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摘 要 

 

緩衝溢位漏洞一直是個相當重要之網路安全議題。過去以來，多數的防治機制大多

著重在於攻擊的偵測方面。為了降低受到攻擊所造成的傷害，這些防治機制在偵測到攻

擊時，便終止受到攻擊之程式或是在有需要的情形下，重新啟動該程式。然而在面對自

動化的重複攻擊時，這樣的作法對於多數的網路伺服器而言，卻不是一個理想的解決方

式，因為不斷地重新啟動程式將大幅降低程式所能提供的服務能力。近年來，部份研究

著重在將程式從受到攻擊後的狀態中回復並繼續執行。雖然這些機制能夠使程式能在自

動化的重複攻擊之下，還能保持一定的服務能力，但是也同時衝擊了程式在平時效能。 

這此論文中，我們提出了一個輕量級的機制。在攻擊回復的方面，應用了錯誤忽略

的概念。這個機制透過將原始碼做轉換，同時對程式應用了多個保護技術。經過轉換的

程式，可利用輕量級的技術提拱整體性的保護，並利用在執行期所蒐集的資訊，以函式

為單位，選擇性針對部份的程式使用較重量級的技術，加強弱點的防護。我們的實驗數

據顯示，轉換過之 Apache 伺服器只造成了極小的效能負擔，卻能在面對自動化的重複

攻擊時，維持 60%到 70%的服務能力。而未經保護之版本，在同樣的攻擊下，只能提供

低於 10%的服務能力。 
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Abstract 

Buffer overflow vulnerability is a severe security problem due to insufficient bound 

checking of programs. Most research efforts were put on the detection of the attacks. Many 

proposed techniques terminate the compromised process upon detecting an attack and restart a 

new instance if necessary. However, while facing automated and repetitive attacks, 

terminating the compromised instance and restart a new one is probably not a desired reaction 

for most network services since it degrades the service availability. In the recent years, more 

research efforts focused on preserving service availability under repetitive attacks. However, 

while preserving service availability, their mechanisms also have a substantial impact on the 

performance of protected programs. 

In this paper, we propose a lightweight mechanism which adopts the idea of 

failure-oblivious computing on recovering programs from buffer overflow attacks. The 

proposed mechanism automatically transforms a program to apply multiple protection 

techniques on the program in a function-by-function basis. The transformed program 

minimizes performance overhead by selectively enabling heavyweight protection for only a 

small set of functions according to the run-time information collected during its execution. 

Our experiment results indicate that all transformed programs have very low impact on 

performance. It also indicates that the transformed Apache server preserves from 60% to 70% 

of service availability while the unprotected version renders less than 10% of service. 
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1 Introduction 

Buffer overflow vulnerability is a common programming error due to insufficient bound 

checking. Users can overflow a buffer and hence pollute the data adjacent to the buffer. 

Attackers exploit this by supplying specially designed data to overwrite the memory data and 

alter the program control flow to cause it crash, or even worse, gain the fully control of the 

program. 

1.1 Motivations 

Over the past years, buffer overflow has become the major source of network security 

vulnerability. According to the statistics from Common Vulnerabilities and Exposures (CVE), 

which is showed in Table 1, more than half of the software vulnerabilities come from buffer 

overflow since 2002. As the software gets more complex, the probability of producing bugs 

also gets higher. 

Table 1. Statistics of buffer overflow vulnerability from CVE 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

# of Vulns 104 107 294 372 815 985 697 1389 3224 4765 

% of Total 41% 43% 32% 37% 49% 50% 54% 59% 66% 72% 

Most of the research efforts were put on the detection of the attacks. Static analysis 

techniques such as [9] [13] detect memory error problems at source code level while dynamic 

techniques check data integrity on control flow to ensure the execution is not compromised. 

Although these techniques effectively detect attacks, they can not protect the process itself 

from being compromised and terminating the compromised process is necessary to cease 

further error propagation. 

With repetitive attacks, however, terminating the compromised process and restarting a 

new instance degrade the service availability. In the recent years, automated attacks which try 

to exploit the buffer overflow vulnerability in faster and repetitive ways have motivated the 

research on recovering the program from attacks to preserve service availability under such 

attacks. DIRA [27] saved program memory state during runtime execution and recovers it 

after attacks. However, only rolling back program memory can not eliminate side effects such 

as modification to file system. TaintCheck [18] run program on an emulator for monitoring 
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program execution. Rinard et al. [20] [21] proposed the concept of failure-oblivious 

computing, which allows a program to execute through memory errors without compromising 

its correctness. They modified the CRED safe-C compiler [22] so that instead of terminating 

the process upon detecting a buffer overflow, they discard the out of bounds writes and 

continue the execution. All these techniques tried to preserve service availability under 

repetitive attacks at a cost of runtime performance of the protected programs. 

1.2 Our Contributions 

We proposed a lightweight multi-stage design buffer overflow protection mechanism, 

which recovers programs from attacks and has little impact on the performance of protected 

programs. The idea is to allow the protected program to collect runtime information during 

execution in earlier stages, and then pass the information to later stages so that only the 

vulnerable part of the program is protected thus minimizes the runtime overhead. 

