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Parameterized Motion Interpolation and Extrapolation Using

Partial Blending

Student: Yan-Ju Chen Advisor: Dr. I-Chen Lin

Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

Human motion capture is. one of .the most plausible techniques to acquire realistic
animation data. However, in interactive applications, e.g. TV games, how to interactively and
accurately control the captured data is still a troublesome issue. In this thesis, we present a
blending method to extend the possibility of human actions from imperfect motion data. We
first align example motions in time and adjust their facing directions to build a initial
constraint parameter space. To more efficiently utilize the motion data, we segment human
body into several parts. After angular adjustments to each body part individually, more
various but natural-looking motion can be synthesized by splicing all the segments back.
With our method, the range of the space is extended. Users can simply assign the normalized
position in the parameter space, and get a motion that hit the desired target. The proposed
method can provide an accurate motion prediction and apply to fighting games with limited
motion data.

Keyword: motion capture, motion synthesis, partial blending
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1.Introduction

1.1 Motivation

Character animation has been widely used in real world, especially in games, cartoon,
and movie industry. To acquire accurate, realistic, and natural-looking animation data, motion
capture is one of the most satisfactory techniques used in recent years. To capture one’s
action, a common approach, optic mocap, is to place numbers of sensors on an actor, usually
at important joint positions. When the actor performs actions, several calibrated cameras
track these sensors to estimate joint positions and orientations. After data cleaning and
correction by the artist manually, clean motion data are produced. With motion capture, one
may get almost any kind of motion that the actor is able to perform. For instance, it is used to
acquire complex martial art motions in_most-modern fighting games. However, if all of the
motion resources are extracted by motion capture,”the cost will be expensive, and they
require large storage. Furthermore, motion-data itself also lack flexibility. So how to enrich
the usage of the original captured data becomes a significant issue. And several motion

editing approaches has been proposed.

One of the most known approaches to synthesize motions is motion blending. Suppose
we have a set of “logically similar” motion data, which means the actor performs the same
action. For example, punching motions in the same style but different in attack directions.
Once these motions are time-warped together, a new motion can be constructed by a weight
combination of the whole data set. After applying a denser sampling, that is, using more
pre-designed weight combination sets to blend more motions and extract their parameters, a
parameterized motion space can be established. Users may control the parameter in the space

freely to produce desired motions.



Though the method is quite useful, the range of the parameter space is restricted by the
quality and quantity of the original motion data. The range of plausible motion we can
produce is also limited within the affine summation space. To build a complete shape of
parameter space, a well-designed motion capture procedure has to be accomplished, and
sufficient motion clips with the same style are also needed. Suppose we want to construct a
parameter space for a set of hook-punch motions. The actor’s facing directions have to be the
same, and their ready poses have to be as similar as possible. Then, the actor tries to
hook-punch toward various direction with the same ready pose in order to enlarge the
parameter space. However, the database may not always be “good” enough for us to build

desired space. Usually there are defects.

Our goal is to utilize limited:motion captured data but create motions that are able to
attack a variety of directions and positions. Since.we focus on interactive usages, especially
in fighting games, the process-should be-done in real-time. To achieve this purpose, we
proposed an example-based method to.extend defective parameter space established from

imperfect motion data set.

From our observation, we found that a fighting action can be regarded as combination of
two behaviors: waist turning from an initial orientation to a proper direction and arm-or-leg
attack at a given height. That is, we no longer treat human body as just one single unit. By
contrast, we segment a human body into several parts, and apply blending techniques to those
parts individually. Given sets of fighting actions, we separate them into different categories
according to the body part that performs the attack. So there will be two main types of
motions — punching motion and kicking motion. Then, we establish a defective parameter
space using these data, and extend it to a possible partial blending space. When a user assigns

a desired attack position which is not within the original space, we query two parameters in
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the original space. One is used to decide the turning part; the other one is used to decide the
attack part. Once we derive the correlations between the two motions, joint orientation
adjustments are applied to each body part so as to make the actor hit the desired target as
close as possible. The body parts are then spliced together to get the final result — a new
motion attacking a position not in the original parameter space. Due to its simple and
interactive control, it can be applied to advanced game controls easily. The proposed
blending by body parts allows motions to be extrapolated to new expanded region. While the

attack region was known in advance, motion prediction is another evident application.

