

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

在異質網路上用以改善傳輸控制協定之封

包 遺 失 分 類 演 算 法

A packet loss classification algorithm to improve TCP

over heterogeneous networks

研 究 生：范竣琇

指導教授：蕭旭峰 教授

中 華 民 國 九 十 六 年 十一 月

i

在異質網路上用以改善傳輸控制協定之封包遺失分類演算法

學生：范竣琇 指導教授：蕭旭峰

國立交通大學資訊學院

多媒體工程研究所

摘要

傳輸控制協定(TCP)是網路廣泛使用的傳輸協定。隨著無線網路的普及，傳輸控制協定

開始被使用在無線網路上。然而傳輸控制協定所包含的擁擠控制演算法是以封包遺失當

成網路擁擠的指標，在有線及無線網路上除了有因為擁擠造成的封包遺失還有因為無線

網路訊號衰減或受到屏蔽造成的封包遺失。如果擁擠控制演算法把無線網路造成的封包

遺失當成網路擁擠的指標，錯誤地減少傳送速度，將會造成不必要的效能衰減。

在本論文中，提出一個封包遺失分類演算法，以相對的傳送時間當成分類的依據將封包

分為擁擠造成的遺失或是無線網路造成的遺失，使得擁擠控制演算法只對因為擁擠造成

的封包遺失產生減低傳送速度的反應，因而可以避免上述因為錯把無線網路造成的遺失

當成網路擁擠指標而發生的不必要的效能衰減。

ii

A Packet Loss Classification Algorithm to Improve TCP over

Heterogeneous Networks

Student: Jyun-Siou Fan Advisors：Dr. Hsu-Feng Hsiao

Institute of Multimedia Engineering

College of Computer Science
National Chiao Tung University

Abstract

Transmission Control protocol (TCP) is the most widely used transport layer protocol on

Internet. As the popularity of wireless communication is on rise over the last few years, TCP

is being extended to wireless network. However TCP is not suitable to be used on

heterogeneous networks because its congestion control algorithm uses packet loss event as an

indicator of network congestion. In a wired/wireless network, there are two classes of packet

losses, wireless loss and congestion loss. Wireless loss is caused by common channel errors

due to multipath fading, shadowing, and attenuation. Congestion loss is caused by network

congestion.

If the congestion control algorithm takes the wireless loss as an index of network congestion,

it will mistakenly lead to dramatic performance. In this thesis, we propose a packet loss

classification algorithm based on relative one-way trip time (ROTT) and use two trend

detections to differentiate congestion loss from wireless loss in the ambiguous area of ROTT

distribution.

Then we show that our proposed algorithm can improve network performance comparing

with other methods.

iii

Content
摘要 ... i
Abstract ... ii
Content .. iii
List of Tables .. v
List of Figures .. vi
Chapter 1 Introduction .. 1

1.1 Motivation and Introduction ... 1
1.2 Organization of this thesis .. 2

Chapter 2 Packet Loss Classification Algorithms .. 3
2.1 Introduction .. 3
2.2 Related Packet Loss Classification Algorithms .. 4

2.2.1 Biaz scheme ... 4
2.2.2 Spike scheme ... 5
2.2.3 ZigZag scheme .. 7
2.2.4 Delay trend scheme ... 8

2.3 Proposed Method .. 10
2.3.1 Network Congestion, Packet Loss and ROTT... 10
2.3.2 Our Proposed Packet Loss Classification Algorithm 11
2.3.3 Discrimination Performance .. 13
2.3.4 Simulation and Results .. 14

Chapter 3 TCP Congestion Control Algorithms over Heterogeneous Networks 20
3.1 Introduction to TCP Congestion Control Algorithm .. 21

3.1.1 Basic Congestion Control Algorithm .. 21
3.1.2 Discussion on Various TCP Versions ... 26

3.2 Modified in Response to Wireless Loss ... 33
3.2.1 The Problem Explanation about TCP over Heterogeneous Networks 33
3.2.2 Some studies to improve TCP over heterogeneous networks.......................... 35
3.2.3 Modified TCP Congestion Control Algorithm for Wireless Losses 37

Chapter 4 Simulations and Results ... 43
4.1 The Simulation Environment .. 43

4.1.1 Performance Metrics ... 43
4.1.2 Network Parameters .. 44

4.2 Wireless Error Model ... 44
4.3 Simulations ... 46

4.3.1 Simulation results according to different wireless error rates 46
4.3.2 Simulation results according to different traffic .. 55
4.3.3 Simulation results according to different topology ... 57

iv

Chapter 5 Conclusions .. 59
5.1 Summary ... 59

Reference .. 60

v

List of Tables

Table 1 Accuracy A of TCP1, fixed beta .. 15
Table 2 Accuracy A of TCP1, fixed alpha .. 15
Table 3 Accuracy A of TCP1, fixed beta, modified TCP NewReno 16
Table 4 Accuracy A of TCP1, fixed alpha, modified TCP NewReno 16
Table 5 Accuracy comparison, threshold 0.5 .. 17
Table 6 Accuracy comparison, threshold 0.4 .. 17
Table 7 Accuracy comparison for topology2 .. 19
Table 8 Performance comparisons over bottleneck link (error rate 0.034) 53
Table 9 Performance comparisons over bottleneck link (error rate 0.06) 53
Table 10 Performance comparisons over bottleneck link (error rate 0.08) 53
Table 11 Performance comparisons over bottleneck link (error rate 0.12) 53
Table 12 Throughput in the receiver side (error rate 0.034) 53
Table 13 Throughput in the receiver side (error rate 0.06) 54
Table 14 Throughput in the receiver side (error rate 0.08) 54
Table 15 Throughput in the receiver side (error rate 0.12) 54
Table 16 Throughput in the receiver side of different traffic simulation 55

vi

List of Figures
Figure 2.1 Packet loss classes ... 3
Figure 2.2 Biaz scheme [5] ... 4
Figure 2.3 Spike train in Time-ROTT graph [4] .. 5
Figure 2.4 Spike scheme [5] ... 6
Figure 2.5 ZigZag scheme [5] .. 8
Figure 2.6 Delay trend packet loss classification ranges [6] 9
Figure 2.7 Flow chart of our proposed method .. 13
Figure 2.8 Simulation topology1 .. 14
Figure 2.9 Simulation topology2 .. 18
Figure 3.1 TCP header format [8] ... 21
Figure 3.2 Congestion window variation in slow start and congestion avoidance

phases ... 23
Figure 3.3 Congestion window variation in fast retransmit and fast recovery phases

 .. 26
Figure 3.4 The version evolution of TCP ... 27
Figure 3.5 A sent packets pattern .. 31
Figure 3.6 The operation process of a TCP NewReno example 32
Figure 3.7: Congestion window variation graph for a TCP NewReno example 32
Figure 3.8 Simple simulation topology .. 34
Figure 3.9: Compare throughputs between no-wireless-error and wireless-error 34
Figure 3.10 Pseudocode of TCP Westwood algorithm [2] 36
Figure 3.11 A simple example in response to a wireless loss 38
Figure 3.12 A flow chart of TCP control .. 39
Figure 3.13 Process dupack<3 .. 39
Figure 3.14 Process dupack>=3 ... 40
Figure 3.15 Partial_ack action .. 41
Figure 3.16 Process dupack for fast recovery... 42
Figure 4.1 A two-state Markov model .. 44
Figure 4.2 Flow chart of wireless error model ... 46
Figure 4.3 Simulation topology3 .. 47
Figure 4.4 Throughput comparisons in bottleneck link .. 48
Figure 4.5 Throughput comparison of two TCP flows in bottleneck (error rate 0.034)

 .. 49
Figure 4.6 Throughput comparison of two TCP flows in bottleneck (error rate 0.06)

 .. 50

vii

Figure 4.7 Throughput comparison of two TCP flows in bottleneck (error rate 0.08)
 .. 51

Figure 4.8 Throughput comparison of two TCP flows in bottleneck (error rate 0.12)
 .. 52

Figure 4.9 Simulation topology4 .. 55
Figure 4.10 Throughput comparisons in bottleneck link of different traffic

simulation ... 56
Figure 4.11 Throughput comparison of TCP1 in bottleneck of different traffic

simulation ... 56
Figure 4.12 Simulation topology5 .. 57
Figure 4.13 Average throughput in bottleneck link .. 57

1

Chapter 1 Introduction

1.1 Motivation and Introduction

Transmission Control protocol (TCP) provides a reliable, connection-oriented service

and is the most widely used transport layer protocol on Internet. As the popularity of wireless

communication is on the rise over the last few years, TCP is being extended to wireless

network. However, TCP is not appropriate to be used over heterogeneous (mixed with wired

and wireless networks) networks because of the mechanisms of its congestion control

algorithm. TCP congestion control algorithm uses packet loss event as an indicator of network

congestion. However, there are congestion loss and wireless loss over heterogeneous

networks. If the congestion control algorithm takes the wireless loss as an index to network

congestion, it will mistakenly lead to dramatic performance degradation. In order to solve this

problem, some effective congestion control approaches have been suggested. There are three

alternative approaches, end-to-end, localized link layer, and split connection. [1][2]

One of these approaches is to use packet loss classification algorithms to differentiate

packet loss classes. According to the classification result, the congestion control algorithm can

effectively adjust the sending rate based on the congestion loss instead of wireless loss. Biaz[3]

suggested using the inter-arrival time between two consecutive packets to differentiate packet

loss as congestion loss or wireless loss. Spike-train [4] is observed on a time-ROTT graph and

the packet loss classification method that provides two thresholds based on the relative

one-way trip time (ROTT) to differentiate packet loss type. ZigZag scheme [5] discriminates

congestion loss from wireless loss using different threshold values of the mean and deviation

of ROTT based on the different numbers of lost packets. These methods may cause

misclassification of packet loss when the ROTT is around the thresholds. Delay trend scheme

2

[6] proposed a classification algorithm based on the trend of ROTT to assist packet loss

classification in the ambiguous area of ROTT distribution.

