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Abstract

Physically-based simulation such as cloth simulation is helpful to fertilize visual
effect in many applications. Techniques have been proposed are mostly aiming at
more stable numerical method, or less time-consuming framework. In this thesis
which based on spring-mass system, we will introduce a fast and stable numerical
integrator from merging verlet method and approximate implicit integrator. Both of
them have the advantage of short computational time and high stability. Additionally,
in order to decrease the whole simulation time for a cloth object, we first find flat
segments before each simulation, then, interpolate positions and velocities of nodes
within each segment, saving time spent by using integration method. Thus we can

have efficient and stable real-time simulation system without sacrificing visual quality.
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CHAPTER 1

Introduction

1.1 Motivation

Physically-based simulation is on highly demand for many interactive
applications, such as games, e-commerce, virtual reality, and so on. One kind of
simulation object, Cloth, is oftén required for. human character. What can not be
ignored is how to simulate them 'efficiently ‘and correctly. Since Cloth is rigid when
stretch, large strength on cloth may occur;when springs between two nodes elongate
too much. Over-large strength “will make simulation fail from divergence of
integration. To avoid this, small time step 1s an easy way, but that also means more
simulation times, and low performance. On the other hand, to get balance between
visual quality and efficiency, conception of multi-level resolution has been

implemented for years, and it’s still worth to borrow.

In this thesis, we propose an algorithm which combined verlet method and
approximate implicit method to assure higher stability. Additionally, we use

multi-level segmentation to save simulation time with interpolation.

1.2 Overview

Our system flowchart is shown in Fig 1.1. In our system, first, we create a cloth

based on mass-spring system. In each simulation, we segment out nodes in surface



which is flat enough and do interpolation. Finally, compute positions and velocities of

the other nodes using integration method.

In segmentation and interpolation, we compute curvature of each node, and use
wavelet transform to build tree structures. Then we traverse the tree structure to find
flat segments. Positions and velocities of nodes in the segment will be interpolated for
the next time step, while the others were computed by integrator, which is more time

consuming but correct.

In integration, we have a combination algorithm to compute. Approximate
implicit integrator compute force more correctly and efficiently, while verlet method
increase stability by taking previous position in consideration. We merge this two

algorithm to compute positions and velocities of nodes for the next time step..

Finally, when simulation process completes, system will render the cloth, and go

on simulation for the next time step repeatedly.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In chapter 2, we introduce some
background knowledge for cloth simulation and wavelet transform. In chapter 3 there
are some related works about integration method and adaptive mesh proposed before.
In chapter 4, we explain the combined algorithm for integration. Chapter 5 has our
new approach as content, including process of segmentation and interpolation to save
times. Then experimental results of our system are shown in chapter 6. Finally,

chapter 7 is the conclusions and future works.
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CHAPTER 2
Background

In this chapter, we introduce the background knowledge of real-time cloth
simulation and wavelet transform. We simulate cloth as a deformable object because it
folds and wrinkles easily for out-planes forces. But on the other hand, cloth has large
strain and stress under in-plane forces:’Moréover, in real-time simulation, we have to
compute the result efficiently. But modeling fabrics as a traditional continuum and
employing finite element method (FEM) has drawbacks. This approach needs a very

fine mesh or high resolution.

2.1 Mass-Spring System

There are many different approaches to simulate cloth. Mass-Spring system is
one of them which are efficient and easy to implement. It was widely-adopted for
real-time cloth simulation recently. We assume a piece of cloth as a group of arranged
nodes. Then, we apply springs between nodes to produce and propagate internal
forces. Since forces between nodes can be classified into three types: stretch, shear,

and bend, as shown in Fig 2.1.



stretch shear bending

Figure 2.1 Three representations of internal forces

We also add springs in three ways of connection:to simulate these forces, as shown in

Fig2.2.

