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將空間-時間連續性之輻射狀基底函數應用於角

色動作壓縮之研究 

研究生：林昭自     指導教授：林奕成  博士 

 

國立交通大學 

多媒體工程研究所 

 

摘要 

 

 近十年由於電腦圖學相關技術的高度發展，越來越多的虛擬的角色被運用各

式各樣不同的應用當中。為了使這些虛擬角色能表現各式各樣具意義的動作，專

業的動作捕捉系統便因應而生。動作捕捉系統擷取由真人所表演的動作，而相關

的應用程式便可以利用這些動作資料來驅使形形色色的虛擬角色。然而，為了表

現動作的多樣性，我們往往需要準備大量的角色動作資料來豐富整個動作資料

庫，所以如何有效壓縮動作資料變成為近年來極具有挑戰性的研究主題。 

根據觀察，我們可以輕易發現一般的動作往往具有大量冗餘資料。舉例來

說，動作由某一時間點轉移到下一個時間點的變化可能十分有限。又譬如某一段

時間內，左手臂及右手臂揮舞的方式可能是對稱的。這種情況我們稱此動作具有

某種連貫性 (coherence)。因此只要我們能找出動作內的連貫性，我們就有機會

抿除冗餘的資料，也就是說，原始的資料以一個較緊實的方式保存下來。 

為了能有效運用在空間域及時間域的連貫性，我們將動作資料切割成許多段

不同的子動作，對於每一串子動作，我們提出一個簡單有效的方式將具有高度關

連性的關節點軌跡排列在一起形成一平滑曲面，最後我們採用一個多維的幅狀基

底函數同時在時間域與空間域近似原始的資料，利用遠少於原始資料數量的取樣

點所構成的函數來表示動作資料。 

我們相信此種演算法具高度實用價值，同時由於此演算法被設計成一個有彈

性的壓縮元件，任何未來的研究人員可以將此元件與其他壓縮元件做耦合以求更

急遽成長的壓縮倍率。 
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Radial Basis Functions 

 

Student: Chao-Chih Lin       Advisor: Dr. I-Chen Lin 

Institute of Multimedia Engineering 

National Chiao Tung University 

 

Abstract 

In this thesis, we present a space-time compression method for body animation. 

To extract significant features and reduce redundancy, we utilize both spatial and 

temporal coherence in motion data. The basic concept of this thesis is fitting the 

motion trajectories by specific functions. 

In order to utilize coherence effectively, we segment the original motion into 

several sub-clip by incremental principal component analysis. For each sub-clip, we 

propose an easy and effective method to group several joints with similar trajectories. 

Finally, we use a modified radial basis functions to approximate these surfaces in 

temporal and spatial domain simultaneously.  

We believe such an approach is a feasible compression technique for common 

body animation. 

Keyword : motion compression, radial basis function, PCA, space-time coherence. 
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1. Introduction 
1.1 Motivation 
 Recently, more and more 3D characters or avatars have come to our daily life. To 

animate these virtual characters, experienced artists usually have to adjust their key postures. 

On the other hands, motion capture technique (abbreviates as mocap) is a feasible method to 

produce body animations. The most popular mocap, optic mocap, is based on the theories of 

computer vision. First, several feature markers are placed on a subject’s body. The subject 

usually wears a black leotard to enhance the distinctness of feature markers in cameras. The 

3D trajectory of feature markers can be estimated by triangulation. Mocap data contain the 

structure of the skeleton, (usually represented in a hierarchy structure.) and the degree of 

freedom of each joint in the entire animation sequence. To represent variety of human motions, 

capturing and storing considerable motion data are usually unavoidable. However, due to the 

hardware limitation (capacity and capability of computation), only a small set of mocap data 

can be loaded or processed at the same time. An immediate method to overcome this problem 

is representing the original motion data in a compressed form. Even though, video and audio 

compression have been developed for decades. However, the characteristic of human motion 

data is quite different from video or audio ones. How to compress human motion data 

effectively is still an interesting and challenging research topic. Therefore, we want to find out 

a suitable and practical approach such that we can store the motion data in a compact form 

and maintain the quality of animations as well as possible. 

