

利用分部合成達到人物動作參數空間擴展

與延伸之研究

Parameterized Motion Interpolation and Extrapolation

Using Partial Blending

研 究 生：陳彥儒

指導教授：林奕成 助理教授

利用分部合成達到人物動作參數空間擴展與延伸之研究

Parameterized Motion Interpolation and Extrapolation Using Partial
Blending

研 究 生：陳彥儒 Student：Yan-Ju Chen

指導教授：林奕成 Advisor：I-Chen Lin

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2007

Hsinchu, Taiwan, Republic of China

中華民國九十六年七月

 I

利用分部合成達到人物動作參數空間擴展與延伸之研究

研究生：陳彥儒 指導教授：林奕成 博士

國立交通大學

多媒體工程研究所

摘要

 要獲得準確且真實的人物動作資料，動態動作捕捉是最常使用的技術之一。但是在

如遊戲的互動應用上，要如何才能有效的利用並控制這些動作資料仍是令人困擾的問

題。在本論文中，我們提出一個在使用不足的動作資料下，擴增角色動作可能性的合成

方法。首先我們在時間上對齊這些動作資料樣本，使其呈同步播放的狀態，並將初始動

作的朝向都調整成相同以建立參數空間。為了對這些動作資料達到更大化的利用，我們

把整個人體之動作分區段。對每個部分分別做合成以及角度上的調整後再接合起來，就

可以產生自然且更多樣化的動作。此初始空間在使用我們的動作調整方式後會進一步的

擴大。使用者只要指定參數空間的一個位置，就可以得到攻擊到該目標的動作。此方法

可以在動作資料有限的情況下應用於武打遊戲中，且可以事先估測可能的攻擊範圍。

關鍵字：動態動作捕捉，動作合成，分部混合

 II

Parameterized Motion Interpolation and Extrapolation Using

Partial Blending

Student: Yan-Ju Chen Advisor: Dr. I-Chen Lin

Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

Human motion capture is one of the most plausible techniques to acquire realistic

animation data. However, in interactive applications, e.g. TV games, how to interactively and

accurately control the captured data is still a troublesome issue. In this thesis, we present a

blending method to extend the possibility of human actions from imperfect motion data. We

first align example motions in time and adjust their facing directions to build a initial

constraint parameter space. To more efficiently utilize the motion data, we segment human

body into several parts. After angular adjustments to each body part individually, more

various but natural-looking motion can be synthesized by splicing all the segments back.

With our method, the range of the space is extended. Users can simply assign the normalized

position in the parameter space, and get a motion that hit the desired target. The proposed

method can provide an accurate motion prediction and apply to fighting games with limited

motion data.

Keyword: motion capture, motion synthesis, partial blending

 III

Acknowledgements

First of all, I would like to thank my advisor, Dr. I-Chen Lin, for his help and guidance

in the past two years. Also, I thank for all members of Computer Animation and Interactive

Graphics Lab. for their assistance and comments. Finally, I am grateful to my family for their

support and encouragement.

 IV

Contents
摘 要……………………………………………………………………………………I

ABSTRACT…………………………………………………………………………………..II

ACKNOWLEDGEMENTS..………………………………………………………………...III

CONTENTS....………………………………………………………………………………IV

LIST OF FIGURES………………………………………………..………………………....V

LIST OF TABLES…………………………………………………………………………..VII

1. INTRODUCTION…………………………….…………………………………….........1

1.1 Motivation….…………………………………………………………………………1

1.2 Overview………………………………………………………………………….…..3

2. RELATED WORK………………………………………………………………………..6

3. PREPROCESS PHASE………………………………………………………………….11

3.1 Time Alignment………………………………………………………………………11

3.2 Parameter Extraction and Denser Sampling…………………………………………16

4. RUNTIME PHASE………………………………………………………………………19

4.1 Human Body Segmentation………………………………………………………….19

4.2 Parameter Query, Body Part Splicing, and Joint Orientation Adjustments………….20

4.3 Motion Length Rearrangement………………………………………………………29

5. EXPERIMENTAL RESULTS…………………………………………………………...30

5.1 Environment and Sample Data………………………………………………………30

5.2 Results…………………………..……………………………………………………30

5.3 Experimental Evaluation and Analysis………………………………………………35

5.4 Discussion…………………………………………………………………………....40

6. CONCLUSION AND FUTURE WORK……………………………………………...…42

7. REFERENCE…………………………………………………………………………….43

 V

List of Figures

Figure 1: Flowchart of the whole framework…………………………………………...…….4

Figure 2: Detailed steps in the preprocess phase.…………………………………...………...5

Figure 3: Detailed steps in the runtime phase.………………………………………………...5

Figure 4: Motion retargeting. (a) Original motion. (b) Retargeting to a smaller-scale skeleton.