1.20verview

When we get a set of sample motions with a similar action but different in direction, and
plan to synthesis motions with more, various directions, we need to establish an initial
parameter space for the full-body.samplemotions in.advance. The parameters are received by
interpolation among the sample motions. To get good blending results, we time-align the
motions to the same length for action-synchronization. The procedure is described in Chapter

3.

After the space is established and extended, a user can assign a position in the extended
space to produce a new motion. If it is not in the original space, partial blending is put into
practice. Our system will query two parameters in the original space, and apply angular
adjustments dependent on the motions they represent. One stands for the orientation
movement, the other one is for the attack height. The result motion is then resized in length

for proper timing. More detail is described in Chapter 4.



The following graph (Figure 1) shows the whole framework:

Input: Motion Data Sets

J

Preprocess Phase:
Motion Parameterization

U

Parameter Space of The

Motion Set /

Users Assign An
Attack Position

Runtime Phase:
Motion Tuning

U

Output: Result Motion

Figure 1: Flowchart of the whole framework.



There are further detailed steps in the preprocess phase and the runtime phase.

Following are two graphs (Figure 2, Figure 3) that show each step in order:

Calculate frame distances frame by frame
between motions

l

Time-align all motions of the same style

l

Extract motion parameters and normalize
parameter space

l

Determine attack region

Figure 2: Detailed steps in the preprocess phase.

Segment human body into parts

!

Query parameters in the original
parameter space

l

Multiple angular adjustments

l

Rearrange motion length

Figure 3: Detailed steps in the runtime phase.



2.Related Work

There are various editing or synthesis schemes to modify captured data for different
purposes. Gleicher [6] proposed a method called “retargeting” to map a motion from the
original skeleton to another one but keep significant constraints, as shown in Figure 4. For a
walking motion, the feet must step right “on” the ground but not penetrate it or float up, and

each footstep also needs to locate on the same spot.

=1
"1

Figure 4: Motion retargeting. (a)'._Orig[in@I rﬁoti‘on". (bj Retargeting to a smaller-scale skeleton.

(c) Retargeting to a longer body -\")v'fith éﬁbrtéf Ilmbs

Another mechanism is called “transition”. This technique smoothly connects the end of
one motion clip to the start of another in time domain to generate a longer continuous motion.
In practice, transition does not always happen on either side of a motion but may take place
on an arbitrary frame in a motion clip. The critical issue is to decide the best transition point
which results in a smooth transition. It’s reasonable to assume that the more similar the two
frames are, the more seamless transition becomes. Kovar et al. [13] proposed a distance
metric to quantify the “similarity” of two poses and using a rigid transformation function to
adjust one pose, so it will become the closest match for the target one. Then a graph structure
was designed to record the transition nodes and motions that could be smoothly transited.

Further application falls on applying transition to a desired purpose like path fitting,



locomoting on a designed path, as shown in Figure 5. Gleicher et al. [7] rearranged the graph
structure by collecting similar nodes into a hub node, and varied the possibility of transition.
The additional process to accomplish transition could be easily performed by applying
transformations among the entrance, exit, and the “common pose”, which is the

representative of the hub node.
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Figure 5: Motion transitions apply to path. fitting. The motions are generated to fit a word

“motion”.

To attain a smooth transition, an: intuitive interpolation scheme is using a weight set of
(0.5, 0.5) on both frames of the two motions at the transition point. Moreover, if we expand
this interpolation to a few more frames, and apply a weight function from (1, 0) to (0, 1)
gradually, we will get a smoother result. While extending this idea to the whole motion clip,
the procedure becomes the foundation of “blending”. The main issue now turns to not only
find the most similar poses of two motions but to figure out the total alignment of multiple

motion clips.

Kovar and Gleicher [11] employed the distance cost metric proposed earlier on each pair
of motions to form a 2D grid graph. This graph shows the similarity relations between all
pair of frames of the two motions. Then, they find a minimal-cost connecting path that best

aligns these two motions in time domain, as shown in Figure 6. After all paths were



combined together, blending can be applied to make new motions.

