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Abstract

Extended compact genetic algorithm (ECGA) is an algorithm that can solve hard prob-
lems in the binary domain. ECGA is reliable and accurate because of the capability of
detecting building blocks, but certain difficulties are encountered when we directly apply
ECGA to problems in the integer domain. In this paper, we propose a new algorithm
that extends ECGA, called integer extended compact genetic algorithm (iIECGA). iIECGA
uses a modified probability model andsinherits;thescapabilitysef detecting building blocks
from ECGA. iIEGGA is specifically designed. for problems in the.integer domain and can
avoid the difficulties that ECGA-encounters:

We also develop ainew optimization framework that consists of the extended com-
pact genetic algorithm (ECGA) andssplit-on-demand (SoD), an adaptive discretization
technique, to tagkle the characteristie-determination-problem for solid state devices. As
most decision variables of characteristic'détermination problems are real numbers due to
the modeling of physical phenomena, and ECGA is designed for handling discrete-type
problems, a specific mechanism to transferm the variable types of the two ends is in or-
der. Therefore, in this study, we employ the proposed framework on three study cases to
demonstrate that the technique proposed in the domain of evolutionary computation can
provide not only the high quality optimization results but also the flexibility to handle

problems of different formulations.

keywords:
Genetic algorithms, extended compact genetic algorithms, iIECGA, split-on-demand, build-

ing blocks, characteristic determination
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Chapter 1

Introduction

Genetic Algorithms (GAs), proposed by John Holland [I], are powerful search techniques
based on principles of evolution. "The solutions t@ our problems are represented as binary
strings, which are called: “ehromosomes”. Different evelutionary operators, such as muta-
tion and crossover,are performed onrthe ehromosémes to gefierate “offsprings”. In each
generation, the offsprings are evaluated andsselected as new parents. During the process
of evolution, the fitness of solutions becomes higher, and the best; solution are chosen as
the final answer. Based on the concept of GA many variations of GA are proposed, and
the original GA'is called simple GA.

The traditional genetic operaters=such=as=one=point crossover and bitwise mutation
cannot appropriately handle the problems that require the utilization of linkage informa-
tion [2, B]. Many problems in practical cannot be solved eompletely without the ability of
linkage learning, thus the concepts of genetic linkage and building blocks are the essential
components of GAs [4, B]. As a consequence, the processing of genetic linkage, such as
detection and utilization, has attracted much attention in the field of evolutionary and
genetic computation.

The most popular way to gather linkage information from genes is to collect and
process the global, population-wise statistics. These variations of GAs based on statistics
are called estimation of distribution algorithms (EDAs) [0l [7]. Some EDAs assume all
genes or variables are independent, such as the population based incremental learning
(PBIL) [§], the univariate marginal distribution algorithm (UMDA) [9], and the compact

genetic algorithm (cGA) [10]. The others compute the dependencies and/or relations



between genes, such as the Bayesian optimization algorithm (BOA) [11], and the extended

compact genetic algorithm (ECGA) [12].

1.1 Motivation and Objective

The idea of ECGA is to solve hard problems by learning genetic linkage on the fly. ECGA
employs the marginal product model (MPM) to represent the joint probability distribution
of genes or variables and adopts the minimum description length (MDL) as the criterion
to determine how good the learned joint distribution is. Harik’s numerical experiments
indicate that ECGA has better performance than a simple GA does when solving hard
problems. When tackling binary optimization problems, ECGA is reported quick, reliable,
and accurate. However, if ECGA is applied on integeroptimization problems, can it
perform as well as itwean on binary ones? Moreover, if ECGA is applied on real-valued
problems, how toéncode real numbers Such that the adyvantages of ECGA can be keeped.

The easiest way to solve non-binary problems:by ECGA. is changing its representation—
encoding integers and real numbers as binary.strings. When the eardinality of integers is
power of two, encoding does not complicate the problem. If the cardinality is not power
of two, encoding may cause perturbation of linkage information.. In this paper, we reveals
the disadvantages when. ECGAssolves integer optimization problems. We also propose a
new algorithm called the integer extended compact geneti¢ algorithm (IECGA) that can
efficiently solve hard integer problems.

When encountering real-valued problems, real extended compact genetic algorithm
(rECGA) [13], which employs a novel representation schema Split-on-Demand, is a suit-
able tool for solving probelms. In this paper, we will apply TECGA on a real-world

problem.

1.2 Road Map

The remainder of this book is structured in what follows. Chapter [2| presents an brief
introduction of extended compact genetic algorithms. The Chapter also presents the

probability models used by ECGA, which are called marginal product models (MPM).



Chapter [3|provides the discussion of problems in representing integers. We make the genes
be represented as integers and modify probability models to match up integers. Then,
Chapter (4| shows the experimental results of iIECGA on “GA hard” problems of different
scales. All contents about integer ECGA are represented.

Chapter [5| describes the representation of real numbers in rECGA [13], which is called
Split-on-Demand. The Chapter also describes the procedure of rECGA. Chapter 77 de-
scribes the problems of characteristic determination in solid state devices. And the Chap-
ter provides the experimental result of rECGA on characteristic determination problems.

Finally, Chapter [7] concludes this paper by summarizing its contents, discussing important




Chapter 2

Brief Review of ECGA

This chapter provides a brief review of genetic algorithms and introduces the term genetic
linkage problem. We also explaintwhy linkage learning is one of the most important topics
in the field of genetic.and evolutionary algorithm. After introducing GA and linkage
learning, we show the.idea of compaetrgenetic algérithm (¢GA) [10] that the population
of GAs can be viewed as a probability model. Then We review extended compact genetic

algorithm (ECGA) [12] 14] that based on the concept of cGA.

