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A Novel Method for Shoeprints Recognition and Classification

Student: Wei-Jong Ho Advisor: Dr. Ling-Hwei Chen

Institute of Multimedia and Engineering

National Chiao Tung University

ABSTRACT

In this thesis, we present a method for automatically classifying/recognizing the
shoeprint images based on the outsole pattern. Shoeprints are distinctive patterns
often found at crime scenes that 'can provide valuable forensic evidence.
Directionality is the most obvious feature in these shoeprints. For extracting features
corresponding to the directionality, co-occurrence matrices, Fourier transform, and a
directional matrix are applied to the shoeprint image. And with the stage of principal
component transform, the method is invariant to rotation and translation variance.
Experiments of matching shoeprints are conducted on the database of 315 shoeprint
images to demonstrate the performance of the method.

Index Terms: forensic science, shoeprint, Fourier transforms, co-occurrence matrix,

principal component transform
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Chapter 1

Introduction

Crime scene is the location where the crime has been committed or found. Many
valuable clues left behind by criminals may be collected at crime scene so that crime
scene investigation takes a crucial role of case solving in the modern time. At present,
fingerprints, bloods, hairs, and shoeprints are all common evidences taken by
scientists or investigators at crime scenes. However, while both fingerprints and DNA
have been studied frequently and some effective methods have been developed for
recognition, researches on shoeprints recognition are rarely noted. Therefore,
developing an effective method for automatically classifying/recognizing the
shoeprint images will greatly help the crime scene investigators to identify shoeprint
impressions.

Shoeprints - the marks made by the outsole surface of shoes — are the most
common clues left at crime Scenes. A report from Girod [1] revealed that
approximately 30% of all burglaries provide usable shoeprints that may be recovered
from crime scene, while another study of several jurisdictions in Switzerland [2]
found that 35% of crime scenes had shoeprints usable in forensic science. These
statistics all manifest the value of shoeprint as forensic evidence. From other view,
shoeprints, unlike fingerprints or other type of physical evidence, generally cannot
uniquely identify an individual. Nevertheless, due to the wide variety of shoes
available on the market, with most having distinctive outsole patterns, this implies
that any specific model of shoe will be owned by a very small fraction of the general
population [3]. Hence, with a collected model of a shoeprint, the searching range of
suspects could be significantly reduced.

Ordinary method for matching shoeprint images is carried out manually by
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searching through paper catalogues or computer database. The searching process is
laborious and tedious, and worst of all, time-consuming. Some semi-automatic
methods have been developed to improve the efficiency [4-5]. These methods use a
palette of basic elements composed of visible shapes to construct a model of a
shoeprint pattern. But while modern shoeprints are having increasingly intricate sole
patterns, it is hard to characterize these patterns with limited elements. Not many of
the automatic approaches have been reported widely. Bouridane et al. [6] proposed
an automatic shoeprint recognition method based on fractal decomposition. Fractals
are used to represent the shoeprints and the final match is given based on the Mean
Square Noise Error method. The disadvantage of the method is that it could only
tolerate small translations and rotations. Chazal et al. [7] utilize Fourier transform
and calculate the power spectral.density (PSD) to sort the shoeprint database with
respect to the query image. The orientation variance-is conquered by having multiple
PSD images with various representative-angles;-hence the matching procedure would
be exhausting. In this thesis, we propose an automatic shoeprint recognition method,
which utilizes principal component transform to conquer the orientation variances.
And with the adoption of various feature vectors, the proposed method is concise
and effective.

The rest of the thesis is structured as follows. Chapter 2 describes the shoeprint
images used in the study. The proposed recognition method is discussed in Chapter 3.
The proposed method has been evaluated by experiments as reported in Chapter 4.

The final chapter closes the thesis with conclusion and future researches.



Chapter 2

Shoeprint Image Database

Shoeprint images used in the thesis were collected from 105 individual shoes. We
obtained the shoeprints using a printing ink, roller, and an inkpad. Participants who
were invited for the study treaded on an inkpad and then stamped on a normal A4
size paper. For robustness, the procedure would be carried out 10 times on each of
the shoe candidates to capture shoeprints of variable quality. Some prints are clearly
showing the full detail of tread pattern, while others grabbed unclear tread pattern in
some parts. All shoeprints were taken from the right shoes. Fig. 1 shows a group of a
shoeprint image.