Walking

Sneaking

Figure 6: Time alignment path. Play motions according to the indexes of the alignment path

makes these two motions do actions simultaneously.
: ERQ, %
| “ -

They [12] use this idea tb_ "‘clas‘s‘ify—mgﬁi_ons;intio different categories. Starting with a
random sample motion, and appl)} the "methodto ‘Se"a‘lrch other similar motions in the database
as the outcome of classification. They also proposed an approach to directly control the
blended motions. To achieve this goal, they defined and extracted parameters from a set of
motion that best represent the type of those motions. For a punching motion set, the wrist
joint might be the defined parameter, and the punching positions were extracted. For a
walking cycle motion set, the root joint might be the defined parameter, and the vertical
projections of final root positions were extracted. After denser sampling, more parameters
will be produced, as shown in Figure 7. Collecting these parameters together forms a discrete
parameterized motion space. Users can simply assign a location in the space, and the system
will respond a set of blending weights that blend the sample motions most closely to the

assigned location.



Before Sampling After Sampling
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i
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u W

(a) (b)
Figure 7: (a) Before sampling. There is a significant error between the desired location and
the result motion. (b) After denser sampling. More parameters are produced, and more

accuracy is provided.

Other research uses various approéches to-achieve motion interpolation. Grochow et al.
[8] presented an Inverse Kinematics (IKj system and a learning mechanism for motion data
training. New motions can be éditedsby-controlling a{ few constraint parameters. Mukai and
Kuriyama [14] proposed a statistical approach to motion prediction and a modified Radial
Basis Function (RBF)-like distribution function to construct a smooth parameter surface. And
provided a way to estimate the reliability of the predicted motion, as shown in Figure 8.
Glardon et al. [5] translated different speeds and types of locomotion data to a new space and
applied hierarchical Principal Component Analysis (PCA) for data dimension reduction and
style classification. In the hierarchical PC structure, they discovered the relationship between
the principal component and its corresponding speed value. Therefore, interpolation as well
as little extrapolation of the speed value can be performed on this peculiar space to get new

PC coefficient, so as to get the edited motion.



—

Figure 8: Reliability map. The blue areas represent high reliability, while the red areas

represent low reliability.

The concept of motion editing by segmenting human body into parts and combining
different parts from different motionswa‘rs'-uééd--by Heck et al. [9]. They treat human motion
as a combination of upper- body actlon aﬁd Iower-body locomotion. So the body is divided

into two parts. They time-align 1 the tw<p target motlons', and compute a rotation transformation

for the splice point to keep natural balance For a Walklng motion, when left arm swings

forward, right leg should also be in front of ”thé main body. In Figure 9, when a person carries

a heavy box using both hands, the upper-body should leans back to balance the weight of the

\
{

box.

Figure 9: When carrying a heavy box, the green motion leans back to balance the weight of

the box.
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3.Preprocess Phase

The purpose of this phase is to generate a parameter space for later runtime query and
joint angular adjustments. The process includes two main steps:

1. Time Alignment. Since motion data are not always well designed and captured, their
frame amount or acting speeds may not be the same. This step is to discover temporal
relations among the same style of example motions, and then they are time-warped for
better blending results.

2. Parameter Extraction and Denser Sampling. We select a representative parameter for
each different type of motion. Then various weight combinations are applied to gain more
reliable samples for parameter space construction.

The remainder of this chapter gives:more detailed explanations.

3.1 Time Alignment
We start by aligning a pair of ‘motion.=Fhe procedure is done by finding all pairs of
“similar” match-frames while keep the order in time. To quantify similarity between two
frames, we calculate Euclidean difference between corresponding joints in space domain. So
joint representation is converted into a position in world coordinate in advance. We use the
distance function proposed by Kovar et al [13] as follow:
D(F,, F)) = min [Py, =Tz, P (2)

where p,; and p,; arethe i" joint of the two motion frames, and T is a transformation

which rotates p;; by & degrees about the vertical axis and then translates it horizontally

by (X,,2p) -

The transformation T is used to remove the difference of world location between the two

frames, and consider only their pose difference. There is a closed-form solution of
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Ty, asfollows:

0 = tan Ziwi(xb,izj,i - Xj,izb,i)_(X_bZ_j_X_jZ) (2
ziwi(xb,ixj,i +2,;25) = (X X + %, Z5)

X, = X, = X; COS @ — Z, sin & (3)

Zy=12,+X,;SiN0—2,C080 (4)

where all barred terms are defined as « = Z:leiai .

