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國立交通大學多媒體工程研究所 

 

摘        要 

 

 

物理方面的模擬，例如動態布料模擬，對於增加應用軟體的視覺效果上有相

當大的助益。之前有關於這方面的研究大多致力於更穩定的數值積分方法，以及

更快速的系統架構。本篇論文提出一個節省更多時間的系統架構：基於根據重要

性採樣的概念，先將質點的法向量資料做小波轉換，藉由查詢轉換過的階層資

訊，找出法向量差別較小的區域，然後以內插法代替數值積分法來計算區域內的

質點位置。此外，為了配合以上的前處理方式，我們修改近似隱積分法，使得不

需要內插的質點能經由穩定而快速的計算得到正確的結果。同時因為內插帶來的

改變，許多在質量-彈簧系統中形成困擾但不易解決的問題也獲得改善。 
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Abstract 

Physically-based simulation such as cloth simulation is helpful to fertilize visual 

effect in many applications. Techniques have been proposed are mostly aiming at 

more stable numerical method, or less time-consuming framework. In this thesis 

which based on spring-mass system, we will introduce a fast and stable numerical 

integrator from merging verlet method and approximate implicit integrator. Both of 

them have the advantage of short computational time and high stability. Additionally, 

in order to decrease the whole simulation time for a cloth object, we first find flat 

segments before each simulation, then, interpolate positions and velocities of nodes 

within each segment, saving time spent by using integration method. Thus we can 

have efficient and stable real-time simulation system without sacrificing visual quality.
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CHAPTER 1                

Introduction 

1.1 Motivation 

Physically-based simulation is on highly demand for many interactive 

applications, such as games, e-commerce, virtual reality, and so on. One kind of 

simulation object, Cloth, is often required for human character. What can not be 

ignored is how to simulate them efficiently and correctly. Since Cloth is rigid when 

stretch, large strength on cloth may occur when springs between two nodes elongate 

too much. Over-large strength will make simulation fail from divergence of 

integration. To avoid this, small time step is an easy way, but that also means more 

simulation times, and low performance. On the other hand, to get balance between 

visual quality and efficiency, conception of multi-level resolution has been 

implemented for years, and it’s still worth to borrow. 

In this thesis, we propose an algorithm which combined verlet method and 

approximate implicit method to assure higher stability. Additionally, we use 

multi-level segmentation to save simulation time with interpolation. 

1.2 Overview 

Our system flowchart is shown in Fig 1.1. In our system, first, we create a cloth 

based on mass-spring system. In each simulation, we segment out nodes in surface 
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which is flat enough and do interpolation. Finally, compute positions and velocities of 

the other nodes using integration method.  

In segmentation and interpolation, we compute curvature of each node, and use 

wavelet transform to build tree structures. Then we traverse the tree structure to find 

flat segments. Positions and velocities of nodes in the segment will be interpolated for 

the next time step, while the others were computed by integrator, which is more time 

consuming but correct. 

In integration, we have a combination algorithm to compute. Approximate 

implicit integrator compute force more correctly and efficiently, while verlet method 

increase stability by taking previous position in consideration. We merge this two 

algorithm to compute positions and velocities of nodes for the next time step.. 

Finally, when simulation process completes, system will render the cloth, and go 

on simulation for the next time step repeatedly. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. In chapter 2, we introduce some 

background knowledge for cloth simulation and wavelet transform. In chapter 3 there 

are some related works about integration method and adaptive mesh proposed before. 

In chapter 4, we explain the combined algorithm for integration. Chapter 5 has our 

new approach as content, including process of segmentation and interpolation to save 

times. Then experimental results of our system are shown in chapter 6. Finally, 

chapter 7 is the conclusions and future works. 
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Figure 1.1 The System flowchart 
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CHAPTER 2                

Background 

In this chapter, we introduce the background knowledge of real-time cloth 

simulation and wavelet transform. We simulate cloth as a deformable object because it 

folds and wrinkles easily for out-planes forces. But on the other hand, cloth has large 

strain and stress under in-plane forces. Moreover, in real-time simulation, we have to 

compute the result efficiently. But modeling fabrics as a traditional continuum and 

employing finite element method (FEM) has drawbacks. This approach needs a very 

fine mesh or high resolution. 