Collected shoeprints were digitized ‘with'a: resolution of 96 dots per inch and
saved as 24-bit bitmap image. Three from each group of shoeprints were selected as
database images. Seven of others were taken as query data. This selection procedure

was implemented by K-means algorithm which will-be elaborated in the next section.
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Fig. 1. A group of shoeprint images.



Chapter 3

The Proposed Method

The flow diagram of the proposed method is shown in Fig. 2. The whole process
consists of three major phases: preprocessing, feature extraction, and pattern
matching. In the preprocessing phase, a shoeprint image is processed with some
techniques to eliminate distortions for further manipulation. In the feature extraction
phase, the preprocessed image is processed using different directionality measures
to extract features for pattern matching. In the pattern matching phase, based on the
extracted features, a similarity measure is provided. On the basis of the similarity
measure, the shoeprint image in the database that is most similar to the input image

is determined.

NG
I.«,
g, . Feature Pattern Matched
00 Preprocessing —>
'*-'.‘_qu,g Extraction Matching Result

Fig. 2. Flow diagram of the proposed method.

3.1 Preprocessing

Owning to the instability during imprint and scanning process, shoeprint images
captured from imprint and digitization would suffer many distortions. These
distortions include rotation, translation, imprint noise and other disturbances. The
aim of this stage is to reduce these distortions and produce a standard format for

feature extraction. Steps of preprocessing are shown in Fig. 3 and described below.
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Shoeprint Image Transform
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Fig. 3. Flow diagram of the preprocessing steps.

3.1.1 Gray-scale Transformation
Original shoeprint images are of 16777216 (2*) color level. To transform
color images into gray-scale ones, we apply the following equations:
Let
R(i, j) denote the red value at pixel (i, j)
G(i, j) denote the green value at pixel (i, j)
B(i, j) denote the blue value at pixel (i, j)
Then the transformation [8] is

gray(i, j) = 0.257 *R(i, j) + 0.504 * G (i, j) + 0.098 * B(i, j) +16 . (1)



3.1.2 Noise removal
Noises of an image could cause disturbing values in the print. To eliminate
noises occurring from imprint and scanning process, images are divided into blocks,

each of size 16*16. For each block B, we calculate its mean and variance by

1 16 16 o

u(B)ZﬁgéB(hJ) (2)
1 16 16 o 5

Var(B) = 2—56212_;,[8(!, ) wu(B)] (3)

If the variance of the block is lower than a specified threshold, the entire block
is set to white color value (that is, the gray level of each pixel in the block is 255).
Otherwise, keep the original contents.

After block-based noise removing, we.scan all pixels in the shoeprint image.

Pixel values greater than 200 are.all set to 255 (puré. white).

3.1.3 Smooth
The 5x5 Gaussian low-pass filter {9] shown in Fig. 4 is applied to each pixel of

the shoeprint image for further elimination of tiny noises.

X
273

Fig. 4. 5x5 Gaussian mask for low-pass filtering.



3.1.4 Edge Detection

Fundamentally, an edge is a “local” concept where as a region boundary [10].
Edges of an image characterize boundaries and are therefore a crucial issue in image
processing. Edge detecting an image significantly reduces the amount of data and
filters out useless information while preserving the important structural properties in
an image.

We use Sobel operator to extract the edges for the shoeprints. The

approximation of the magnitude of the gradient is carried out by using absolute

values:
v =[G,|+[G,|+[Gul +Gus| (4)
where G,, G,, Gy, and Ggziare, the magnitude of the gradients of

horizontal, vertical, and two diagonal directions:
The extracted edge image‘is used for further processing. The mask shown in Fig.

5 represents the contents of the 6perator.

-1 -2 | -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
0 1 2 -2 | -1 0
-1 0 1 -1 0 1
-2 | -1 0 0 1 2

Fig. 5. Four Sobel operators G,, Gy , Gg,and Gy, for detecting vertical,

horizontal, and two diagonal edges.



3.1.5 Bi-level Thresholding
After performing the stages described above, the obtained image is a
256-graylevel image. For simplicity of implementation, a thresholding method is
designed to extract high spectral pixels from the shoeprint image.
Let
T be animage of size of 256 level

H (i) be the histogram of the image, i=0,...,255

255
CE; =ZH(i) be the cumulative energy of H(i) from j to 255

i=]j

The threshold value | was determined by

Il = max{j |CE; /CE, > r}, where r is a predefined ration

Pixels with intensity greater than | “aré considered as background points and
are all set to 255, others are all’set to 0. The entire image is of only two values then,
pure black and pure white.