In this thesis, we propose a new packet loss classification algorithm. In the ambiguous

region of ROTT distribution we also use trend detection method to assist packet loss

classification. We implement the decreasing trend detection and also the increasing trend

detection for packets in the gray region. Further, with the assistance of this proposed packet

loss classification algorithm, we modify TCP congestion control algorithm so that it would

perform better over heterogeneous networks.

1.2 Organization of this thesis

In chapter 2 we review packet loss classification algorithms proposed in last few years in

the literature, and propose a new packet loss classification algorithm based on the trend

detection of relative one-way trip time. In chapter 3, we describe TCP congestion control

algorithm and some variant versions of TCP. We also modify the TCP congestion control

algorithm in response to the wireless loss resulting from the packet loss classification

algorithm described in the same chapter. In chapter 4, we evaluate the performance of our

proposed algorithm and the competing algorithms in the literature, followed by the

conclusions in chapter 5.

3

Chapter 2 Packet Loss Classification

Algorithms

2.1 Introduction

Transmission Control protocol (TCP) is the most widely used transport layer protocol on

Internet. As the popularity of wireless communication is on the rise over the last few years,

TCP is being extended to wireless network. However TCP was designed to optimize its

performance on wired networks, and it is not quite appropriate to be used on either wireless

networks or heterogeneous networks. The reason is that TCP congestion control algorithm

treats packet loss event as an indicator of network congestion. However in wireless network

or heterogeneous networks, there are two classes of packet loss: one is congestion loss, and

the other is wireless loss, as shown in Figure 2.1.

Packet losses due to network congestion are called congestion loss. Other kind of packet

loss due to shadowing, or signal attenuation over wireless networks is called wireless loss.

The intersection of wireless loss and congestion loss in Figure 2.1 means that network suffers

from both network congestion and wireless fading.

Figure 2.1 Packet loss classes

4

If the wireless loss is taken as an indicator of network congestion by TCP congestion

control algorithm, it will degrade the performance because of the incorrect reduction of the

congestion window. The packet loss classification algorithm is introduced to solve this

problem. TCP congestion control algorithm only reduces the congestion window in

corresponds to the congestion loss differentiated by the packet loss classification algorithm.

In the next section, we review some proposed packet loss classification algorithms in the

literature.

2.2 Related Packet Loss Classification Algorithms

Some packet loss classification algorithms have been proposed recently. In this section

we review four packet loss classification methods.

2.2.1 Biaz scheme

Biaz scheme [3] uses packet inter-arrival time to differentiate congestion loss from

wireless loss at the receiver side. Biaz assumes that only the last link along the path is

wireless. The wireless link is the bottleneck and the sender performs a bulk data transfer.

In this condition the inter-arrival time between two consecutive packets is approximately

equal to the time required to transmit a packet on the wireless link. Biaz scheme

classifies the packet loss according to the temporal range shown in Figure 2.2.

Figure 2.2 Biaz scheme [5]

Ti denotes the time between the arrivals of the last in-sequence packet and the first

out-of-order packet received after the loss. Tmin denotes the minimum inter-arrival time

observed so far by the receiver and n is the number of lost packets. If (n+1)Tmin≦ Ti <

5

(n+2)Tmin, the lost packets are assumed to be lost due to wireless transmission error.

Otherwise the loss event is determined as congestion loss. If the first out-of-order packet

arrived around the time that it should be received, we think that the lost packet was

transmitted but lost due to wireless channel error. If the first out-of-order packet arrived

much earlier than that it should, some packets prior to it are possible to be dropped at the

buffer. If it arrives much later than it should, we think that the queuing time at buffers

increases. In [3], the accuracy of the classification is determined by the ratio of wired

bandwidth and wireless bandwidth, as well as the overall loss rate (congestion loss rate

and wireless loss rate). This scheme works best when the last link is wireless link and

also the bottleneck link, and it is not shared by other competing traffic. [3][5]

2.2.2 Spike scheme

In [4], they observed on a time-ROTT graph that relative one-way trip time (ROTT)

has an increasing trend, which is called spike-trains as shown in Figure 2.3. They find

that congestion-related losses are strongly correlated to the spike-train. Consequently,

they use spike-trains instead of packet losses to detect congestion.

Figure 2.3 Spike train in Time-ROTT graph [4]

Spike scheme that classifies packet loss classes can be derived from the

phenomenon mentioned above, and it differentiates packet loss type based on relative

one-way trip time (ROTT). The ROTT is the time a packet travels from the sender to the

6

receiver. Since the sender and the receiver might have different clocks, the absolute value

of one-way trip time is difficult to calculate, and consequently the relative one-way trip

time is used.

Spike scheme defines a state of the connection as spike state according to the ROTT

and current state. The spike state is determined as shown in Figure 2.4. The solid line

means that the connection is in spike state and the dash line indicates that the connection

is not in spike state. If the connection is not in spike state and the ROTT of the packet

currently received is larger than the threshold Bspikestart, the connection enters the spike

state. In opposition, if the connection is currently in spike state and the ROTT of the

packet received is less than the threshold Bspikeend, the connection leaves the spike state.

Then when the receiver detects a packet loss from a gap in the sequence numbers of

received packets, it classifies this packet loss based on the current state of the connection.

If the connection is the spike state, the packet loss is classified congestion loss.

Otherwise, the packet loss is differentiated as wireless loss.

Figure 2.4 Spike scheme [5]

We calculate the thresholds Bspikestart and Bspikeend as shown in equation (2.1) and

(2.2), respectively.

 Bspikestart = ROTTmin + α(ROTTmax- ROTTmin) (2.1)

 Bspikeend = ROTTmin + β(ROTTmax - ROTTmin) (2.2)

where ROTTmax and ROTTmin are the maximum and minimum relative one-way trip time

observed so far. α and βare the values between 0 and 1, and α>β.

7

The distance between α and β determines the stability of the spike state and

non-spike state. The choices of α and β affect the preference of classified congestion

loss or wireless loss. For example, if α≧1, congestion loss misclassification rate is

100% while wireless loss misclassification rate is 0%. When α is equal to 1/2 and β

is equal to 1/3, this algorithm results in good tradeoff of low congestion loss

misclassification and reasonable wireless loss misclassification in the wireless last hop

topology mentioned in [5].

2.2.3 ZigZag scheme

The main idea of ZigZag scheme is that more severe loss is associated with higher

congestion and higher ROTT. For this reason, ZigZag increases the classification

threshold with the number of losses encountered, as shown in Figure 2.5. That is to say, a

loss event that contains four or more lost packets is classified as congestion loss when

relative large ROTT is observed. [5]

ZigZag [5] uses different threshold values based on the difference between the mean

and deviation of ROTT for different number of lost packets. The mean of ROTT rottmean

and its deviation rottdev are computed by using the equations (2.3) and (2.4) respectively.

The classification boundary of ZigZag scheme is shown in Figure 2.5.

rottmean =(1- α)*rottmean+ α*rott (2.3)

rottdev=(1- 2α)*rottdev+2α*∣rott-rottmean∣ (2.4)

where rott means the ROTT of currently received packet.

8

Figure 2.5 ZigZag scheme [5]

A packet loss is differentiated as wireless loss if one of the conditions below is

satisfied:

(n=1 AND rotti <rottmean-rottdev)

(n=2 AND rotti < rottmean- rottdev /2)

(n=3 AND rotti < rottmean)

(n>3 AND rotti < rottmean + rottdev /2)

Otherwise, the packet loss is differentiated as congestion loss, as the white portion

shown in Figure 2.5.

2.2.4 Delay trend scheme

A drawback of using threshold on either inter-arrival time or packet ROTT

mentioned above is that it is difficult to differentiate congestion loss from wireless loss

when either the measured inter-arrival time or measured ROTT is around the distinct

boundary, or called as threshold. In the delay trend scheme, an algorithm based on the

trend of ROTT to assist packet loss classification in the ambiguous area of ROTT

distribution is proposed.

9

Figure 2.6 Delay trend packet loss classification ranges [6]

When the ROTT of the packet received after a loss occurred is relatively large or

relatively small, delay trend scheme could explicitly classify this packet loss as

congestion loss or wireless loss respectively. If the ROTT of the packet falls in an

ambiguous region, delay trend scheme classifies the packet loss according the variation

of ROTT. This ambiguous region in Figure 2.6 is denoted as gray zone to be the interval

between TGup and TGlow.

TGup denotes the upper bound of gray zone and TGlow denotes the lower bound of

gray zone. TGup and TGlow are computed as equation (2.5) and (2.6) respectively.

 TGup = ROTTmin + α(ROTTmax- ROTTmin) (2.5)

 TGlow= ROTTmin + β(ROTTmax - ROTTmin) (2.6)

where ROTTmax and ROTTmin are the maximum and minimum of ROTT measured,

respectively. α andβ are the values between 0 and 1, and can control the range of the

gray zone.

When the ROTT of the packet received after the packet loss is greater than TGup,

the packet loss is classified as congestion; while the ROTT of the received packet is

smaller than TGlow, the packet loss is differentiated as wireless loss. If the ROTT of the

received packet is in the gray zone, a trend detection process is used to classify packet

loss classes.

Delay trend scheme uses the trend detection based on the moving average

10

calculated as shown in equation (2.7).