We include several open source network servers in the experiments to evaluate the 

performance overhead and the improvement of service availability under repetitive attacks. 

The experiment result indicate that all the transformed programs have less than 3% overhead 

at the initial stage and it also shows that our mechanism improves the service availability 

under repetitive attacks. The protected version of Apache server preserves from 60% to 70% 

of service availability while the unprotected version renders less than 10% service. 

1.3 Our Approach 

To realize the aforementioned multi-stage mechanism, we transform the program so that 

each potentially vulnerable function is transformed to two versions: original and protected 

versions, with a proxy function that decides which one is executed in during runtime 

execution. The proxy function together with other helper functions is actually an interface, 

which can be implemented and dynamically linked to the transformed program. In this way, 

we can have several different implementations, which we call them switches in this paper, and 

change the behavior of the transformed program by linking different switch to it. In the 

context of rest of this paper, running at a specific stage means that the program is linked to a 

switch designed for that stage. 
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To recovery programs from attacks, we transform program source code to reposition 

stack-based buffers to the heap and protect them with read-only guard pages. In this way, 

overflowing such buffers will cause a segmentation fault and be detected. Since the 

overwritten does not clobber the program memory, the program can execute through the 

buffer overflow without losing correctness, which shares the same idea with failure-oblivious 

computing [20] [21]. 

1.4 Organization of the Paper 

The rest of this paper is organized as follows. In Chapter 2, we discuss two existing 

techniques used in our mechanism. In Chapter 3, we discuss the design and implementation of 

our mechanism. We present experiment results and evaluation in chapter 4. We review several 

other techniques to address buffer overflow problem in Chapter 5 and conclude this paper in 

Chapter 6. 
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2 Background 

As mentioned before, the proposed multi-stage buffer overflow protection mechanism 

applies different protection techniques on different parts of a program. In this chapter, we 

introduce two existing techniques that we used in our protection mechanism: Address Space 

Layout Randomization (ASLR) and Guard Pages. 

2.1 Address Space Layout Randomization 

Address Space Layout Randomization (ASLR) [19] shifts memory segments (e.g. stack, 

heap, and shared library code) in the process address space with random offsets to obscure the 

target addresses from the attackers. As illustrated in Figure 1, attackers have to guess the 

target address, and a wrong guess usually leads to a crash due to a segmentation fault, which 

can be easily detected. 

 

Figure 1. Address Space Layout Randomization 

The effectiveness of ASLR relies on the low chance for attackers to guess the right target 

address. However, attackers may still defeat ASLR by brute-force guessing [23]. Despite the 

limitation, ASLR has been integrated in many systems due to its negligible runtime overhead. 
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It is also integrated to detect buffer overflow attacks in some security systems [14] [15] since 

it detects a broad range of memory errors. 

2.2 Protecting Local Buffers with Guard Page 

To obstruct stack-based buffer overflow attacks, Gemini [8] transforms programs to 

reposition stack-allocated buffers to the heap at compile time. Figure 2 shows a simplified 

example of such transformation. Generally speaking, heap-based buffer overflow 

vulnerabilities are much hard to be exploited than stack-based ones. However, attackers still 

have chances to compromise the program [12]. Besides, the transformed program can not 

prevent data from being compromised and hence can not execute through the attacks. 

 

Figure 2. Reposition Buffers from Stack to Heap with Source Code Transformation 

The use of guard pages can solve above problems. Mapping additional inaccessible 

memory region during memory allocation operations is a common debugging technique. This 

region may contain one or more pages, which are referred as guard pages. Guard pages have 

been used in debugging errors of heap allocated memory for many years [2]. Recently, it is 

also found in some systems, such as Linux kernel, for detecting stack overflow of kernel 

space. 

Combining with the transformation described earlier, the same technique can be also 

applied to detecting stack-based buffer overflow vulnerability [24] [25]. Figure 3 illustrates an 

example of such combination. Any attempt to overwrite memory adjacent to the guarded 

buffers causes a segmentation fault and thus reveals the attack. In other words, guard pages 

int func() { 

char buf[1024]; 

... 

other_func(buf); 

... 

return 0;   

} 

int func(){ 

char *buf = malloc(1024); 

... 

other_func(buf); 

... 

free(buf); 

return 0; 

} 
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can detect attacks before memory data are compromised. Based on this property, we are able 

to allow the program to execute through buffer overflow attacks, realizing the concept of 

failure-oblivious computing. 

The drawback of guard pages is its high runtime overhead. Each allocation and 

deallocation of buffers requires additional system calls for mapping and unmapping guard 

pages. Thus, it is impractical to guard all the buffers in a program. Our protection mechanism 

uses runtime program information to reduce the number of buffers to be guarded, and thus 

leads to little performance impact, as shown in the experimental results. 