2 NNV Bending Force

vy Stretch Force
5

/' Shear Force

Figure 2.2 Structure of mass-spring system

When simulation, we use Hooke’s law to calculate spring forces between nodes:

—

F=—kx
For common simulation, we first integrate spring forces as internal forces
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according to spring length. Then, we use these forces to compute velocities and

positions of each node for the next render.

2.2 Wavelet Transform

Wavelet transform is widely used in digital signal processing for many years.
Wavelet transforms are classified into discrete wavelet transforms (DWTs) and
continuous wavelet transforms (CWTs). CWTs operate over every possible scale and
translation whereas DWTs use a specific subset of scale and translation values. In our
approach, since the dimension of cloth is an integer, we use the discrete wavelet

transforms.

The Haar wavelet is the first known wavelet and-was proposed in 1909 by Alfred
Haar. It is also the simplest possible wavelet.-The disadvantage of the Haar wavelet is
that it is not continuous and therefore not.differentiable. The Haar wavelet finds
averages and differences between samples repeatedly. For a two-dimensional array of
values, we can perform a 2D Haar transform by first performing a 1D Haar transform

on each row, and then on each column.

Since the Haar wavelet transform is fast, simple, and does not occupy extra

memory space, we chose it for building the hierarchy structure in our approach.



CHAPTER 3
Related Works

3.1 Integration Method

In this chapter, we introduce related works about numerical integration method
used in cloth or deformable object simulation. All useful methods should be
convergence, which means, that for time slice # — 0, the numerical solutions meet
the analytical. Besides, accuracy, stability; .and efficiency are also the necessary

characteristic of a good solution:

Additionally, we can take advantage of adaptive mesh to make simulation more
flexible. By refining or simplifying part of the mesh in different situation, we can both

have coarse mesh to get efficiency, and delicate one to get detail accuracy.

3.1.1 Euler Method

The oldest and most simple method of integration is the so called forward or
explicit Euler method, used by Carignan et al. [4]. This method computes the state of
the next time step out of a direct “extrapolation” of the previous states using
derivative evaluations. Thus it has high efficiency, but not accurate comparing with

Implicit Euler method.



Implicit simulation methods are currently widely used in applications involving
garment simulation, from real-time animation systems in Virtual Reality applications
[5] [11] [13] to accurate garment simulation for design and prototyping applications
[17]. They were introduced by Baraff et al [1] in the field of cloth simulation. Stability
is the most advantage of this method. Simulation errors, which usually break the
stability of explicit integration methods, only appear there as a form of “numerical
damping” that does not prevent convergence to equilibrium. Therefore, we can use

larger simulation timesteps and decrease computation times as a result.

Many different implicit method are now available for cloth simulation, they are
differ in complexity, accuracy, and stability. The most widely-used method is
approximated implicit Euler method®[1,"5, L1, 13]. Since in implicit method, to
simulate a cloth object with N mass-points, . we have'to compute an NxN matrix H for
each time step, but /;; is 0 when the i-th and the j-th mass-points are not linked with a
spring. Thus, implicit method can.be approximated by computing only non-zero

elements of the matrix.

Desbrun in [13] splits the forces acting on a node into two parts, the linear one
and nonlinear one. The linear part is easy to integrate, while the non-linear force just
rotate without varying in magnitude. Thus, in order to preserve momentum, it also
needs to correct linear and angular momentum additionally. However, in [10], Cho
and Choi simplified the formula of velocity change directly, and makes the model

working in O(n) times with high stability.

3.1.2 Verlet Method

Usually the problem of stability is rapid changes in particle positions caused



e.g. by collision response or use input lead to instabilities. To cope with this,
Desbrun [13] proposed to correct the velocities by position change after each time
step. The effect of this correction is that the velocities are given only by the
particle positions and forces at that time. So changes in position directly affect the
velocity of the next time step, therefore increases the stability. This integration
scheme is equal to the Verlet integration [15] which updates the position without

computing any velocities.

This method has been very popular in molecular dynamics for decades and
has recently been proposed in the context of physically-based simulation of cloth
[7, 12]. Although Verlet method may not have credible accuracy, it has advantages

of stability and efficiency for its brief formula.