(c) Retargeting to a longer body with shorter limbs…………………………………………..6

Figure 5: Motion transitions apply to path fitting. The motions are generated to fit a word

“motion”……………………………………………………………………………………….7

Figure 6: Time alignment path. Play motions according to the indexes of the alignment path

makes these two motions do actions simultaneously……………………………….…………8

Figure 7: (a) Before sampling. There is a significant error between the desired location and

the result motion. (b) After denser sampling. More parameters are produced, and more

accuracy is provided…………………………………………………………………….…….9

Figure 8: Reliability map. The blue areas represent high reliability, while the red areas

represent low reliability……………………………………………………….……………..10

Figure 9: When carrying a heavy box, the green motion leans back to balance the weight of

the box………………………………………………………………………………………..10

Figure 10: Calculating frame distance. (a) Two motion frames differ in facing direction and

location in the world. (b) Representing two motion frames in terms of joint positions. (c)

Apply T transformation on one point cloud for pose matching with the other one………….12

Figure11: A distance grid graph of two motions……………………………………………..13

Figure 12: The path in red shows time alignment between Motion A and Motion B……..…14

Figure 13: Motion A (white joint) and Motion B (blue joint) in original timing. (a) Frame 5.

(b) Frame 10. (c) Frame 15.………………………………………………………………….14

 VI

Figure 14: Time alignment. (a) Frame 9 in Motion A and frame 5 in Motion B. (b) Frame 16

in Motion A and frame 10 in Motion B. (c) Frame 21 in Motion A and frame 15 in Motion

B.………………………………………………………………..……………………………15

Figure 15: Time alignment of a punching motion set. (a) Ready to attack. (b) The attack

moment………………………………………………………………………………………16

Figure 16: Denser sampling. Each little red dot represents the motion attack to that

position……………………………………………………………………………………….17

Figure 17: The white dots represent the original attack space. We extend the space to the red

frame. The motions whose parameters are within the red frame can still be synthesized…...18

Figure 18: The human skeleton hierarchy model……………………………………………20

Figure 19: Joint angular adjustment…………………………………………………………21

Figure 20: Parameter query for motion synthesis……………………………………………22

Figure 21: Hierarchical adjustments of punching motion…………………………………....24

Figure 22: Angular difference of adjustment joints between two motions…………………..25

Figure 23: Comparison between adjust right arm directly and hierarchical adjustment…….26

Figure 24: Unnatural kicking result by using the adjustment scheme of punching motion…27

Figure 25: Right leg orientation adjustment with extra “lift up” or “lay down” for kicking

motion………………………………………………………………………………………..28

Figure 26: There is an angular difference in the hip vector of motions that kick differs in

height…………………………………………………………………………………………29

Figure 27: An example of time alignment………………………………………………...…29

Figure 28: Straight punch…………………………………………………………………….31

Figure 29: Hook punch……………………………………………………………………....32

Figure 30: Straight kick……………………………………………………………………...33

Figure 31: Side kick………………………………………………………………………….34

 VII

List of Tables

Table 1: Statistics of hit position difference………………………………………………….35

Table 2: Hook punch. (a) Regular interpolation with 9 motions. (b) Partial blending with 8

motions……………………………………………………………………………………….36

Table 3: Hook punch. (a) Regular interpolation with 9 motions. (b) Partial blending with 8

motions…………………………………………………………………………………….…37

Table 4: Straight kick. (a) Regular interpolation with 8 motions. (b) Partial blending with 7

motions………………………………………………………………………………….……38

Table 5: Straight kick. (a) Regular interpolation with 8 motions. (b) Partial blending with 7

motions……………………………………………………………………………………….39

 1

1. Introduction

1.1 Motivation
Character animation has been widely used in real world, especially in games, cartoon,

and movie industry. To acquire accurate, realistic, and natural-looking animation data, motion

capture is one of the most satisfactory techniques used in recent years. To capture one’s

action, a common approach, optic mocap, is to place numbers of sensors on an actor, usually

at important joint positions. When the actor performs actions, several calibrated cameras

track these sensors to estimate joint positions and orientations. After data cleaning and

correction by the artist manually, clean motion data are produced. With motion capture, one

may get almost any kind of motion that the actor is able to perform. For instance, it is used to

acquire complex martial art motions in most modern fighting games. However, if all of the

motion resources are extracted by motion capture, the cost will be expensive, and they

require large storage. Furthermore, motion data itself also lack flexibility. So how to enrich

the usage of the original captured data becomes a significant issue. And several motion

editing approaches has been proposed.

One of the most known approaches to synthesize motions is motion blending. Suppose

we have a set of “logically similar” motion data, which means the actor performs the same

action. For example, punching motions in the same style but different in attack directions.

Once these motions are time-warped together, a new motion can be constructed by a weight

combination of the whole data set. After applying a denser sampling, that is, using more

pre-designed weight combination sets to blend more motions and extract their parameters, a

parameterized motion space can be established. Users may control the parameter in the space

freely to produce desired motions.

 2

Though the method is quite useful, the range of the parameter space is restricted by the

quality and quantity of the original motion data. The range of plausible motion we can

produce is also limited within the affine summation space. To build a complete shape of

parameter space, a well-designed motion capture procedure has to be accomplished, and

sufficient motion clips with the same style are also needed. Suppose we want to construct a

parameter space for a set of hook-punch motions. The actor’s facing directions have to be the

same, and their ready poses have to be as similar as possible. Then, the actor tries to

hook-punch toward various direction with the same ready pose in order to enlarge the

parameter space. However, the database may not always be “good” enough for us to build

desired space. Usually there are defects.

Our goal is to utilize limited motion captured data but create motions that are able to

attack a variety of directions and positions. Since we focus on interactive usages, especially

in fighting games, the process should be done in real-time. To achieve this purpose, we

proposed an example-based method to extend defective parameter space established from

imperfect motion data set.