2.1 Mass-Spring System 

There are many different approaches to simulate cloth. Mass-Spring system is 

one of them which are efficient and easy to implement. It was widely-adopted for 

real-time cloth simulation recently. We assume a piece of cloth as a group of arranged 

nodes. Then, we apply springs between nodes to produce and propagate internal 

forces. Since forces between nodes can be classified into three types: stretch, shear, 

and bend, as shown in Fig 2.1.  



 

 5 

 

Figure 2.1 Three representations of internal forces 

We also add springs in three ways of connection to simulate these forces, as shown in 

Fig 2.2.  

         

Figure 2.2 Structure of mass-spring system 

When simulation, we use Hooke’s law to calculate spring forces between nodes: 

xkF −=  

For common simulation, we first integrate spring forces as internal forces 

stretch shear bending 
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according to spring length. Then, we use these forces to compute velocities and 

positions of each node for the next render.  

2.2 Wavelet Transform 

Wavelet transform is widely used in digital signal processing for many years. 

Wavelet transforms are classified into discrete wavelet transforms (DWTs) and 

continuous wavelet transforms (CWTs). CWTs operate over every possible scale and 

translation whereas DWTs use a specific subset of scale and translation values. In our 

approach, since the dimension of cloth is an integer, we use the discrete wavelet 

transforms.  

The Haar wavelet is the first known wavelet and was proposed in 1909 by Alfred 

Haar. It is also the simplest possible wavelet. The disadvantage of the Haar wavelet is 

that it is not continuous and therefore not differentiable. The Haar wavelet finds 

averages and differences between samples repeatedly. For a two-dimensional array of 

values, we can perform a 2D Haar transform by first performing a 1D Haar transform 

on each row, and then on each column.  

Since the Haar wavelet transform is fast, simple, and does not occupy extra 

memory space, we chose it for building the hierarchy structure in our approach. 
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CHAPTER 3                

Related Works 

3.1 Integration Method  

In this chapter, we introduce related works about numerical integration method 

used in cloth or deformable object simulation. All useful methods should be 

convergence, which means, that for time slice h → 0, the numerical solutions meet 

the analytical. Besides, accuracy, stability, and efficiency are also the necessary 

characteristic of a good solution. 

Additionally, we can take advantage of adaptive mesh to make simulation more 

flexible. By refining or simplifying part of the mesh in different situation, we can both 

have coarse mesh to get efficiency, and delicate one to get detail accuracy.  

3.1.1 Euler Method 

The oldest and most simple method of integration is the so called forward or 

explicit Euler method, used by Carignan et al. [4]. This method computes the state of 

the next time step out of a direct “extrapolation” of the previous states using 

derivative evaluations. Thus it has high efficiency, but not accurate comparing with 

Implicit Euler method. 
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Implicit simulation methods are currently widely used in applications involving 

garment simulation, from real-time animation systems in Virtual Reality applications 

[5] [11] [13] to accurate garment simulation for design and prototyping applications 

[17]. They were introduced by Baraff et al [1] in the field of cloth simulation. Stability 

is the most advantage of this method. Simulation errors, which usually break the 

stability of explicit integration methods, only appear there as a form of “numerical 

damping” that does not prevent convergence to equilibrium. Therefore, we can use 

larger simulation timesteps and decrease computation times as a result. 

Many different implicit method are now available for cloth simulation, they are 

differ in complexity, accuracy, and stability. The most widely-used method is 

approximated implicit Euler method [1, 5, 11, 13]. Since in implicit method, to 

simulate a cloth object with N mass-points, we have to compute an N×N matrix H for 

each time step, but Hij is 0 when the i-th and the j-th mass-points are not linked with a 

spring. Thus, implicit method can be approximated by computing only non-zero 

elements of the matrix.  

Desbrun in [13] splits the forces acting on a node into two parts, the linear one 

and nonlinear one. The linear part is easy to integrate, while the non-linear force just 

rotate without varying in magnitude. Thus, in order to preserve momentum, it also 

needs to correct linear and angular momentum additionally. However, in [10], Cho 

and Choi simplified the formula of velocity change directly, and makes the model 

working in O(n) times with high stability. 

3.1.2 Verlet Method 

Usually the problem of stability is rapid changes in particle positions caused 
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e.g. by collision response or use input lead to instabilities. To cope with this, 

Desbrun [13] proposed to correct the velocities by position change after each time 

step. The effect of this correction is that the velocities are given only by the 

particle positions and forces at that time. So changes in position directly affect the 

velocity of the next time step, therefore increases the stability. This integration 

scheme is equal to the Verlet integration [15] which updates the position without 

computing any velocities.  