3.1.6 Principal Component Transform
The orientations of the shoeprint images are of multiple variations. These
rotations bring about a problem for feature extraction due to inconsistency of
shoeprint images. To solve this problem, we make use of principal components for
variable orientations. Aligning the image with its principal eigenvectors provides a
reliable mean for removing the effects of rotation.
Let
L(i, j) be the intensity value of a pixel (i, j) of theinputimage T
X ={G,j)|G,j)eT and L(i,]j)=255} be a set of points with white

color

K= |X| be the number of points in the set X

Steps for principal component transform are presented as follows:
8



1. Approximate the mean vector by

K
mx:%Zin XkEX (5)

k=1

2. Compute the covariance matrix for the input image as follows:

K

C, = 2 (4 =M, ~m,)" ©)
k=1

3. The matrix A is created by having all rows formed from the eigenvectors of
C, ordering eigenvectors according to decreasing eigenvalues.
Then, the matrix A is the transformation matrix to project the points in X

into points denoted by Y using the expression
Ye = A(Xk - mx) (7)

Shoeprint images transformed with transformation matrix A might differ in
orientations in 180 degrees. Properties, of. normal human thenar reveal that the
front-half part of shoe has bigger'size in Width'comparing to the rear one. Therefore,
after applying the transform, print'was further examined to see if it matches the rule.
Otherwise, rotate the image by 180 degrees.

Fig. 6(a) is the original shoeprint image. Fig. 6(b) shows the shoeprint image
with its corresponding eigenvectors drawn with dashed lines. Fig. 6(c) is the one
transformed with respect to the eigenvectors of the largest eigenvalue.

dﬂm -
o,gw )

7/ 4

;," )

3 ]a/f/f v

N
W p

(a)
Fig. 6. An example of principal component transform. (a) Original shoeprint image.
(b) The shoeprint image with its corresponding eigenvectors. (c) The transformed
shoeprint image.



3.2 Feature Extraction

The most obvious pattern in shoeprints is directionality. Fig. 7(a) shows a
shoeprint pattern with simple vertical lines. Fig. 7(b) shows a shoeprint pattern with
circular shapes. The shoeprint image shown in Fig. 7(c) presents a pattern of various
geometries. From simple line direction to complex geometric analogy, these drafts all
represent a unique model of its own pattern. Therefore, a feature extraction method
based on directionality is designed. To estimate the energy of each direction in the
whole image, three different approaches are provided. The first one uses
co-occurrence matrices to calculate the relation between pixels. The second uses a
region based direction mask to compute the local ridge orientation for the entire
image. The third takes global directionality, enhanced Fourier transform extends from
normal Fourier transform is =employed. Taking 'only global characteristics into
consideration, however, might lose some-local-information. For the sake of this flaw,
enhanced Fourier transform is also:applied.to’local areas of the shoeprint to extract

local information.

(a) (b) ()

Fig. 7. An example of shoeprint patterns (a) Vertical lines. (b) Circular shapes.
(c) Multiple Geometries.

10



3.2.1 Co-occurrence Matrices

Co-occurrence matrix, which was first introduced by Haralick in 1979 [11], is
defined over an image to be the distribution value of co-occurring values at a given
offset. Here we will introduce the definition of co-occurrence matrices and its
characteristics for an image.

Let

T be animage of 2 color level (pure black and pure white)
L(p,q) be the intensity value of pixel (p,q)inimage T
v = (AX,Ay) be an offset vector
The co-occurrence matrix C, (i, j) isthe 2x2 matrix defined as follows:

o nm (1, if L(p,g) =i and L(p+AX,g+Ay)=j
C. (= .
(D) ;;{O otherwise

(8)

Then a point (i, j) in C countsithernumber of pixel pairs in T that have
respectively intensity i and j with displacement offset V.

It can be seen that co-occurrence matrix collects the second-order statistics of
image T with the characteristics that the'main diagonal of the matrix with offset Vv
is as closer to the histogram of the imageTas V is related to the corresponding
direction [12]. Based on this observation, we propose a measure as follows:

Let

H (i) be the histogram of the image, i =0, 255

The discrepancy of co-occurrence matrix C, D(v) is defined by
D(v) = %(H (0)-C, (0,0) + H (255) - C, (255,255)) (9)

In order to obtain the properties of directionality, the discrepancy value must be
computed for a set of offset vectors V. Let CM(v) =1-D'(v) be the relevant
value to the direction v, where D'(v) denotes the normalized value in [0,1] of
D(v).Then CM(v), ve{(,j)|i=-4-334 and |=-4,-334} isselectedasa
feature vector for pattern matching. Note that the normalization for D(v) is

defined by

11



D(v) —minV
maxV —minV

D'(v) = ( ) (10)

where minV and maxV denote the minimum value and the maximum value of
all D(v) with veV respectively.