From our observation, we found that a fighting action can be regarded as combination of

two behaviors: waist turning from an initial orientation to a proper direction and arm-or-leg

attack at a given height. That is, we no longer treat human body as just one single unit. By

contrast, we segment a human body into several parts, and apply blending techniques to those

parts individually. Given sets of fighting actions, we separate them into different categories

according to the body part that performs the attack. So there will be two main types of

motions — punching motion and kicking motion. Then, we establish a defective parameter

space using these data, and extend it to a possible partial blending space. When a user assigns

a desired attack position which is not within the original space, we query two parameters in

 3

the original space. One is used to decide the turning part; the other one is used to decide the

attack part. Once we derive the correlations between the two motions, joint orientation

adjustments are applied to each body part so as to make the actor hit the desired target as

close as possible. The body parts are then spliced together to get the final result — a new

motion attacking a position not in the original parameter space. Due to its simple and

interactive control, it can be applied to advanced game controls easily. The proposed

blending by body parts allows motions to be extrapolated to new expanded region. While the

attack region was known in advance, motion prediction is another evident application.

1.2 Overview
When we get a set of sample motions with a similar action but different in direction, and

plan to synthesis motions with more various directions, we need to establish an initial

parameter space for the full-body sample motions in advance. The parameters are received by

interpolation among the sample motions. To get good blending results, we time-align the

motions to the same length for action synchronization. The procedure is described in Chapter

3.

After the space is established and extended, a user can assign a position in the extended

space to produce a new motion. If it is not in the original space, partial blending is put into

practice. Our system will query two parameters in the original space, and apply angular

adjustments dependent on the motions they represent. One stands for the orientation

movement, the other one is for the attack height. The result motion is then resized in length

for proper timing. More detail is described in Chapter 4.

 4

The following graph (Figure 1) shows the whole framework:

Figure 1: Flowchart of the whole framework.

Preprocess Phase:

Motion Parameterization

Runtime Phase:
Motion Tuning

Input: Motion Data Sets

Parameter Space of The

Motion Set

Output: Result Motion

Users Assign An
Attack Position

 5

There are further detailed steps in the preprocess phase and the runtime phase.

Following are two graphs (Figure 2, Figure 3) that show each step in order:

Figure 2: Detailed steps in the preprocess phase.

Figure 3: Detailed steps in the runtime phase.

Calculate frame distances frame by frame
between motions

Time-align all motions of the same style

Extract motion parameters and normalize
parameter space

Determine attack region

Segment human body into parts

Query parameters in the original
parameter space

Multiple angular adjustments

Rearrange motion length

 6

2. Related Work

There are various editing or synthesis schemes to modify captured data for different

purposes. Gleicher [6] proposed a method called “retargeting” to map a motion from the

original skeleton to another one but keep significant constraints, as shown in Figure 4. For a

walking motion, the feet must step right “on” the ground but not penetrate it or float up, and

each footstep also needs to locate on the same spot.

(a) (b) (c)

Figure 4: Motion retargeting. (a) Original motion. (b) Retargeting to a smaller-scale skeleton.

(c) Retargeting to a longer body with shorter limbs.

Another mechanism is called “transition”. This technique smoothly connects the end of

one motion clip to the start of another in time domain to generate a longer continuous motion.

In practice, transition does not always happen on either side of a motion but may take place

on an arbitrary frame in a motion clip. The critical issue is to decide the best transition point

which results in a smooth transition. It’s reasonable to assume that the more similar the two

frames are, the more seamless transition becomes. Kovar et al. [13] proposed a distance

metric to quantify the “similarity” of two poses and using a rigid transformation function to

adjust one pose, so it will become the closest match for the target one. Then a graph structure

was designed to record the transition nodes and motions that could be smoothly transited.

Further application falls on applying transition to a desired purpose like path fitting,

 7

locomoting on a designed path, as shown in Figure 5. Gleicher et al. [7] rearranged the graph

structure by collecting similar nodes into a hub node, and varied the possibility of transition.

The additional process to accomplish transition could be easily performed by applying

transformations among the entrance, exit, and the “common pose”, which is the

representative of the hub node.

Figure 5: Motion transitions apply to path fitting. The motions are generated to fit a word

“motion”.

To attain a smooth transition, an intuitive interpolation scheme is using a weight set of

(0.5, 0.5) on both frames of the two motions at the transition point. Moreover, if we expand

this interpolation to a few more frames, and apply a weight function from (1, 0) to (0, 1)

gradually, we will get a smoother result. While extending this idea to the whole motion clip,

the procedure becomes the foundation of “blending”. The main issue now turns to not only

find the most similar poses of two motions but to figure out the total alignment of multiple

motion clips.

Kovar and Gleicher [11] employed the distance cost metric proposed earlier on each pair

of motions to form a 2D grid graph. This graph shows the similarity relations between all

pair of frames of the two motions. Then, they find a minimal-cost connecting path that best

aligns these two motions in time domain, as shown in Figure 6. After all paths were

 8

combined together, blending can be applied to make new motions.

Figure 6: Time alignment path. Play motions according to the indexes of the alignment path

makes these two motions do actions simultaneously.