This method has been very popular in molecular dynamics for decades and 

has recently been proposed in the context of physically-based simulation of cloth 

[7, 12]. Although Verlet method may not have credible accuracy, it has advantages 

of stability and efficiency for its brief formula. 

3.2 Mesh Adaptation  

Physical accuracy of mass-spring system is lower than that of deformable models 

using Finite Element Methods (FEM) for its coarse sampling. However, FEM requires 

solving a large sparse system which results in incompatible with real-time 

applications. Some previous work uses LOD (Level Of Detail) to locally refine a 

deformable model in regions of interest. Most of them concentrate on how to build 

reversible hierarchy structure to manage varying mesh topologies, and algorithms 

about polygonal refinement.  

Mass-spring structure will produce inaccurate results if too coarse a mesh is 

employed, especially when collision occurs. Hutchinson et al. [8] represent a piece of 

draped cloth by adaptive mass-spring model which refines the regions of high 
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curvature. Their approach first finds the point which has inaccurate position. Between 

each node linked to the inaccurate one, new points are activated and new masses are 

introduced. Choi and Hong [2] refine meshes locally using surface wavelet to reduce 

the computational effort while ensuring a same global behavior for the deformable 

object as shown in Fig 3.1. Volkov and Li describe a general method which can be 

used with a variety of regular refinement rules [16]. This approach costs less time for 

the whole simulation which includes hierarchy construction and destruction as mesh 

adaptation. However, it still can not reach the speed as interactive or real-time 

simulation. 

 

Figure 3.1 Triangular subdivision in [14]: 

(a)Initial face of j-1 level  (b) the new mesh created by splitting step 

(c) the mesh of j level created by the averaging step. 

Totally, in contrast to these approaches which refine the regions of high 

curvature, our method tends to rebuild the hierarchy every time and down-sampling 

regions of the mesh to save computation. Because our method does not change mesh 

topologies, taxing operations to update and reverse the hierarchy representation, 

which needs frequent disk access, is unnecessary. 

(a) (b) (c) 
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CHAPTER 4                

Fast and Stable Integrator 

In this chapter, we introduce our new integrator from combining approximated 

implicit Euler method and verlet method, in order to get higher stability for real-time 

simulation.  

4.1 Approximated Implicit Euler Integrator 

4.1.1 The explicit method  

A simple straight-forward approach for cloth simulation is using the explicit 

Euler integration: 

i

t

i

t

i

ht

i m

h
Fvv +=

+
 

hvxx
ht

i

t

i

ht

i

++
+=  

where v
t

i
 denotes the velocity of the i-th mass-point at time t and F

t

i
 is the force 

acting on the mass-point at time t. Similarly,  x
t

i
 denotes the location of the i-th 

mass-point at time t, and h denotes the time interval between simulation steps. By this 

(1) 
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simple method, we can easily calculate x
ht

i

+
, the location of the i-th mass-point at the 

next time step t+h with current state values x
t

i
, v

t

i
andF

t

i
. 

However, this simple integration scheme can not be applied to cloth simulation 

unless the time step h is very small, because the explicit method becomes unstable 

easily when the stiffness (as spring constant) is increased. This unstable problem is 

revealed from the assumption of the fixed forces during the time interval between the 

current simulation and the next simulation. Therefore, the explicit method is not an 

appropriate integration model for the real-time or interactive cloth animation systems 

which require very large time steps to achieve fast animation. 

4.1.2 The implicit method  

In consideration of stability and accuracy, it is generally regarded that the 

implicit method is a much better choice for the fast simulation of cloth. 

With the implicit Euler method, the updated formula can be rewritten as follows: 

i

ht

i

t

i

ht

i m

h
Fvv

++
+=  

hvxx
ht

i

t

i

ht

i

++
+=  

The only change is that F
t

i
 is replaced by F

ht

i

+
 but it has been proven that this 

simple change enables unconditionally stable integration [16][17]. 

The implicit method involves F
ht

i

+
, which cannot be calculated at the current 

step. However, F
ht

i

+
can be approximated by a first-order derivative: 

xFF
ht

i

t

i

ht

i x

F
∆

++

∂

∂
+=  

(2) 

(3) 
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where t

iF ,  denotes the internal forces consisting of all the internal forces 
t

iF ,  on the 

i-th mass-point (i.e. ],...,,[ 21

t

n

ttt FFFF = T
), and similarly, ],...,,[ 21

t

n

ttt xxxx ∆∆∆=∆ T
.  