Fig. 8(b) shows the CM (v) value of the Fig. 8(a). Each square with coordinate
(i, J) relative to the image center represents the offset (i, j). Pure black means the

strongest response, while pure white means the slightest response. Solidus regions

are unconsidered offset values. Note that offsets with |i|< 2 and |J| <2 are not

considered because it will cause noisy information.

(b)

Fig. 8. Result of the co-occurrence matrix. (a) The edge points of an input

shoeprint image. (b) An gray-level representation of CM .

3.2.2 Directional Mask

Co-occurrence matrix gives the behavior between pairs of pixels according to
the offsets. However, due to the noises in shoeprints, the relevance measure of
co-occurrence matrix might be incorrect. To obtain relevance of directionality from
another view, directional masks are proposed. 12 masks, each of size 7*7, refer to
predefined directions 0° , 15° ,30° ,45° ,60° ,75° ,90° ,105° ,120° ,135° ,
150° , 165° , as shown in Fig. 9 are used.

The steps for ridge direction retrieval are

1. Input the preprocessed shoeprint image of size nxm

12



2. Sliding the k™ mask through the image, compute the convolution for each

pixel as follows:

7 7

O, )=DD L(i+p-4j+q-4M,(p,q) (11)

p=1 g=1

where M, (p,q) denotes the value of mask M, at pixel (p,q)

3. Then the energy for each direction is

D(k) =ii 1, if Ok(p,q)zé(number of 1s in M,)
p=la=1 |0, otherwise
,for k=1,..12

(12)

DM (k),k =1,...12 is selected as a feature vector for similarity measurement,
where DM (k) denotes the normalized value in [0,1] of D(k).

Table 1 shows an energy result using directional mask corresponding to the
input image in Fig. 8(a). From the table, we can see that the strongest response lies

in the 0% degree from the horizontal lines of the input image.

13
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Fig. 9. Twelve directional masks of 0 , 15" , 30" ,45° , 60
120° ,135° , 150° , 165° !
TABLE 1

The Energy Result of Directional Matrix
Corresponding to the Image in Fig. 8 (a)

Angle (degree)

0° 15° 30° 45° 60° 75°
Energy 1 0.373 0.078 0.314 0.039 0
Angle (degree)
90° 105° 120° 135° 150° 165°
Energy  0.255  0.137 0 0.039 0 0
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3.2.3 Global Fourier Transform

Fourier Transform is an operator that maps a function to another function in
terms of sin and cosine basis functions. More specifically, for an image, the Fourier
Transform represents the image as a summation of various sine-like or cosine-like
images. Due to the property of the Fourier Transform, it is widely employed for
processing image to analyze the frequencies contained in an image. In this section,
we first make use of the Fourier Transform to evaluate the strength of directionality
over the image. Then, the masking operation is performed to remove the
high-frequency and low-frequency noises.

The Fourier Transform is given below:

Let f beanimage ofsize nxm

0o ~j2a( a0 :
F(u,v) = ! DD X y)-e et = R(u,v) +il (u,v) (13)
n*m x=1 y=1
Fourier spectrum is calculated as follows
L
|F(u,v)|:[R2(u,v)+I2(u,v)]2 (14)

After applying Fourier transform on the target image, we perform the Fourier
transform on the Fourier spectrum again to get the enhanced Fourier Spectrum. The
enhanced Fourier spectrum is more prominent than the original spectrum. It
reinforces the peaks with the same periods and contributes to the same frequency
while for those which are not periodic ones, they do not contribute to the same
frequency [13].

This phenomenon relatively enhances those peaks and eliminates the
non-periodic noises in an image. Fig. 10(a) shows the Fourier spectrum of the target
image in Fig. 8(a). Fig. 10(b) is the Fourier spectrum image obtained by applying

Fourier transform on Fig. 10(a).
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Low frequencies correspond to the slowly varying components of an image. For
prints, these low-frequency components are of enormous spectrum value and might
result in noisy information. To remove these needless components, a mask for
removing low-frequency elements is applied. By masking, only frequencies that have
Euclidean distance from the zero spatial-frequency point greater than the predefined
threshold are preserved as candidate features.