3.2 Mesh Adaptation

Physical accuracy of mass-spring system is lower than that of deformable models
using Finite Element Methods (FEM) for its coarse sampling. However, FEM requires
solving a large sparse system which results in incompatible with real-time
applications. Some previous work uses LOD (Level Of Detail) to locally refine a
deformable model in regions of interest. Most of them concentrate on how to build
reversible hierarchy structure to manage varying mesh topologies, and algorithms

about polygonal refinement.

Mass-spring structure will produce inaccurate results if too coarse a mesh is
employed, especially when collision occurs. Hutchinson et al. [8] represent a piece of

draped cloth by adaptive mass-spring model which refines the regions of high



curvature. Their approach first finds the point which has inaccurate position. Between
each node linked to the inaccurate one, new points are activated and new masses are
introduced. Choi and Hong [2] refine meshes locally using surface wavelet to reduce
the computational effort while ensuring a same global behavior for the deformable
object as shown in Fig 3.1. Volkov and Li describe a general method which can be
used with a variety of regular refinement rules [16]. This approach costs less time for
the whole simulation which includes hierarchy construction and destruction as mesh
adaptation. However, it still can not reach the speed as interactive or real-time

simulation.

(@ (b) (c)

Figure 3.1 Triangular subdivision in [14]:
(a)Initial face of j-1 level (b) the new mesh created by splitting step

(c) the mesh of j level created by the averaging step.

Totally, in contrast to these approaches which refine the regions of high
curvature, our method tends to rebuild the hierarchy every time and down-sampling
regions of the mesh to save computation. Because our method does not change mesh
topologies, taxing operations to update and reverse the hierarchy representation,

which needs frequent disk access, is unnecessary.
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CHAPTER 4
Fast and Stable Integrator

In this chapter, we introduce our new integrator from combining approximated
implicit Euler method and verlet method, in order to get higher stability for real-time

simulation.

4.1 Approximated Implicit Euler Integrator

4.1.1 The explicit method

A simple straight-forward approach for cloth simulation is using the explicit

Euler integration:

t+h

t t h
\Z Vi+Fi_
m,

(1)

t+h

t t+h
X =xtvi h
where VZ denotes the velocity of the i-th mass-point at time ¢ and F: is the force

acting on the mass-point at time ¢. Similarly, Xj denotes the location of the i-th

mass-point at time ¢, and / denotes the time interval between simulation steps. By this

11



simple method, we can easily calculate x;+h , the location of the i-th mass-point at the

next time step #+/4 with current state values Xj , Vi and [ f

However, this simple integration scheme can not be applied to cloth simulation
unless the time step /4 is very small, because the explicit method becomes unstable
easily when the stiffness (as spring constant) is increased. This unstable problem is
revealed from the assumption of the fixed forces during the time interval between the
current simulation and the next simulation. Therefore, the explicit method is not an
appropriate integration model for the real-time or interactive cloth animation systems

which require very large time steps to achieve fast animation.

4.1.2 The implicit method

In consideration of stability and-accuracy, it is generally regarded that the
implicit method is a much better choice for the-fast simulation of cloth.

With the implicit Euler method, the updated formula can be rewritten as follows:

t+h l’l

t+h
- i
mi

v, =vtF

(2)

t+h

t t+h
Xi =X:tvi h
The only change is that F: is replaced by F?h but it has been proven that this
simple change enables unconditionally stable integration [16][17].

The implicit method involves F?h, which cannot be calculated at the current

step. However, [ Z”’ can be approximated by a first-order derivative:

3)

t+h

t+h t 8F
- =F.+—Ax.
Fl Fl ax Axt

12



where F; denotes the internal forces consisting of all the internal forces F,' on the

i-th mass-point (i.e. F' =[F/,F/,...,F'1"), and similarly, Ax' =[Ax/,Ax’,...,Ax']".