They [12] use this idea to classify motions into different categories. Starting with a

random sample motion, and apply the method to search other similar motions in the database

as the outcome of classification. They also proposed an approach to directly control the

blended motions. To achieve this goal, they defined and extracted parameters from a set of

motion that best represent the type of those motions. For a punching motion set, the wrist

joint might be the defined parameter, and the punching positions were extracted. For a

walking cycle motion set, the root joint might be the defined parameter, and the vertical

projections of final root positions were extracted. After denser sampling, more parameters

will be produced, as shown in Figure 7. Collecting these parameters together forms a discrete

parameterized motion space. Users can simply assign a location in the space, and the system

will respond a set of blending weights that blend the sample motions most closely to the

assigned location.

 9

(a) (b)

Figure 7: (a) Before sampling. There is a significant error between the desired location and

the result motion. (b) After denser sampling. More parameters are produced, and more

accuracy is provided.

Other research uses various approaches to achieve motion interpolation. Grochow et al.

[8] presented an Inverse Kinematics (IK) system and a learning mechanism for motion data

training. New motions can be edited by controlling a few constraint parameters. Mukai and

Kuriyama [14] proposed a statistical approach to motion prediction and a modified Radial

Basis Function (RBF)-like distribution function to construct a smooth parameter surface. And

provided a way to estimate the reliability of the predicted motion, as shown in Figure 8.

Glardon et al. [5] translated different speeds and types of locomotion data to a new space and

applied hierarchical Principal Component Analysis (PCA) for data dimension reduction and

style classification. In the hierarchical PC structure, they discovered the relationship between

the principal component and its corresponding speed value. Therefore, interpolation as well

as little extrapolation of the speed value can be performed on this peculiar space to get new

PC coefficient, so as to get the edited motion.

 10

Figure 8: Reliability map. The blue areas represent high reliability, while the red areas

represent low reliability.

The concept of motion editing by segmenting human body into parts and combining

different parts from different motions was used by Heck et al. [9]. They treat human motion

as a combination of upper-body action and lower-body locomotion. So the body is divided

into two parts. They time-align the two target motions, and compute a rotation transformation

for the splice point to keep natural balance. For a walking motion, when left arm swings

forward, right leg should also be in front of the main body. In Figure 9, when a person carries

a heavy box using both hands, the upper-body should leans back to balance the weight of the

box.

Figure 9: When carrying a heavy box, the green motion leans back to balance the weight of

the box.

 11

3. Preprocess Phase

The purpose of this phase is to generate a parameter space for later runtime query and

joint angular adjustments. The process includes two main steps:

1. Time Alignment. Since motion data are not always well designed and captured, their

frame amount or acting speeds may not be the same. This step is to discover temporal

relations among the same style of example motions, and then they are time-warped for

better blending results.

2. Parameter Extraction and Denser Sampling. We select a representative parameter for

each different type of motion. Then various weight combinations are applied to gain more

reliable samples for parameter space construction.

The remainder of this chapter gives more detailed explanations.

3.1 Time Alignment
We start by aligning a pair of motion. The procedure is done by finding all pairs of

“similar” match-frames while keep the order in time. To quantify similarity between two

frames, we calculate Euclidean difference between corresponding joints in space domain. So

joint representation is converted into a position in world coordinate in advance. We use the

distance function proposed by Kovar et al [13] as follow:

 (1)

where ibp , and ijp , are the thi joint of the two motion frames, and T is a transformation

which rotates ijp , by θ degrees about the vertical axis and then translates it horizontally

by),(00 zx .

The transformation T is used to remove the difference of world location between the two

frames, and consider only their pose difference. There is a closed-form solution of

∑ −=
i

ijzxibzxjb pTpFFD
2

,,,,,, 00
00

min),(θθ

 12

00 ,, zxTϑ as follows:

(2)

(3)

(4)

where all barred terms are defined as ∑ =
=

n

i iiw
1

αα .

Figure 10 illustrates this process.

(a)

(b)

(c)

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+−+

−−−
=

∑
∑−

i jbjbijibijibi

i bjjbibijijibi

zxxxzzxxw
zxzxzxzxw

)()(
)()(

tan
,,,,

,,,,1θ

θθ sincos0 jjb zxxx −−=

θθ cossin0 jjb zxzz −+=

 13

Figure 10: Calculating frame distance. (a) Two motion frames differ in facing direction and

location in the world. (b) Representing two motion frames in terms of joint positions. (c)

Apply T transformation on one point cloud for pose matching with the other one.

Once the distances of every pair of frames of the two motions have been computed, a

grid graph is formed as shown in Figure 11. In this figure, the intensity of cell (x, y)

represents the distance between frame x in Motion B and frame y in Motion A. Darker cells

represent smaller distances, while lighter ones represent larger distances.

Figure11: A distance grid graph of two motions.

Upon this graph, we look for a minimum cost path starting from the lower left cell to the

upper right one. Since time goes forward continuously, the path will only go toward right or

up in direction. By this principal, we will find a continuous, and monotonically increasing

path with minimal total cost which best time-aligns the two motions. Figure 12 shows the

result.

 14

Figure 12: The path in red shows time alignment between Motion A and Motion B

The following two graphs (Figure 13, Figure 14) show two motions in original timing

and the result after time alignment.

 (a) (b)

(c)

Figure 13: Motion A (white joint) and Motion B (blue

joint) in original timing. (a) Frame 5. (b) Frame 10. (c)

Frame 15.