 

 Figure 3. Reposition Buffers from Stack to Heap and Guard Them with Guard Pages 
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3 Design and Implementation 

In this chapter, we present a multi-stage lightweight buffer overflow protection 

mechanism that has the following features. First of all, by collecting runtime process 

information, it only needs to protect buffers in the vulnerable functions, minimizing the 

runtime overhead. Second, it takes advantage of the idea of failure-oblivious computing to 

execute through buffer overflows. 

The proposed mechanism consists of five stages, as shown in Figure 4. The default stage, 

which is the initial stage, aims to provide effective attack detection without degrading the 

program performance. We achieve this by applying ASLR on this stage. Once an attack is 

detected, the program transits to the logging stage, which uses a lightweight technique to 

collect run-time call stack information. On detecting an attack in this stage, the program 

passes that information to the watching stage and then transits to that stage. Similar to the 

default stage, the logging stage also relies on the ASLR as its attack detection technique. 

 

Figure 4. Stages and the Transition Diagram 

With the run-time call stack information, the watching stage can apply protection 

mechanism on a relatively smaller number of buffers, compared to the number of buffers in 

the whole program. Specifically, it needs to protect only the buffers in the functions that 
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appear in the call stack while the attack was detected. The watching stage protects each of the 

buffers by using the guard page mechanism, and hence the overflowed buffer can be 

identified once a further attack arrives. In that situation, the program transits to the protecting 

stage, which protect the buffers allocated in that single function (i.e., the vulnerable function) 

and allows the program to execute through further attacks without losing correctness. Note 

that, all stages use ASLR as a program-wide detection technique, which means that the 

buffers protected with guard pages are still protected with ASLR as well. However, 

overflowing such buffers is always detected first by the guard page. If the program contains 

more than one vulnerable function, attacks to buffers residing in unidentified vulnerable 

functions (i.e. buffers that are not protected with guard pages) will be detected by ASLR and a 

similar process is repeated. In this case, the program transits to the logging and protecting 

stage, which collects run-time call stack information again while at the same time protects 

buffers in the previously identified vulnerable functions with guard page. 

The proposed mechanism has little performance impacts on the program because that it 

applies heavyweight protection technique (that is, the guard page technique) on only a small 

number of buffers. For example, only the buffers allocated by the vulnerable function are 

protected in the protecting stage. Before these buffers are identified, merely lightweight 

protection mechanisms such as ASLR are applied. 

To realize the aforementioned multi-stage protection mechanism, we should be able to 

apply multiple protection techniques concurrently on a program, and selectively enable 

different techniques on different parts of the program during its run-time execution. We 

achieve this by using the source code transformation and dynamic linking techniques, which 

will be described in Section 3.1. The mechanisms of stage transition and inter-stage 

communication will be presented in Section 3.2. Finally, the implementation details of each 

stage will be given in Section 3.3. 

3.1 Function-based Protection 

We treat functions that have local buffers as potentially vulnerable functions
1
, and we 

apply protection techniques in a function-by-function basis. Each potentially vulnerable 

                                                 
1 Currently, we focus on the stack-based buffer overflow attacks, so only local buffers are concerned in the current 

implementation. 
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function has two versions: the O_VERSION and the G_VERSION. The former whose 

function name is prefixed with O is the original version, and the latter whose function name is 

prefixed with G uses guard pages to protect its local buffers. Both versions are generated by 

using source code transformation. Figure 5 illustrates an example of the transformation. As 

shown in Figure 5 (a), two functions, B and D, are potentially vulnerable. After 

transformation, both B and D are transformed into two versions, as shown in Figure 5 (b). 

Functions whose names are prefixed with O, such as O_B and O_D, are the original functions, 

and functions whose names are prefixed with G, such as G_B and G_D, are those that allocate 

local buffers from the heap and protect the buffers with guard pages. Note that the functions 

with original names, such as B and D, are transformed into wrapper functions, which invoke a 

system-wide proxy function to determine the control path. On invoking the proxy function, 

each wrapper function passes its function identifier so that the proxy function can determine 

the control path. Each function identifier is unique and assigned in the transformation process. 

 

Figure 5. Illustration of the Transformation 

A proxy function determines the control path based on the current stage and the 

information passed from the previous stage. For example, the watching stage guards the 

buffers belonging to the functions that were appeared in the call stack information, which was 

passed from the logging stage. Instead of including the control-path determination logic for all 

the stages into a single proxy implementation, we choose to have multiple per-stage proxy 

implementations and switch these implementations during each stage transition. This 
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maintains the extensibility of our multi-stage protection mechanism because that it is 

straightforward to insert/delete stages. To facilitate proxy implementation switching, each 

proxy implementation is realized as a single shared object which can be dynamically linked 

into the program. 

Figure 6 illustrates an example of changing control path by switching proxy 

implementations. The program shown in Figure 6 (a) always executes the original versions of 

the potentially vulnerable functions, while the program shown in Figure 6 (b) always executes 

the versions with guard pages. 