4.1.3 The time-consuming matrix computation

OF /0x is the negated Hessian matrix of the system[5], denoted as H. Now

+h

substituting Eq.3 into Eq.2, and by writing: A_xHh = xt - xt = (vZ + Avt+h)h , We

find:

]’lz t+h= t tﬁ
(I_ZH]AV (F" *hHv)— )

If Ath can be calculated, velocity and location of each mass-point at the next step

can easily be updated with Eq.3. Therefote, the simulation can be reduced to finding

the value of Ath. After ignoring /; Hvt as viscous forces, Eq.3 can be written

2

with the inverse of {I —h—H j as follows:
m

t+h h2 - th
Av 2(1——17] — 5)

2

However, the critical problem is that Eq.4 involves (1 —h—H ] which is an O(nxn)
m

matrix.

4.1.4 Approximation method for efficiency and stability

13



Desbrun [13] approximated the Hessian matrix H by spitting the spring force into two
parts and considering only the linear part. The approximated Hessian matrix is as

follows:

H,=k, Ifi #j (6)
Hn‘ - _Zj¢ikij

where i denotes the entry of H at the i-th row and the j-th column. Then the

. n’ ] . . . L .
matrix {I -—H j ! remains constant during simulation if spring constant of each
m

spring, the time step, and the mass of each mass-point are constant. Desbrun

2

pre-computed the inverse matrix ‘of [1 ——H J, and used the inverse matrix as a
m

force filter for the simulation ‘of cloth.-This technique produces stable result with

simple calculations.

2

However, the inverse matrix of (I -—H ] is not necessarily a sparse matrix,
m

2

even though (1 —h—H J is sparse. Thus, the calculation would require O( I’l2 ) times
m

as long as the settings are changed.

The velocity change of the i-th mass-point can be updated by considering only

the linked mass-points, because [f i is 0 when the i-th and the j-th mass-points are

not linked to a spring. Therefore, Choi [10] proposed another approximation scheme.

First, the implicit update equation was written as follows:

14



Y. K 'h
(1 _—H“JAV, 2, (Havy, )‘F— (7)

M, vji,j)eE m,

If the uniform spring constant £ for all the spring-link is assumed, and

denotes the number of mass-points that are linked to the i-th mass-point, the Hessian

matrix can be written as Hij =kand H, =-kp, from Desbrun in [4]. The update

formula was written as follows:

t+h

e _ F h+kh Z(z )GEAV
m, + ki, (8)

Av,

Here, Choi in [8] predict Av;”l in Eq:8 as'follows:

t

t+h F

= 9)
AV F

A

4.2 Verlet Integrator

In this section, we introduce the Verlet method, and show how we apply this

method to enhance stability.

4.2.1 The Verlet Method

The second integration scheme we will consider is commonly referred as
leapfrog or Stoermer-Verlet method, which uses centered differences at a staggered

grid to derive results.

15
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Vi Vs

Figure 4.1 Staggered grids for the Verlet method

Assume that we now approximate v at t+(2i+1)h/2 and x at t+ih by centered

differences as shown in Fig 4.1:

t+h/2 t—h/2 t
/B (10)
h m,
A
X (11)
h
Thus
t
_ , 12
yHE k2 g T (12)
mi
X/ = x! byt (13)

i
Then substitute Eq.12 into Eq.13 resulting in the second order centered difference

2 FY (14)

Xt _oxl X =
mi
From this equation, an alternative formulation of the Verlet scheme as a multistep

method can be derived:
t
(15)

_ 217
X =—xT2x +
m.

i
i

The effect of this equation is that the positions for the next time step can be calculate

16



from previous position and forces but velocities. If the velocities are in need for
collision detection, it can be compute easily from position differences in the time
interval. As described in [7], the Verlet integration scheme is one of the best choices

for problems with low or no damping because of efficiency, stability, and accuracy.

4.3 Combine the Integration Methods

Since both approximate implicit method and Verlet method are stable and efficient,
we try to merge them and result in a suitable integrate scheme for our multi-level

system.