 

1.2 Introduction 
 In this thesis, we focus on the compression of body motions captured by mocap systems. 

A well-designed compression algorithm should have a good tradeoff between data size and 
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data quality. Principal component analysis (PCA) is widely used in existent motion 

compression methods. By projecting original data set into a lower dimensional space, we have 

smaller data size but loss some low-variation features. This technique utilizes spatial and 

temporal coherence implicitly and is easily implemented. However, the entire motions have to 

be loaded in memory in the compressed phase. Besides, the features discarded by PCA are 

uncontrollable. Sensible jars may appear in some conspicuous motions. Users need to apply 

additional smoothing approaches or reduce compression ratios. 

 A traditional technique for image compression uses perceptual models. Pioneers explore 

the importance of data such that less important or less sensitive features can be omitted. 

Although various models have been proposed in video or audio compression, there is still 

much work need to be researched in the region of body animation.  

One notable characteristic of motion data is considerable coherence, more specifically 

both spatial and temporal coherence. Due to the articulation of human skeletons, there exist 

spatial relationships between the neighbor joints. For instance, the gradual contraction and 

stretch of muscles make us capable of predict how skeletons move in the next few frames. 

Therefore we can approximate the body animation in spatial domain, or temporal domain or 

even both of them. 

The basic concept of our compression algorithm is an extension to key-frame animation. 

In the key-frame animation, users select several important key frames and interpolate the 

in-between animation. In this thesis, we generalize this concept. Instead of choosing key 

frames from animations, we select key features. Each key feature represents the position of a 

marker captured by mocap devices in a particular time click. If we assume the structure (i.e. 

connectivity) of the markers is consistent, we can access any position of marker by its spatial 

and temporal index. Furthermore, we not only interpolate the data in temporal domain but 

also in spatial domain. Once we choose several key features from the original data, we 

establish an appreciate interpolation method. Given the temporal and spatial index, the other 
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non-key features could be approximated by interpolation. There are many adoptable 

interpolation techniques that we can choose. Cubic Bezier curve or B-spline is one candidate. 

But such function approximates animations in temporal domain only. While apply Bezier 

surfaces, the data have to be sampled regularly. In this thesis, we use radial basis functions to 

approximate the motion sequence. Each key feature with time position can be thought as a 

sample or center in the hyper space. (space and time) We select several key features and put 

them into the radial basis functions network to establish our approximation functions. In the 

decompressed phase, the other non-key features can be reconstructed according their spatial 

and temporal index efficiently. 

Since our goal is to compress motion data and maintain the visual quality. We believe 

that well-selected centers have large effects on the decompressed results. Therefore, how to 

choose the centers of radial basis functions and how many centers are sufficient are also 

issues. In this thesis, we use a greedy-algorithm to decide these two questions. This is an 

iterative procedure. In each iterative step, a small set of centers are selected to train the radial 

basis functions. Our system evaluates the difference between the original data and the fitted 

function. Features with large residual will be chosen as additional centers. These steps will be 

repeated in the next loop until stop criterions are satisfied. 

Although many researches show that radial basis functions has an upper-bound of the 

centers’ amount. Fortunately, there are not too many key features of human motion data in the 

common case. People usually place 20~50 markers on the subject and each clip is rarely 

longer than a thousand frames. To utilize more coherence, we further propose reorganizing 

original data. Since different motion behaviors may have different space-time coherence, we 

segment motion data into several clips according to their movements. In each segment, we 

group joint samples according to their similarity. We believe that the more coherence we 

exploit, the more compression ratio we will achieve. 
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1.3 Angular or Euclidean system? 
 Most motion data are represented in terms of quaternions. The commonly used “BVH” 

file format is composed of a hierarchical structure in the angular domain. (see Appendix: 

“BVH file format”) Such hierarchical structure is very sensitive to small reconstruction error. 