Sf =(1-γ)* Sf +γ*I(Di>Di-1) (2.7)

where I(X) is defined as 1 if X is valid, and 0 otherwise; Di is the ROTT of the ith packet

andγ is the smoothing factor of Sf.

Sf is the value between 0 and 1. If the ROTT has a strong increasing trend, Sf will

approach 1. Set the threshold of dealy trend Sf,th. If Sf >Sf,th , then the packet is classified

as congestion loss, and as wireless loss otherwise. In [6], delay trend scheme chooses a

conservative value Sf,th =0.4.

2.3 Proposed Method

In this section we propose a new packet loss classification algorithm extended from

delay trend scheme. We also exploit the ROTT of received packets to assist packet loss

classification, and use trend detection method in the ambiguous region. We add a decreasing

trend detection besides the increasing trend detection. Before explaining this new method, we

describe the chosen packet loss classification index, ROTT.

2.3.1 Network Congestion, Packet Loss and ROTT

The relative one-way trip time (ROTT) is defined as the time difference between the

sending time and the receiving time, the same as mentioned above. We measure ROTT

as the time difference between the receiving time and the packet sending timestamp

recorded in packet header plus a fixed bias.

The end-to-end packet delay can be modeled as the summation of propagation delay,

queuing delay, transmission delay and router processing delay, as shown in equation

(2.8). Propagation delay is the time for the electromagnetic waves to traverse all the link

media along the path, and router processing delay is required for the router to multiplex,

reassemble, and forward packets. Transmission delay is the time required to send packet

11

into the link. They are usually constant for a given end-to-end path and the same packet

length. The remainder, queuing delay, is the main reason of congestion and leads to

packet loss. Therefore we know that packet delay information infers network congestion

and packet loss due to network congestion.

 Tୢ ൌ ∑ T୯,୧ ∑ P౩
C୧୧ ∑ T୮,୧୧ ୢ

ୱ
 (2.8)

where Td is the packet delay, Tq,i is the queuing delay of link i, Tp,i is the router

processing delay. Ps is the packet size, and Ci is the capacity of linke i, and this fraction is

transmission delay. The final term is propagation delay and d is the length of physical

link and s is the propagation speed in medium.

2.3.2 Our Proposed Packet Loss Classification Algorithm

We use two thresholds TGup and TGlow (defined as equation 2.5 and 2.6) to segment

three regions. When ROTT is larger than TGup, it means that ROTT is larger than the

time that is required when buffer is filled at level α, we classify the packet loss as

congestion loss. Besides, when ROTT is smaller than TGlow, we classify the packet loss

as wireless loss. Until this step, the method is the same as the delay trend scheme.

When the measured ROTT falls in the gray zone between TGup and TGlow, we use

the trend detection method, “full search”. “Full search” method is used to calculate the

trends as shown in equation (2.9) and (2.10).

 incr୲୰ୣ୬ୢ ൌ
∑ ∑ IሺDவDౠሻ౭షభ

ౠసశభ
౭షమ
సబ

∑ ∑ Iሺଵሻ౭షభ
ౠసశభ

౭షమ
సబ

 (2.9)

 decr୲୰ୣ୬ୢ ൌ
∑ ∑ IሺDழDౠሻ౭షభ

ౠసశభ
౭షమ
సబ

∑ ∑ Iሺଵሻ౭షభ
ౠసశభ

౭షమ
సబ

 (2.10)

where I(X) is defined as 1 if X is valid, and 0 otherwise; Di is the ROTT of the ith

packet and w is the search range.

For example, w=5 and the measured ROTT vector = (5 3 5 6 6). The last value ‘6’

means the ROTT of current received packet. If there is an increasing variation from these

12

two chosen values, then we add one to numerator of the increasing trend. From this

example, the first ‘5’ compares with other four values, we could find that there are two

increasing variation. The second ‘3’ compares with three values behind it, we could get

numerator as 2+3=5. The third ‘5’ compares with two values after it, we could get two

increasing variation, and the numerator becomes 2+3+2=7. Adopt the action the same as

above, we could get the final numerator as 2+3+2+0=7. The denominator is the number

of times we can choose two ROTTs of different lost packets, which is 10 in this case.

Then we obtain the increasing trend =0.7. The same as mentioned above, we could also

get decreasing trend by detecting the decreasing variation between the arbitrarily two

values of w ROTT values. For the last example, we could get the decreasing trend =1/10.

Now we have two trend values: increasing trend (denote as incr_trend) and

decreasing trend (denote as decr_trend). Define a threshold as 0.5.

When the ROTT of current received packet falls in the ambiguous area, we compare

the increasing trend and decreasing trend with the thresholds. If the increasing trend

value is larger than the threshold, we know that ROTTs have an increasing trend and we

classify the packet loss as congestion loss. In addition, if decreasing trend is larger than

the threshold, we classify the packet loss as wireless loss. Otherwise, ROTT is neither

increasing nor decreasing, so we classify the packet loss to be the same as the last packet

loss classification result. The flow chart of the proposed method is shown in Figure 2.7.

13

Figure 2.7 Flow chart of our proposed method

In the next chapter, we will describe TCP congestion control algorithms and how to

modify the congestion control algorithm in response to the wireless loss.

2.3.3 Discrimination Performance

In this section, we use NS-2 to simulate our proposed algorithm and other packet

loss classification algorithms, and compare the results between these algorithms. The

metrics to evaluate the performance are the accuracy of congestion loss discrimination

(Ac), the accuracy of wireless loss discrimination (Aw), and the accuracy of overall

discrimination (A). Ac is defined as the ration of the number of congestion losses

correctly classified over the total number of congestion losses. Aw is defined as the ration

14

of the number of wireless losses correctly classified over the total number of wireless

losses. A is defined as the ration of the number of total packet losses correctly classified

over the number of total packet losses

2.3.4 Simulation and Results

Our simulation topology is shown in Figure 2.8. Some variables settings, such as

link delay and link capacity, are indicated in the figure.

Figure 2.8 Simulation topology1

There are one UDP flow and two TCP flows in our simulation. The UDP flow is

from node S0 to node D1 and is attached by a CBR traffic that has 1 Mb sending rate

during the time 40 seconds to the time 100 seconds. One of the TCP flows between node

S1 and node D1 (denoted TCP1) exists from the time 0 seconds to the time 100 seconds,

and the other flow between node S2 and node D2 (denoted TCP2) exists between the

time 20 seconds and 100 seconds. Both two TCP flows are FTP. The total simulation

time is 100 seconds. The error model of the wireless links, simulated by two-state

Markov chain, is turned on at the time 60 seconds and its average error rate is equal to

0.22. More details about this wireless error model will be described in Chap. 4.

A. Effect of different upper bound and lower bound of gray zone

In this simulation, we want to verify the effect of different upper bounds and lower

bounds of gray zone on our packet loss classification algorithm. The upper bound and the

15

lower bound of the gray zone is determined by αand β, as shown in Eq. 2-5 and Eq.

2-6. When β is fixed as 0.1, we change α from 0.99 to 0.7. The sender uses TCP

NewReno to control the data sending rate when network is congested.

The required parameters as described in the above sections are listed below:

--- Search window: 16

--- The threshold of decrease trend thinc: 0.5

--- The threshold of decrease trend thdec: 0.5

The delay trend scheme is used to be compared with our proposed method and its

parameters are set as below.

---γ: 1/16

--- The threshold of delay trend th: 0.5

Then we measure the accuracy A of the flow TCP1 and show the results in Table 1.

Table 1 Accuracy A of TCP1, fixed beta

Alpha

Method
0.99 0.95 0.9 0.85 0.8 0.75 0.7

Delay trend 0.46 0.99 1 0.99 0.97 0.97 0.97

Our scheme 0.8 1 1 0.99 0.97 0.97 0.97

Similarly, we vary β from 0.1 to 0.3 when α is fixed as 0.9 and the results are shown

in Table 2.

Table 2 Accuracy A of TCP1, fixed alpha

Beta

method
0.01 0.05 0.1 0.15 0.2 0.25 0.3

Delay trend 1 1 1 1 1 1 1

Our scheme 0.92 1 1 1 1 1 1

In Table 1, our method shows better accuracies when α is 0.99 or 0.95 and the

accuracies form the delay trend scheme and our method get the same results when α is

equal to or less than 0.9. Our method gets high accuracy regardless of the very high

value of α. When β is larger than 0.05, our scheme and delay trend scheme get stable

16

accuracies in Table 2. It means that β effects the accuracy of the packet loss

classification slightly.

We modify the actions of TCP NewReno in response to the wireless loss and the

details about the modification will be described in Chap. 3. The simulation results using

the modified TCP NewReno are given in Table 3 and Table 4.

Table 3 Accuracy A of TCP1, fixed beta, modified TCP NewReno

Alpha

method
0.99 0.95 0.9 0.85 0.8 0.75 0.7

Delay trend 0.75 0.79 0.85 0.9174 0.9174 0.9174 0.9174

Our scheme 0.82 0.8875 0.8875 0.9175 0.9175 0.9175 0.9175

Table 4 Accuracy A of TCP1, fixed alpha, modified TCP NewReno

Beta

method
0.01 0.05 0.1 0.15 0.2 0.25 0.3

Delay trend 0.9 0.83 0.85 0.889 0.889 0.889 0.875

Our scheme 0.9 0.8875 0.8875 0.889 0.889 0.889 0.875

From the simulation result, our scheme shows better accuracies than the accuracies

gotten from the delay trend scheme.