4.3.1 Position Change Calculation

As the common integrate-scheme;  when Av;+h has been determined, V?h

and XZ% are also available from Eq.1. However, because our system changes node

positions directly that may cause spring shivering especially with high stiffness. We

need more stable method to compute positions and ease the effect of interpolation.

Since Verlet method has high stability for cloth simulation, we want to take
advantage of this method and provide advance in numerical integration. However,
what the point of Verlet method is that velocity change is not necessary to be
calculated. Additionally, if we use only the Verlet method as integration, our system

will not simulate correctly, because the vertex position in consideration may be
unreliable after interpolation. In order to merge Av?h from approximate implicit

method, we substitute Eq.1 into Eq.15 and then yield:

17



t+h t t E”
X; =xl-+h(vl-+h;[) (16)

Although Eq.16 losts the characteristic of Verlet method and has no difference with

explicit method, the correct experiment result of this formulation inspires us with a
new idea. After calculating Av?h approximately, we did not use it to calculate new

positions directly. However, we leave it for the next time-step simulation, and update
position with current velocity using explicit Euler method, because errors of position
from interpolation should not affect other nodes in the next time step. On the other

side, position change after interpolation may not be reliable, so we can not calculate
velocities from current position. Therefore, the velocity change AVZM is used to

update next time-step velocity, which will alse‘be used to calculate position in the
next simulation. With this modification, our system has higher stability when normal
difference threshold increased. “The simulation results show the enhancement in Fig

4.2.

(a) (b)

Figure 4.2 (a) Use approximate implicit method only

(b) After our modification from verlet method

This approach reveals the question that why do not use actual velocity to

calculate but approximate one. As mention in Section 4.2.1, Meyer [13] proposed the

18



method to correct the velocity in each simulation by

t—h

t
4 X,-_.X,-

V=T (17)

However, in our system, positions are possibly to be interpolated directly, and errors
caused by interpolation should not effect the following simulation. Since the position
change may not follow physical principles, it is better to use velocity approximated

previously than calculate from positions as in Eq.17.

Therefore, our integration method was complete for multi-level interpolating
system. Even under large time step and stiffness, our simulation remains stable and

efficient.

19



CHAPTER 5
Speed Up by Segmentation and

Interpolation

This chapter introduces another contribution about multi-level interpolation. First,
we use wavelet transform to built hierarchical structure of the cloth object, and
traverse it to find regions which' are suitablé for interpolation. Then the rest node
without being interpolated will-be‘calculated accurately by numerical integration. By
this approach, we do not need to do-any integration for each particle, and save time

with interpolation instead.

5.1 Segmentation Use Wavelet Transform

In original, since cloth has bending forces and limited buckling as a result,
regional surface with low or zero curvature should be possibly and frequently appear
during cloth simulation. Therefore, we want to find segments like this and thus we can
use interpolation to get approximate position for these nodes. The segmentation must

meet these requires:

1. Fast: Usually segmentation method costs considerable times for large amount of

20



samples, while cloth object in simulation is a fine mesh for good visual quality. In
order to compatible with our real-time system, the segmentation method must not

cost too much times.

2. Nodes in the same segment must be connected: If segment element as nodes are
separate one from another, interpolation can not performs efficiently and have

more complexity if some elements are connected.

3. Not all of the nodes should be classified into a segment: There are still nodes may
have high curvature with neighboring ones. For these element, we should calculate

position for them accurately.

From above, many traditional segmentation methods do not meet these characteristics.

We use wavelet transform to reach the'purpose; which is simple and fast.

The Harr wavelet is the earliest wavelet and its transform is simple to implement.
Basic 2D image compression method is-based on Haar wavelet transform. Only
averages and differences are needed to be calculated to construct higher level. Small
differences will be ignored as 0, and only notable part remains. The structure after
transform is closed to a hierarchy tree. Mesh vertices represent as leave node, and
each parent node has its child leave nodes connected. Therefore, from traversing the
tree, we can easily find connected segment for interpolation. If traverse goes to the

leave nodes, their position should be calculated accurately.