 15

 (a) (b)

(c)

Figure 14: Time alignment. (a) Frame 9 in Motion A

and frame 5 in Motion B. (b) Frame 16 in Motion A and

frame 10 in Motion B. (c) Frame 21 in Motion A and

frame 15 in Motion B.

Usually there are more than two motions in a motion subject. We have to align them

altogether. We select a base motion in a motion subject, and then apply the alignment process

to the rest of the entire motion subject. In our experiment, we choose the motion whose

attack target is the most general one as the base motion. For example, hit to the front and

medium in height, since it is nearly the average of all motions in the same subject. For a

punching motion set with N motions, we will get N-1 alignment paths. Figure 15 shows the

result.

 16

(a) (b)

Figure 15: Time alignment of a punching motion set. (a) Ready to attack. (b) The attack

moment.

3.2 Parameter Extraction and Denser Sampling
Now, we can form a parameter space and its possible attack region. First, we adjust the

facing direction of all motions’ ready pose to be as close as the selected base motion, since

we would like to get a parameter space for only one ready pose.

Then we pick a joint for each motion subject as the constraint parameter. Because we

focus on fighting motions, it is significant to choose the end site of the attack limb. For

punching motions, we select the end site of the right arm. For kicking motions, we select the

end site of the right leg. After that, we record their attack positions as parameters. So each

parameter represents a motion clip that attacks a certain target. These sample parameters can

form a convex-hull space. Several of them become the border vertices, others are within the

convex hull. Thus we can create reliable motions that attack the targets inside the convex hull.

But it is difficult to efficiently estimate for motion from the convex space directly due to the

 17

sparseness of the convex hull, like the one shown in Figure 7(a).

To gain accuracy, we apply a denser sampling strategy to fulfill the parameter space.

New motions are generated by linear interpolation as the following equation.

(5)

where c represents a set of blending weight.

We use a constant interval of 0.2 to make a weight group of about a thousand of weight

sets. By using these weight combinations, more motions will be created as well as their

attack positions. Extracting all parameters makes a denser space, as the figure (Figure 16)

shown below:

(a) (b)

Figure 16: Denser sampling. Each little red dot represents the motion attack to that position.

When users assign an attack position in the parameter space, a weight set is returned.

Blending sample motions using this weight set produces the desired motion. For easier

∑=
i

iinew McwM)(

 18

control, we normalize 3D parameters to a 2D plane.

Obviously, if the sample motions are not well designed and captured, the affine-sum

parameter space will be deficient. We take Figure 16(a) as an example. We do not have any

motion that punches in the upper-left direction, thus the space looks like a triangle. To our

belief, those motions should be synthesized by partial blending. So we find the largest and

the smallest values in both horizontal(x) and vertical(y) directions, and extend the possible

attack region to the bounding box of the parameter space, as shown in Figure 17. Then, we

apply the method describe in the next chapter to synthesis the desired motion.

Figure 17: The white dots represent the original attack space. We extend the space to the red

frame. The motions whose parameters are within the red frame can still be synthesized.

 19

4. Runtime Phase

The parameter space in the previous chapter is constructed by blending the whole body

at once. However, it is difficult to create motions attacking the areas that are not in the

original parameter space by using the same technique. Motion modifications are needed.

Recall that a martial art action can be regard as a combination of turning the body and

attacking at a given height. Usually the orientation of a body pose is mostly dependent on the

waist, and the attack height is dependent on the attack limb. Therefore it is plausible to create

new motions by rotating joint angles arbitrarily within their predefined limitations, or

splicing multiple body segments of different sample motions. By proper joint orientation

adjustments, a desired motion can be synthesized. When a user assigns a target parameter, the

motion is synthesized by the following approach:

1. Human Body Segmentation. We define several major adjustment joints and divide a

human body into several parts.

2. Parameter Query, Body Part Splicing, and Joint Orientation Adjustments. We query

two parameters in the original parameter space and discover their correlations to perform

reasonable motion adjustments.

3. Motion Length Rearrangement. Due to many-to-one frame matching in time alignment

step during the preprocessing phase, the total motion length is longer than the original

sample motions. We rearrange motion length to smoothen the synthesized motion.

4.1 Human Body Segmentation
There are two major types of fighting motion — punching and kicking. In general, we

define four adjustment joints and segment human body into four parts as well. Figure 18

shows the skeleton we use and how we segment the body.

 20

Figure 18: The human skeleton hierarchy model.

The four partial segments are represented in different colors. The circles are joints, and

the brown joints are the defined adjustment joints.

4.2 Parameter Query, Body Part Splicing, and Joint

Orientation Adjustments
This step is the major part of this phase. When a user assigns a parameter not in the

original space, we apply partial blending and a quick angular adjustment approach to create

the desired motion in real-time. Notice that the created motions are still based on the original

)(leftX

)(upY

)(frontZ

 21

parameter space, nevertheless, they are extrapolated by our method.

The following graph (Figure 19) shows the principal idea.

 (b)

 (a) (d)

 (c)

Figure 19: Joint angular adjustment.

A motion that punches at upper-left direction (Figure 19(a)) can be regard as:

Turn left + Punch toward up

Therefore, it can be synthesized by finding a motion that punches at the same height

(Figure 19(b)) and a motion that takes left turn with the same angular magnitude (Figure

19(c)).