 

Figure 6. Change Program’s Control Flow with Different Switches 

Besides the proxy function, a proxy implementation also consists of some helper 

functions. For example, it consists of an initialization function, in which a proxy 

implementation can obtain the information passed from the previous stage. Moreover, it also 

contains a pair of prologue and epilogue functions, which are invoked by the wrapper function 

before and after the invocation of proxy function, respectively. With the prologue/epilogue 

functions, the logging stage can record the call stack information. Figure 7 shows the proxy 

interface, which consists of a set of the aforementioned four functions. Each proxy 

implementation switch changes the implementation of the proxy interface. 
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Figure 7. The Proxy Interface 

3.2 Stage Transition and Inter-Stage Communication 

Stage transition is managed by a monitor process, which sets up the linking between the 

proxy implementation of the next stage and the transformed program, and then restarts the 

latter. As mentioned before, a proxy implementation is a shared object which can be 

dynamically linked with the program during the loading of the program. In a UNIX-like 

system, the link setup can easily be done by setting the LD_PRELOAD environment variable 

to the path of the proxy implementation before the program is loaded to run. 

Figure 8 shows the interactions between the transformed program and the monitor 

program. As shown in the figure, the program has the ability to detect attacks since we apply 

detection techniques on it. Both ASLR and guard pages cause the program to trigger a 

segmentation fault signal (SIGSEGV) upon detecting an attack, and each proxy 

implementation registers a segmentation fault handler, which creates a file named 

DYNSW_RESTART to notify the monitor to start stage transition. 

void __attribute__((constructor)) dynsw_init(); 

int dynsw_proxy( int func_id); 

void dynsw_prologue( int func_id); 

void dynsw_epilogue( int func_id); 
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Figure 8. Interactions between the Transformed Program and the Monitor 

For multi-process programs, it is necessary to terminate all running instances linked with 

the current proxy implementation before transiting to the next stage. It is possible to achieve 

this by sending a SIGABRT signal to those processes through the monitor. However, this 

requires the monitor to track processes relationship (e.g. process group and process session) 

and difficulties can arise if processes, especially daemons, change the groups of their 

descendent processes during execution. Therefore, we achieve this by sending a SIGABRT 

signal from the attacked process to abort other process in the same process group before it is 

terminated. Figure 9 shows the routine we use to do the stage transition in the SIGSEGV 

signal handler. 

 

Figure 9. Routine Called in SIGSEGV Signal Handler for Stage Transition 

Some programs register their own SIGSEGV signal handler. Since our SIGSEGV 

handler is registered during the program initialization, any later registration will cause our 

INLINE void next_state(){ 

/* notify the monitor to transit to the next stage */ 

creat( DYNSW_RESTART, 00600); 

/* terminate all instances that are linked with current proxy implementation */ 

kill( 0, SIGABRT); 

} 



 

13 

 

registration in vain. We solve this problem by commenting the code related to signal handler 

registration in the program transformation phase. 

As mentioned before, a proxy implementation can pass the information it has collected to 

the next stage. Since all the processes of a program run at current stage are terminated before 

stage transition, the information must be saved outside the process address spaces. For 

simplicity, we use files for such information passing. A program exports information to a file 

before it is terminated, and the restarted instance (i.e., the next stage) imports that information 

during its initialization. 

3.3 Multi-Stage Buffer Overflow Protection Mechanism 

In this section, we present the implementation details of each stage in our multi-stage 

protection mechanism. The proxy implementation of the default stage is shown in Figure 10. 

The dynsw_proxy() function simply returns O_VERSION to tell the wrapper function to 

choose the original version. Both dynsw_prologue() and dynsw_epilogue() does nothing since 

there is no need to record information during function entry and exit in this stage. 

 

Figure 10. Default Stage Implementation 

The proxy implementation for the logging stage is very similar to that for default stage, 

except that it records the run-time call stack information and exports this information upon 

detecting an attack, which is shown in Figure 11. Run-time call stack information is recorded 

by pushing the function identifier into a separated and protected stack when the 

dynsw_prologue() function is executed and popping the function identifier out during the 

execution of the dynsw_epilogue() function. Note that the stack does not record all the 

functions under execution. Instead, only transformed functions (i.e., potentially vulnerable 

int dynsw_proxy( int func_id){ return O_VERSION; } 

void dynsw_prologue( int func_id){ /* do nothing */ } 

void dynsw_epilogue( int func_id){ /* do nothing */ } 

INLINE void segv_handler( int signum, siginfo_t *siginfo, void *ucontext){ 

next_state(); 

} 

void __attribute__((constructor)) 

dynsw_init(){ install_segv_handler( segv_handler); } 
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functions) are recorded. Once an attack is detected, the segmentation fault signal handler 

exports the current content of the stack into a file named CANDIDATE_LIST, which will be 

read by the next stage. 

 

Figure 11. Logging Stage Implementation 

The watching stage protects buffers allocated by functions whose identifiers are recorded 

in the file CANDIDATE_LIST. It inserts the function identifiers obtained from the file 

CANDIDATE_LIST into a hash table during the execution of the dynsw_init() function. 

Whenever the dynsw_proxy() function is invoked (with a function identifier as an argument) 

by a wrapper function, it looks up the hash table to find the function identifier. If the identifier 

is found, the wrapper invokes the protected version of the transformed function. Otherwise, 

the original version is invoked. 