4.1.3 The time-consuming matrix computation  

xF ∂∂  is the negated Hessian matrix of the system[5], denoted as H. Now 

substituting Eq.3 into Eq.2, and by writing: hvvxxx
httththt
)( ∆∆

+++
+=−= , we 

find: 










− H

m

h
I

i

2

v
ht

∆
+
=(F

t
+hHv

t
)
m

h
 

If v
ht

∆
+
 can be calculated, velocity and location of each mass-point at the next step 

can easily be updated with Eq.3. Therefore, the simulation can be reduced to finding 

the value of v
ht

∆
+
. After ignoring hHv

t
 as viscous forces, Eq.3 can be written 

with the inverse of 













− H

m

h
I

2

 as follows: 

v
ht

∆
+
=













− H

m

h
I

2
-1

m

hF
t

 

However, the critical problem is that Eq.4 involves 













− H

m

h
I

2

 which is an O(n n) 

matrix.  

4.1.4 Approximation method for efficiency and stability 

(4) 

(5) 
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Desbrun [13] approximated the Hessian matrix H by spitting the spring force into two 

parts and considering only the linear part. The approximated Hessian matrix is as 

follows: 







−=

=

∑ ≠ ij ijii

ijij

kH

kH
 

where H ij
 denotes the entry of H at the i-th row and the j-th column. Then the 

matrix 













− H

m

h
I

2
-1
 remains constant during simulation if spring constant of each 

spring, the time step, and the mass of each mass-point are constant. Desbrun 

pre-computed the inverse matrix of 













− H

m

h
I

2

, and used the inverse matrix as a 

force filter for the simulation of cloth. This technique produces stable result with 

simple calculations.  

However, the inverse matrix of 













− H

m

h
I

2

 is not necessarily a sparse matrix, 

even though 













− H

m

h
I

2

is sparse. Thus, the calculation would require O(n
2
) times 

as long as the settings are changed. 

The velocity change of the i-th mass-point can be updated by considering only 

the linked mass-points, because H ij
 is 0 when the i-th and the j-th mass-points are 

not linked to a spring. Therefore, Choi [10] proposed another approximation scheme. 

First, the implicit update equation was written as follows: 

(6) If i≠j
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i
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i

j
Ejiji
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i m
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m
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h
I F
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∈∀

)
),(|

ij

2
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2

(HH  

If the uniform spring constant k for all the spring-link is assumed, and  

denotes the number of mass-points that are linked to the i-th mass-point, the Hessian 

matrix can be written as k=Hij
and ni

k−=Hii
 from Desbrun in [4]. The update 

formula was written as follows: 

ii

Eji

ht

j

t

iht

i nkhm

khh vF
v 2

),(

2

+

+
=

∑ ∆
∆

∈

+

+
 

Here, Choi in [8] predict v
ht

i∆
+

 in Eq.8 as follows: 

||
||

F

F
vv t

j

t

jt

j

ht

i ∆∆ =
+

 

4.2 Verlet Integrator 

In this section, we introduce the Verlet method, and show how we apply this 

method to enhance stability. 

4.2.1 The Verlet Method 

The second integration scheme we will consider is commonly referred as 

leapfrog or Stoermer-Verlet method, which uses centered differences at a staggered 

grid to derive results. 

(7) 

(8) 

(9) 
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Figure 4.1 Staggered grids for the Verlet method 

Assume that we now approximate v at t+(2i+1)h/2 and x at t+ih by centered 

differences as shown in Fig 4.1: 

i

t
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ht

i

ht
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F
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Thus 
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F
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Then substitute Eq.12 into Eq.13 resulting in the second order centered difference 

i

t

iht

i

t

i

ht

i
m

F
xxx h

2
2 =+− −+

 

From this equation, an alternative formulation of the Verlet scheme as a multistep 

method can be derived: 

i

t

it

i

ht

i

ht

i
m

F
xxx h

2
2 ++−= −+

 

The effect of this equation is that the positions for the next time step can be calculate 

x0      x1      x2      x3 

t0   t1/2   t1   t3/2  t2   t5/2   t3 

v1/2     v3/2     v5/2 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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from previous position and forces but velocities. If the velocities are in need for 

collision detection, it can be compute easily from position differences in the time 

interval. As described in [7], the Verlet integration scheme is one of the best choices 

for problems with low or no damping because of efficiency, stability, and accuracy. 