2.1 Genetic Algorithms and Linkage Problem

For all creatures live in Nature; survival of the fittest happens everyday. The environment
gives all creatures ascontest, and the penalty for losers is'losing their lives. The contest
is so-called “selection” s During the process of natural selection, useless individuals are
eliminated, and strong or smart individuals can keep survive. Genetic algorithms are
proposed based on the concept of natural selection. In most genetic algorithms, the
life cycle contains three steps: selection, breeding, and evaluation. In selection step,
parents are selected from population. Then some operators like crossover and mutation
are used on parents to produce offsprings. The new offspring are evaluated and become
new population.

Since genetic algorithms are proposed, the importance of building blocks (BBs) and
their role in the working of GAs have long been recognized [I, [5]. Most problems are
composed of smaller sub-problems. That is, the solutions to problems can be decomposed

into several parts, which are called “building blocks”. During the process of simple GA,



BBs are often destructed by one-point or uniform crossover. If we can identify BBs
correctly and mixed them without destruction, good solutions will emerge more quickly.
The problem of identifying BBs are called “linkage problem”.

The most popular way to solve linkage problem is to collect and process the global,
population-wise statistics. These variations of GAs based on statistics are called estima-
tion of distribution algorithms (EDAs) [0 [7]. The extended compact genetic algorithm
(ECGA) [12], which is based on the compact genetic algorithm (cGA) [10], is a robust
and efficient GA that has linkage learning ability. In the next section, we will introduce

how ECGA learns linkage from probability models.

2.2 Linkage Learning and Probability Model

There are two important assertions'behind the'concept of ECGA. Firstly, learning a
“good” probability distribution is equiivalent to learning genetie linkage. Secondly, the
“goodness” of aprobability distribution is based on how much eomputational resource,
mainly the space, the computer system needs to store the population and the distribution.
The first assertion makes it rationalto léarning linkage from probability models, and the
second assertion shows one 'way to‘défing the quality 6f a probability model.

Compact genetic algorithme (¢GA) models a binary GA. population as a vector of
probability distribution. “Assume an individual is a#n-bit:binary string b,bs...0b,, and
PJi] is the probability that"b; = 1. For example, if.70 percents of individuals have one
on the first bit, P[1] = 0.7. Since the population can be modeled as distribution, the
crossover operator can be modeled as operation on distribution. Thus, finding the optimal
solution in ¢GA is equivalent to finding the optimal probability distribution. Because the
probability of each gene is independent, cGA does not have the ability to maintain linkage
information.

ECGA extends the probability model in cGA from a probability vector to the marginal
product model (MPM). MPMs are similar to the models employed by ¢GA and PBIL,
except that they can represent the joint probability distribution over more than one gene

at a time. As an example, a simple MPM is shown in Table[2.1l MPM divides the genes or



group [0 3] group [1] group [2]
allele | prob. | allele | prob. | allele | prob.
00 0.1 0 0.5 0 0.6
01 0.3 1 0.5 1 0.4
10 0.2
11 0.4

Table 2.1: An example MPM for four genes

variables into several groups. In Table , four genes are divided into three groups [gene
0, gene 3], [gene 2], and [gene 1]. For each group, we count the occurrence of different
patterns in the whole population and store it in the table. We choose the MPM for two
reasons: 1) they make the exposition simpler; and 2) the structure of the model can be
directly translated into a linkage map.

The object of ECGA is to find “good” distributions. How do we define the criterion to
judge the goodness.of different probability distributions?” ‘The idea is to adopt the concept

of Occam’s Razor long recognized in the domain'of machine learning [15]:

By relianee on' Occam’s Razor, good distributions are thosefunder which the
representation of the distribution using the current encoding, along with the
representation of the populafion compressed tnder that distribution, is mini-

mal.

Thus we know that good distribution has two criteria: small model representation and
small population representation. Oneway-torealize this concept is the minimum descrip-
tion length (MDL) principle [16]. Following the definition, we can use the MDL model on
MPMs and define the model complexity and the compressed population complexity of a

probability distribution as

Model Complexity = log, N Z 2% (2.1)
i=1
and
Compressed Population Complexity = N Z Z —plogy,p, (2.2)
=1 p

where m is the number of groups, s; is the size of ¢th group, p is the probability of an
allele pattern in ¢th group, and N is the population size. The combined complexity is the

summation of the model complexity and the compressed population complexity.



2.3 Extended Compact Genetic Algorithm

In the previous section, we know how to judge the goodness of a probability distribution.
Now the problem is how to find a most suitable distribution for a population. We use
greedy search to find the most suitable distribution.

Assume the length of binary string is L. First, we assume all genes are independent and
each gene forms a separate group, that is, the MPM [0][1] ... [L — 2][L — 1] is the starting
model for the building process. Then, we try to merge each pair of groups into a new
distribution. As aresult, [0,1]...[L—1], [0][1,2]...[L—1], ..., and [0][1]...[L—2, L—1]
are produced. For every produced MPM, the combined complexity is calculated, and we
compare all complexities aswell as original MPM. If a produced MPM [0, 1]...[L — 1]
has smallest complexity; group [0] and group [1] are.combined as a new group [0,1]. The
combination process continues until-it is impossible for any improvement on complexity.
After the process,stops, we have-a MPM representing the linkage between genes and can
use the configuration to perform crossover.

The procedure of ECGA is similar te that of a simple GA: initialization, evaluation,
parent selection, and crossoven.  The_difference between ECGA and a simple GA is that
ECGA models the probability distribution.of the parents. iThen a greedy MPM search
as mentioned beforé is used to find the linkage information.. After all, BB-wise crossover
is performed by utilizing:the linkage information.'Sinee the BBs will not be destroyed
by crossover operator, the speediof evolution will be faster than simple GA. Algorithm 1

shows the procedure of ECGA.