Figure 10 illustrates this process.

(a)
3 Jj 1
® ) — e
@ O - o o
@ o o
(@) &
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Figure 10: Calculating frame distance. (a) Two motion frames differ in facing direction and
location in the world. (b) Representing two motion frames in terms of joint positions. (c)

Apply T transformation on one point cloud for pose matching with the other one.

Once the distances of every pair of frames of the two motions have been computed, a
grid graph is formed as shown in Figure 11. In this figure, the intensity of cell (X, y)
represents the distance between frame x in Motion B and frame y in Motion A. Darker cells

represent smaller distances, while lighter ones represent larger distances.

A

Motion

Motion B

Figurell: A distance grid graph of two motions.

Upon this graph, we look for a minimum cost path starting from the lower left cell to the
upper right one. Since time goes forward continuously, the path will only go toward right or
up in direction. By this principal, we will find a continuous, and monotonically increasing
path with minimal total cost which best time-aligns the two motions. Figure 12 shows the

result.

13



A

Motion

Motion B

Figure 12: The path in red shows time alignment between Motion A and Motion B

The following two graphs (Figure 13, Figure 14) show two motions in original timing

and the result after time alignment.

(b)

Figure 13: Motion A (white joint) and Motion B (blue
joint) in original timing. (a) Frame 5. (b) Frame 10. (c)

Frame 15.

14
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Figure 143 Time alignment. (a) Frame 9 in Motion A
and frame 5.in Motion B. (b) Frame 16 in Motion A and
frame 10 in"Mation B. (c) Frame 21 in Motion A and

frame 15 in.Motion B.

Usually there are more than two motions in a motion subject. We have to align them
altogether. We select a base motion in a motion subject, and then apply the alignment process
to the rest of the entire motion subject. In our experiment, we choose the motion whose
attack target is the most general one as the base motion. For example, hit to the front and
medium in height, since it is nearly the average of all motions in the same subject. For a
punching motion set with N motions, we will get N-1 alignment paths. Figure 15 shows the

result.

15



(b)

Figure 15: Time alignment of a punching motion set. (a) Ready to attack. (b) The attack

moment.

3.2Parameter Extraction and Denser Sampling

Now, we can form a parameter space‘and-its possible attack region. First, we adjust the
facing direction of all motions’ ready pose to'be as close as the selected base motion, since

we would like to get a parameter space for only one ready pose.

Then we pick a joint for each motion subject as the constraint parameter. Because we
focus on fighting motions, it is significant to choose the end site of the attack limb. For
punching motions, we select the end site of the right arm. For kicking motions, we select the
end site of the right leg. After that, we record their attack positions as parameters. So each
parameter represents a motion clip that attacks a certain target. These sample parameters can
form a convex-hull space. Several of them become the border vertices, others are within the
convex hull. Thus we can create reliable motions that attack the targets inside the convex hull.

But it is difficult to efficiently estimate for motion from the convex space directly due to the

16



sparseness of the convex hull, like the one shown in Figure 7(a).

To gain accuracy, we apply a denser sampling strategy to fulfill the parameter space.

New motions are generated by linear interpolation as the following equation.

I\/lnew = Zwi (C)Mi (5)

where ¢ represents a set of blending weight.

We use a constant interval of 0.2 to make a weight group of about a thousand of weight
sets. By using these weight combinations, more motions will be created as well as their

attack positions. Extracting all parameters makes a denser space, as the figure (Figure 16)

shown below:

(b)

Figure 16: Denser sampling. Each little red dot represents the motion attack to that position.

When users assign an attack position in the parameter space, a weight set is returned.

Blending sample motions using this weight set produces the desired motion. For easier

17



control, we normalize 3D parameters to a 2D plane.