This is because error closer to the root will propagate and accumulate to the farer one. In other 

words, representing posture in Euclidean domain can tolerate more reconstruction error. 

Therefore, we reinterpret motion data as the global position of each joint frame by frame and 

perform approximation in Euclidean coordinate system. After this process, we can access the 

position of each joint at specific time stamp by its joint index and frame index. 

 

1.5 Normalized Motion 
 The initial positions and orientations are different between motion data. We call such 

un-aligned motions as “raw motion data”. If motion data are aligned with their local 

coordinate system, we call them as “normalized motion”. From our observation, motion clips 

often have more spatial coherence in normalized motion space. This situation is appreciable 

when current motion is symmetric especially. For example, if people raise their arms upward 

simultaneously, joints of left and right arms have more coherence in normalized motion space. 

Therefore, we convert each motion data into the normalized space for more efficient usages of 

spatial coherence. 

 

1.6 Flowchart 
 Figure 1 is our system flowchart. Our system can be divided into 3 major parts: 

Segmentation, Clustering, and Approximation. After we load a BVH file and represent it as a 

normalized motion, we perform temporal segmentation on this motion according to their 

behaviors. Then we group joints with similar trajectories to form a smooth surface. Finally we 
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use space-time radial basis functions to approximate each surface or curve and calculate the 

difference. 

 

 

 

 

 

 

 

 

 

 

 

Motion 

Segmentation 

Clustering 

Approximation 

Different segment represents 
 different motion behavior 

Group joints with similar 
trajectories 

Compress 
Difference 

Figure 1: Our system flowchart. There major parts are: “Segmentation”, “Clustering”, 
and “Approximation”. 
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2. Related Work 
 There have been extensive researches on the compression of time-varying data, 

especially, video and audio. Several animation compression techniques use theories from 

these researches. Goskov et al [4] developed their compression algorithm through a wavelet 

framework. They used a multi-resolution approach to encode animation sequences 

progressively. They also applied interframe difference of wavelet details to improve the 

compression ratios. 

Goskov [4] and other earlier researchers mainly focused on compression of animated 

meshes. They usually compressed each frame individually. For instance, Rossignac [11] and 

Karni [8] both proposed algorithms to encode the triangle indices. However, there are both 

spatial and temporal coherence in common animations. Thus, Ibarria and Rossignac [5] used a 

space-time predictor and corrector to compress animated meshes with fixed-connectivity. 

 

 

 

 

In recent years, more and more motion data have been used in various kinds of 

applications. For instance, movie and game industries need lots motion data to drive 3D 

characters. Therefore, skeletal motion compressions become an important research topic. 

Principal component analysis, usually abbreviated as PCA is a considerable approach for 

animation compression. It represents high-dimensional data in a lower dimensionality without 

Figure 2Goskov’s algorithm [4] 
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loss much information. For instance, Alexa and Muller [1] projected the entire animation 

sequences into a lower dimension space through PCA such that the motion data can be 

represented in a more compact form. PCA exploits spatial coherences implicitly. For 

effectively utilizing these coherences, motion data set was usually clustered into groups 

before PCA is applied. Such an approach was called clustered- PCA (CPCA). Therefore, 

perceptually or geometrically similar motion clips can share the same PC but have different 

coefficients. Arikan [9] provided a hierarchical technique to compress body animation 

database. The original database was divided into several clips. In order to utilize temporal 

coherence, author used cubic Bezier curves to approximate the trajectories of joints. 

Obviously, each clip can not be too long. (usually 16-32 frames.) Then the author clustered 

these parameterized clips into several groups and performed principal component analysis to 

reduce the dimensionality of such clips. To preserve meaningful high-frequency features (i.e. 

feet touching ground), He used a motion-JPEG technique to encode such important contacts. 

The major limitation of his approach is that contacts need to be known.  