Algorithm 1 The procedure of ECGA

Generate individuals at random

Generation < 1

while Generation < maxGen do
Calculate fitness values of individuals
Perform tournament selection
Use MPM to build a joint probability distribution
Use the generated MPM to perform crossover
Generation < Generation + 1

end while

Report the result




Generation Marginal Product Model
[0123][32333435][39][ 16 18 20 22 ]
1 [2123)[4567][1213 14 15]][ 36 37 38 ]
[1927][89 10 11 ][ 17 28 29 30 31 |[ 24 25 26 |
[0123][32333435][36373839][4567 ]
2 [24 25 26 27 ][ 12 13 14 15 ][ 28 29 30 31 ]
[16 1718 19 ][ 89 10 11 |[ 20 21 22 23 ]
[0123][282930311][20212223][4567 ]
3 [36 37 3839][32333435][ 121314 15 ]
[8910 11 ][ 16 17 18 19 ][ 24 25 26 27 |
[0123][282930311][242526271][4567]
4 [36 3738 39][32333435][ 1213 14 15 |
[8910 11 ][ 16 17 18 19 ][ 20 21 22 23 |

Table 2.2: The output of ECGA

2.4 ECGA onsTrap Problems

In this section, we, will show the performance of ECGA to solye a trap function [17, 18]
as an example. “Trap ‘functions-are considered as.fundamental components of GA-hard
problems and are usually-chosen to test the functionality of learning genetic linkage [12] 3].

A 4-bit trapsfunction can be defined as ¢y¢ Z3 — 7 by

o if x; =0forall i |,
91($1$2$3$4) =
By + X +=x5+-kva, otherwise.

This function is called “trap” function because such functions exhibit a local optimum
towards which the population converges. ¢, (1101) is gréater than g,(0101), so we better
put a one in the first bit. ¢;(0101) is greater than g;(0001), so we better put a one in the
second bit. As a result, the population will converge at 1111, where g;(1111) = 4 is the
local optimum.

Several small trap functions can constitute a big function. Ten 4-bit trap function
constitute a 40-bit GA-hard function. From the literature, we know that a simple GA
without the capability of learning genetic linkage cannot find the optimal solution to ¢,
if the chromosome encoding is not appropriate [19]. Only competent GAs [4] that can
regard related four bits as one building block are able to find the optimal solution. That
is why we take trap functions to verify the ability of ECGA.

In this simple test, the population size is 1000, and tournament size is 32. The MPM



models searched in each generation is shown in Table In the first generation, ECGA
does not detect all building blocks correctly, but it soon finds all building blocks in second
generation. The optimal solution “0000 ...0000” is found in 4th generation. Detailed

experiments and analysis are provided in [12, [14].

2.5 Problems in Integer Domain

When we directly apply an algorithm that solves problems in binary domain, such as
ECGA, to problems in integer domain, certain difficulties will be encountered. The first
difficulty is the gap between the genotype and the phenotype. That is, if the cardinality
of an integer is not power of tweo, we have to choosesa nearest number of bits to represent
the integer. An integer ranging from 0 to 15 needs 4 bits to represent, but an integer
ranging from 0 to 10.8till need 4 bits to represent. [t is easy to convert an integer to
binary string, butitruncation will happen in“opposite converting:

Hence, to selve the representation gap, there-are two general ways. One is to limit
the chromosome in a given range. All genes-generated -out of range will be discarded.
Another way is_to map redundant_binary strings onto the same_ slot. Both ways have
their disadvantages. Let take'integers ranging from 0 to 10 as individuals and integer
value as the fitness. . If +f (1010)= 10 and f(0111) =7 ate chosen as parents, 6 kinds of
offsprings must be discarded;.and the average fitness of the remainder is only 5.6. Because
most offsprings begin at 1 are discarded, the fitness of the remainder becomes lower. Let
try another way where all individuals greater than 10 are mapped to modular 10, then the
average fitness of offsprings of f(1010) = 10 and f(0111) = 7 is 4.75! In both ways, we
try to mix two superior individuals, but the results do not preserve the quality of parents.
The gap between integers and binaries cancels the advantage of GAs.

The second difficulty comes from the linkage learning ability of ECGA. In the case a
problem is composed of several integer problems, the bits that belong to the same integer
have linkage, and the integers that belong to the same building block also have linkage
at a higher level. In order to correctly find all building blocks, ECGA needs to discover

genetic linkage at two different levels. The extra computational cost may cause ECGA



inaccurate and unreliable. Moreover, the linkage ECGA finds at the bit level may not be
the actual linkage at the integer level at which we are solving the optimization problem.

One simple way to overcome these difficulties is to adopt the integer representation.
By using an integer vector to represent integers, there is no gap between the phenotype
and the genotype, and the linkage between the bits of the same integer, which is obvious
in integer optimization problems, is implicitly recognized. Therefore, an integer version

of ECGA is in order.

10



Chapter 3

Extend ECGA to Integer Domain

In this section, we propose a modified version of ECGA, integer extended compact genetic
algorithm (iECGA) [20]. All, genes are represented as integers. The marginal product

models and MDL criterion are modified to fit new representation.

3.1 Marginal Product Model

We define an integer as ranging from lower bound [ to upper bound u. The cardinality
is d = u — [ + 1= An individual in iIECGAsis an integer vector, instead of a bit vector in
the original EGGA. In order to compare iECGA and ECGA in-a pair point, we let the
cardinality be a power of two to avoid the gap between the phenotype and the genotype.
We choose | = 0 and w.= 15 or @« = 7, such that the cardinality will be 16 or 8, which
simplify the difficultiesito represent an integer in ECGA and GA.