For the cloth object, we choose 2D wavelet transform to build the hierarchical
structure. Because what we want to find is a continuous region, and 1D transform will
lost the particle topology information about rows and columns. Fig 5.1 shows leveling

relation of 2D wavelet transform.
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Figure 5.1 2D wavelet transform in hierarchy

When local surface is closed to flatness, normals between neighboring nodes will
have small differences in direction. To analysis degree of surface flatness, we take
normal of vertices to do wavelet transform, thus each higher level has average normal
and normal differences between average- normal aﬁd vertex normal of lower level.
Therefore, the normal differences information can be-use to determine if the region is

suitable for interpolation as shown'in Fig 5.2.

normal differences average normal hoirioial diEens
| T
| I
| | ;
normal of i | normal of
vertex a | | /| vertexb
| i b

Figure 5.2 Normal differences
While transform completes, the system will traverse the hierarchical structure in
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depth-first order and determine if the region can be interpolated for approximation.

Once the value of a tree node is smaller than the threshold, traverse no any child node.

5.2 Interpolation of Particle Positions

When the normal differences of a region are small, it is suitable for interpolation.
Our interpolate scheme is simple in order to save more time. However, if we use
interpolation for all nodes within the region, it will result in hackly configuration full
of flatness. When two interpolated regions share the same edge, definitely it is not
proper to use interpolation directly. What should be done first is finding correct

position of the edge, and then interpolating nodes within. Steps are shown below.

1.Calculate the accurate position-of the hode on'the edge of the region, as show in Fig

5.3.

*—9o—90 90909

Figure 5.3 Preprocessing of interpolation

2.Use bilinear interpolation to fill positions of internal nodes, as show in Fig 5.4
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Figure 5.4 Interpolate internal nodes

As we use 2D wavelet transform, normal differences between rows and columns
are available individually. This makes the system be able to do bilinear interpolation
with different weights in rows and columns. For example, if normal differences
between nodes in the same row are,smaller than those in the same column, row

interpolation will have higher weight when averaging with column interpolation.

5.3 Following Benefit

Except time saving, interpolation also brings another enhancement in stability
and accuracy. In mass-spring system, as shown in Fig 5.5, forces are propagated by
springs iteratively for a couple of simulations. Over-length springs due to rapid forces
usually make integration fail, or produce inaccurate visual results with too much
flexibility. In order to correct the elongation, position-based and velocity-based
corrections are proposed. However, both of them cost too much for iteratively
operation, and may effect or be effected by collision response. For the same purpose,
bilinear interpolation here also provides correction in spring length as shown in Fig

5.6, hence our system have higher tolerance with external forces and stiffness.
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For another aspect about bending forces, our interpolation method also provides
help. There existing a problem in mass-spring system that when connected polygons
bend in a small angle, as shown in Fig 5.7, bending forces will cause nodes moving in
deflective direction. Many proposed approaches aim to this disadvantage and tried to
solve it. However, that usually costs too much time for accurate result. With our
method, the polygons will be possibly chosen for interpolation for its small cross
angle, as shown in Fig 5.8. Therefore, our approach will prevent part of nodes from

stretched by bending forces.

Force — Force —

I e e T

R DA T et TU S S —

(3) @ ool iie in @~ @rnore ool

) [ e )

Figure 5.5 Force propagation in Figure 5.6 Spring length correction

mass-spring system after interpolation

Figure 5.7 Bending force in wrong direction while small angle
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Figure 5.8 Better effect result after our interpolation
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CHAPTER 6

Implementation and Results

In order to evaluate the effectiveness of animation, we implemented cloth
simulation based on mass-spring system with and without our improvement. The
simulation runs on a Pentium 4 PC with 3.4GHz CPU and 2Gbyte RAM, alone with

NVIDIA GeForce 6600 GT graphic card.