According to the principal idea, we query two parameters in the original parameter

H

V

GOAL

Adjust

 22

space to achieve this purpose, as shown in Figure 20:

Figure 20: Parameter query for motion synthesis

Given a desired parameter TP , first we want a motion that hits in the same height as we

expected. We claim that the attack heights are about the same under the same y parameter, so

we query a parameter HP which is closest to TP in horizontal direction. Then we want a

motion whose pose turns the same style as the desired target. We claim a turning style is

suitable to apply to other motions with various attack height if their x parameters are the

same, so we query a parameter VP which is closest to TP in vertical direction.

Now we are going to create the desired motion based on the two queried motions.

Notice that there are significant differences in actions and the selected parameter between

punching and kicking motion, we divide them into two cases and apply different schemes.

Furthermore, we define “right arm” for punching and “right leg” for kicking as the “major

active body part”.

z Punching Motion

There is a high relation between the attack target and the orientation of chest. Imagine

H

V

T

 23

that when a person attacks toward up, his upper body would be straight. On the contrary,

when one attacks at a lower target, he may bow his upper body. So it is suitable to blend the

target motion TM using the weight set of HP , and adjust the predefined adjustment joints

of HM according to the information of VM .

We record the following information in advance:

� The orientation of “Hips” of the first frame of HM and VM .

� The orientation of “Chest” of the whole motion of HM and VM .

� The position of “RightCollar” of the whole motion of HM and VM .

� The position of “End Site” of right arm of the whole motion of HM and VM .

We need to compute several variables:

� All time “Hips” y orientation adjustment jHips .

� “Chest” y orientation adjustments for each frame][_ iYjChest .

� “RightCollar” y orientation adjustments for each frame][_ iYarjRightColl .

Since human body is a hierarchical structure, we apply hierarchical adjustments to

“Hips”, “Chest”, and “RightCollar” in order. The orientation adjustments here are specialized

in y degree of freedom, as shown in Figure 22.

 24

(a) (b)

(c) (d)

Figure 21: Hierarchical adjustments of punching motion.

 25

Figure 22: Angular difference of adjustment joints between two motions.

In Figure 21, the desired target is the dot colored in pink, the white dot represents the

intermediate result during adjustment. Figure 21(a) is the original queried HM without

adjustment. Initially, we compute jHips according to the orientation of “Hips” of the first

frame of HM and VM . However, all sample motions are aligned in facing direction of the

starting pose, this step only cause a slight adjustment. We apply jHips to create an

intermediate result, as shown in Figure 21(b). Then we treat this result as the new HM to

compute][_ iYjChest according to the orientation of “Chest” of the whole motion

sequence of HM and VM while create another intermediate result, and again treat it as the

new HM , as shown in Figure 21(c). Finally, we acquire the vector of the right arm of HM

and VM by subtracting the position of “RightCollar” from “End Site”, and compute their

angular difference in y degree of freedom as][_ iYarjRightColl , then apply the final

adjustment to create the final result shown in Figure 21(d).

It is straightforward to simply adjust the right arm, but it produces unreasonable result.

In Figure 23(a), the rotation angle of “RightCollar” exceeds the predefined human joint

yθ

H's orientation V's orientation

H's End Site V's End Site

yθ

H’s RightCollar V’s RightCollar

 26

limitation, where Figure 23(b) is our hierarchical adjustment method.

(a) (b)

Figure 23: Comparison between adjust right arm directly and hierarchical adjustment.

z Kicking Motion

Distinct from punching motion, the attack direction is only affected by “Hips” due to the

hierarchical structure of human body. As the above-mentioned procedure, there is only a little

effect on “Hips” adjustment, unnatural results could be created if using the same scheme as

punching motion. In Figure 24, the right leg kicks toward left, but opposite in facing

direction.

 27

Figure 24: Unnatural kicking result by using the adjustment scheme of punching motion.

In this case, we splice the right leg of HM and rest of other parts of VM for proper

facing direction of the whole pose. Therefore, “RightHip” is the only adjustment joint of this

type of motion. And we record the following information in advance:

� The position of “Hips” of the whole motion of HM and VM .

� The position of “RightHip” of the whole motion of HM and VM .

� The position of “RightKnee” of the whole motion of HM and VM .

We also need to compute the following variables:

� “RightHip” y orientation adjustments of each frame][_ iYjRightHip .

� “RightHip” x orientation adjustments of each frame][_ iXjRightHip .

In Figure 25(a)(c), we acquire the vectors of right leg of HM and VM by subtracting

the position of “RightHip” from “RightKnee”, then compute angular difference in y degree

of freedom as we did in right arm adjustment. After this step, the direction seems fine, but

there are gaps in height. We observed that when one kicks at a higher target, he lifts his right

hip, as shown in Figure 26. However, the hip is a critical constraint of the whole motion that

we cannot modify it through time. It is difficult to avoid foot-sliding problem if it’s not well

 28

handled. On the other hand, it may take too much computation time to adjust the whole

motion if hip adjustment through time is a must, which is against our goal of quick

adjustment in real-time.

 (a) (b)

 (c) (d)

Figure 25: Right leg orientation adjustment with extra “lift up” or “lay down” for kicking

motion.