In ECGA, the implementation of MPM is a counting process. Let take an example
that s = [1,3,4] is a group of genes and |s| = 3 is the size of s. The example is shown in
Table . We count the occurrences of all possible patterns in the population (* means
“don’t care”), which is equivalent to the probability of the corresponding pattern. The
occurrence of 0*01* is two, so the probability is % where n is the population size.

In iIECGA, we also have to count the occurrences of all possible patterns. Given the
upper bound u and the lower bound [, the cardinality of the domain is d = v — [ + 1.
There are d*! patterns for a group of size |s|. If we want to build the MPM, we have to
count all dl*l patterns. For example, in Table , the upper bound is u = 7, the lower

bound is [ = 0, and the cardinality is d = 8. If the group of genes is [1, 3], we have to

11



Pattern | Count

Current Population || 0*00* 0
00110 0*01* 2

01010 0*10* 1

01110 0*11* 2

01100 1*00* 1

00010 1*01* 0

10001 1*10* 0

1*11* 0

Table 3.1: An MPM example in ECGA

Current Population || Pattern | Count

3472 0*0* 0
1624 0*1* 1
() A *2*

3.2 MDL
Beside modification S, We -M BE"!E the f ula of complexity. Good
distribution has two criteria: ﬁl model representati mall population represen-

Model Complexity = log, N Z d® (3.1)

i=1
And the compressed population complexity is invariant.
Compressed Population Complexity = N Z Z —plog, p , (3.2)
i=1 p
The procedure of iIECGA is almost the same as ECGA, except the MPMs and the
formula of complexity. The linkage information obtained in greedy MPM search is used
to perform crossover. In the next section, we will show the difference between iECGA

and ECGA and why integer representation is a must.
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Chapter 4

Performances of iECGA

The purpose of this section is to show the difference between iIECGA and ECGA. We
first define some GA-hard funetions as fitness functions. Then we use GA, iECGA, and

ECGA to solve these functions.” Finally, we will discuss the performance and properties

of iECGA.

4.1 Test"Functions

The test functions required in this study should have certain trap structure in the fitness
landscape, so am algorithm cannot find the optimal solution without learning genetic
linkage. A deceptive function'is.one of such a function in which the low-order schema
fitness averages favor aparticular local optimum, but the glebal optimum is located at
the complement of that local-optimum’s position {19;721]:To solve a deceptive function,
GA must have the ability to learn linkage. Therefore, we choose deceptive functions as
the basic components of our test functions.

The purpose of the experiments is to show whether iECGA outperforms ECGA in the
integer domain. Here we define the following four test functions in the integer domain.
Each test function is composed of several smaller deceptive functions. For example, if the
input length of a deceptive function is two integers, a test function with input length 10
is composed of five deceptive functions. In the following function definitions, we assume

u is the upper bound of a integer and the lower bound is 0.

13



5, ifx=0

1, ifz=1,2,4,8
filz) =% 2, ifz=2356,9,10,12
3, ifw=711,13,14

| 4, ifz=15
The idea of f; is simple. It is just a deceptive one-max function. A one-max function
counts the number of 1’s in a binary string, and the fitness is equivalent to the number of

1’s. If the string contains k 1’s, the fitness is k. The deception happens when the string

contains all 0’s. 0000 has the highe

global optimumgare . direc A eptive function at the

bit level.

f2 is also a deceptive ) - e two integers. In general, when z
and xo becomes larger, the fi

value of z; and x,. Figure [£.1] shows the landscape of fs.

6u, ifx;=ufori=1,23
f3(=’1?1372903) =
3u — x1 — x9 — x3, otherwise
Su, if x; =ufori=1,2,3,4
f4($1$2$3x4) =

du — 1 — 9 — T3 — T4, Otherwise
f3 and f4 are both designed for the integer domain. The global optimum is located at

(u,u,...,u), and the local optimum is located at (0,0,...,0). To solve these functions,

14



30

25

Because both ECGA and

selection in the simple GA. The tournament size is 32 in all experiments. Reported in
many empirical studies, GA with uniform crossover has the best performance, so we use
uniform crossover in the simple GA. Because of the memory limitation, the cardinality is
16 for f; and fs, 8 for f3, and 4 for fy.

The maximum detectable length of building blocks in ECGA is log, i, where p is the
population size. The length in bit of building blocks in our test problems are 8 or 9. In
all the experiments, the population size is 70,000, so the maximum detectable length is 16
bits. Three algorithms are executed up to 15 generations equivalent to 1,050,000 function

evaluations.

15



4.3 Experimental Results

In all of the test functions, the second best solution has a fitness value half of that of the
best solution. If the fitness value of the optimal solution is 20, the fitness value of the
second best solution is 10. We present the results of experiments as the proportion to the
maximum fitness, that is, we normalize the fitness to the range from 0 to 1. The scaled
fitness value of the optimal solution is 1, and the scaled fitness value of the second best
solution is 0.5.

The result of experiment one was shown in Figure[d.2] For function fi, three algorithms
perform perfectly and all have fitness 1.0 for chromosomes of all lengths.

In Figure4.3], we can seesthat ECGA has problemsfinding the optimal solution. For all
chromosome lengths, ECGA can only find the second best solutions. The best and average
fitness values are all 0.5. When the chromosome length is smaller than 60 integers (240
bits), iIECGA and GA perform-perfectly, buti the performance of the simple GA decays
quickly when the chromosome gets longer. Whensthe chromosome length comes to 100
integers (400 bits), iIECGA can find the optimal solution for most of the runs, but GA
cannot.