Obviously, if the sample motions are not well designed and captured, the affine-sum
parameter space will be deficient. We take Figure 16(a) as an example. We do not have any
motion that punches in the upper-left direction, thus the space looks like a triangle. To our
belief, those motions should be synthesized by partial blending. So we find the largest and
the smallest values in both horizontal(x) and vertical(y) directions, and extend the possible

attack region to the bounding box of the parameter space, as shown in Figure 17. Then, we

apply the method describe in the next chapter to synthesis the desired motion.

Figure 17: The white dots represent the original attack space. We extend the space to the red

frame. The motions whose parameters are within the red frame can still be synthesized.

18



4.Runtime Phase

The parameter space in the previous chapter is constructed by blending the whole body
at once. However, it is difficult to create motions attacking the areas that are not in the

original parameter space by using the same technique. Motion modifications are needed.

Recall that a martial art action can be regard as a combination of turning the body and
attacking at a given height. Usually the orientation of a body pose is mostly dependent on the
waist, and the attack height is dependent on the attack limb. Therefore it is plausible to create
new motions by rotating joint angles arbitrarily within their predefined limitations, or
splicing multiple body segments of different sample motions. By proper joint orientation
adjustments, a desired motion can.be synthesized:"When a user assigns a target parameter, the
motion is synthesized by the folowing approach:

1. Human Body Segmentation. We define-several major adjustment joints and divide a
human body into several parts.

2. Parameter Query, Body Part Splicing, and Joint Orientation Adjustments. We query
two parameters in the original parameter space and discover their correlations to perform
reasonable motion adjustments.

3. Motion Length Rearrangement. Due to many-to-one frame matching in time alignment
step during the preprocessing phase, the total motion length is longer than the original

sample motions. We rearrange motion length to smoothen the synthesized motion.

4.1Human Body Segmentation

There are two major types of fighting motion — punching and kicking. In general, we
define four adjustment joints and segment human body into four parts as well. Figure 18

shows the skeleton we use and how we segment the body.
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End Site

Head

Eight3honlder Heck LeftCollar  LeftShoulder

LeftEIhow

RightElhow

RightWrist LeftWrist

End Site End Site

Leftnee

RightEnes

Y (up)
Righthnkle
X (left)

End Zite
Z (front)

Figure 18: The human skeleton hierarchy model.

The four partial segments are represented in different colors. The circles are joints, and

the brown joints are the defined adjustment joints.

4.2Parameter Query, Body Part Splicing, and Joint

Orientation Adjustments

This step is the major part of this phase. When a user assigns a parameter not in the
original space, we apply partial blending and a quick angular adjustment approach to create

the desired motion in real-time. Notice that the created motions are still based on the original

20



parameter space, nevertheless, they are extrapolated by our method.

The following graph (Figure 19) shows the principal idea.

H

GOAL >

(b)
= \/

(@) (d)

(©)

Figure 19: Joint angular adjustment.

A motion that punches at upper-left direction (Figure 19(a)) can be regard as:
Turn left + Punch toward up
Therefore, it can be synthesized by finding a motion that punches at the same height
(Figure 19(b)) and a motion that takes left turn with the same angular magnitude (Figure

19(c)).

According to the principal idea, we query two parameters in the original parameter

21



space to achieve this purpose, as shown in Figure 20:

L T /desira:l attack target

N\

searched parameters
Figure 20: Parameter query for motion synthesis

Given a desired parameter Py flrst we"wa"nt:a motion that hits in the same height as we
expected. We claim that the attac‘:‘k‘ heightlé a;rena"bout fhe same under the same y parameter, so
we query a parameter P, Whigh is ‘Clnqses’t‘ to PT“ m horizontal direction. Then we want a
motion whose pose turns the safnestyle as-the ‘desired target. We claim a turning style is

suitable to apply to other motions with various attack height if their x parameters are the

same, so we query a parameter R, which isclosestto P, in vertical direction.

Now we are going to create the desired motion based on the two queried motions.
Notice that there are significant differences in actions and the selected parameter between
punching and kicking motion, we divide them into two cases and apply different schemes.
Furthermore, we define “right arm” for punching and “right leg” for kicking as the “major

active body part”.