Therefore, we compensate the gap at “RightHip” joint. We acquire hip vector by

subtracting the position of “Hips” from “RightHip”, then compute their angular differences

「in x degree of freedom」for extra][_ iXjRightHip rotation. Thus, the right leg is kicking

 29

higher if the target is high, while kicking lower if the target is low, as shown in Figure 25

(b)(d).

Figure 26: There is an angular difference in the hip vector of motions that kick differs in

height.

4.3 Motion Length Rearrangement
Figure 27 is an example of time alignment. It is obvious to observe the many-to-one

frame matching effect. It causes longer and unsmooth result. We shorten the length of the

result motion based on HM . A parameter in the original space represents a weight set of

sample motions. We find the sample motion which has the largest weight and rearrange the

result motion to its length, since HM is more likely to be similar with it than any other

sample motions. We take only one iteration of every frame to smoothen the result motion.

Figure 27: An example of time alignment.

xθ

 30

5. Experimental Results

5.1 Environment and Sample Data
Our experiments perform on a desktop with a 3.20 GHz CPU, 1.5 GB main memory,

and NVIDIA GeForce 6600 graphics card.

There are two punching motion sets and two kicking motion sets as our example data.

They are straight punch in seven directions, hook punch in nine directions, straight kick in

eight directions, side kick in eight directions. The human skeleton we use contains twenty

four joints.

5.2 Results
In this section, we present several result of all four motion sets that attack in various

directions.

 31

Figure 28: Straight punch.

 32

Figure 29: Hook punch.

 33

Figure 30: Straight kick.

 34

Figure 31: Side kick.

 35

5.3 Experimental Evaluation and Analysis
z Evaluation of difference of hit position

To evaluate the differences of hit position, we ask a user to assign twenty parameters to

each sample data sets randomly, and calculate the differences between the desired parameters

and the actual hit parameters. For an actor in 170 centimeters, the difference is measured in

centimeters.

Motion Set Sample

Numbers

Average

Horizontal

Difference

Average

Vertical

Difference

Average

Difference

Straight Punch 7 3.55 0.85 3.80

Hook Punch 9 3.61 0.51 3.69

Straight Kick 8 2.29 5.62 6.42

Side Kick 8 2.51 12.01 12.95

Table 1: Statistics of hit position difference.

Our method works well on punching motion sets, but it’s not the same as good in

kicking motion sets. Actually, we handle the problem of turning behavior better than

attacking the desired height. We will talk more in 5.4.

z Analysis of local joint angle of the spliced joint

We utilize the cross validation analysis by taking one of the sample motions away, and

forming a parameter space smaller than the original one. Then, we assign the same attack

position which is in the original space but not in the newly formed shrunk space. Thus, the

former is blended as regular blending while the later is blended and adjusted by our method.

We list several examples and illustrate their angle values.

 36

(a) (b)

Table 2: Hook punch. (a) Regular interpolation with 9 motions. (b) Partial blending with 8

motions.

Y Orientation of Chest

-30

-20

-10

0

10

20

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Z Orientation of Chest

-30

-20

-10

0

10

20

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

X Orientation of Chest

0

10

20

30

40

50

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

X Orientation of RightCollar

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Y Orientation of RightCollar

-20

-15

-10

-5

0

5

10

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Z Orientation of RightCollar

-30

-20

-10

0

10

20

30

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

 37

(a) (b)

Table 3: Hook punch. (a) Regular interpolation with 9 motions. (b) Partial blending with 8

motions.

X Orientation of Chest

0

10

20

30

40

50

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Y Orientation of Chest

-20

-15

-10

-5

0

5

10

15

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Z Orientation of Chest

-15

-10

-5

0

5

10

15

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Y Orientation of RightCollar

-20

-15

-10

-5

0

5

10

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

X Orientation of RightCollar

-6

-5

-4

-3

-2

-1

0

1

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

Z Orientation of RightCollar

-20

-10

0

10

20

30

Frame

D
eg

re
e

partial blending with 8 motions

regular interpolation with 9 motions

 38

(a) (b)

Table 4: Straight kick. (a) Regular interpolation with 8 motions. (b) Partial blending with 7

motions.

X Orientation of RightHip

-80

-60

-40

-20

0

20

Frame

D
eg

re
e

partial blending with 7 motions

regular interpolation with 8 motions

Y Orientation of RightHip

-50

-40

-30

-20

-10

0

10

20

Frame

D
eg

re
e

partial blending with 7 motions

regular interpolation with 8 motions

Z Orientation of RightHip

-40

-30

-20

-10

0

10

Frame

D
eg

re
e

partial blending with 7 motions

regular interpolation with 8 motions

 39

(a) (b)

Table 5: Straight kick. (a) Regular interpolation with 8 motions. (b) Partial blending with 7

motions.

X Orientation of RightHip

-80

-60

-40

-20

0

20

Frame

D
eg

re
e

partial blending with 7 motions

regular interpolation with 8 motions

Y Orientation of RightHip

-60

-40

-20

0

20

Frame

D
eg

re
e

partial blending with 7 motions

regular interpolation with 8 motions

Z Orientation of RightHip

-60

-40

-20

0

20

Frame

D
eg

re
e

partial blending with 7 motions

regular interpolation with 8 motions

 40

 In punching motion examples, we show the local angular values of “Chest” and

“RightCollar”. The temporal trends of all values are similar except the medium part of y

orientation of “Chest”. The main reason is that we focus on adjusting the upper body of

punching motion, there are only slight adjustments at “Hips”. The insufficiency of “Hips”

orientation is mostly compensated by “RightCollar”, thus in these two examples, more right

turns are taken in that temporal fragment.