The result of experiment four was: shown=in :Figure 4.5 “The result is almost the
same as that of experiment two, except the performance of \GA decays earlier. When
the chromosome length'is larger than 44 integers (88 bits), GA cannot find the optimal
solution. The performance of ECGA is still much worse than that of the other two
algorithms.

The result of experiment three was shown in Figure The performance of iECGA
is not as good as in the other three experiments but still outperform the other two algo-
rithms.

The convergence analysis was shown in Figure 4.6[ and Figure 4.7, The speed of con-
vergence of iIECGA is much faster than that of GA. In f;, iECGA converges after 700,000

function evaluations, but GA cannot converge even after 1,050,000 function evaluations.
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function | d | BB | dPP
fa 16| 2 | 256
fs 8| 3 | 512
fa 4 4 | 256

Table 4.1: The cardinalities (d) and the length of building blocks (BB) of fs, f3, and fy4
4.4 Discussion

iIECGA and GA are both operate in that integer domain, but why iECGA performs better
than GA? The concepts of genetic linkage and building blocks are important components
for GAs to solve problems. The main difference between iECGA and GA is the capability
of detecting building blocks and, genetic linkage. If the linkage configuration we find
is correct, we may expects ‘good” building bloeks will be preserved and “bad” building
blocks will be weeded. Hence, iECGA performing better than GA is not unexpected.

ECGA is reliable and efficient in the binary domain, but why ECGA fails in the integer
domain? If ECGA wants to find the linkage between integers, it has to consider several
bits as one integer, and then consider several integers as one building block. That is,
ECGA has to find building blocks of different hierarchies. It is the first difficulty.

The second difficulty is the selection of coding schemes. Most of GA users employ two’s
complement to represent amninteger, but there-are many other kinds of representation,
like the gray code. "If the linkage between integers cam be detected at the bit level, we
call that the linkage ”propagates™to.the bit level: Different representations have different
linkage propagations. The linkage ‘between integers may or may not be detected at the
bit level. Thus, how to choose an appropriate chromosome representation is an essential
issue for GA to succeed.

Because of these difficulties, using ECGA to solve integer problems oftentimes cannot
satisfy GA users. When we have to solve integer problems, we should use a specialized
algorithm. Merely encoding the solutions as binary strings might not be a good choice.

The convergence speed is an interesting property of ECGA and iECGA. Because
they exchange building blocks but not genes, they avoid exchanging genes blindly. They
converge more quickly than the simple GA does.

Another interesting observation is that ECGA and iECGA need sufficient individuals

17



to start the MPM step [14]. The population size has a direct ratio to d®?Z, where d is the
cardinality of an integer, and BB is the order of building blocks. In Table 4.1 we can
see that the required number of individuals of f3 is twice as large as that of fy; and f;.
Therefore, because the population size is not enough to start MPM, the performance of

iIECGA in f3 suddenly goes down.
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(a) The average fitness of iIECGA, ECGA, and GA
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Figure 4.2: The average(a) and best(b) fitness of three algorithms in f;. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum
fitness.

19



(a) The average fitness of iIECGA, ECGA, and GA
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Figure 4.3: The average(a) and best(b) fitness of three algorithms in f,. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum

fitness.
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(a) The average fitness of iIECGA, ECGA, and GA
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Figure 4.4: The average(a) and best(b) fitness of three algorithms in f3. X-axis is the
length of a chromosome in the number of integers. Y-axis is the proportion to maximum
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(a) The average fitness of iIECGA, ECGA, and GA
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(a) Chromosome length 100 in f;
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(a) Chromosome length 90 in f;
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Chapter 5

Extend ECGA to Real-valued
Domain

The real-coded ECGA is a new optimization: framework, composed of the extended com-
pact genetic algorithm™[I2] and split-on-demand (SeD)-{13] method. In this section, we
will how SoD discretizes real numbers for ECGA and introduce, the integration of ECGA

and SoD.

5.1 Split on"Demand for Discretization

Algorithm 2 Pseudo codefor SoD.
procedure SPEIT-ON-DEMAND
Split(lower bound; upper_bound)
Y7 XE
end procedure

procedure SPLIT(, u)
m «— random|/, u]
Ny « number of individuals in [¢, m]
N, < number of individuals in [m, u]
if Ny > N x v then

Split(¢, m)
else

Add a code for the range [¢, m]
end if
if N, > N x ~ then

Split(m, u)
else

Add a code for the range [m, u]
end if

end procedure
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Figure 5.1: Populations and possible split positions (vertical lines). The numbers close to
the positions are the order in which the positions are decided.

ECGA is designed for handling problems in the;discrete domain. In order to employ
ECGA to tackle problems in the continuous domain, certain mechanism is needed to
transform the type‘ofivariables. In thiswork, we adopt anradaptive discretization tech-
nique, called splitzon-demand (SoD) (3], t& encode the individuals as real vectors into
the ones as binary strings such that ECGA can ageomplish the optimization task without
significant modifications.

The main idea of SoD is to splitsthesinterval where we demand to obtain more infor-
mation in order to build a more acetirate probabilistic model for the region. There are two
parameters for SoD: the split rate, v, and the split rate-decay, €. 7 is used to determine
whether or not an interval should be split. Assumingthat the population size is N, if an
interval contains more than or equal to N X v individuals, this interval should be split
into two small intervals at a random position. By adjusting the split rate, we can control
the accuracy of the probabilistic model and the size of code table. Figure illustrates
a splitting process under different . In Figure ~v = 0.5 and the search space is split
into three intervals. In Figure [5.1b] because v gets smaller, the search space is split into
more intervals.