In the same year, Liu et al.[3] proposed a segment-based approach to compress human 

motion data. They segment original motion data into several clips by probabilistic PCA 

(PPCA). Then they perform PCA analysis on these segments to reduce the dimensionality and 

use Bezier curves to fit the coefficients of PC finally. They both utilize temporal and spatial 

coherence, but in two phases.  
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Besides compressing the captured data directly, an idea is using fewer markers to drive 

skeletons. Using representative markers lowers the data size and reduces ambiguities during 

post-processing of mocap data. In other words, the goal is to decide which marker can be 

removed or which marker must be kept in the data. To find out the redundancy, Liu et al [2] 

adopted a data-driven modeling approach to learn piecewise local linear models and use a 

modified principal feature analysis to choose the subset of markers. Original motion can be 

approximated by using a reduced marker set and these local linear models. 

 

Figure 3: Liu [3] segment motion data and compress each segment by PCA 
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Approximation/Interpolation of animation is also an interesting approach. Uses choose 

several key frames and other frames can be estimated by interpolation or even extrapolation. 

There are many considerable mathematical interpolation methods, for instance, polynomial 

functions, trigonometric functions, exponential functions or splines. Mukai and Kuriyama [14] 

thought that motion interpolation can be approximated by weighted combination. They treat 

motion interpolations as statistical predictions. Arikan and Forsyth [10] synthesized human 

motions by a cutting-pasting concept. This approach generated smooth motions and satisfied 

spatial constraints. To approximate animations, the original animations are usually represented 

as parametric forms such that the motion trajectories can be fitted with curves. Igarashi et al 

[13] proposed an interpolation technique for performance-driven character animations. Given 

several predefined key frames, they used radial basis functions in spatial domain to interpolate 

the in-between frames. 

Figure 4: Liu [2] select fewer markers to drive original skeleton. 
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 Generally speaking, radial basis function is a very powerful interpolation tool. Through 

some proper modifications on distance metric, the radial basis functions can be expended into 

the hyper space. In other words, information between different dimensions may be shared.  

Ravi et al [11] realized this idea. They used a modified radial basis functions to 

interpolate the BRDF samples between different positions and viewing angles. Such approach 

makes information can be shared across angular and spatial domain. Since animations have 

both spatial and temporal coherences, this means the information may spreads in these 

domains. Therefore we can adopt this concept to exploit information sharing. 

 

 

Figure 5: Igarashi et al [13] choose several key 
postures from the original motion sequence and use 
radial basis functions to interpolate in-between data. 
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Figure 6: Ravi [11] used a modified radial basis functions to utilize data 
coherence across different domains. 
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3. Compression through Surface Approximation 
 

 
 

 For the convenience of implementation, we assign an unique joint index to each joint 

after converting them from angular offset to global positions. Figure 7 is an illustration of the 

joint indices. For example, joint index 0 is the hip, and joint index 9 is the left hand. With 

these indices, we can store their positions in array and access them by indices. 

As we pointed out in the introduction, the trajectory of each joint is essentially a curve. 

Therefore, if we lay several joint trajectories together, we have a surface. Figure 8 is an 

example. In this figure, joints highlighted in yellow have similar trajectories. We collected 

these trajectories and form a smooth surface. The red arrow indicates the temporal 

direction/domain and the green arrow indicates different joint indices (i.e. spatial domain). 

Since a smooth surface means the grouped data are more consistent and can be encoded 

with fewer parameters, therefore, our goal become rearranging data. The following chapters 

“Segmentation” and “Clustering” will introduce how we choose these samples. 