® Punching Motion

There is a high relation between the attack target and the orientation of chest. Imagine
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that when a person attacks toward up, his upper body would be straight. On the contrary,
when one attacks at a lower target, he may bow his upper body. So it is suitable to blend the
target motion M using the weight set of P, , and adjust the predefined adjustment joints
of M, according to the information of M, .

We record the following information in advance:

B The orientation of “Hips” of the first frame of M, and M, .

B The orientation of “Chest” of the whole motion of M, and M, .

B The position of “RightCollar” of the whole motion of M, and M, .

B The position of “End Site” of right arm of the whole motion of M, and M, .

We need to compute several variables:

B All time “Hips” y orientation adjustment jHips.

B “Chest” y orientation adjustments for each frame jChest _Y[i].

B “RightCollar” y orientation adjustments for-each frame jRightCollar _Y[i].

Since human body is a hierarchical structure, we apply hierarchical adjustments to
“Hips”, “Chest”, and “RightCollar” in order. The orientation adjustments here are specialized

in 'y degree of freedom, as shown in Figure 22.
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Figure 21: Hierarchical adjustments of punching motion.
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Figure 22: Angular difference of adjustment joints between two motions.

In Figure 21, the desired target is, the dot colored in pink, the white dot represents the
intermediate result during adjustment. Figure. 21(a) is the original queried M, without
adjustment. Initially, we compute * jHips according ;o the orientation of “Hips” of the first
frame of M, and M, . However, all. sample motions are aligned in facing direction of the
starting pose, this step only cause “a slight “adjustment. We apply jHips to create an
intermediate result, as shown in Figure 21(b). Then we treat this result as the new M, to
compute jChest Y[i] according to the orientation of “Chest” of the whole motion
sequence of M, and M, while create another intermediate result, and again treat it as the
new M/, as shown in Figure 21(c). Finally, we acquire the vector of the right arm of M,
and M, by subtracting the position of “RightCollar” from “End Site”, and compute their
angular difference in y degree of freedom as jRightCollar _Y[i], then apply the final

adjustment to create the final result shown in Figure 21(d).

It is straightforward to simply adjust the right arm, but it produces unreasonable result.

In Figure 23(a), the rotation angle of “RightCollar” exceeds the predefined human joint
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limitation, where Figure 23(b) is our hierarchical adjustment method.

(a) (b)

Figure 23: Comparison between adjust right arm directly and hierarchical adjustment.

® Kicking Motion

Distinct from punching motion, the attack direction is only affected by “Hips” due to the
hierarchical structure of human body. As the above-mentioned procedure, there is only a little
effect on “Hips” adjustment, unnatural results could be created if using the same scheme as
punching motion. In Figure 24, the right leg kicks toward left, but opposite in facing

direction.
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Figure 24: Unnatural kicking result by using the adjustment scheme of punching motion.

In this case, we splice the right leg of M, and rest of other parts of M, for proper
facing direction of the whole pose. Therefore, “RightHip” is the only adjustment joint of this
type of motion. And we record the following,information in advance:

B The position of “Hips” of the whole motion-of M,, and M, .

B The position of “RightHip” of the whole motion of M, and M, .

B The position of “RightKnee” of the whole motion of M, and M, .

We also need to compute the following variables:

B “RightHip” y orientation adjustments of each frame jRightHip _Y[i].

B “RightHip” x orientation adjustments of each frame jRightHip _ X[i].

In Figure 25(a)(c), we acquire the vectors of right leg of M,, and M, by subtracting
the position of “RightHip” from “RightKnee”, then compute angular difference in y degree
of freedom as we did in right arm adjustment. After this step, the direction seems fine, but
there are gaps in height. We observed that when one kicks at a higher target, he lifts his right
hip, as shown in Figure 26. However, the hip is a critical constraint of the whole motion that

we cannot modify it through time. It is difficult to avoid foot-sliding problem if it’s not well
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handled. On the other hand, it may take too much computation time to adjust the whole

motion if hip adjustment through time is a must, which is against our goal of quick

adjustment in real-time.