B. Effect of different classification threshold

In this simulation, we vary the threshold of increase trend thinc and the threshold of

delay trend th from 0.5 to 0.4. According to the simulation results above, we set the

parameter α to be 0.8 and the parameter β to be 0.2. Other parameters are the same

as above. The modified TCP NewReno is used to control the network congestion.

The simulation results according to different classification thresholds are shown in

Table 5 and Table 6.

17

Table 5 Accuracy comparison, threshold 0.5

th=0.5
thinc=0.5

Delay trend scheme Our scheme
Ac Aw A Ac Aw A

TCP1 1 0.831 0.907 1 0.813 0.936
TCP2 1 0.813 0.90 1 0.615 0.928
UDP 0.433 0.996 0.980 0.5 0.979 0.965

Table 6 Accuracy comparison, threshold 0.4

th=0.4
thinc=0.4

Delay trend scheme Our scheme
Ac Aw A Ac Aw A

TCP1 1 0.78 0.926 1 0.813 0.936
TCP2 1 0.46 0.899 1 0.615 0.928
UDP 0.433 0.99 0.983 0.533 0.975 0.963

From the Table 5 and 6, our method gives the same accuracies that measured on the

flow TCP1 and the flow TCP2. The performance of our method is quite steady at

different values of delay trend threshold; in other words, the proposed method is more

insensitive to the threshold. However, delay trend scheme shows better accuracies in

response to the flow UDP.

C. Simulation on different topology

We use different topology to evaluate our packet loss classification algorithm and

the delay trend scheme. The new topology is shown in Figure 2.9. The link delay and

link capacity are labeled above the link. The wireless link is between node W8 and node

M0.

18

Figure 2.9 Simulation topology2

There are three TCP flows and all of them are FTP. The traffic is setting as following.

---flow TCP1: from node W0 to node M0, 0~100 seconds

---flow TCP2: from node W1 to node W5, 20~60 seconds

---flow TCP3: from node W4 to node W7, 40~80 seconds

The total simulation time is 100 seconds. The error model of the wireless links is turned

on at the time 60 seconds and its average error rate is equal to 0.034.

The required parameters about our method and the delay trend scheme are listed below:

---α=0.8

---β=0.2

--- Search window: 16

--- The threshold of decrease trend thinc: 0.5

--- The threshold of decrease trend thdec: 0.5

---γ: 1/16

--- The threshold of delay trend th: 0.5

We calculate the accuracies of flow TCP1 and show the results in Table 7.

19

Table 7 Accuracy comparison for topology2

 Ac Aw A

Delay trend scheme 0.58 0.8 0.68

Our method 0.75 0.75 0.75

Our packet loss classification algorithm shows better accuracies and consequently

our method is better than the delay trend scheme in this situation.

In the next chapter, we illustrate TCP congestion control algorithm and how we

modify the congestion control algorithm in response to the wireless loss.

20

Chapter 3 TCP Congestion Control

Algorithms over Heterogeneous

Networks

Transmission Control Protocol (TCP) is a transport-layer protocol underneath the

application layer. TCP provides a reliable, connection-oriented service to the invoking

application. The most fundamental responsibility of TCP is to extend IP’s delivery service

between two hosts to a delivery service between two processes running on the host, called

transport-layer multiplexing and demultiplexing. TCP also provides error checking by

including error-detection field in TCP headers, as the Checksum field shown in Figure 3.1.

TCP also provides some other services, such as reliable data transfer and congestion control.

TCP ensures that data delivery is successful from the sending process to the receiving process

by using the sequence number included in their headers, acknowledgments, and timers. The

acknowledgment number field in Fig. 3.1 is also used for providing a reliable data transfer

service. The source port and destination port numbers are used for multiplexing and

demultiplexing to upper-layer applications. The window field is used for flow control and it

indicates the number of bytes that a receiver can accept. The data offset field indicates where

the data begins. The reserved field is reserved for future use, and we will use it later. The flag

field contains six bits. The RST, SYN, and FIN bits are used for connection setup and

teardown. The PSH bit indicates that a receiver should pass the data to the upper layer

immediately. The URG bit indicates that there is data in this segment that the sending-side

upper-layer entity has marked as ‘urgent’. The urgent point field points to the sequence

number of the octet following the urgent data. We describe the basic TCP congestion control

21

algorithm below. [7]

Figure 3.1 TCP header format [8]

3.1 Introduction to TCP Congestion Control Algorithm

From RFC2581 [10], there are four phases in the TCP congestion control algorithm: slow

start, congestion avoidance, fast retransmit, and fast recovery.

Before describing the congestion control algorithm, we define some variables. The

congestion window (cwnd) is a sender-side limit on the amount of data the sender can

transmit into the network before receiving an acknowledgment, and the receiver’s advertised

window (rwnd) is a receiver-side limit on the amount of outstanding data. The slow start

threshold (ssthresh) is used to determine whether the slow start or congestion avoidance phase

is used to control data transmission. Furthermore the definitions of some terms that will be

used are listed below:

We define a segment as a TCP/IP data packet or an acknowledgment packet.

FlightSize: The amount of data that has been sent but not yet acknowledged [10].

Maximum segment size (MSS): The size of the largest segment that the sender can transmit

[10].

3.1.1 Basic Congestion Control Algorithm

1. Slow Start [10]

22

In order to avoid congesting the network with an inappropriately large burst of

data, the slow start phase is used at the beginning of a transfer, or after repairing loss

detected by the retransmission timer.

During the slow start phase, a TCP increments cwnd by a segment for each

acknowledgment received that acknowledges new data. Therefore cwnd varies

exponentially, for example send one segment, then two, then four, and so on. The slow

start phase ends when cwnd reaches ssthresh or when congestion is detected.

2. Congestion avoidance

When cwnd reaches or exceeds ssthresh, the control algorithm will enter the

congestion avoidance phase. During congestion avoidance, cwnd is at most

incremented by a segment size per round-trip time (RTT). One formula used to update

cwnd is given in equation 3.1. [10]

cwnd=cwnd+MSS *MSS/cwnd (3.1)

These two phases are implemented together in practice.

From RFC2001 [9], slow start and congestion avoidance combined algorithm operates

as follows:

Step1. Initialization for a given connection sets cwnd to one segment and ssthresh to

65535 bytes.

Step2. The TCP output routine never sends more than the minimum of cwnd and the

receiver’s advertised window.

Step3. When congestion occurs, one-half of the current window size (the minimum of

cwnd and the receiver’s advertised window, but at least two segments) is saved

in ssthresh. Additionally, if the congestion is indicated by a timeout, cwnd is set

to one segment.

Step4. When new data is acknowledged by the receiver side, increase cwnd, but the

way it increases depends on whether TCP is performing slow start or

23

congestion avoidance.

The slow start phase is used when cwnd is less than or equal to ssthresh. On the

other hand, TCP performs congestion avoidance algorithm when cwnd is larger than

ssthresh.

A simple example about congestion window variation in slow start and congestion

avoidance phases is given in Figure 3.2. The vertical axis is congestion window and the

horizontal axis is the transmission round. Assume ssthresh is eight. First, in slow start

phase the congestion window is increased by one each ACK arrived, and consequently

cwnd grows exponentially. When cwnd reaches ssthresh, the control algorithm enters

congestion avoidance phase. In congestion avoidance phase, cwnd is increased by one

each transmission round. Assume that a packet loss occurs when cwnd is equal to twelve.

When the loss event is detected by reception of duplicate ACKs, TCP sets ssthresh to the

half of current window size, i.e. sets ssthresh to six, and also set cwnd to ssthresh. Then

the congestion window is increased linearly in congestion avoidance phase after the

ninth transmission round.

Figure 3.2 Congestion window variation in slow start and congestion avoidance phases

24

3. Fast Retransmit

A TCP receiver should send an immediate duplicate ACK when an out-of-order

segment arrives. The purpose of this ACK is to inform the sender that a segment was

received out-of-order and which sequence number is expected. [10]

If three or more duplicate ACKs are received by the sender, it is a strong

indication that a packet has been lost. So TCP performs a retransmission of the lost

packet without waiting for the retransmission timer to expire.

4. Fast Recovery

After fast retransmit phase sends the missing packet, the fast recovery phase is

performed to control the congestion window until a non-duplicate ACK arrives. When

duplicate ACKs are received, it means not only that a packet loss occurs, but also that

packets are mostly leaving the network and received by the receiver. The fast recovery

phase is an improvement that allows high throughput under moderate congestion,

especially for large windows.

From RFC2581 [10], the fast retransmit and fast recovery algorithms are implemented

together as follows:

Step1. When the third duplicate ACK is received, set ssthresh to no more than the

value given in equation 3.2.

ssthresh = max (FlightSize/ 2, 2*MSS) (3.2)

Step2. Retransmit the lost segment and set cwnd to ssthresh plus 3*MSS. This

artificially "inflates" the congestion window by the number of segments that

have left the network and which the receiver has buffered.

Step3. For each additional duplicate ACK received, increment cwnd by MSS. This

artificially inflates the congestion window in order to reflect the additional

segment that has left the network.

Step4. Transmit a segment, if allowed by the new value of cwnd and the receiver’s

25

advertised window.

Step5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh

(the value set in step 1). This is termed "deflating" the window.