Most good optimization algorithms consist of two elements: exploitation and explo-
ration. In the proposed framework, we control the degree of exploitation vs. the degree of
exploration by adjusting the split rate v. We use a decreasing factor: e, where 0 < e < 1

to manipulate . At the early stage of search, we need more exploration than exploita-

26



tion. ~ is set to 0.5, which means that one dimension of the search space will be split
into only two or three intervals. As the search process goes, exploitation is more and
more important. We multiply v with € at each generation to make it gradually smaller
and smaller, and the MPM model is more and more accurate for the regions filled with

individuals. Finally, Algorithm 2 shows the pseudo code for SoD.

5.2 ECGA with SoD

With the help of SoD, the real-coded ECGA (rECGA) can now handle problems in the
continuous domain. The population in rECGA is represented in two forms: real vectors
and binary strings. In the evaluation and selection phases, the population is in the form of
real vectors. In the modeling and crossover phases, the population is in the binary-string
form. SoD transforms real vectors ifito binary sttings, -andsbinary strings are converted
back to real vectors by using random sampling. ‘For.example, if'the code of an individual
is 11 in binary, and the interval for the code 11 is{= 50, 0], the value is uniformly randomly
sampled in thesinterval (=50, 0]. Finally, the integration of ECGA and SoD, which is the

proposed framework in this paper, is shown in Algorithm 3.

Algorithm 3 Pseudo code for the real-coded FCGA.
procedure RECGA.
Gen «— 1
Initialize N individuals of real-numbers at random
while Gen < Gen g, do
Evaluate the population of size NV
Perform tournament selection of size S
Use SoD to produce the code table
Encode the population by using the code table
Model the encoded population with MPM search
Perform crossover with the given MPM model
Generate the offspring with the code table
Gen «— Gen + 1
end while
end procedure
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Chapter 6

Apply rECGA on Characteristic
Determination Problem

In the previous section, we proposed a new optimization framework in order to handle
the characteristic determination problem for solid state devices. In this section, we apply
the proposed framework to tackle three characteristic determination problems which we
encountered while conducting research on.developing sthin-film transistors (TFT). The
first one is to determine the quality parameters of the poly=Si thin-film under the normal
condition, and“the second one deals with different materials and fabrication processes
under high gate bias. Finally, the third case is to determine ‘the frequency response

property of the solid state device:

6.1 Conventional TFT

A conventional poly-Si thin-filmitransistor, asshown in Figure[6.1a] is composed of three
terminals: gate, source, and drain. When the transistor is turned on, electrons will
transport from source to drain through the poly-Si area (the dotted area in the figure),
and a high-conducting channel will be formed on the top of this poly-Si area, as shown
in Figure [6.1b] The poly-Si area can exhibit a wide range of thin-film qualities. For
a high quality poly-Si film, electrons can easily transport through it. As a result, the
transistor can provide a large conduction current. For a low quality poly-Si thin-film, on
the contrary, the electrical conductivity is low and the transistor output current is also
reduced. Therefore, controlling the quality of the poly-Si film is essential to the creation

and production of high-performance transistors. In addition to the output current, the
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(b) High-conducting channel for TFT.

Figure 6.1: The structure and the high-conducting channel formed for the conventional
poly-Si TFT.
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Figure 6.2: Experimental data and the match results for study case I.

Algorithm 4 Pseudo code for the fitness function in study case.l
procedure E 1
Input: gene[0. . 4]|={Ng, Sd, Eia, V¢, Ei
Input: experimental data_#£[0... 1005 V&{0+..100]
Output: f - the fitness of gene
Constants: ¢ = L6 X 107, C,, =7 x 1078, Eg= 1:2
i<—0,f<—0
while 7 < 101 do
Fix Vg = Vg[i], use binary approximation to obtain the value of E, in Equation
63
f=f+IE — Edli)
1=1+1
end while
return f
end procedure

quality of the poly-Si thin-film in the device is also a key issue to design the fabrication
process and to develop the physical model as well as the SPICE model for poly-Si TFTs.

To characterize the poly-Si thin-film quality, the defect state distribution, N(FE), as
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follows is usually utilized.

N(E) =~ exp <_M>

2
V275 25 (6.1)
+N, Ee—E
teXp Ett 9

where parameters Ny, Sy, Eiq, Ni, and Ej; represent the properties of TE'T. However, in
practice, these parameters are not available and cannot be directly measured. Instead,
these parameters have to be determined by measuring the observable experimental data
and matching the equation
E.—E,
g / N(E)AE = Cou (Ve — Vi — 6) . (6.2)
Ec—Eaomaz

where ¢ = 1.6 x 10719, @,y = 7 x 107°, F, = 1.2 are constants, and E,, Fumnae, Ve,
Vi, and ¢ are obtained from the experimental observation, to establish the relationship
between the quality measurements (Ny, Sa; Las N, By ) and the observed outcomes (E,,

Eamaz, Vo, Vi, 0s). After calculating the integral in Equation (6.2), we obtain

ConG _Nde Etd -5
= Exf
q 2 V28,
E E chEa (63)
+NtEtt €exXp ( = c) 3
Ett
E.—0.6

where Erf(+) is the error, function.
The characteristic determination problem in-this case is to find the values of Ny, Sq, Eiq, Ni, Ey
according to the given set of measured values'of 'F, vs. Vi such that Equation (6.3) can
be matched. We measured the value of E, for Vo =0, ...,10.0 for every 0.1, and obtained
101 pairs of (E,, V). The objective value for matching Equation is defined as the

’ Parameter H Value ‘
Population size (N) 250
Tournament size (.5) 8

Number of generation (Genpqz) 25
Crossover probability 0.975
Initial split rate () 0.5
Split rate decay (¢) 0.995

Table 6.1: Parameters adopted in the real-coded ECGA for handling the three study
cases.
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sum of the absolute value of the differences between the calculated results and the 101
pairs of experimental data. A more clear procedure is shown in Algorithm.
Moreover, the ranges of the parameter can be decided according to physical laws. In

this case, the ranges for the five parameters are
o Ny 10°-10%;
e Sy 1072-10°;
e F,y: 0.5-0.7,
o N;: 10M-10'7;
o Fy: 0.05-1.0.