 

Figure 7: Illustration of joint index. 
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Figure 8: An example of constructed surface. The left one illustrates that several joints 
with similar trajectories form a smooth surface. The right one represents the 
corresponding joints. (colored in yellow.) 
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4. Segmentation 
 Generally speaking, any motion data can be thought as a concatenation of different 

logical behaviors. For example, a motion may have two logical states: from walking to 

running. If we carefully segment motion data into several distinct motion behaviors, we may 

have more spatial coherence to utilize. Besides, behavior transition usually results in intense 

variations. Therefore, if we can cut appropriately, we can alleviate such high variations and 

preserve the smoothness in local surface. 
 In this thesis, we adopt Barbic, J et al [6]’s method to segment our motion data. Although 

they proposed 3 methods to segment motion automatically, we choose incremental 

PCA-based method. The idea is based on the observation where simple motion can be 

represented better in lower dimensions than the complex one in the same dimensions. 

 When projecting motion data into a lower dimensional space, unavoidable error will be 

introduced. The definition of error term is: 

 ∑
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=
N

rj
je

1

2σ               (1) 

where r is the number of principal components, N means original dimension.σ  is the 

singular value of SVD.  
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is an indicator to tell us how much information retained after projection. Once we decide 

how much error we can accept, the number of principal components is decided. Given a 

starting short clip, we calculate its principal components. Then we append a new frame and 

perform PCA on this segment again with same number of principal components again. For 

simple motion, the error ratio will rise steady. If the motion is transiting into a new behavior, 

the error ratio will rise much quickly and a cut should be placed. 
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Reference Posture 
  

 Each motion segment represents a different motion behavior. Although we avoid high 

variations in the temporal domain by segmentation, there still exist high variations between 

joints in spatial domain with in the segment. 

A simple method to alleviate this situation is to compute the mean posture of each 

segment as a reference. And this reference will be subtracted from each joint sample in this 

segment. Our experiments show that the equalization process is worth. The reason is that 

these joints form a very smooth surface after position shifting. When we use radial basis 

functions to approximate these surfaces, far fewer important samples are sufficient. In other 

words, this process can help us finding more coherence in spatial domain. Of course, we have 

to pay efforts to store these references. 

 Let us consider an example in figure 10. The left figure and right figure are both same 

clusters, but the left one does not equalize to the reference posture. The right one is smoother 

Figure 9: J. Barbic [6] used IPCA to segment motion. Once the error with 
same number of PC rise quickly, we assign a cut here.
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than the left one obviously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: The comparison of shifting joint trajectories to reference posture.  
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5. Clustering 
 To exploit more coherence, we conduct many experiments for evaluation. From 

observation, we realize joints have more spatial coherence or relation with near one. For 

example, there exists high relationship between the hip and the chest but not hands or legs. 

Therefore we may separate entire body into several parts: head, extremities, and torso. If we 

can approximate a trajectory of joint by curve fitting, we can group many joints to form a 

surface and approximate it. Afterward, we perform surface approximation for each body part 

independently. However, there are some problems here. When people running, there exists 

dramatically variation in the parts of arms or legs. If we collect joints within this fixed part to 

form a single surface, such a surface is usually jarring and very difficult to find out useful 

spatial coherence. Besides, each body part is independent. Even some joints may have spatial 

coherence, we can not utilize them when they are assigned in different body-parts. Therefore, 

a practical approach is to analyze the behaviors of joints in the current segment and group 

joints with similar trajectories into a single cluster. A straightforward method is using the 

correlation of joints. But our experiments show that this is an unsuitable approach because 

some joint’s positions may be fixed in a specific time interval. We can not find the linear 

relationship with other joints. 

 In order to solve this problem, we calculate the difference between each joint pair frame 

by frame. And the similarity was defined by the standard deviation of these differences. When 

any two joints have similar trajectories, the difference values do not spread in wide range. In 

other words, the standard deviation will be a lower value. After defining the similarity of any 

joint pair, we can group similar joints according to these values. In our thesis, we propose 

using an algorithm based on the k-means clustering but replace the distance metric with the 

similarity.  

 The number of cluster is another issue we need to consider. For example, if all of the 
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joints do not move quickly in current segment, we should group all of them in a single cluster. 

By contrast, if joints move quickly, usable coherences will be relatively lower and the amount 

of cluster elements should be much fewer.  