4.3 Combine the Integration Methods 

Since both approximate implicit method and Verlet method are stable and efficient, 

we try to merge them and result in a suitable integrate scheme for our multi-level 

system.  

4.3.1 Position Change Calculation 

As the common integrate scheme, when v
ht

i∆
+
 has been determined,  v

ht

i

+
 

and x
ht

i

+
 are also available from Eq.1. However, because our system changes node 

positions directly that may cause spring shivering especially with high stiffness. We 

need more stable method to compute positions and ease the effect of interpolation.  

Since Verlet method has high stability for cloth simulation, we want to take 

advantage of this method and provide advance in numerical integration. However, 

what the point of Verlet method is that velocity change is not necessary to be 

calculated. Additionally, if we use only the Verlet method as integration, our system 

will not simulate correctly, because the vertex position in consideration may be 

unreliable after interpolation. In order to merge v
ht

i∆
+
from approximate implicit 

method, we substitute Eq.1 into Eq.15 and then yield: 



 

 18

)( 
i

n

it

i

t

i

ht

i m

F
hh vxx ++=

+
 

Although Eq.16 losts the characteristic of Verlet method and has no difference with 

explicit method, the correct experiment result of this formulation inspires us with a 

new idea. After calculating v
ht

i∆
+
 approximately, we did not use it to calculate new 

positions directly. However, we leave it for the next time-step simulation, and update 

position with current velocity using explicit Euler method, because errors of position 

from interpolation should not affect other nodes in the next time step. On the other 

side, position change after interpolation may not be reliable, so we can not calculate 

velocities from current position. Therefore, the velocity change v
ht

i∆
+
 is used to 

update next time-step velocity, which will also be used to calculate position in the 

next simulation. With this modification, our system has higher stability when normal 

difference threshold increased. The simulation results show the enhancement in Fig 

4.2. 

 

Figure 4.2 (a) Use approximate implicit method only 

(b) After our modification from verlet method 

This approach reveals the question that why do not use actual velocity to 

calculate but approximate one. As mention in Section 4.2.1, Meyer [13] proposed the 

(16) 

(a) (b) 
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method to correct the velocity in each simulation by 

h

xx
v

ht

i

t

it

i

−
−

=  

However, in our system, positions are possibly to be interpolated directly, and errors 

caused by interpolation should not effect the following simulation. Since the position 

change may not follow physical principles, it is better to use velocity approximated 

previously than calculate from positions as in Eq.17.  

Therefore, our integration method was complete for multi-level interpolating 

system. Even under large time step and stiffness, our simulation remains stable and 

efficient.  

(17) 
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CHAPTER 5                

Speed Up by Segmentation and 

Interpolation 

This chapter introduces another contribution about multi-level interpolation. First, 

we use wavelet transform to built hierarchical structure of the cloth object, and 

traverse it to find regions which are suitable for interpolation. Then the rest node 

without being interpolated will be calculated accurately by numerical integration. By 

this approach, we do not need to do any integration for each particle, and save time 

with interpolation instead.  

5.1 Segmentation Use Wavelet Transform 

In original, since cloth has bending forces and limited buckling as a result, 

regional surface with low or zero curvature should be possibly and frequently appear 

during cloth simulation. Therefore, we want to find segments like this and thus we can 

use interpolation to get approximate position for these nodes. The segmentation must 

meet these requires: 

1. Fast: Usually segmentation method costs considerable times for large amount of 
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samples, while cloth object in simulation is a fine mesh for good visual quality. In 

order to compatible with our real-time system, the segmentation method must not 

cost too much times. 

2. Nodes in the same segment must be connected: If segment element as nodes are 

separate one from another, interpolation can not performs efficiently and have 

more complexity if some elements are connected. 

3. Not all of the nodes should be classified into a segment: There are still nodes may 

have high curvature with neighboring ones. For these element, we should calculate 

position for them accurately. 

From above, many traditional segmentation methods do not meet these characteristics. 

We use wavelet transform to reach the purpose, which is simple and fast.  

The Harr wavelet is the earliest wavelet and its transform is simple to implement. 

Basic 2D image compression method is based on Haar wavelet transform. Only 

averages and differences are needed to be calculated to construct higher level. Small 

differences will be ignored as 0, and only notable part remains. The structure after 

transform is closed to a hierarchy tree. Mesh vertices represent as leave node, and 

each parent node has its child leave nodes connected. Therefore, from traversing the 

tree, we can easily find connected segment for interpolation. If traverse goes to the 

leave nodes, their position should be calculated accurately. 