We describe a simple example in order to understand the operations of fast

retransmit and fast recovery. We assume a sent packet pattern whose cwnd is equal to

twelve, and the first packet in this window is dropped. According to fast retransmit and

fast recovery, we could get the congestion window variation like Figure 3.3. When the

third duplicate ACK is received, TCP enters fast retransmit phase, retransmits the lost

packet and set cwnd=(12/2)+3=9. Then another packets transmitted in the same window

will generate additional duplicate ACKs, so the congestion window is increased in

response to these duplicate ACKs. Finally, when the retransmitted packet is received by

the receiver, it acknowledges total window of data that is before entering fast retransmit

phase. The sender ends the fast recovery phase and sets the congestion window to be

equal to six that is half of the congestion window when the packet loss occurs. Then

congestion avoidance phase will be used to control congestion window, this operation is

the same as the ninth transmission round in Figure 3.2. Namely this cwnd variation in

Figure 3.3 occurs in the eighth transmission round of Figure 3.2. When the retransmitted

lost packet is received, the eighth round exits, and the ninth round starts.

26

1 2 3 4 5 6 7 8 9 10 11 12
6

7

8

9

10

11

12

13

14

15

16

17
cwnd variation graph

C
on

ge
st

io
n

w
in

do
w

(in
 s

eg
m

en
ts

)

received packet number

Figure 3.3 Congestion window variation in fast retransmit and fast recovery phases

3.1.2 Discussion on Various TCP Versions

The two most common reference implementations for TCP are TCP Tahoe, and TCP

Reno. In the last section we describe basic TCP congestion control algorithm that refers

to TCP Reno. An early version of TCP, TCP Tahoe, unconditionally reduces its

congestion window to one segment and enters slow start phase after either type of loss

event.(retransmission timer timeout or the receipt of duplicate acknowledges). However

TCP Reno, as a modification of TCP Tahoe, enters congestion avoidance phase after the

packet loss event indicated by the reception of duplicate ACKs, known as fast recovery.

In other words, TCP Tahoe contains slow start, congestion avoidance, and fast retransmit

phase, but TCP Reno retains slow start, congestion avoidance, and modifies fast

retransmit operation to include fast recovery. [9][13] Since the receiver could only

generate the duplicate ACK when another segment is received, it means that there are

still data flowing between the sender and the receiver, and consequently TCP doesn’t

need to reduce congestion window to one segment. Therefore TCP Reno could get better

27

performance than TCP Tahoe when packet loss rate is small. However TCP Reno will

perform like Tahoe when packet losses are severe; that is to say, it is highly possible that

there are multiple packet losses in a single transmission window. [15] The reason for this

is as follows. In the last section, we describe that TCP Reno exits fast recovery while the

next ACK that acknowledges new data. Even if this ACK just acknowledges some but

not all of packets transmitted before the fast retransmit, we would still exit fast recovery

and reset congestion window. In this condition it is possible that congestion window is

reduced twice for packet losses which occur in a single window, or that if the window is

very small when loss occurs then no other additional new packet could be transmitted

and we must wait for a timer timeout, and then we retransmit the lost packet and set

congestion window to one segment in response to the timeout. This process will cause

dramatically performance degradation. [15]

In order to solve this problem, there are some different versions of TCP that has

been proposed for TCP/IP protocols, including TCP NewReno, TCP Vegas, and SACK.

The version evolution of TCP is drawn in Figure 3.4.

Figure 3.4 The version evolution of TCP

The graph (Figure 3.4) means that TCP New-Reno, TCP Vegas, and TCP SACK are

modified versions from TCP Reno.

First, we introduce TCP SACK briefly. TCP with ‘Selective Acknowledgments’

(TCP SACK) is a conservative extension of TCP Reno. It could detect multiple packet

28

losses of a single window, and retransmit more than one lost packets per round-trip time.

This is because that TCP SACK includes a SACK option which permits receiver to

inform sender which period of data is not received during transmitting Duplicate ACK.

According to the information, TCP SACK sender can know which packet was received

and which packet should be retransmitted. [17]

TCP SACK does not change the basic underlying congestion control algorithm.

Namely it retains the slow start and congestion avoidance the same as TCP Reno. The

main difference between TCP SACK and TCP Reno is in the behavior when multiple

packet losses occur in one window. Comparing with TCP Reno, SACK adds a new

variable called ‘pipe’ that saves the estimated number of packets outstanding in the path.

Using of the ‘pipe’ variable decouples the decision of when to send a packet from which

packet to send. [14]

Whenever the sender enters fast recovery, it initializes the variable ‘pipe’. When the

sender sends a new packet or retransmits a lost packet, the variable ‘pipe’ is increased by

one; pipe is decreased by one each time it receives a ACK with a SACK option reporting

that new data has been received by the receiver. When the variable ‘pipe’ is less than the

congestion window, it checks the list of packets inferred to be missing at the receiver and

retransmits the next packet from the list. If there are no such packets, the sender sends a

new packet. Thus more than one lost packet could be sent in one round-trip time. [14]

[15]

TCP Vegas not only depend on packet loss as a sign of congestion, but also adopts

the difference between expected and actual flow rates to estimate the available

bandwidth in the network. Expected flow rate and actual flow rate are defined in

equation 3.3 and equation 3.4 respectively. When the network is not congested, the actual

flow rate approaches to the expected flow rate. Otherwise, the actual flow rate will be

smaller than the expected flow rate. TCP Vegas uses the difference between two flow

29

rates to estimate network congestion level and varies the congestion window accordingly.

[9]

Expected flow rate =
BaseRTT
CWND (3.3)

where CWND is the current window size and BaseRTT is the minimum round trip time.

Actual flow rate =
RTT

Window (3.4)

where window means the bytes transmitted between the time that the segment is sent and

its ACK is received and RTT is the actual round trip time of a segment.

Especially the variable ‘diff’ is defined in equation 3.5.

diff= (Expected flow rate – Actual flow rate)*BaseRTT (3.5)

TCP Vegas defines two thresholds α and β. If diff is larger than β, Vegas

decrease the cwnd linearly during the next RTT, and the sender increase the cwnd

linearly when diff is less than α. However if diff is between α and β, Vegas does

not change the cwnd.

TCP Vegas tries to keep at least α packets but no more than β packets in the

queues. TCP Vegas attempts to utilize the extra bandwidth when it becomes available

without congesting the network. However TCP Reno aggressively utilizes available

bandwidth.

Before illustrating TCP NewReno, we introduce ‘partial acknowledgment’. When

there are multiple packet losses from a single window of data, the retransmitted packet

will acknowledge some but not all of the packets before fast retransmit. This

acknowledgment is a partial acknowledgment.

TCP NewReno is a modification to the fast recovery algorithm of TCP Reno that

incorporates a response to partial acknowledgments received. TCP NewReno defines a

“fast recovery procedure” that begins when three duplicate ACKs are received and ends

when either a retransmission timeout occurs or an ACK arrives that acknowledges all of

30

the data up to and including the data that was outstanding at the start of fast recovery

procedure. [11]

From RFC2582 [11], TCP NewReno operation is given below.

When the third duplicate ACK is received and the sender is not already in the fast

recovery procedure, set ssthresh to be the value given in equation 3.2 and record the

highest sequence number transmitted in the variable “recover”.

Step 1.Retransmit the lost segment and set cwnd=ssthresh +3.

Step 2.For each additional duplicate ACK received, increment cwnd by MSS.

Step 3.Transmit a segment, if permitted by the new value of cwnd and rwnd.

Step 4.When an ACK that acknowledges new data arrives, there are two cases:

Case 1.If it acknowledges all of the data up to and including “recover”, then

NewReno exits fast recovery procedure and sets cwnd to ssthresh. Then the

congestion avoidance phase is performed.

Case 2.If this ACK is partial acknowledgment, NewReno retransmits the

unacknowledged segment. Then reduce the congestion window by the

amount of new data acknowledged, add back one segment, and transmit new

segment if permitted by the new value of cwnd.

Do not exit the fast recovery procedure. If any duplicate ACKs subsequently arrive,

execute step 2 and step 3.

To implement TCP SACK, each acknowledgement is needed to add new blocks that

record which segments have been received in the header of acknowledgement. It means

that the receiver needs to support the selective acknowledgement. So we don’t take

account of using TCP SACK in our simulations.

For TCP Vegas, it is penalized when competing with TCP Reno. When the buffer

size increases, TCP Reno throughput increases at the cost of a decrease in TCP Vegas

throughput. [16] Namely TCP Vegas is inappropriate to coexist with other versions of

31

TCP in network.

Because of these reasons above, we finally choose TCP NewReno as TCP version in

our simulations.

We illustrate an example below in order to understand TCP NewReno operation in

more details. A sent packets pattern is shown in Figure 3.5.

Figure 3.5 A sent packets pattern

Assume the initial congestion window is eight and the receiver’s advertised window

is sufficiently large. The first row in Figure 3.5 is packet id. In the second row the

symbol ‘O’ means that packet is transferred successfully, and the symbol ‘X’ indicates

that packet is dropped. We use TCP NewReno congestion control algorithm to process

the packet loss, and to vary the congestion window. The operation process is shown in

Figure 3.6.

The node ‘S’ means sender and the node ‘D’ is the destination node. At the third

round, the sender receives three duplicate ACKs, and then the congestion control

algorithm sets ssthresh=cwnd/2, sets cwnd=ssthreh+3, and retransmit the lost packet.

At the fourth round, it increases the congestion window by the duplicate ACKs

number (i.e. cwnd=7+3=10) when the sender receives three additional duplicate ACKs,

and transmits two new packets due to the new congestion window. At the fifth round the

sender receives a partial ACK, so deflates the congestion window by the amount of new

data acknowledged, then add back one. In other words, set cwnd= 10- (4-1)+ 1= 8. At the

seventh round the sender receives an acknowledgment which covers the total packets

before entering fast recovery, so exit the fast recovery phase, and set cwnd=ssthresh.

Therefore we could get the congestion window variation each time packet is

received in Figure 3.7. The horizontal axis is the number of received packets and the

32

vertical axis is the congestion window.