 In order to adjust the number of clusters dynamically, we have to check the average 

standard deviation of the current cluster when the k-means algorithm converges. If this value 

exceeds a predefined threshold, the current cluster will be subdivided and re-clustering until 

the average standard deviation of each cluster is smaller than threshold. 

 Here is an example of our clustering result. In this segment, people rises his arms almost 

symmetrically from frame 497 to frame 557. According to our thesis, joints with similar 

trajectories will be grouped together. Figure 12 shows that we have 4 clusters in this segment. 

They are {joint 7, joint 12}, {joint 9, joint 14}, {joint 13, joint 8}, and residual joints.  

 

 

 
Figure 11: A motion segment with rising arms symmetrically. 
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Figure 12: These are results after clustering. The highlight joints (yellow 
color) indicate that they are grouped together. 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 
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6. Approximation 
6.1 Radial Basis Function 

Since a general trajectory of human motion is continuous and smooth. Arikan [10] used 

cubic Bezier curves to approximate the trajectory of each joint. But such functions only 

approximate animation in temporal domain. Each joint is independent in spatial domain. To 

utilize both spatial and temporal coherence, we modify the radial basis functions to 

approximate body movement in two domains concurrently. 

Radial basis functions are commonly used in function approximation, scatter-data 

interpolation, and time series prediction. The basic concept is that any smooth function can be 

approximated by weighted combination of basis functions. Since radial basis functions are 

constructed from scatted data sets, we call these scattered data as samples or centers because 

the basis is positioned there. We adjust the amplitude and width of our basis to form a smooth 

function. A general equation can be written as: 

( ) ( ) ( )∑
=

+−=
N

i
ii xpxxwxy

1

φ            (4) 

where y(x) is the function value at position x, N is number of centers, coefficients w means 

the amplitude of each basis φ . ||.|| denotes the distance between centers. P(x) is a low 

polynomial term or called the affine term also. The commonly chosen of this basis function 

may be: 

( ) 3rr =φ                (5) 

( ) 2krer −=φ               (6) 

22)( krr +=φ              (7) 

 In our thesis, we choose Gaussian basis 
2kre− . The constant k affects the width of each 

basis. Once k was chosen, we picked several samples as centers to train radial basis functions 

(i.e. solve coefficients w, See Appendix: “How to solve RBFs coefficients”) and we have a 
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smooth curve or surface which is close to the real data. 

 

6.2 Space-time Radial Basis Functions 
If we have any two joints Jointi and Jointj whose coordinates are (xi, yi, zi, ti) and (xj, yj, zj, 

tj) in hyper-space. Typically, the distance term should be defined as: 

( ) ( ) ( ) ( )22222
jijijiji ttzzyyxxr −+−+−+−=        (8) 

However, we reorganized the joint sequence due to the processing mentioned previously. 

In our thesis, we redefine the basis with distance as: 
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φ               (9) 

( )22 int_int_ jis indexjoindexjor −=          (10) 

( )22 __ jit indexframeindexframer −=         (11) 

where ct and cs are constants which control the shape of basis. 

 

 

 

 

 

Figure 13: Examples of different shapes of basis. Cs and Ct are 64 in the left one, 64, 4 
in middle one and 4, 4 in the right one. 
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6.3 Approximation 
Different composition of centers may have great influence on the compression or 

approximation results. Since our goal is to approximate the motion variations by radial basis 

function, we utilize an iterative greedy-algorithm propose by Carr [8]. For each cluster, we 

choose initial centers to train the radial basis functions network at beginning. If current cluster 

forms a surface, we choose the corners of surface as our initial centers. If current cluster is a 

curve, we choose the initial centers at first and last frame. Then we use this function to 

reconstruct the animation segment. Samples with larger residuals will be chosen as new 

centers and we re-train the radial basis functions. The iterative step will continue until stop 

criterions are satisfied. (i.e. approximation error smaller than the predefined threshold.) 