Each protected version of a transformed function allocates buffers from the heap and 

protects them with guard pages. Moreover, it associates the function identifier with the 

starting address of the guard pages during each buffer allocation. With these associations, we 

can identify the function containing the overflowed buffer when a SIGSEGV signal is caught. 

The identifier of the function is then logged to a file named VULNERABLE_LIST, and the 

monitor program is notified to transit to the protecting stage so as to reduce further the 

void dynsw_prologue( int func_id){ 

/* push the function identifier into a separated and protected stack */ 

stack_push( func_id); 

} 

void dynsw_epilogue( int func_id){ 

/* pop the function identifier from the separated and protected stack */ 

stack_pop(); 

} 

INLINE void segv_handler( int signum, siginfo_t *siginfo, void *ucontext){ 

stack_export(CANDIDATE_LIST); 

next_state(); 

} 

void dynsw_init(){ install_segv_handler( segv_handler); } 
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number of buffers that need to be protected with guard pages. 

However, if the program has more than one vulnerable function, our mechanism 

identifies them one by one by repeating the process of stage transition. In this case, the 

watching stage needs to protect not only the buffers recorded in the file CANDIDATE_LIST 

but also the ones residing in the previously-identified vulnerable functions. 

Even though this stage is mainly responsible for identifying unidentified vulnerable 

functions; those that have been previously identified still have to be protected during this 

stage. For this reason, identifiers of function previously identified and recorded in the file 

VULNERABLE_LIST, as well as those contained in the file CANDIDATE_LIST, are 

inserted to the hash table g_hash, which is used in the dynsw_proxy() as described earlier. 

Figure 12 shows the implementation of this watching stage. Upon receiving an attack, the 

segmentation fault handler obtained the identifier of the vulnerable function through the 

association of function identifiers and guard pages. Then it searches for this function identifier 

in the hash table g_hash_v, which only contains identifiers of function previously identified as 

vulnerable. If the identifier is not found in the g_hash_v, which another vulnerable function is 

newly identified, the program inserts the identifier into the g_hash_v, exports it to the 

VULNERABLE_LIST and transits to the protecting stage. Otherwise, which means that this 

attack targeted on a previously identified vulnerable function, the program recovers from this 

attack and continue the execution as the protecting stage does. We describe how to do this 

later in the context of describing the protecting stage. 
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Figure 12. Watching Stage Implementation 

The protecting stage protects fewer buffers than the watching stage. Specifically, it only 

protects the buffers allocated in the vulnerable functions, which were identified in the 

watching stage. The same as the watching stage, the protecting stage can execute through 

further buffer overflows by taking advantage of the idea of failure-oblivious computing. Since 

the guard pages prevent the memory data nearby the overflowed buffer from being 

overwritten, the program can execute through the buffer overflow without losing its 

correctness. 

int dynsw_proxy( int func_id){ 

return hash_find( &g_hash, func_id) ? G_VERSION : O_VERSION; 

} 

INLINE void segv_handler( int signum , siginfo_t *siginfo , void *ucontext){ 

int func_id = mm_lookup( get_fault_addr( ucontext)); 

if( hash_find( &g_hash_v, func_id)){ 

fixup( ucontext); 

} 

else{ 

hash_add( &g_hash_v, VULNERABLE_LIST); 

hash_export( &g_hash_v, VULNERABLE_LIST); 

next_state(); 

    } 

} 

void dynsw_init(){ 

install_segv_handler( segv_handler); 

hash_init( &g_hash_v); 

hash_import( &g_hash_v, VULNERABLE_LIST); 

hash_init( &g_hash); 

hash_import( &g_hash, VULNERABLE_LIST); 

hash_import( &g_hash, CANDIDATE_LIST); 

} 
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Figure 13 shows the proxy implementation of this stage. During the execution of 

dynsw_init(), it imports the identifiers of functions that have been identified as vulnerable to a 

hash table. This hash table is then used for determining the control flow whenever 

dynsw_proxy() is invoked. Upon detecting an attack, the segmentation fault handler figures 

out whether the target of the attack is a previously identified vulnerable function by checking 

if the faulting address belongs to one of the guard pages. If the faulting address does not 

belong to one of the guard pages, the program transits to the logging and protecting stage to 

repeat the process of identifying the vulnerable function; we will discuss this case later. 

Otherwise, the handler does not terminate the program, but instead ignores this segmentation 

fault and continues the execution. 