High-frequency components which occur owing to outsole scuffs and nicks of
the shoe may result in outstanding values over the underlying shoeprint patter [7].
Fig. 11 represents these high frequency noises. Similarly, a mask for removing the
high-frequency components is applied. Only frequencies that have Euclidean distance
less than a predetermined threshold from the zero spatial-frequency point are
preserved as candidate features. Fig. 10(c) 'shows the spectrum with both

high-frequency and low-frequency.masks applied on Fig. 10(b).

(a) (b) (c)

Fig. 10. An example of the enhanced Fourier spectrum and the masking
operation. (a) The Fourier spectrum of Fig. 8(a). (b) The enhanced Fourier

spectrum of (a). (c) The spectrum with low-frequency and high-frequency masks
apply on (b)
Following the procedure, the enhanced Fourier spectrum image that goes
through low-frequency and high-frequency masks is denoted by F’ of size nxn.
Base on F’, we define a feature vector GF ={F'(i, j)|1<i<n, 1<j<n, (i,)) is

neither low-frequency nor high-frequency components}.
16



(c) (d)

Fig. 11. An example of the high-frequency components. (a) A print with full

integrity. (b) The same print with (a) with scuffs and nicks. (c) The enhanced

Fourier spectrum of (a). (d) The enhanced Fourier spectrum of (b).

3.2.4 Local Fourier Transform

All three methods mentioned above take the full prints into consideration.
Nevertheless, features extracted merely from the full image might lose details in local
areas. To compensate this shortage, the local Fourier Transform based on the
frequency domain is used.

The processed shoeprint image is divided into 15 equal regions as shown in Fig.
12(a). Following that, Fourier transform is performed on each region twice to get the
enhanced Fourier spectrum of the area.

Low-frequency mask and High-frequency mask are also applied on each region k
to get the masked Fourier spectrum F', . The remaining values, which are denoted
by LF={F'.(,J)|k=L1..15 i=1..,n/5 j=1..,m/3 (i,j) 1is neither in

high-frequency nor in low-frequency areas}, are selected as a feature vector.
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Fig. 12(b) shows a result after applying local Fourier transform on Fig. 12(a).

(b)

Fig. 12. An example of local Fourier transform. (a) A representation of dividing an
image into 15 equal regions. (b) The result of applying local Fourier transform of
Fig. 8(a)

3.3 Pattern Matching

Feature vectors extracted from the operations-described above, including CM,
DM, GF, and LF, are taken for pattern‘matching at'this stage.

In order to obtain the most likely shoeprint image that compares to the
reference image, we use sum-of-absolute-difference (SAD) as the similarity measure.
The SAD is the most primitive technique for matching. Let images T and T  be
the database image and reference image respectively, the similarity between the

selected feature vector of the image pair is calculated by
1E, .
S(F) = _Z‘Fi - Fi‘
K=

where F  denotes the i" element of a feature vector F , and

F e{CM,DM,GF,LF}. K denotes for the number of elements in the
feature vector. F is a feature vector belongs to T. F' is a feature
vector belongsto T'.

The smaller the value of the SAD result represents the more similar the print
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from the database is corresponding to the examined shoeprint. Prints of databases
are then sorted according to the similarity measure with the most similar image
shown at the front of the results. Scores are given to the sorted categories of
database from 1 to 315.

Combination of multiple feature vectors is conducted by summing up the given
scores of each category from every individual feature vector. The lower the sum of
the score means the more similar the category is comparing to the reference image.

Therefore, categories are sorted according to the total scores by increasing order.

3.4 K-means Algorithm for Database Creation

K-means algorithm is a common algorithm for clustering. More specifically, it is
an algorithm to group the objects based on-attributes into K number of groups.
Hence, for each of the print :sets.'of ‘10 shoeprint images, we use the K-means
algorithm to select 3 representative images-as-the database category.

Feature vectors CM, DM GE , and LF extracted using the methods
described above are taken as attributes f ={CM,DM,GF,LF}, and used in the
K-means algorithm to form three groups.

The algorithm performs the following steps until convergence:

1. Determine the centroid coordinate of each group.

In the first iteration, shoeprints are assigned randomly into 3 groups.
2. Determine the distance of each shoeprint to the centroid of each group.

The distance is calculated by Euclidean distance
K
dist =Y /(f, —¢;)?
i=1

Where f, denotes the i"

attribute of the shoeprint image, and ¢,

denotes the i™ attribute of the centroid.
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3. Group the shoeprints based on the minimum distance.

Each shoeprint is assigned to the group with the minimum distance. If no
new assignment is performed, then the grouping procedure ends. Otherwise,
repeat step 1 to step 3.

