Table of Contents

Table of contents

Abstract (Chinese)	i
Abstract (English)	iii
Acknowledge	v
List of Publications	vi
Contents_	ix
Figure Captions_	xi
Chapter 1 Introduction	1
Chapter 2 Basic theory	8
2-1 Type-II superconductors	
2-2 Basic vortex physics	
2-3 Simulation and results	14
Chapter 3 Fabrication process and measurement techniques	19
3.1 Sample preparation	19
3-1-1 E-beam lithography	21
3-1-2 Etching	25
3-1-3 Film growth and characterization	27
3-2 Measurements	29
3-2-1 Transport measurements	29
3-2-2 Magnetic and atomic force microscopy	31
Chapter 4 Results and discussion	32
4-1 Basic periodic pinning	32
4-1-1 Results of square array of pinning sites	

References	85	
Chapter 5 Conclusions	83	
4-2 Ratchet effect_	65	
4-3-2 asymmetric pinning properties for spacing-graded arrays	55	
4-3-1 asymmetric pinning properties for regular arrays	51	
4-3 asymmetric pinning		
4-2 Influence of lattice geometry	48	
4-1-3 Pinning mechanism	42	
4-1-2 Periodic Pinning basics	37	

List of Figures

2-1	Schematic magnetic field verse temperature phase diagram
2-2	Numerical simulation of vortex positions at various matching fields for a
	square pinning array
2-3	Numerical simulation of vortex positions at various matching fields for a
	triangular pinning array
3-1	Schematic of the electron-beam lithography and lift-off process
3-2	Schematic diagram of the EB control system
3-3	SEM
3-4	Bonding pads were defined by photo lithography and Au was thermally
	evaporated onto a SiN-coated silicon substrate. We used these patterned
	structures as starting electrodes in the present method
3-5	Scanning electron micrograph of a SiN-coated silicon substrate with
	holes. The holes are 200 nm in diameter and positioned on a square lattice
	with a lattice constant equal 500nm. The scale is given at the bottom of
	the picture
3-6	Dc sputtering system. 28
3-7	Cross section of the niobium film
3-8	SQUID system
3-9	AFM
4-1	Field dependence of the resistance and critical current for a Nb film with 35
	a square array of defects at T=8.75 K
4-2	I - V characteristics for a triangle lattice at T=8.73 K under various 36
	magnetic fields applied perpendicular to the film plane. The arrows
	represent the crossover currents between integer and half-integer
	matching
	fields.
4-3	Magnetoresistance for different injected current in a Nb film with a 36
	square array of defects at T=8.75 K.
4-4	Magnetic force micrograph of a square lattice of submicron magnetic dot 40
	(a) before magnetization, and after magnetization along axis of the dots.
4-5	Critical current density in function of magnetic field at T/Tc=0.985 for a 40
	superconducting film covering the triangular magnetic dot array in the
	single-domain and in the multi-domain state.
4-6	Critical current density in function of magnetic field showed the 46
	asymmetric properties for different magnetism.
4-7	Three configurations of the magnetic dot arrays used in our simulation: 47
	(a) FM, (b) AFM, and (c) AFM2×2. The black open and gray filled
	circles are the up- and down-magnetized dots. The dotted lines indicate
	the unit cells for each configuration.
4-8	SEM micrographes for a Nb film with different geometries of defect 48
	array
4-9	Critical current as a function of the magnetic field for a Nb film with 49
	different geometries of defect array.
4-10	Critical current as a function of the magnetic field for a Nb film with a 53
	triangular array of defects.

4-11	for (a) the incommensurate row and (b) the interstitial flowing channel	33
4-12	The trajectories of vortices for $n = 2$ for case A (a) and case B (b) for	
. 12	driving force just above the critical depinning force. The open circles	
	represent the pinning sites.	54
4-13	SEM micrograph. Sample A is triangular array of pinning sites and the	
	sample B is graded ones.	56
4-14	SEM micrograph shows the top view of the small gradient sample	
4-15	SEM micrograph shows the top view of the large gradient sample	
4-16	dc voltage vs dc applied current for a Nb film with graded pinning site's	
	density at first matching field.	
4-17	(a) MR curves for injected positive/negative current at T= 8.20 K. The	
	inset (b) and (c) show sharp and shallow dips around the first matching	
	field.	61
4-18	Magnetoresitance curves MR of a niobium film with spacing-graded array	
	of holes in two opposite direction of dc current (negative current filled	
	square, positive current open circle). (a) $T = 7.90 \text{ K}$, (b) $T = 7.86 \text{ K}$	64
4-19	Dc voltage drop Vdc as a function of ac current Iac for different applied	
	magnetic fields.	
4-20	Dc voltage drop as a function of ac current for different temperature	
4-21	The Vdc(Iac) for different applied magnetic field at $T = 8.20 \text{ K}$	
4-22	The comparison between the maximum rectified value (Vmax) and	
	Magnetoresistance as a function of applied magnetic	77
	field	
4-23	Magnetoresistance as a function of applied magnetic field	77
4-24	De voltage drop Vde as a function of ac current Iac for different magnetic	
	field. Panels (a)-(b): H <h1. (c):="" (d)-(f):="" h="" panel="">H1. H1 is</h1.>	0.1
	the first matching field and is equal to 150 Oe	81
4-25	(a) The dependence of the maximum/minimum rectification dc voltage	
	(Vmax) in the Vdc(Iac) curves of the peak/dip for different applied	
	magnetic field. (b) the position of peak (open symbols) and dip (filled	
	symbols) as a function of applied magnetic field	82