For the cloth object, we choose 2D wavelet transform to build the hierarchical 

structure. Because what we want to find is a continuous region, and 1D transform will 

lost the particle topology information about rows and columns. Fig 5.1 shows leveling 

relation of 2D wavelet transform. 
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Figure 5.1 2D wavelet transform in hierarchy 

When local surface is closed to flatness, normals between neighboring nodes will 

have small differences in direction. To analysis degree of surface flatness, we take 

normal of vertices to do wavelet transform, thus each higher level has average normal 

and normal differences between average normal and vertex normal of lower level. 

Therefore, the normal differences information can be use to determine if the region is 

suitable for interpolation as shown in Fig 5.2.  

 

Figure 5.2 Normal differences 

While transform completes, the system will traverse the hierarchical structure in 
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depth-first order and determine if the region can be interpolated for approximation. 

Once the value of a tree node is smaller than the threshold, traverse no any child node. 

5.2 Interpolation of Particle Positions 

When the normal differences of a region are small, it is suitable for interpolation. 

Our interpolate scheme is simple in order to save more time. However, if we use 

interpolation for all nodes within the region, it will result in hackly configuration full 

of flatness. When two interpolated regions share the same edge, definitely it is not 

proper to use interpolation directly. What should be done first is finding correct 

position of the edge, and then interpolating nodes within. Steps are shown below. 

1.Calculate the accurate position of the node on the edge of the region, as show in Fig 

5.3.  

 

Figure 5.3 Preprocessing of interpolation 

2.Use bilinear interpolation to fill positions of internal nodes, as show in Fig 5.4 
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Figure 5.4 Interpolate internal nodes 

As we use 2D wavelet transform, normal differences between rows and columns 

are available individually. This makes the system be able to do bilinear interpolation 

with different weights in rows and columns. For example, if normal differences 

between nodes in the same row are smaller than those in the same column, row 

interpolation will have higher weight when averaging with column interpolation.  

5.3 Following Benefit 

Except time saving, interpolation also brings another enhancement in stability 

and accuracy. In mass-spring system, as shown in Fig 5.5, forces are propagated by 

springs iteratively for a couple of simulations. Over-length springs due to rapid forces 

usually make integration fail, or produce inaccurate visual results with too much 

flexibility. In order to correct the elongation, position-based and velocity-based 

corrections are proposed. However, both of them cost too much for iteratively 

operation, and may effect or be effected by collision response. For the same purpose, 

bilinear interpolation here also provides correction in spring length as shown in Fig 

5.6, hence our system have higher tolerance with external forces and stiffness.  
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For another aspect about bending forces, our interpolation method also provides 

help. There existing a problem in mass-spring system that when connected polygons 

bend in a small angle, as shown in Fig 5.7, bending forces will cause nodes moving in 

deflective direction. Many proposed approaches aim to this disadvantage and tried to 

solve it. However, that usually costs too much time for accurate result. With our 

method, the polygons will be possibly chosen for interpolation for its small cross 

angle, as shown in Fig 5.8. Therefore, our approach will prevent part of nodes from 

stretched by bending forces. 

    

  

 

 

 

Figure 5.7 Bending force in wrong direction while small angle 

Figure 5.5 Force propagation in 

mass-spring system 

Figure 5.6 Spring length correction 

after interpolation 

Force → Force → 

(1)  

(2)  

(3)  

(4)  
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Figure 5.8 Better effect result after our interpolation 
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CHAPTER 6                

Implementation and Results 

In order to evaluate the effectiveness of animation, we implemented cloth 

simulation based on mass-spring system with and without our improvement. The 

simulation runs on a Pentium 4 PC with 3.4GHz CPU and 2Gbyte RAM, alone with 

NVIDIA GeForce 6600 GT graphic card.  

The test case is hanging a piece of even cloth on two top corners as initial, then it 

will fall and swing when simulation starts. Fig 6.1 shows our simulation result. Cloth 

resolution is 64×64, with spring constant in 2000, and vertex normal threshold 0.025.  
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Figure 6.1 cloth simulation result of our system 

Fig 6.2 shows the time comparison between with and without our improvement. 