We ran rECGA with 250 individuals for 25 generations:1 Detailed parameters of
rECGA are shown in Table In-the 50 ‘independent. trials, the curve generated from
the best solutions is shown as the solid lin¢.in Figure [6.2] To.simply verify that the
results we obtained are not merely “lucky. shots”, we also conducted the pure random
search for 250 %25 x 50 function evaluations. The result for the random search is shown
as a dashed linesin the figure. As we can see in the figure, the eurve generated the pure
random search goesivery far from experimental data. As.a sidenote, the curve of a similar
matching quality can also-be manually obtained forfabout three to five person-days, while

the proposed framework takes onlyt minutes to finish all the 50 trials.

6.2 TFT under High Gate Bias

When the transistors are operated under high gate bias, it is reported that the interface,
as shown in Figure[6.3] between the poly-Si and the gate insulator also has great influence
on the output current. As a consequence, to determine the property of TFTs under high

gate bias, an interface-state distribution is inserted into N(E) to appropriately model the
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Figure 6.3: TFT under high gate bias.

overall defect quality:

=l Xp<_w>

e
vV 27TSd 253
E.— F
N, — 6.4
+ NN, exp ( B > (6.4)
E.—F
Ni = 7
+IN; exp ( 7 )

where N; and F;; are two more fitting parainetersfor the interface-state distribution. The

ranges of N; and FE;; are
o N;: 10"-10%;
o F;: 0.051.0.

In this study case, we determine the quality parameters for four kinds of TFTs:
ELA [22], FLA [23], SSL [24], and SPC [25]. There are several instances for each kind
of TFT, and for simplicity in the present work, we choose only one or two instances to
perform the computation. Similar to the previous study case, the values of the quality pa-
rameters can be obtained by fitting the experimental data to Equation (6.4)). The fitness
function F2 is similar as in study case 1. The pseudo code of F2 is shown in Algorithm.

The parameters for rECGA are identical to those used for case I, which is shown in

Table [6.1} The curves generated by the best solutions in the 50 independent trials are
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Algorithm 5 Pseudo code for the fitness function in study case II
procedure F2
Input: genel0...6]={Ng, Sa, Era, Ni, B, Ni, Ey }
Input: experimental data E,[0... K], V5[0... K]
Output: f - the fitness of gene
Constants: ¢ =1.6 x 107, 0, =7 x 1078, £, = 1.2
10, f«<0
while i < K + 1 do
Fix Vi = Vg [i], use binary approximation to obtain the value of E, in Equation
()
f=r+ |Ea - Ea[i”
1=1+1
end while
return f
end procedure

shown as solid lines insFigure [6.5) and the best results.obtained by the pure random
search are shown a§.dashed lines. As'we can obServe.in the figures, the pure random
search can only match the first-data peint in.all cases, while theproposed framework can
provide high quality matching curves. Furthermore, these problem instances cannot be
easily handled by human manipulation. " We merely succeeded in, manually matching a

few problem instances for several person=weeks.

6.3 Frequency Response

The previous-addressed poly=Si thin-film quality and the“interface quality also influence
the frequency response of transistors. Since in ¢ircuitry, transistors may be operated under
various frequencies, the frequency response is a very important property to determine the
fabrication process, to determine the device model, and to determine the circuit design.
In poly-Si TFTs, the frequency response is characterized through the capacitance mea-
surement. As indicated in Figure the gate/SiOq/poly-Si structure can be expressed
by the equivalent circuit depicted in Figure [6.6Db] That is, the total effective capacitance
is the series of the oxide capacitance C,, and the equivalent parasitic capacitance Ce,.
The equivalent parasitic capacitance C¢, is the shunt of the bulk capacitance C;, and the
interface capacitance Cy;. Generally, C,, is a constant, which is independent of gate bias

or frequency, while Cj, and Cj; have a dependence on frequencies according to the following

34



equation

Ceqg = Cit + Gy

tan~t (wTy) tan~1 (wr,)

= qut qu

WT;t WTg

: (6.5)

where w is 27 f, and f is the frequency. D;; and 7;; are independent of frequencies, but
depend on gate biases. D, and 7, are independent of both frequencies and gate biases,
since the frequency and gate bias should not strongly influence the bulk properties.

As the previous two study cases, the frequency response parameters (D, Ty, Ds, Ts)
cannot be directly measured, either. As a result, we measure C, under various gate
biases and frequencies and detérmine the frequency=response parameters according to the
observed experimental<data. The frequency response of €, under different gate biases
are shown in Figure The values'of gate biases.and frequencies we used to obtained

the experimental data are
e Gate biases: —1,3, —1.4, —1.5, —1.6, —17,=1.8, —1'9, —2:0, —2.1, —2.2;
o Frequencies: 1'x 104, 3 x 10%, 55.10%, 1 x 10°, 3 x 10°, 5 x 10°, 1 x 10°.

There are totallys70 values for €5, under the combinations of gate biases and frequencies
measured. We usedithese experimental data to calculate Ceq a€cording to Equation (§6.5)).

As shown in Figure there are ten gate biases. Equation indicates that there
is a single pair of D, and 7, for all Cg, values, and for each set of C,, values obtained
under the same Vg, one pair of D; and 7;; should be determined. Thus, there are 22
frequency response parameters. The objective value in this study case is also the sum of
differences between the experimental data and the calculated results.