(@) (b)

(©) (d)

Figure 25: Right leg orientation adjustment with extra “lift up” or “lay down” for kicking

motion.

Therefore, we compensate the gap at “RightHip” joint. We acquire hip vector by
subtracting the position of “Hips” from “RightHip”, then compute their angular differences
"in x degree of freedom | for extra jRightHip _ X[i] rotation. Thus, the right leg is kicking
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higher if the target is high, while kicking lower if the target is low, as shown in Figure 25

(b)(d).

Figure 26: There is an angular difference in the hip vector of motions that kick differs in

height.

4.3Motion Length Rearrangement

Figure 27 is an example of time“alignment. It is obvious to observe the many-to-one
frame matching effect. It causes longer and unsmooth result. We shorten the length of the
result motion based on M, . A parameter in the original space represents a weight set of
sample motions. We find the sample motion which has the largest weight and rearrange the
result motion to its length, since M, is more likely to be similar with it than any other

sample motions. We take only one iteration of every frame to smoothen the result motion.

185 1111 47 5 18
18512 11 4 7 5 18
11 6 13 12 5 8 6 11
11 713125 8 6 11
12 8 14 12 6 9 7 12

Figure 27: An example of time alignment.
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5.Experimental Results

5.1Environment and Sample Data

Our experiments perform on a desktop with a 3.20 GHz CPU, 1.5 GB main memory,

and NVIDIA GeForce 6600 graphics card.

There are two punching motion sets and two kicking motion sets as our example data.
They are straight punch in seven directions, hook punch in nine directions, straight kick in
eight directions, side kick in eight directions. The human skeleton we use contains twenty

four joints.

5.2Results

In this section, we present:several result.of all. four motion sets that attack in various

directions.
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Figure 28: Straight punch.
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Figure 29: Hook punch.
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Figure 30: Straight kick.
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Figure 31: Side kick.
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5.3Experimental Evaluation and Analysis

® Evaluation of difference of hit position

To evaluate the differences of hit position, we ask a user to assign twenty parameters to
each sample data sets randomly, and calculate the differences between the desired parameters
and the actual hit parameters. For an actor in 170 centimeters, the difference is measured in

centimeters.

Motion Set Sample Average Average Average
Numbers Horizontal Vertical Difference
Difference Difference
Straight Punch 7 3.55 0.85 3.80
Hook Punch 9 3.61 0.51 3.69
Straight Kick 8 2.29 5.62 6.42
Side Kick 8 2.51 12.01 12.95

Table 1: Statistics of hit position difference.

Our method works well on punching motion sets, but it’s not the same as good in
kicking motion sets. Actually, we handle the problem of turning behavior better than
attacking the desired height. We will talk more in 5.4.
® Analysis of local joint angle of the spliced joint

We utilize the cross validation analysis by taking one of the sample motions away, and
forming a parameter space smaller than the original one. Then, we assign the same attack
position which is in the original space but not in the newly formed shrunk space. Thus, the
former is blended as regular blending while the later is blended and adjusted by our method.

We list several examples and illustrate their angle values.
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(a)

(b)

X Orientation of Chest

partial blending with 8 motions

—reonlar interpolation with 9 motions
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Frame
Y Orientation of Chest
""" partial blending with 8 motions
— reoular interpolation with 9 motions
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5 = Y A
A -10 | ’
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20 F M
-30
Frame
Z Orientation of Chest
""" partial blending with 8 motions
—reoular interpolation with 9 motions
8
&h
b
a

Frame

X Orientation of RightCollar

partial blending with 8 motions

—regular interpolation with 9 motions

o
2]
&
&
a
Frame
Y Orientation of RightCollar
""" partial blending with 8 motions
C—egular interpolation with 9 motions
10
5
) ' (i S
2 SF :
a N
-10 F -
1y
15 X
-20
Frame
7 Orientation of RightCollar
""" partial blending with 8 motions
—eaular interpolation with 9 motions
30
2
&
A

Frame

Table 2: Hook punch. (a) Regular interpolation with 9 motions. (b) Partial blending with 8

motions.
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(a)

(b)