 In kicking motion examples, we show the local angular values of “RightHip”. It is

apparent that the x orientations are shifted down to lift up the right leg additionally. The

temporal trends of the medium parts of y and z orientation are much more meaningless due to

the large affine transformation differences between global coordinate and the local coordinate

of “RightHip” in y and z orientations. However, our adjustments are applied globally.

5.4 Discussion
Our method works better on punching motion sets because they are less affected by the

lower body part, and there are several joints between pelvis and the right arm for little by

little adjustment. We can change attacking directions by twisting the waist and avoid the

problem of root modification.

On the contrary, there is no intermediate joint between pelvis and the right leg, the only

joint we can adjust is the “RightHip”. It causes discontinuities in some cases. Imperfect

results happen mostly in cases of lifting the right leg up additionally. Our compensation

method is not satisfactory to all conditions. The best way to solve this problem is to adjust

the hip vector directly, that is, modify “Hips” directly.

However, the pelvis is a critical constraint of motion adjustment. It is the origin of the

 41

human body hierarchy structure. Any change on it will affect the whole body. The most

evident issue is the footskating problem. Though it can be solved by constraining the left foot,

the position of the body may change. To smoothen the whole motion sequence, more

adjustment has to be put into practice. The computation time is inestimable and real-time

requirement cannot be guaranteed.

 42

6. Conclusion and Future Work

6.1 Conclusion
An efficient example-based method for controlling martial-art motions is presented in

this thesis. By parameterizing motion, users could control and produce a motion by simply

assign a parameter in the space. By segmenting a human body into parts and apply

adjustments to sliced joints individually, motions are extrapolated to new space, and thus

enrich the usage of the original imperfect captured data. The adjustment is fast enough to

produce new motions for real-time fighting game applications. The proposed approach can

deal with not only martial-art motions but also similar motions which can be parameterized.

6.2 Future Work
There are several issues that can be further improved. Our parameter space is

downscaled to a 2D plane for simplification. To gain accuracy of the attack position, 3D

parameterization may be put into practice. By keeping track of the attack path of a motion

rather than a single attack point, a 3D parameter space can be constructed for more

possibility of attack positions. Our method does not always conform to kinesiology since it

emphasizes more on real-time applications. Physics-based or IK-based approach can be

applied for higher motion rationality.

 43

7. Reference

[1] Al-Ghreimil N., Hahn J. K. 2003. Combined Partial Motion Clips. In WSCG. SHORT

PAPERS proceedings, The 11th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2003.

[2] Arikan O., and Forsyth D. 2002. Interactive Motion Generation From Examples. ACM

Transactions on Graphics, 21, 3, 483-490.

[3] Arikan O., Forsyth D. A., and O’Brien J. 2003. Motion synthesis from annotations. ACM

Transactions on Graphics 22, 3, 402–408.

[4] Arikan O., Ikemoto L., and Forsyth D. A., 2006. Knowing When to Put Your Foot Down.

In In ACM SIGGRAPH Symposium on Interactive 3D Graphics 2006, 49-53.

[5] Glardon P., Boulic R., and Thalmann D. 2004. A Coherent Locomotion Engine

Extrapolating Beyond Experimental Data. In Computer Animation & Social Agents
2004(CASA), 73-84.

[6] Gleicher M. 1998. Retargeting Motion to New Characters. In Proceedings Of ACM

SIGGRAPH 98, Annual Conference Series, ACM SIGGRAPH, 33-42.

[7] Gleicher M., Shin H. J., Kovar L., and Jepsen A. 2003. Snap-Together Motion:

Assembling Run-Time Animations. In In ACM SIGGRAPH Symposium on interactive 3D
Graphics 2003, 181-188.

[8] Grochow K., Martin S. L., Hertzmann A., and Popovic Z. 2004 Style-Based Inverse

Kinematics. ACM Transactions on Graphics 23, 3, 522–531.

[9] Heck R., Kovar L., and Gleicher M. 2006. Splicing Upper-Body Actions with

Locomotion. Computer Graphics Forum(Eurographics 2006 Proceedings)25, 3,
459-466.

[10] Ikemoto L., and Forsyth D. A. 2004. Enriching a Motion Collection by Transplanting

Limbs. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 99-108.

 44

[11] Kovar L., Gleicher M. 2003. Flexible Automatic Motion Blending with Registration
Curves. In Proceedings Of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 214-224.

[12] Kovar L., Gleicher M. 2004. Automated Extraction and Parameterization of Motions in

Large Data Sets. ACM Transactions on Graphics 23, 3, 559–568.

[13] Kovar L., Gleicher M., and Pighin F. 2002. Motion Graphs. ACM Transactions on

Graphics 21, 3, 473-482.

[14] Mukai T., Kuriyama S. 2005. Geostatistical Motion Interpolation. ACM Transactions on

Graphics 24, 3, 1062-1070.

[15] Zordan V. B., Majkowska A., Chiu B., Fast M. 2005.Dynamic Response for Motion

Capture Animation. ACM Transactions on Graphics 24, 3, 697-701.