However, simply returning from the signal handler will result in an endless loop since 

the instruction that causes the segmentation fault will be executed again. To solve this 

problem, the signal handler modifies the program counter by adding the length of the 

instruction that causes the segmentation fault. The program counter can be obtained from the 

argument of the signal handler. When a signal is caught, the kernel saves the program context, 

which consists of the register values, on the stack, and passes a pointer to the program context 

as an argument to the signal handler. When the signal handler returns, the modified program 

counter is also restored to the register and the program resumes the execution as if the 

segmentation fault never happened. 
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Figure 13. Protecting Stage Implementation 

The logging and protecting stage can be regarded as a combination of the logging and 

the protecting stages. It collects rum-time call stack information while protects previously 

identified vulnerable functions at the same time. The implementation of this stage, which is 

shown in Figure 14, should be very easy to understand without further descriptions since both 

the logging stage and the protecting stage have been described earlier. 

int dynsw_proxy( int func_id){ 

return hash_find( &g_hash, func_id) ? G_VERSION : O_VERSION; 

} 

INLINE void segv_handler( int signum, siginfo_t *siginfo, void *ucontext){ 

if( mm_lookup(get_fault_addr( ucontext))) 

fixup( ucontext); 

else 

next_state(); 

} 

void dynsw_init(){ 

install_segv_handler( segv_handler); 

hash_init( &g_hash); 

hash_import( &g_hash, VULNERABLE_LIST); 

} 
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Figure 14. Logging and Protecting Stage Implementation 

int dynsw_proxy( int func_id){ 

return hash_find( &g_hash, func_id) ? G_VERSION : O_VERSION; 

} 

void dynsw_prologue( int func_id){  

stack_push( func_id); 

} 

void dynsw_epilogue( int func_id){ 

stack_pop(); 

} 

INLINE void segv_handler( int signum, siginfo_t *siginfo, void *ucontext){ 

if( mm_lookup(get_fault_addr( ucontext))) 

fixup( ucontext); 

else 

next_state(); 

} 

void dynsw_init(){ 

install_segv_handler( segv_handler); 

hash_init( &g_hash); 

hash_import( &g_hash, VULNERABLE_LIST); 

} 
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4 Evaluation 

We have conducted a series of experiments to test the capability and evaluate the 

performance of our system. Table 2 lists five open source network servers we have included 

as test programs in our experiments. The vulnerability column shows CVE identifiers, which 

are unique and common identifiers for public known security vulnerabilities. 

Table 2. List of Vulnerable Programs 

Vulnerable Server Description Vulnerability 

Qpopper 4.0.4 POP3 Mail Server CVE-2003-0143 

dproxy-nexgen Caching DNS Server CVE-2007-1866 

ProFTPD 1.3.0a FTP Server CVE-2006-6563 

ghttpd 1.4-3 Web Server CVE-2002-1904 

Apache (with mod_jk 1.2.0) Web Server CVE-2007-0774 

We transform the programs with TXL [31], which is a special-purpose programming 

language designed for creating, manipulating and rapidly prototyping language descriptions, 

tools and applications. Especially, we modify and extend Gemini [8], a tool which transforms 

source code to reposition stack-based buffers on the heap with TXL. 

Table 3 lists the experimental environment. We recompile all the test programs listed in 

Table 2 and run them on a server machine with a 2.0 GHz Pentium 4, and 512MB of RAM, 

running Linux kernel 2.6.21. All performance evaluations are performed with benchmarks on 

a client machine with a 3.4 GHz Pentium 4, and 768MB of RAM, running Linux kernel 

2.6.21. The two machines communicate via a 100MB Ethernet private network. 

Table 3. Experiment Environment 

Server (runs test servers) Client (performs benchmarks) 

Linux Kernel 2.6.21 

Pentium 4 CPU 2.0GHz 

512MB RAM 

Ethernet 100 MB 

Linux Kernel 2.6.21 

Pentium 4 CPU 3.4 GHz 

768 MB RAM 

Ethernet 100 MB 
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4.1 Performance Evaluation 

For each of the test programs, we evaluate the performance of both the original version 

and the transformed version. For the transformed version, the experiments are performed as 

follows. The monitor program launches the test programs at the default stage and waits for the 

requests. Then the benchmark is started on the client system for making requests and 

measuring performance of the server program. Upon getting the benchmark results, we send 

attack messages to crash the program on the server. As soon as the program detects the attack, 

it notifies the monitor program to transit to the next stage. Again, we start another benchmark 

for that stage. The same process is repeated until the program reaches the protecting stage. 

4.1.1 Qpopper 

Qpopper is a very popular POP3 mail server. The vulnerability is due to a call to 

Qvsnprintf() within pop_msg() in popper/pop_msg.c which leaves a buffer non terminated and 

can be exploited to execute arbitrary code via a buffer overflow in a MDEF command with a 

long macro name. 

We use Postal [33], a benchmark for measuring perfomance of SMTP and POP3 servers, 

to create POP3 seesions in a saturated manner to the server which has 2000 mailboxes with a 

total size of 50M bytes of messages. A typical POP3 session include logging on the server, 

listing mail messages, retrieving messages and/or deleting messages. The normalized results, 

which are shown in Figure 15, indicate that the performance degradation of the transformed 

Qpopper is quite low at a range from 1% to 3%. 
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Figure 15. Performance Evaluation of Qpopper 

4.1.2 Dproxy-nexgen 

Dproxy-nexgen is a small caching domain name server. The vulnerability is a buffer 

overflow within the dns_decode_reverse_name() function of the dproxy-nexgen program, 

which allows remote attackers to execute arbitrary code by sending a crafted packet to UDP 

port 53. 