X Orientation of Chest

partial blending with 8 motions

—reoular interpolation with 9 motions

X Orientation of RightCollar

partial blending with 8 motions

regular interpolation with 9 motions

Frame

Table 3: Hook punch. (a) Regular interpolation with 9 motions. (b) Partial blending with 8

motions.
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(a) (b)

X Orientation of RightHip

----- partial blending with 7 motions

regular interpolation with 8 motions

8
)
&)
[
Y Orientation of RightHip
""" partial blending with 7 motions
= regular interpolation with 8 motions
20
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0 [eessses - = g e 3 = 2
© D N\ = 9 ‘
2 N\ |
A 20 | .
30 F )
40 F i
7 Orientation of RightHip Frame
""" partial blending with 7 motions
= regular interpolation with 8 motions
10

Degree

Frame

Table 4: Straight kick. (a) Regular interpolation with 8 motions. (b) Partial blending with 7
motions.
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(a) (b)

X Orientation of RightHip

----- partial blending with 7 motions

regular interpolation with 8 motions

Degree

80 Y Orientation of RightHip
Frame
""" partial blending with 7 motions
= regular interpolation with 8 motions
20
0 =
3
5 20
A
40 |
-60
Z Orientation of RightHip Frame

----- partial blending with 7 motions

o= regular interpolation with 8 motions

Frame

Table 5: Straight kick. (a) Regular interpolation with 8 motions. (b) Partial blending with 7

motions.
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In punching motion examples, we show the local angular values of “Chest” and
“RightCollar”. The temporal trends of all values are similar except the medium part of y
orientation of “Chest”. The main reason is that we focus on adjusting the upper body of
punching motion, there are only slight adjustments at “Hips”. The insufficiency of “Hips”
orientation is mostly compensated by “RightCollar”, thus in these two examples, more right

turns are taken in that temporal fragment.

In kicking motion examples, we show the local angular values of “RightHip”. It is
apparent that the x orientations are shifted down to lift up the right leg additionally. The
temporal trends of the medium parts of y and z orientation are much more meaningless due to
the large affine transformation differences between global coordinate and the local coordinate

of “RightHip” in y and z orientations. However, our adjustments are applied globally.

5.4Discussion

Our method works better on punching-motion sets because they are less affected by the
lower body part, and there are several joints ‘between pelvis and the right arm for little by
little adjustment. We can change attacking directions by twisting the waist and avoid the

problem of root modification.

On the contrary, there is no intermediate joint between pelvis and the right leg, the only
joint we can adjust is the “RightHip”. It causes discontinuities in some cases. Imperfect
results happen mostly in cases of lifting the right leg up additionally. Our compensation
method is not satisfactory to all conditions. The best way to solve this problem is to adjust

the hip vector directly, that is, modify “Hips” directly.

However, the pelvis is a critical constraint of motion adjustment. It is the origin of the
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human body hierarchy structure. Any change on it will affect the whole body. The most
evident issue is the footskating problem. Though it can be solved by constraining the left foot,
the position of the body may change. To smoothen the whole motion sequence, more
adjustment has to be put into practice. The computation time is inestimable and real-time

requirement cannot be guaranteed.
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6.Conclusion and Future Work

6.1 Conclusion

An efficient example-based method for controlling martial-art motions is presented in
this thesis. By parameterizing motion, users could control and produce a motion by simply
assign a parameter in the space. By segmenting a human body into parts and apply
adjustments to sliced joints individually, motions are extrapolated to new space, and thus
enrich the usage of the original imperfect captured data. The adjustment is fast enough to
produce new motions for real-time fighting game applications. The proposed approach can

deal with not only martial-art motions but also similar motions which can be parameterized.

6.2 Future Work

There are several issues:that camn be  further improved. Our parameter space is
downscaled to a 2D plane for:simplification. To gain accuracy of the attack position, 3D
parameterization may be put into-practice. By keeping track of the attack path of a motion
rather than a single attack point, a 3D parameter space can be constructed for more
possibility of attack positions. Our method does not always conform to kinesiology since it
emphasizes more on real-time applications. Physics-based or IK-based approach can be

applied for higher motion rationality.
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