Without determining all the frequency response parameters simultaneously, we handle
these parameters in separate groups. Because the values of C,, are smallest when the gate
bias is —1.3 or —1.4, higher accuracy is needed to determine the parameters for the two
sets of experimental data. Therefore, in the first group, we determine Dy, 75, Dit|vo——1.3,
Tit|lva=—1.3, Dit|lve=—1.4, Tit|lvg=—1.4. After obtaining D, and 7,, which are independent of

Vi and f, we use the D, and 7, to determine D;; and 7;; for other gate biases. All the

35



parameters of TECGA are identical to those in previous study cases, shown in Table [6.1]
and the matching results are shown as the solid lines in Figure [6.8]

Figure demonstrates that the matching results are remarkably satisfactory as the
experimental data and the physical model pose a very difficult challenge for human to
manually handle. Furthermore, based on the outcomes from the previous study cases,
the pure random search has been decided inappropriate to handle the characteristic de-
termination problem for solid state devices. As we can see in this work, the proposed
framework of the real-coded ECGA, composed of ECGA and SoD, can be employed to
tackle the characteristic determination problems of which the physical phenomena may

be quite different.

36



1.2 ' ' | ; I
@ Experimental data
Best fit
A = = = Random search |-
O -
08 i N oy - e am gy Lol B R SSp—" R Em Ey s o 7]
06 _
1]
L
0.4+ _
02r _
| i
: . 4 6 8 10
Vg
(a) ELA
1.2 ' ' | ' I
© Experimental data
Best fit
| = = = Random search |-
Yy - -
08 i L I L Iy == am - -
06 _
[y]
L
0.4r _
02 _
| i
: ; p 6 3 10
Vg
(b) SSL

Figure 6.4: Experimental data and the match results for study case II. ELA, SSL, FLA,
and SPC are four different kinds of TFTs.
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Figure 6.6: Structure of gate/SiOs/poly-Si and its equivalent circuit.
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Figure 6.7: Frequency response for TFTs.
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Chapter 7

Conclusions

This chapter concludes this thesis. First we summarize our experiments, results, and
conclusion. Then our long-term 'goals and objectives are proposed. Finally the main

conclusions from this study are discussed.

7.1 Summary

In the paper, wéstudy different kind of representations of ECGA. Our work has two parts.
In the first partywe briefly reviewed the extended compact geneticalgorithm (ECGA) and
proposed iIECGA, the integer extension of ECGA. The main difference between iECGA
and ECGA is that.they work in the different problem domains. iECGA can detect building
blocks at the integer level butcannot find linkage at the bitslevel. In contrast, ECGA
can successfully find linkage at the bit level, but fail o find hierarchical linkage in integer
problems. For different typesiof problems, the appropriate algorithm should be selected
to apply. That is, using right data type, GA and ECGA both work in the integer domain.
According to the experimental results, iIECGA outperforms GA when the problems have
linkage of high order. But if the problem has no linkage between genes, GA and iECGA
have the similar performance.

In the second part, we proposed a new optimization framework by integrating the
extended compact genetic algorithm (ECGA) and split-on-demand (SoD), an adaptive
discretization method, to tackle the characteristic determination problem for solid state
devices. We employed rECGA to handle three characteristic determination problems of

which the physical phenomena and the mathematical models were different. The nu-
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merical results demonstrated that the proposed framework performed well on the study

cases.

7.2 Future Work

Even the performance of iECGA achieves our expectation, there are several directions
we can pursue in the future. iECGA avoid the problem of hierarchical linkage by encod-
ing several bits as one integer but does not really solve the problem. How to find the
hierarchical linkage is still a good question waiting to be answered.

Kumara and Goldberg have integrated ECGA with a mutation operator [26], iIECGA
can also be integrated with assimilar mutation operator. Currently, iECGA can handle
only the building blocks without overlap. The-ability te handle overlapping building
blocks can be developed in iECGA [27]:

Representationtis a fascinating topi€'in the field of evolutionary algorithms. The effect
that representsian integer as a binary string is notclear yet. How the representation effects

the linkage learning process is still a secret.

7.3 Main Conclusions

This study indicates' the importance of using an appropriate data type to represent vari-
ables of different types, categories, or domains. - Transferring or encoding the solutions
may just introduce extra, unexpected difficulties to reduce the applicability and capability
of existing good algorithms, instead of making the problem easier to solve. Therefore,
we need to understand and investigate the algorithmic components much further in the
future to design and develop better evolutionary algorithms.

When using ECGA to solve real-numbered problems, Split-on-Demand is a robust en-
coding method. The combined rECGA is a efficient and robust algorithm which we used
to solve the characteristic determination problem. The characteristic determination prob-
lem is very important not only because the development of modern electronic computing
equipment relies on solid state devices but also because more and more unknown physical

phenomena are observed while the scale of the device gets smaller and smaller. In order
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to gain understandings of all these unknown phenomena, getting access to the parame-
ters that cannot be directly measured or observed is of great assistance. With the help
of methodologies in evolutionary computation, this paper offers a good approach for re-
searchers and developers to deal with encountered characteristic determination problems
effectively and efficiently.

In the field of building-block research, more and more researchers pay attention on
hierarchical BB problems. Several bits may compose of a small BB, but several small BBs
may compose of a big BB. Traditional linkage learning schemes may fail when encoun-
tering hierarchical building-block problems. When the concept of linkage learning was

proposed, representation is the facus P 1. When there is a bottleneck on study

probability modeling and ibidi igh sentati Now it is time to con-

centrate our atte ) bion ansput some inspiration on
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