The evaluation is conducted by measuring the average response time of looking up a 

cached domain name for 1000 iterations. The normalized result, which is shown in Figure 16, 

indicates that all the stages of transformed version have very low (below 2%) performance 

overhead. 
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Figure 16. Performance Evaluation of dproxy-nexgen 

4.1.3 ProFTPD 

ProFTPD is a high-performance and highly configurable FTP server. The vulnerability is 

a buffer overflow within the pr_ctrls_recv_request() function in the src/ctrls.c file. This 

function calls read() to read reqarglen bytes from user input to a fixed length buffer. However, 

the reqarglen is also read from the user input and hence allows malicious users to control the 

program to read more data than the buffer can hold. 

We evaluate the performance by fetching files of different sizes for 100 iterations. The 

normalized throughput, which is shown in Figure 17, indicates that the performance drops 

below 90% when fetching small files. However, as the file size grows, the overhead can be 

amortized and the performance degradation will become less perceptible.  
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Figure 17. Performance Evaluation of ProFTPD 

Notice that, the transformed ProFTPD does not transit to the protecting stage from the 

watching stage in this experiment. This is because the overwritten is happened in the read() 

system call. The Linux kernel handles this exception, which is caused by the guard page, by 

doing an early return to the user space instead of issuing a SIGSEGV signal to the program. 

As a result, the stage transition is not triggered. In this case, the program memory is not 

compromised and the program continues the execution without losing correctness. 

4.1.4 Ghttpd 

Ghttpd is a fast and efficient HTTP server with CGI support. The vulnerability is a buffer 

overflow within the Log() function in the util.c file, which allows remote attackers to execute 

arbitrary code via a long HTTP GET request. 

We use WebStone [32], a standard benchmark for web server, to evaluate performance 

of transformed ghttpd. Figure 18 shows the normalized results in terms of throughput and 

response time. As shown in the figure, the performance overhead is less than 3% in the 

default, logging and protecting stages. Even watching stage causes less than 5% overhead. 
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Figure 18. Performance Evaluation of ghttpd 

4.1.5 Apache Tomcat Connector (mod_jk) 

Apache Tomcat Connector (mod_jk) is a module of Apache for connecting to Tomcat, 

which is a web container or an application server that implements the servlet and the 

JavaServer Pages (JSP) specifications. The vulnerability is an unsafe memory copy within the 

map_uri_to_worker() function in the native/common/jk_uri_worker_map.c file, which can be 

exploited to execute arbitrary code or crash the web server by sending a long URL request. 

Figure 19 shows the results of performance evaluation conducted by WebStone. As the 

figure indicates, all the stages of the transformed Apache program have a similar performance 

with the original version. 
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Figure 19. Performance Evaluation of Apache 
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4.2 Service Availability 

To increase the responsiveness, Apache uses a single control process to maintain several 

spare worker processes, which are ready to serve incoming requests, so that clients do not 

have to wait for a new worker process to be forked before their requests can be served. For a 

vulnerable Apache server, serving an attack message as a request causes one of the worker 

process to crash. The server can not render useful service when the attack rate (i.e., the rate at 

which the attack messages are repetitively sent) is higher than a certain value. 

To verify that the proposed mechanism has the ability to improve the service availability 

under repetitive attacks, we wrote a script to send attack messages at different rates and 

measure the performance degradation for both the original version and the transformed 

version (in the protecting stage) of Apache. 

During the time we were performing this experiment, we noticed that the performance 

degradation varies with different numbers of client processes configured in the WebStone 

benchmark. Since WebStone client processes send requests to the web server in a saturated 

manner, we consider that the performance degradation variation is due to the competition 

between the attacker processes and the WebStone client processes. Therefore we modify the 

script to have the attack messages be uniformly distributed to 100 attacker processes to 

increase the parallelism of attacks.  

Figure 20 shows the improvement of service availability, which is measured as the ratio 

of throughput under different attack rates when WebStone is configured to have 30 and 90 

client processes. The result indicates that the transformed version still preserve from 60% to 

70% of service availability while the original version can only render less than 10% of the 

service. 
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Figure 20. Availability Degradation of Apache under Repetitive Attacks 
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5 Related Work 

Over the years, many techniques were proposed to address the buffer overflow 

vulnerability problem. Originally, most of the research efforts were put on the detection, 

either statically or dynamically, of the attacks. In recent years, more research efforts focused 

on recovering the attacked program in order to resist automated and repetitive attacks. In this 

section, we will describe those efforts. 

5.1 Static Analysis Techniques 

Static analysis techniques [9] [13] detects memory error problems at source code level. 

Unfortunately, analysis on some context sensitive code which requires program runtime 

information can not be done statically. 

As a result, some techniques tend to generate too many false positives while other can 

miss real errors. Cyclone [11] and CCured [17] combine static analysis and runtime checks. 

