable to link together. Therefore, an operation “Message Insertion” is executed and

46

the result is shown in Figure 5.9. Afterward, operation “Task Insertion” could be

carried and the finally, resulting Case is shown in Figure 5.10.

Figure 5.7: The Retrieved Task

Figure 5.8: Difference Between Desired Task “Retrieve W & LA related Content”

and Task “Retrieve LA related Content”

47

Figure 5.9: Message Insertion

Figure 5.10: Task Insertion

In this section, we give a new Botanical Garden Guiding application, and we

apply the proposed HCBP scheme to retrieve a plan for the Botanical Garden Guiding

application. The resulting plan is a combination of two U-applications, a museum

guiding application and a weather type detection application, and the result shows that

it is rational and applicable.

48

Chapter 6. Conclusion

In this thesis, we propose a Hierarchical-Case-based Planning scheme, in which

we design a hierarchical-case representation model, a hierarchical-case retrieval and

case adaptation approach to support fine-grained case reuse. In our approach,

ontology is used to support case-based planning processes, where an ontology-based

case similarity measurement is utilized to retrieve similar case in case base, and an

ontology-based service or tasks chaining approach is proposed to sustain the planning

process. Afterwards, we apply the HCBP scheme to support U-learning application

design, and a message ontology is constructed for U-learning. With the HCBP, an

application designer can reuse the design ideas in existing systems to construct a new

application, by means of constructing a desired task flow in his or her mind and filling

in some tables to retrieve similar cases in the case base.

In the near future, we will try to enhance the ability to handle more complex

relations between tasks and then designers can create complicated new applications.

On the other hand, we will also try to adopt heuristic adaptation rule in Case

Adaptation process, such as in order to get learner’s location, GPS is better when in

an outdoor scenario and RFID is more suitable in an indoor scenario, to enhance the

reliability of the resulting plan.

49

Reference

[1] P. Alexander, J. Holtman, G. Minden, "Case-Based Planning for Simulation,"

presented at Expert Planning Systems, Brighton, 1991.

[2] Z. Cheng, S. Sun, M. Kansen, et al., "A Proposal on a Learner's Context-aware

Personalized Education Support Method based on Principles of Behavior

Science," presented at Internation Conference on Advanced Information

Networking and Application (AINA), 2006.

[3] J. Cho, "An Exhibition Reminiscent System for Ubiquitous Environment,"

presented at IEEE International Conference on Computer and Information

Technology (CIT), 2006.

[4] K. Hammond, "Case-Based Planning: Viewing Planning as a Memory Task,"

presented at Academic Press, 1989.

[5] Gwo-Jen Hwang, “Criteria and Strategies of Ubiquitous Learning”, IEEE

International Conference on Sensor Networks, Ubiquitous, and Trustworthy

Computing (SUTC), 2006

[6] J. Kolodner, Simpson, R., and Sycara, K., "A process model of case-based

reasoning in problem solving," presented at proceedings of the Ninth IJCAI,

1985.

[7] Goro Kunito, Naoharu Yamada, Tatsuo Takakashi, "Architecture for Providing

Services in the Ubiquitous Computing Environment," presented at IEEE Internal

Conference on Distributed Computing Systems Workshops (ICDCSW), 2006.

[8] Luyi Li, Yanlin Zheng, Hiroaki Ogata, et al., “A Framework of Ubiquitous

Learning Environment” Computer and Information Technology, 2004

[9] Yi-Huang Lin, Shian-Shyong Tseng, “A Recommendation Scheme of

Personalized Learning Activities Based on Learning Design Standard”, 2005

50

[10] T. Madhusudan, B. Marshall, "A case-based reasoning framework for workflow

model management," Data & Knowledge Engineering vol. 50, pp. 87 - 115

2004.

[11] H. O., Y. Y, Moushitr M. El-Bishouty, "Personalized Knowledge Awareness

Map in Computer Supported Ubiquitous Learning," presented at International

Confernece on Advanced Learning Technologies (ICALT), 2006.

[12] Reinhard Oppermann, Marcus Specht, “Adaptive mobile museum guide for

information and learning on demand,” Human Computer Interaction (HCI),

1999.

[13] C. Riesbeck, and Schank, R., Inside Case-Based Reasoning: Erlbaum, Hillsdale,

NJ, 1989.

[14] K. Sakamura, "Ubiquitous Computing Technologies for Ubiquitous Learning,"

presented at IEEE International Workshop on Wireless and Moblie

Techinologies in Education (WMTE), 2005.

[15] B. Smyth, Mark T. Keane, and Padraig Conningham, "Hierarchical Case-Based

Reasoning Integrating Case-Based and Decompositional Problem-Solving

Techniques for Plant-Control Software Design," IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, vol. 13, pp. 793 - 812 2001.

[16] Y. Vogiazou, B. Raijmakers, M. Eisenstadt, "A research process for designing

ubiquitous social experiences," Nordic conference on Human-computer

interaction, 2006.

[17] J. F Weng, S. S. Tseng, and N.K. Si, “Constructing the Ubiquitous Intelligence

Model based on Frame and High-Level Petri Nets for Elder Healthcare”, 2006

[18] Xi Yali, Yang Weiqiang, Yamauchi Noriyoshi, et al., “Real-time Data

Acquisition and Processing in a Miniature Wireless Monitoring System for

Strawberry during Transportation”, TENCON, 2006

[19] J. H. Yang, "Context Aware Ubiquitous Learning Environments for Peer-to-Peer

Collaborative Learning ", Journal of Educational Technology and Society, vol. 9,

no. 1, pp. 188-201, Jan, 2006. (SSCI)

51

[20] Stephen J.H. Yang, Angus Huang, Rick Chen, et al, “Context Model and Context

Acquisition for Ubiquitous Content Access in Ubiquitous Learning

Environments” IEEE International Conference on Sensor Networks, Ubiquitous,

and Trustworthy Computing (SUTC), 2006

[21] C. Yin, Y. Yano, "Ubiquitous-Learning System for the Japanese Polite

Expressions" presented at International Workshop on Wireless and Mobile

Technologies in Education (WMTE), 2005.

[22] G. Zhang, M. Lin, "A Framework of Social Interaction Support for Ubiquitous

Learning," presented at International Conference on Advanced Information

Networking and Application (AINA), 2005.