Figure 3.6 The operation process of a TCP NewReno example

1 2 3 4 5 6 7 8 9 10
4

5

6

7

8

9

10
cwnd variation graph

C
on

ge
st

io
n

w
in

do
w

(in
 s

eg
m

en
ts

)

received packet number

Figure 3.7: Congestion window variation graph for a TCP NewReno example

33

3.2 Modified in Response to Wireless Loss

3.2.1 The Problem Explanation about TCP over Heterogeneous

Networks

In section 3.1 we describe TCP congestion control algorithm, and learn that TCP

congestion control algorithm uses packet losses as an indication of network congestion.

Therefore TCP congestion control algorithm limits the sending rate by reducing

congestion windows when the sender side detects the packet losses. In RFC 2001 the

congestion control algorithm is assumed that packet loss caused by damage is very small,

so the loss of packet signals congestion somewhere in the network. This assumption is

tenable when the networks are total wired channels, but it is false in heterogeneous

networks. The heterogeneous networks mean that the networks contain wired channels

and wireless channels. In wireless channel, there are some errors due to shadowing and

attenuation that will cause the packet losses. In heterogeneous networks there are two

classes of packet losses, one class is caused by network congestion, called congestion

loss, and the other class is caused by wireless channel error, called wireless loss.

TCP congestion control algorithm reduces the congestion window regardless of the

congestion loss or the wireless loss. This reduction could mistakenly lead to performance

degradation.

We simulate a simple example in NS2 environment to verify the statement above.

Simulation topology and some parameter setting are shown in Figure 3.8. Node N2

is the base station and the path between node N2, node D1 and node D2 is the wireless

link.

34

Figure 3.8 Simple simulation topology

The simulation has two connections, one is a UDP flow from S1 to D1, and the

other connection is a TCP flow between S2 and D2. The UDP flow generates CBR traffic

at 1 Mb. We get the throughput results marked as the solid line in Figure 3.8 when no

wireless error model is added to the wireless link. Then we add a two-state Markov chain

as the wireless error model with average loss rate 22% to the wireless link, and the result

is shown as the dash line in Figure 3.9.

0 20 40 60 80 100 120
0

100

200

300

400

500

600
throughput comparison

time

th
ro

ug
hp

ut
(k

bp
s)

no error
with error

Figure 3.9: Compare throughputs between no-wireless-error and wireless-error

We could find that TCP throughput is dramatically degraded when there are

wireless errors in the network, and proof that illustration above.

In order to solve this problem, we use our proposed packet loss classification

algorithm to classify the packet loss class, and then modify the TCP congestion control

35

algorithm in response to the packet losses caused by wireless errors to avoid

unnecessarily performance degradation.

3.2.2 Some studies to improve TCP over heterogeneous networks

TCP is not suitable in heterogeneous networks because of its congestion control

algorithm that mentioned above. In order to solve this problem, some effective

congestion control approaches for wireless networks have been suggested. There are

three alternative approaches, end-to-end, localized link layer, and split connection. The

best performing approach is shown to be a localized link layer solution that is applied

directly to the wireless links. [13] For example, the protocol called “Snoop” is an

approach of link layer solutions. Snoop caches copies of TCP data packets at the base

station, and monitor the ACKs from the receiver to the sender. If a packet loss is detected,

the cached copy is used for local retransmission across the wireless link, and any packet

carrying feedback information back to the TCP sender is extracted to avoid redundant

retransmission at the TCP sender. Therefore this protocol could reduce end-to-end

retransmission and prevent the associated reduction in congestion window size. However

Snoop requires additional supports from base station, and end-to-end methods are

promising since significant gains can be achieved without extensive support at the

network layer in routers and base stations. [18]

TCP Westwood (TCPW for short) obeys the end-to-end design principle. TCP

Westwood is a modified version of TCP Reno. A TCPW sender performs an end-to-end

estimate of the available bandwidth along the connection by measuring and averaging

the rate of returning acknowledgments. When a packet loss event is observed, that is, a

timeout occurs or three duplicate acknowledgments are received, TCPW uses the

bandwidth estimate BWE to set the congestion window and the slow start threshold. This

procedure is called faster recovery, and the pseudocode of the algorithm is shown in

36

Figure 3.10. [2] After n duplicate packets are received, the sender modifies the slow start

threshold by the measured bandwidth and the minimum relative trip time instead of the

half of the congestion window. If the current congestion window is larger than the new

threshold, set the congestion window to be the new threshold. If a timeout occurs, set the

slow start threshold to be two. The congestion window variations during slow start and

congestion avoidance are the same as TCP Reno, that is to say, they increase

exponentially and linearly, respectively.

In [2], it shows that TCPW has better throughput than TCP Reno. And TCPW is

very effective in handling wireless loss. This is because TCPW uses the current

estimated rate as reference to reset the congestion window, but TCP Reno simply halves

the congestion window.

Figure 3.10 Pseudocode of TCP Westwood algorithm [2]

Besides TCP Westwood, another aspect of end-to-end approaches is to perform

packet loss classification so that the congestion control algorithm can effectively adjust

the sending rate based on congestion loss instead of from wireless loss.

In the next section, we illustrate how to modify TCP Reno congestion control

algorithm in response to the wireless loss events that are classified by our proposed

packet loss classification algorithm. Later we will compare the results of the modified

congestion control algorithm using PLC algorithm and TCP Westwood method in

chapter 4.

37

3.2.3 Modified TCP Congestion Control Algorithm for Wireless Losses

We need to modify the TCP congestion control algorithm in response to the wireless

loss. If the receiver detects and classifies a packet loss as the wireless loss by using our

proposed packet loss classification algorithm, it sets a flag and records packet loss

number in the header of acknowledgment packet in order to inform the sender that

wireless losses occur. The number of lost packets is the difference between the

discontinuous sequence numbers divided by average packet size.

The flag and packet loss number could be recorded in the reserved field of TCP

header (Figure 3.1) in realization. The first bit of the reserved field is used to record the

flag. If the flag is set to be 1, it means that the packet loss is a wireless loss; otherwise,

the flag is set to be 0. The remainder of the reserved field records the number of the lost

packets.

According to the flag and the packet loss number, the sender knows that wireless

losses occur and how many packets are dropped, and then use modified congestion

control algorithm to vary the congestion window.

In response to wireless losses, we don’t modify the retransmit policy. That is to say,

the sender still retransmits the lost packet when three duplicate ACKs are received or

timeout of the retransmission timer occurs. However we increase the congestion window

as if receiving a new ACK.

For example, assume initial cwnd is equal to six in the slow start phase, and the first

packet is lost due to wireless channel error. Then acknowledgment generated due to the

second packet in the window could inform the sender that a wireless loss occurs. Then

we set new congestion window to eight, i.e. increment like the first packet is received

that cwnd is set to seven. A simple chart is shown in Figure 3.11.

38

Figure 3.11 A simple example in response to a wireless loss

Then we think some complex cases including multiple packet losses in a single

window. A flow chart of TCP control is shown in Figure 3.12. In Figure 3.12, the

variable “seqno” means the sequence number of the next packet requested by the receiver.

In other words, “seqno” is the acknowledgement number in Figure 3.1. The variable

“last_ack_” is defined as the acknowledgement number of the last received

acknowledgement. The initial value of the variable “recover_” is set to zero. After

receiving the third duplicate acknowledgment, the variable “recover_” is recorded as the

highest sequence number transmitted, and enter fast recovery phase. The fast recovery

phase means that one packet loss has occurred and takes different actions to recovery the

successive packet losses in one window.

When the sender receives a packet, it checks whether this packet is a new

acknowledgement by comparing “seqno” with “last_ack_”. If “seqno” is larger than

“last_ack_”, the control algorithm compares “seqno” with “recover_”. According to the

comparison, the control algorithm calls the function “partial_ack action” or the function

“recv new ack”. If “seqno” is equal to “last_ack_”, the acknowledgement is a duplicate

ack. Then call the function “process dupack for fast recovery” if the control algorithm is

in fast recovery phase.

Otherwise, the congestion control algorithm calls the function “process dupack<3”

and the function “process dupack>=3” according to the number of the duplicate

acknowledgments. The flow in Figure 3.12 is the same as the main flow of TCP

NewReno and our modified portion is shown in the following function blocks.

39

Figure 3.12 A flow chart of TCP control

The flow charts of function “process dupack <3” and function “process dupack >=3”

are shown in Figure 3.13 and Figure 3.14. Function “dupack <3” processes the variation

of the congestion window when the number of duplicate acknowledgement is smaller

than three. The variable “loss_num” is defined as the number of lost packets at the lost

event and it is recorded in the acknowledgement header.
If the loss is classified as the wireless loss, cwnd is set to the sum of cwnd,

loss_num and one. Otherwise, cwnd is invariable and this action is the same as the

control in TCP NewReno.

Figure 3.13 Process dupack<3

40

Figure 3.14 Process dupack>=3

Function “process dupack>=3” process the variation of the congestion window

when the number of duplicate acknowledgements is more than or equal to three. The

flags “wireless_start”, “c_w” and “w_c” are used to process multiple packet losses in a

window.

When the sender receives three duplicate acknowledgements, the control algorithm

records the variable “recover_” and enter fast recovery phase. Then check whether the

lost packet is a wireless loss or not. If the first lost packet is a wireless loss,

“wireless_start” is set to be 1 and set cwnd to be the sum of cwnd, loss_num and one.