Figure 14 is the iteration flowchart which illustrates how we use radial basis functions to 

approximate motion data gradually. Figure 15 is an example of approximating a curve. The 

green curve is the real data. The red curve represents the approximated curve. And blue dots 

mean centers. 
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Setup initial centers 

Train RBFs 

Evaluate error & Pick up new centers 

Criterion Satisfied? 

Finish 

Yes

No 

Figure 14: An illustration of the approximation steps.  



 24

 

 

 

 

Figure 15: An example of approximating a curve. Green curve and red curve 
are real data and approximated function respectively. Blue dots are centers of 
radial basis functions. 
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Figure 16: An example of real data surface (green one) and approximated surface (red one). 
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Experiment and Result 
 In order to prove our thesis utilizing spatial and temporal coherence, we prepared 16 

testing data and design several experiments. The original file format is the commonly used 

BVH. However, as we mentioned previously, we converted the motion data from hierarchical 

angular domain to Euclidean system before starting compression. We stored such converted 

data in “BIN” file format and the file extension is “bin”. The BIN file contains the global 

positions of joints frame by frame in binary. The compressed motion data were encoded in 

“R” file format. Therefore, our compression ratio is defined as: 

Compression_ratio = ( size of BIN file )/( size of R file)      (12) 

Since our thesis is a lossy compression method. We defined the error threshold is 5 cm if 

the height of the subject is 1.8 m. Such error threshold is sensible hardly for human eyes. 

The first experiment compressed these testing data directly. It is worth noting that 

different motion data have different coherence that we can utilize. Therefore we have to adjust 

the basis shape (i.e. Cs & Ct) to produce better results. Generally speaking, when the target 

surfaces or curves are smoother, Ct and Cs should be larger such that far fewer centers are 

needed. 
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Motion Cs Ct .bin .r Ratio 

Ballet05 64 256 200,687 5,187 1:38.7 

Ballet23 4 256 117,059 3,869 1:30.3 

Cowboy3 16 32 191,027 10,127 1:18.9 

Cowboy4 16 32 165,083 12,246 1:13.4 

Drunk5 16 64 269,135 26,962 1:9.9 

Faint5 4 32 95,255 9,571 1:9.9 

ShotShoulder03 4 32 52,475 6,146 1:8.5 

Sit21 4 256 72,899 5,540 1:13.2 

Sneak01 32 128 148,523 8,359 1:17.8 

Stand03 32 128 62,963 5,390 1:11.7 

Tired05 32 128 203,999 16,622 1:12.3 

Walk25* 32 64 248,711 12,774 1:19.5 

Walk34* 32 64 241,811 10,987 1:22 

 

 

Second, we compared two compression approaches: a space-time method and a 

traditional approximation method in temporal domain only. In this experiment, the temporal 

constant must be same value between these two methods. 

 

 

 

 

 

 

Table 1: Compression Results 
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Motion .bin s-t ratio 
.r 

(space-time)

Ratio 

(space-time)
.r (time) 

Ratio 

(time) 

Ballet05 200,687 2.33 5,187 1:38.7 8136 1:24 

Ballet23 117,059 2.22 3,869 40.97 6056 1:19.3 

Cowboy3 191,027 0.79 10,127 1:18.9 14472 13.19 

Cowboy4 165,083 1.0 12,246 1:13.4 14280 11.56 

Drunk05 269,135 0.13 26,962 1:9.9 26436 1:9 

Faint05 95,255 0.2 9,571 1:9.9 10624 1:8.97 

Shot 

Shoulder03 
52,475 0.12 6,146 1:8.5 6260 1:8.38 

Sit21 72,899 0.52 5,540 1:13.2 6,852 1:10.6 

Sneak01 148,523 0.68 8,359 1:17.8 9964 1:14.9 

Stand03 62,963 0.26 5,390 1:11.7 5768 1:10.91 

Tired05 203,999 0.56 16,622 1:12.3 15268 1:13.36 

 

 

The third experiment shows how the segment length affects our compression results. 