After applying the K-means algorithm, we will have three groups of images for
each individual shoeprint image set. From each group, the image with the closest
disatance to the centroid of the group is taken as the representative image. The
selected three images are then taken as database images. Seven of others are taken

as query images.
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Chapter 4

Experimental Results

Experiments are conducted to evaluate the performance of the proposed
method. 1050 shoeprint images collected from 105 distinct shoes a re used to test
our algorithm. 315 out of 1050 prints are taken as the database images according to
the K-means process described above. The remaining 735 shoeprint images become
the query images. Fig. 13 shows 105 distinct shoeprints. Every print in the database is
examined in turn for comparison with the input shoeprint. The similarity measures
calculated based on each feature vector are then used to sort the shoeprint images in
the database from the most similar print to the least similar one.

The method is designed to findsimilar shoeprints and sort the corresponding
categories of database in response to a reference image. With higher performance,
the result is expected to present fewer.nonmatching shoeprint categories before a
matching category. In view of this, “Average Match Score (AMS)“ is used to evaluate
the performance of the results.

The “Average Match Score” measures the average percentage of the database
categories before a correct match is delivered. In our experiments, each shoe pattern
contains 3 corresponding shoeprint images in the database which are gathered from
an identical right shoe. Hence, the performance is determined by counting the
number of nonmatching categories until hitting the correct one. Then, the process
continues to find the second and the third category that correctly matches to the
reference shoeprint image with their searching cost.

Table 2 displays an example of query. With respect to the query shoeprint, each
row shows the top 5 query results according to different feature vectors. In the first

row, taking the feature vector of co-occurrence matrix, the correct matching is
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delivered in the 3rd, the 4th, and the 5% position. While taking all features into

consideration, the correct matching is delivered in the 1% the 2nd, and the 4™

position.
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Each feature vector is conducted independently first, and then combined
together for further assessment. The best performance is the one with the
combination of all proposed features vectors. Table 3 shows the results of AMS of the
method in [7], which utilizes Fourier transform for matching. From the first column of

Table 3, we can see that for each query shoeprint, 3.51% of the shoeprint database
22



images should be examined in average to get one correct match. While for getting all
three matching shoeprints, 13.88% of shoeprint database images should be
examined in average. Results of the proposed method for different feature vectors
are shown in Table 4. From the table we can see that 1.29%, 4.71%, and 11.59% of
shoeprint database images should be examined in average respectively before the 1%,
the 2" and the 3" correct matching with the feature vector of co-occurrence matrix.
While taking all features into consideration, 0.38%, 1.19%, and 2.75% of the database
images are examined in average before retrieving the 1%, the 2" and the 3" correct
shoeprint. The proposed method is much more accurate than the method provided

in [7].

TABLE 3
Average Match Scores (%) for the Chazal and Flynn’s Method on the Proposed
Shoeprint Images with Image Resolution of 512x512

First Data Second Data Third Data Average
AMS (%) 3.51 11.75 26.39 13.88

TABLE 4
Average Match Scores (%) for the Proposed Method on 735 Shoeprint Images from
105 Individual Shoes, Database of 315 Shoeprint Images with Different Features

Features First Data  Second Data  Third Data Average
Co-occurrence 1.29 4.71 11.59 5.86
Direction 161 5.68 13.71 7
Global Fourier 0.64 3.09 7.39 3.71
Local Fourier 0.92 3.03 7.67 3.87
All Features 0.38 1.19 2.75 1.44
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Chapter 5

Conclusion

The study proposed a novel method for automatically recognizing the shoeprint
image using the properties of directionality. Firstly, a series of preprocessing
processes are applied to eliminate distortions in the print including rotations,
translations, and noises. Four feature extraction methods based on the directionality
are then performed on the preprocessed image. In the end, a similarity measure
using SAD is calculated in response to the reference image.

Based on the algorithm, a system can be built to help forensic scientists seeking
for the model of a shoe from a shoeprint image. Experiments designed for
assessment of performance showed!the accuracy and efficiency of the proposed
method. It can accelerate human observer ‘identifying the shoeprint pattern with
respect to the reference image:Howeyer; shoeprints:used in the study were obtained
under human controlled circumstances, while thase acquired at crime scene were of
lower quality and of desperate distortions. These shoeprints were mostly partial
prints and tough for matching. Improvements may be achieved by employing new
de-noise methods in preprocessing and delicately designed the database images

from acquired shoeprints.
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