They statically check the source code for buffer overflow problems, and insert runtime checks 

for those which can not be identified statically. However, manual source code modification is 

required for CCured to work with complex programs and for Cyclone to work with legacy C 

programs. 

5.2 Dynamic Detection Techniques 

Several [1] [22] dynamic techniques detect buffer overflow attacks by checking the 

integrity of control data (i.e., return address, frame pointers, etc). StackGuard [5] [6] places a 

canary value between local buffers and control data on a stack to check if the control data was 

corrupted due to buffer overflow. The canary value must be clobbered before corruption of 

the control data. Therefore, we can detect attacks by checking the integrity of the canary value 

upon function return. ProPolice [10] also uses canary values. In addition, it rearranges the 

stack layout to put arrays on the highest part of the stack frame so that other variables (if any) 

will not be corrupted when the buffers are overflowed. StackSheild [29] and RAD [3] copy 

the return address into a global return stack so that they can check the integrity of the return 

address in the function epilog. PointGuard [4] augmented the GCC compiler to emit code that 

encrypts and decrypts pointers before and after they are stored in memory, respectively. 
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Therefore, an in-memory pointer overwritten by an attack can not be successfully decrypted 

without the decryption key. These techniques can be integrated with static analysis 

approaches to reduce the performance overhead. For example, there is no need to emit 

instrumentation code for functions without local buffers since no stack-based buffer overflows 

can happen in those functions. 

Non-executable buffers [7] [19] [28] prevent execution of code on stacks or heaps with 

hardware assistance. An attacker may still inject the code into the buffers, but any attempt to 

execute that code will cause an exception. Address Space Layout Randomization (ASLR) [19] 

shifts memory segments (e.g. stack, heap, and shared library code) in the process address 

space with random offsets to obscure the target addresses from the attackers. Attackers may 

still overwrite the control data and redirect the program control flow, however, they have to 

guess the target address, and a wrong guess usually leads to a crash. 

5.3 Automatic Recovery from Attacks 

In recent years, automated attacks, which try to exploit the buffer overflow vulnerability 

in more fast and repetitive ways, have motivated the research on more effective protection 

mechanisms. The techniques described in the previous section can efficiently detect such 

attacks; however, they can not protect the victim processes from being compromised. Once an 

attack has been detected, they simply terminate the victim process to prevent further error 

propagation, and restart another instance if necessary. Fast and repetitive attacks cause a 

victim service to keep restarting and thus degrade the service availability. 

Input-filtering is a general approach that can prevent the attacks before the process is 

compromised. DIRA [27] augmented the GCC compiler to log memory updates and track 

data dependency during the program execution. It logs memory update of global or static 

variables for recovering back the program after attack. Besides, it also intercepts some library 

functions to track propagation of external data for their attack identification algorithm. When 

an attack is detected, the program identifies the external input data that corresponds to the 

attack according to the data dependency. It then passes the data as attack signature to the 

front-end filter and rolls back the program to an earlier state where the input is not yet 

received. However, logging memory update and tracking data dependency degrade the 
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performance of the program. Moreover, checkpointing only part of the program state can not 

always bring the program back to the correct state, and changes made to the file system can 

not roll back either. 

TaintCheck [18] run programs in an emulation environment, which tags data derived 

from un-trusted sources, such as network, as tainted and tracks its propagation in the program 

memory. Any attempt to use the tainted data as a pointer will be recognized as an attack and 

triggers the post-analysis procedure to provide information for the filter. The use of the 

emulation environment has an impact on the program performance and limits the practical 

usage. 

Sidiroglou and Keromytis [24] [25] [26] treated each execution of functions as a 

transaction. Once an error is detected, they rollback the memory changes caused by the 

function, abort the function, and continue the execution from where the function returns. 

However, they can not roll back I/O operations, and hence the program may not work in a 

consistent way in its continued execution. Rinard et al. [20] [21] proposed the concept of 

failure-oblivious computing, which allows a program to execute through memory errors 

without compromising its correctness. They modified the CRED safe-C compiler [22] to 

augment the generated code to perform bounds checks and to store away or discard out of 

bounds writes [20] [21]. As a result, no memory data can be clobbered by buffer overflow. 

However, bounds checks downgrade the performance and make the approach impractical for 

many applications. 

We propose a lightweight buffer overflow protection mechanism, which adopts the idea 

of failure-oblivious computing [20] [21]. However, unlike their work, our multi-stage design 

allows the program to achieve the same goal with little performance overhead. 
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6 Conclusions 

Most techniques proposed to address the buffer overflow problem terminated the 

compromised process to cease error propagation. With repetitive attacks, however, such 

reaction is not desired for most of network services since keep restarting the process degrades 

the service availability to their intended users. This paper proposed a lightweight buffer 

overflow protection mechanism which recovers program from attacks. With guard page 

mechanism, the buffers are protected so that attackers can not compromise the victim process 

by overflowing the buffers. Therefore, the program can continue the execution without losing 

correctness and hence preserve the service availability. The proposed mechanism has very 

low impact on the performance of protected programs because it can only protect the buffers 

allocated in the vulnerable function. 
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