Since IPCA will produce uncontrollable segment length, we propose use several fixed length 

segment to test. 

 

 

 

 

 

 

Table 2: The Comparison time domain only and space-time approach. 
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Motion Frame Seg. 100 Seg. 200 Seg. 300 

Ballet05 728 29.95 39.28 43.45 

Ballet23 425 26,65 31.28 33.66 

Cowboy3 693 13.5 15.39 15.91 

Cowboy4 599 12.6 13.1 14.11 

Drunk05 976 8.6 9.1 9.3 

Faint05 346 8.85 9.8 10.1 

Shot Shoulder03 191 8.35 9.6 9.9 

Sit21 265 12.14 13.2 13.4 

Sneak01 539 13.14 14.6 15.1 

Stand03 229 9.9 11.1 11.4 

Tired05 740 10.5 11.3 11.5 

 

 

Obviously, the compression ratios are better in the longer segments. This is because 

longer segment may propose more coherence in temporal domain. However, if segments were 

too long, we may find fewer joints with similar trajectories. In other words, we miss mush 

spatial coherence. Therefore, the length of each segment is an important tradeoff we have to 

concern. 

The final experiment discussed the performance of our approach. The platform is P4 

3.2GHz with 1 GB RAM. 

 

 

 

 

Table 3: A discussion of segment length. 
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motion 
Number of 

frames 
Length (sec) 

Compression 

FPS 

Decompression 

FPS 

Ballet05 728 24.27 91 16930 

Ballet23 425 14.17 106 21250 

Drunk05 976 32.53 8.79 863 

Run02 621 20.7 9.26 1321 

Run05 571 19 10.38 2719 

Shot Shoulder03 191 6.37 13 9550 

Sit21 265 8.83 24 13250 

Stand03 229 7.6 19.08 11450 

 

  

Obviously, the compression time is much longer than decompression time. This is 

because iteration process. Solving the coefficients of radial basis functions is inverting a large 

matrix essentially. Fortunately, decompression speed is more important than compression 

ones in practical. Therefore this thesis is still practicable and feasible. 

 

 

 

 

 

 

 

 

 

Table 4: Algorithm performance
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8. Conclusion  
 In this thesis, we propose a compression method for human motion data. Unlike previous 

studies, our method utilizes radial basis functions to approximate motion in both spatial and 

temporal domain simultaneously. In order to find out more coherence, we analyze motion data 

in temporal and spatial domain and reorder the joint sequence such that we have a smooth 

curve or surface. 

 However, if we can not find out sufficient spatial coherence in motion data, the 

compression ratio will be close temporal-domain compression only. This is because most 

clusters form curves. Besides, solving the coefficients of radial basis functions is inversing a 

matrix essentially. This means the matrix size can not be too large. Although we may find a 

cluster with much useful coherence, we still need to care about the amount of available 

samples. 
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9. Future Work 
 Important future research directions are listed as follows: First, since our method is a 

flexible compression component. It can be combined with other compression component to 

achieve better results. For example, there may be repetitive motion behaviors in some motion 

data. We can retrieve such motion and represent it more efficiency. 

Second, in the typical motion data, the length of bone is fixed and this data is usually 

known in advance. Thus, we can use it as an additional constraint. In details, we can 

approximate motion data roughly. During decompression, we may utilize this constraint to 

enhance the reconstructed joint position more correctly.  

 Although we proposed a efficient framework to exploit coherence, more sophisticated 

methods, e.q. PPCA segmentation may improve our analysis. 

Hierarchical Radial Basis Functions 

 Automatically deciding the width of each center is very difficult. Different human 

motions are quite different in behavior. Therefore, approximating surfaces with same ct and cs 

can not have a good compression result. Future researches may adopt the hierarchical radial 

basis functions to overcome this problem. For example, we use wider basis to capture the 

rough shapes of surfaces and use thicker basis to capture the high-variation part. In other 

words, we may approximate a surface in several levels. Each level represents the different 

details or frequencies.  
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