Otherwise, the control algorithm sets ssthresh to be the half of the current congestion

window and sets cwnd to be the sum of ssthresh and 3. A flag in the acknowledgment

header is set to be 1 if the loss is a wireless loss or the flag is set to be 0 if the loss is a

congestion loss. This flag is maintained for the packets that have the same

acknowledgement number until the next packet loss event occurs. According to the

variation of the flag, the flags “c_w” and “w_c” are set. When the first loss in a window

is a congestion loss and the second loss is a wireless loss, the flag “c_w” is set to be 1.

41

Similarly, the flag “w_c” is set to be 1 when the first loss in a window is a wireless loss

and next loss is a congestion loss. Each time the sender receives a duplicate

acknowledgement, the control algorithm updates the flags “w_c” and “c_w”. If the flag

“wireless_start” is equal to 1, it means that the first loss in the window is a wireless loss

and check whether “w_c” is 1 or not. When “w_c” is equal to 1, a congestion loss occurs

after the first wireless loss. Therefore the control algorithm sets cwnd to be increased by

one instead of increased by loss_num and records one new variable “newpack”.

“newpack” counts the number of the duplicate acknowledgements between the partial

ack and the packet after the congestion loss occurs. We use this variable to set new cwnd

when the partial ack is received.

If “w_c” is equal to 0, there is no congestion loss and cwnd is set to be the sum of

cwnd, loss_num and one.

Figure 3.15 Partial_ack action

If “seqno” is smaller than “recover”, it means that this acknowledgement is a partial

ack. The function “partial_ack action” takes actions as shown in Figure 3.15.

If the flag “wireless_start” is equal to 0, the control algorithm takes actions the same

as the actions in TCP NewReno. Otherwise, the control algorithm checks the flag “w_c”.

When the flag “w_c” is equl to 0, it means there is no congestion loss and cwnd

42

increases exponentially or linearly according to the relationship between currently cwnd

and ssthresh. This action limits the increasing rate of the congestion window and avoids

the algorithm occupying excessive bandwidth. If the flag “w_c” is equal to 1, set cwnd to

be (cwnd+newpack)/2. The value of the congestion window is (cwnd-newpack) when the

congestion loss occurs. So we reset the congestion window to be (cwnd-newpack)/2 in

response to the congestion loss. However, the new congestion widow may cause the

transmission timer timeout to occur because of the small congestion window. We

increase (cwnd-newpack)/2 by “newpack”. Finally, the congestion window is

(cwnd+newpack)/2.

Figure 3.16 Process dupack for fast recovery

When the acknowledgement is a duplicate ack and also the TCP congestion control

is in fast recovery phase, the function “process dupack for fast recovery” is called. If the

acknowledgement is not a wireless loss, the control algorithm increases cwnd by one.

Otherwise, cwnd is increased by the sum of “loss_num” and one, in response to the

wireless loss.

In the next chapter, the modified TCP congestion control algorithm attached with

proposed packet loss classification algorithm is simulated and we compare the

simulation results of proposed TCP congestion control with TCP Newreno and TCP

Westwood to evaluate the performance of our method.

43

Chapter 4 Simulations and Results

4.1 The Simulation Environment

In this chapter, we use ns-2 as the simulation environment to evaluate the performance of

our proposed algorithm, and compare the proposed method with original TCP Newreno and

TCP Westwood. In the last chapter we mention TCP Westwood and know that it is also an

approach to improve TCP congestion control algorithm. The implementation of TCP

Westwood is the modification of TCP Newreno [24].

We choose TCP NewReno as the version of TCP in our simulation and modify it as

mentioned in chapter 3. NewReno TCP agent has been implemented in NS-2.

4.1.1 Performance Metrics

In this section, we describe the performance metrics that we use in this thesis.

Throughput: The important idea of our proposed method is to improve the

throughput degradation from the incorrect control actions when TCP congestion control

algorithm is over heterogeneous networks. So the first performance metric is throughput

measured in receiver side, and it is defined as the sum of the received packet size in

application layer divided by the total simulation time. Beside the throughput in receiver

side, we also use other two metrics.

Utility: The second concern is utility of the bottleneck link, and is defined as the

used bandwidth divided by the capacity of the bottleneck link.

Fairness: The last one is fairness between the competing flows and it is defined in

(4.1). [21]

(4.1))(
)(
2

2

∑
∑=

i

i

xn
x

Fairness

44

Assume that there are n flows, and xi is the resource allocation of flow i.

If all the xi is the same, then fairness is equal to 1.

4.1.2 Network Parameters

In the simulation all TCP flows are FTP traffic, which corresponds to bulk data

transfer. The packet size is fixed at 1,000 bytes. The receiver advised window is large

enough so no packet will be dropped at the receiver.

Some packet loss classification related parameters are listed as below:

-α: 0.8

-β: 0.2

-Full search window: 16

-Threshold of increase trend: 0.5

-Threshold of decrease trend: 0.5

4.2 Wireless Error Model

We implement a wireless error model in wireless physical layer of NS2. We choose

Gilbert/Elliot’s two-state Markov chain model as the wireless error model in our simulations

because Zorzi et al. investigated the error characteristics in a wireless channel, and indicated

that two-state Markov model is a good approximation of wireless channel.[23] A state

diagram for a two-state Markov model of Gilbert-Elliott channel is illustrated in Figure 4.1.

Figure 4.1 A two-state Markov model

45

This model assumes two states, good state (G) and bad state (B), with the transition

probability PGB, PGG, PBG and PBB.

The transition probability PGB is the probability of the state transiting from good state to

bad state, and PGG is the probability of transition to good state given that current state is good.

In the good state losses occur with lower probability PG while they happen with higher

probability PB in the bad state.

The steady state probabilities of being in good states and bad state are defined in (4.2)

and (4.3)

respectively, and the average packet loss rate produced by Gilbert/Elliot’s two-state

Markov chain model is given in equation 4.4.

GBBG

BG
G pp

p
+

=π (4.2)

GBBG

GB
B pp

p
+

=π (4.3)

Pavg = PGπG + PBπB (4.4)

Implement the error model procedures as follows:

First, we initial the transition probabilities and loss probabilities (PGB、PBG、PG、PB)

given by the user, and now we determine the current state(current_st) and current probability

(current_p) that is the probability that losses occur in current state.

Then we start to decide whether the packet is dropped or not when the receiver side

receives a packet, and also determine the state transition between the good state and the bad

state. The flow chart of error model implementation is drawn in Figure 4.2.

46

Figure 4.2 Flow chart of wireless error model

Now the wireless error model is implemented. When the user sets the transition

probability and the loss probabilities in good state and bad state, we could get the average

packet loss rate using equation 4.4.

4.3 Simulations

According to different wireless error rates and different topologies, the simulations are

shown as below.

4.3.1 Simulation results according to different wireless error rates

The simulation topology is shown in Figure 4.3 and some variables such as link

capacity and delay are labeled above the link. The network between node N2, node D1

and node D2 is wireless network.

47

Figure 4.3 Simulation topology3

There are two TCP flows and both of them are FTP. One flow is from node S1 to

node D1 and denotes as TCP1; the other is from node S2 to node D2 and denotes as

TCP2. The bottleneck with capacity 1.3Mb is the link between node N1 and node N2.

The total simulation time is 100 seconds, and both the two flows exist during the total

simulation time. When the simulation time reaches 40 seconds, we turn on the error

model to generate the wireless losses. In the following simulations, we set the average

error rate of the error model separately to be 0.034, 0.06, 0.08 and 0.12. The simulation

results are shown as below.

48

Figure 4.4 Throughput comparisons in bottleneck link

49

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(a) Original TCP Newreno

(b) Modified TCP Newreno

(c) TCP Westwood

Figure 4.5 Throughput comparison of two TCP flows in bottleneck (error rate 0.034)

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
modified TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Westwood

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

50

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(a) Original TCP Newreno

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800
modified TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(b) Modified TCP Newreno

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Westwood

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(c) TCP Westwood

Figure 4.6 Throughput comparison of two TCP flows in bottleneck (error rate 0.06)

51

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(a) Original TCP Newreno

(b) Modified TCP Newreno

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Westwood

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(c) TCP Westwood

Figure 4.7 Throughput comparison of two TCP flows in bottleneck (error rate 0.08)

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
modified TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

52

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(a) Original TCP Newreno

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
modified TCP Newreno

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(b) Modified TCP Newreno

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700
TCP Westwood

time

th
ro

ug
hp

ut
(k

bp
s)

tcp1
tcp2

(c) TCP Westwood

Figure 4.8 Throughput comparison of two TCP flows in bottleneck (error rate 0.12)

53

Table 8 Performance comparisons over bottleneck link (error rate 0.034)

 TCP Newreno PLC Westwood
Tcp1 throughput 587.41 kbps 628.15 kbps 601.44 kbps
Tcp2 throughput 522.21 kbps 637.46 kbps 610.62 kbps
Utility 0.85 0.97 0.93
Fairness 0.9966 0.9999 0.9999

Table 9 Performance comparisons over bottleneck link (error rate 0.06)

 TCP Newreno PLC Westwood
Tcp1 throughput 474.03 kbps 634.28 kbps 539.93 kbps
Tcp2 throughput 488.70 kbps 582.38 kbps 559.28 kbps
Utility 0.74 0.936 0.846
Fairness 0.9998 0.998 0.9997

Table 10 Performance comparisons over bottleneck link (error rate 0.08)

 TCP Newreno PLC Westwood
Tcp1 throughput 459.76 kbps 596.33 kbps 460.60 kbps
Tcp2 throughput 474.62 kbps 603.92 kbps 528.27 kbps
Utility 0.719 0.92 0.76
Fairness 0.9997 0.9999 0.995

Table 11 Performance comparisons over bottleneck link (error rate 0.12)