The test case is hanging a piece of even cloth ontwo top corners as initial, then it
will fall and swing when simulation starts. Fig 6.1 shows our simulation result. Cloth

resolution is 64x64, with spring constantin2000, and vertex normal threshold 0.025.
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Figure 6.1 cloth simulation result of our system

Fig 6.2 shows the time comparison between with and without our improvement.

It can be seen that mostly our system spends-less time than traditional method which

performs integration for each node.
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Figure 6.2 time comparison between original simulation and after our

improvement applied yth (b) for 64x64 cloth

Fig 6.3 shows the proportion o itable for interpolation approach

during the simulation. For difference ration, the percentage changes as

well.
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Figure 6.3 proportion of regions which is suitable for interpolation

(a) for 32x32 cloth (b) for 64x64 cloth

Fig 6.4 shows visual quality -enhanced by our approach. The problem of spring

over-length will be correct by bilinear interpolation without any extra operation.

Besides, with traditional method as in Fig 6.4(a), spring forces will make the whole

cloth object moving up and down. This can be eliminated with large spring constant,

but that will also cause integration fail easily. However, in our method, the problem is

solved and crumples were produced near the middle of top edge more naturally.
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Figure 6.4(a) spring stretch without interpolation

Figure 6.4(b) spring stretch after our improvement

Results above shows that our system has high efficiency, with cloth details preserved.
Additionaly, the always existing problem of spring stretch is solved at one time. Other
simulation result is shown in below: Fig 6.5(a) shows a 64x64 cloth in wireframe with
threshold = 0.022, while (b) and (c¢) has different value as 0.025 and 0.03. Vertices in
yellow color is using interpolation, and others in red color is calculated by integration

as original. It is notable that cloth details are still reserved.
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Figure 6.5(b) simulation result with threshold=0.03

In the following, Fig 6.6 shows our approach applied in a human action system.
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CHAPTER 7

Conclusion and Future Works

7.1 Conclusion

We have proposed a time-saving approach and a suitable algorithm for
simulating cloth in real-time. As wesappliéd aapproximated implicit method, which
performs integration with a constant/computation time, our system ensures the ability
to simulate delicate cloth in real-time for‘interactive-environment. From the concept
in the Verlet method, we modify the algorithm and make it suitable for our

time-saving preprocessing.

Since cloth is always tempted to have flat region, it is useful to interpolate
internal nodes instead of calculating the integration repeatedly. We first use wavelet
transform to efficiently build hierarchical tree about vertex normal. Then approximate
the vertex positions by using interpolation, which takes less time than integration. As

a result, there is no need to do integration for all internal nodes.

Not only saving times, our approach also provides corrections in spring length
and bending force. After interpolation, spring length is averaged, which means
particular elongation will be distributed and prevent the integrator from failure. For
lightly bending edges, our method enables more correct operation as bending forces,
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while original bending forces as spring force has the defects of direction at small
bending angle. This improvement is our main contribution which is unrevealed

previously.

7.2 Future Works

To get higher quality and efficiency, there are still some techniques can be

applied.

1. Temporal coherence: Our method need to rebuild hierarchical tree before each
simulation. Although wavelet transform is fast, always rebuild may not be
necessary. Therefore, we can assume that if all vertex normal did not change too

much, the last hierarchical tree will be adopted, and rebuild can be ignored.

2.Feature vector: Information ofocal curvature’ can be derived from vertex normal.
However, other factors, like external force, original object speed, and collision
response, may also affects local configuration as well. To take all other factors
into consideration, vertex normal can be substituted by feature vector, which
includes force and speed of the vertex. Thus our method should be more suitable

and tolerable.

3.Better interpolation method: Linear interpolation will cause more errors when
vertex normal difference is larger. Small threshold for tree traverse will restrict the
problem. However, it will also decrease the efficiency because fewer nodes can be
interpolated. Power method is simple and able to interpolate smoothly in curves,

but for near-flat region, distance between nodes after interpolation will not be as
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uniform as initial, and springs will be changed into wrong length. A suitable
interpolation method should give proper positions to the nodes in short time, and

produce visual result properly as well.
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