It can be seen that mostly our system spends less time than traditional method which 

performs integration for each node. 

calculation time

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

1 106 211 316 421 526 631 736 841 946 1051 1156 1261 1366 1471 1576 1681 1786 1891 1996 2101

frames

ti
m

e 
(s

ec
)

Original method

with our improvement

 

(a) 



 

 30

calculation time

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

1 77 153 229 305 381 457 533 609 685 761 837 913 989 1065 1141 1217 1293 1369 1445 1521

frames

ti
m

e 
(s

ec
)

Original method

with our improvement

 

Figure 6.2 time comparison between original simulation and after our 

improvement applied. (a) for 32××××32 cloth (b) for 64××××64 cloth 

Fig 6.3 shows the proportion of region which is suitable for interpolation approach 

during the simulation. For difference cloth configuration, the percentage changes as 

well. 
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Figure 6.3 proportion of regions which is suitable for interpolation 

(a) for 32××××32 cloth (b) for 64××××64 cloth 

Fig 6.4 shows visual quality enhanced by our approach. The problem of spring 

over-length will be correct by bilinear interpolation without any extra operation. 

Besides, with traditional method as in Fig 6.4(a), spring forces will make the whole 

cloth object moving up and down. This can be eliminated with large spring constant, 

but that will also cause integration fail easily. However, in our method, the problem is 

solved and crumples were produced near the middle of top edge more naturally. 

(b) 
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Figure 6.4(a) spring stretch without interpolation 

 

Figure 6.4(b) spring stretch after our improvement  

Results above shows that our system has high efficiency, with cloth details preserved. 

Additionaly, the always existing problem of spring stretch is solved at one time. Other 

simulation result is shown in below: Fig 6.5(a) shows a 64×64 cloth in wireframe with 

threshold = 0.022, while (b) and (c) has different value as 0.025 and 0.03. Vertices in 

yellow color is using interpolation, and others in red color is calculated by integration 

as original. It is notable that cloth details are still reserved. 
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Figure 6.5(a) simulation result with threshold=0.022 

 

Figure 6.5(b) simulation result with threshold=0.03 

In the following, Fig 6.6 shows our approach applied in a human action system.   
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Figure 6.6 Other simulation results in VR system 
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CHAPTER 7                

Conclusion and Future Works 

7.1 Conclusion 

We have proposed a time-saving approach and a suitable algorithm for 

simulating cloth in real-time. As we applied approximated implicit method, which 

performs integration with a constant computation time, our system ensures the ability 

to simulate delicate cloth in real-time for interactive environment. From the concept 

in the Verlet method, we modify the algorithm and make it suitable for our 

time-saving preprocessing.  

Since cloth is always tempted to have flat region, it is useful to interpolate 

internal nodes instead of calculating the integration repeatedly. We first use wavelet 

transform to efficiently build hierarchical tree about vertex normal. Then approximate 

the vertex positions by using interpolation, which takes less time than integration. As 

a result, there is no need to do integration for all internal nodes. 

Not only saving times, our approach also provides corrections in spring length 

and bending force. After interpolation, spring length is averaged, which means 

particular elongation will be distributed and prevent the integrator from failure. For 

lightly bending edges, our method enables more correct operation as bending forces, 
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while original bending forces as spring force has the defects of direction at small 

bending angle. This improvement is our main contribution which is unrevealed 

previously. 

7.2 Future Works 

To get higher quality and efficiency, there are still some techniques can be 

applied. 

1.Temporal coherence: Our method need to rebuild hierarchical tree before each 

simulation. Although wavelet transform is fast, always rebuild may not be 

necessary. Therefore, we can assume that if all vertex normal did not change too 

much, the last hierarchical tree will be adopted, and rebuild can be ignored.  

2.Feature vector: Information of local curvature can be derived from vertex normal. 

However, other factors, like external force, original object speed, and collision 

response, may also affects local configuration as well. To take all other factors 

into consideration, vertex normal can be substituted by feature vector, which 

includes force and speed of the vertex. Thus our method should be more suitable 

and tolerable. 

3.Better interpolation method: Linear interpolation will cause more errors when 

vertex normal difference is larger. Small threshold for tree traverse will restrict the 

problem. However, it will also decrease the efficiency because fewer nodes can be 

interpolated. Power method is simple and able to interpolate smoothly in curves, 

but for near-flat region, distance between nodes after interpolation will not be as 
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uniform as initial, and springs will be changed into wrong length. A suitable 

interpolation method should give proper positions to the nodes in short time, and 

produce visual result properly as well. 
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