 TCP Newreno PLC Westwood
Tcp1 throughput 410.72 kbps 554.86 kbps 427.26 kbps
Tcp2 throughput 418.68 kbps 532.46 kbps 449.35 kbps
Utility 0.638 0.836 0.674
Fairness 0.9999 0.9996 0.9994

Table 12 Throughput in the receiver side (error rate 0.034)

 TCP Newreno PLC Westwood
TCP1 573.584 573.251 588.560
TCP2 508.105 587.728 595.715
Sum 1081.689 1160.979 1184.275

(Unit: kbps)

54

Table 13 Throughput in the receiver side (error rate 0.06)

 TCP Newreno PLC Westwood
TCP1 454.691 540.304 519.670
TCP2 467.587 493.795 536.227
Sum 922.278 1034.099 1055.897

(Unit: kbps)

Table 14 Throughput in the receiver side (error rate 0.08)

 TCP Newreno PLC Westwood
TCP1 436.886 496.374 436.803
TCP2 452.860 488.054 501.449
Sum 889.746 984.428 938.252

(Unit: kbps)

Table 15 Throughput in the receiver side (error rate 0.12)

 TCP Newreno PLC Westwood
TCP1 387.299 448.950 403.939
TCP2 395.702 440.963 421.328
Sum 783.001 889.913 825.267

(Unit: kbps)

We measure the total data flows from node N1 to node N2, and calculate the

average throughput using the size of the total received packets currently divided by

current simulation time drawn in Figure 4.4. Similarly, we measure the data flow from

node N1 to node N2 drawn in Figure 4.5~Figure 4.8 according to the different flow

separately and finally the average values are listed in Table 8~Table 11. According to the

different error rates, the throughput received by the application layer in the receiver side

is shown in Table 12, Table 13, Table 14 and Table 15.

In Figure 4.4, we can find that our proposed method shows the better utility of the

bottleneck than original TCP and TCP Westwood regardless of wireless error rate. In

Figure 4.6 we find that our proposed method may not get the better fairness than original

TCP Newreno. However in Table 8, Table 9, Table 10 and Table 11, the fairness

calculated by using Eq. 4-1 between three different methods is close and the difference is

55

not obvious in contrast with the increases of throughput and utility. From Table 12~Table

15, modified TCP Newreno and TCP Westwood both get better throughput than TCP

Newreno. When error rate is low, TCP Westwood is better than our modified TCP; our

modified TCP Newreno gets better throughput when error rate is high.

4.3.2 Simulation results according to different traffic

The simulation topology is given in Figure 4.9.

Figure 4.9 Simulation topology4

We set total simulation time as 100 seconds. There are three data flows in this

topology. One flow is a UDP flow existing during 40 seconds to 100 seconds and its

source node S0 is attached by constant-bit-rate (CBR) application and the sending rate is

1 Mb, and its destination node is D1. The other flow is a TCP flow (denoted TCP1) from

node S1 to node D1 and exists during total simulation time 100 seconds. The TCP flow

(denoted TCP2) from node S2 to node D2 is the third flow and exists from 20 seconds to

100 seconds. At simulation time 60 seconds we add error model to simulate wireless

channel error and set average error rate is 0.12. Finally, we get the simulation results as

following.

Table 16 Throughput in the receiver side of different traffic simulation

 TCP Newreno PLC Westwood
TCP1 496.374 510.768 498.537
TCP2 241.033 258.339 251.100
sum 737.407 769.107 749.637

 (Unit: kbps)

56

Figure 4.10 Throughput comparisons in bottleneck link of different traffic simulation

Figure 4.11 Throughput comparison of TCP1 in bottleneck of different traffic simulation

From the simulation results above, we find that our proposed method can get better

throughput in receiver side and better utility of bottleneck when compared with original

TCP Newreno and TCP Westwood. The dot line in Figure 4.11 presents that average

throughput measured from TCP1 and the solid line is drawn from original TCPNewreno.

Before simulation time reaches time 60 seconds, the solid line and the dot line are

overlapping. It means that our modified TCP Newrno takes actions like TCP Newreno if

there is no wireless loss. When the wireless loss occurs after simulation time 60 seconds,

the modified TCP Newreno shows better utility than original TCP Newreno.

0 20 40 60 80 100 120
0

500

1000

1500
throughput comparison in bottleneck link

time

th
ro

ug
hp

ut
(k

bp
s)

Newreno
modified
Westwood

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400
throughput of tcp1 in bottleneck link

time

th
ro

ug
hp

ut
(k

bp
s)

Newreno
modified
Westwood

57

4.3.3 Simulation results according to different topology

Figure 4.12 Simulation topology5

The simulation topology is shown in Figure 4.12. The total simulation time is 100

seconds. The error model of the wireless links is turned on at the time 60 seconds and its

average error rate is equal to 0.034. The traffic and related parameters about our packet

loss classification algorithm are the same as that in chapter 2. In this simulation topology,

the bottleneck link is between node W3 and node W6. We measure the average

throughput in the bottleneck link and show the result in Figure 4.13. The modified TCP

Newreno shows higher utility on the bottleneck link than TCP Newreno and TCP

Westwood.

Figure 4.13 Average throughput in bottleneck link

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400
throughput of tcp1 in bottleneck link

time

th
ro

ug
hp

ut
(k

bp
s)

Newreno
modified
Westwood

58

We also measure th throughput in receiver M0, and get the throughput according to

three different TCP versions shown as following.

---Newreno: 472.412 kbps

---Modified TCP Newreno: 516.425 kbps

---Westwood: 492.880 kbps

In this condition, our modified TCP Newreno gets better thorughput than TCP

Newrno and TCP Westwood.

59

Chapter 5 Conclusions

5.1 Summary

In chapter 2 of this thesis, we describe the motive and introduce some packet loss

classification algorithms in the literature. Then we propose our packet loss classification

algorithm that uses “two trend” detection to differentiate the congestion loss from the wireless

loss in the ambiguous region of ROTT distribution. Then we use NS2 to simulate our

proposed method and compare the accuracy of the classification with delay trend scheme.

From the simulation results, our method gets better accuracies and is more insensitive to the

variation of the threshold.

In chapter 3, the basis congestion control algorithm of TCP is introduced first. We

describe the congestion control algorithm how to vary the congestion window when the

packet loss event occurs. We discuss some variants of TCP Reno and finally choose TCP

NewReno as our simulate TCP version in section 3.1.2. Then we must modify the congestion

control algorithm of TCP NewReno for the wireless loss that is classified by our packet loss

classification algorithm. In response to the wireless loss, the modified congestion control

algorithm takes the wireless loss as a new received acknowledgement to increase the

congestion window and we describe the flow of modification particularly in section 3.2.3.

In chapter 4, we use NS2 to simulate our modified congestion control algorithm that

accompanies our packet loss classification algorithm and compare the results with

non-modified TCP NewReno and TCP Westwood. From the results in chapter 4, our method

gives better throughputs in the receiver side, better utility in the bottleneck link and high

fairness. Therefore, our proposed method improves the throughput of TCP over heterogeneous

networks.

60

Reference

[1] D. Mitzel, “Overview of 2000 IAB Wireless Internetworking Workshop”, RFC 3002,

December 2000
[2] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang "TCP Westwood:

Bandwidth Estimation for Enhanced Transport over Wireless Links," in Proc. ACM
Mobicom 2001, pp 287-297, July, 2001.

[3] S. Biaz, N. Vaidya, "Discriminating congestion losses from wireless losses using
inter-arrival times at the receiver," IEEE Symposium, 24-27, March 1999, pp10 –17.

[4] Y. Tobe, Y. Tamura, A. Molano, S. Ghost, H. Tokuda, "Achieving Moderate Fairness for
UDP Flows by Path-Status Classification, " IEEE LCN2000, Tampa, FL, Nov. 2000, pp
252-261.

[5] S. Cen, P. C. Cosman and G. M. Voelker, " End-to-end differentiation of congestion and
wireless losses", Proceedings of ACM Multimedia Computing and Networking 2002, San
Jose, CA, Jan. 2002.

[6] Hsiao, H.F., Chindapol, A., Ritcey, J., Chen, Y.C., Hwang, J.N., “A New Multimedia
Packet Loss Classification Algorithm for Congestion Control over Wired/ Wireless
Channels”, ICASSP, IEEE, 2005.

[7] James F. Kurose, Keith W. Ross, “Computer Networking: A Top-down Approach
Featuring the Internet (second edition)”, Addison Wesley, U.S.A, 2003.

[8] “Transmission Control Protocol”, RFC 793
[9] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery

Algorithms”, RFC 2001, January 1997.
[10] M. Allman, V. Paxson, W. Stevens, “TCP Congestion Control”, RFC2581, April 1999.
[11] S. Floyd, T. Henderson, “The NewReno Modification to TCP’s Fast Recovery

Algorithm”, RFC2582, April 1999.
[12] V. Jacobson, “Congestion avoidance and control, ACM SIGCOMM Computer

Communication Review”, v.18 n.4, p.314-329, August 1988.
[13] V. Jacobson. “Modified TCP Congestion Avoidance Algorithm”, Technical report, 30 Apr.

1990.
[14] Kevin Fall, Sally Floyd, “Simulation-based comparisons of Tahoe, Reno and SACK

TCP”, ACM SIGCOMM Computer Communication Review, v.26 n.3, p.5-21, July 1996.
[15] Dept. of Electrical Engineering, Univ. California (Berkeley) (2005): "A Comparative Analysis

of TCP Tahoe, Reno, New-Reno, SACK and Vegas"
[16] Hilary Zhang, Zhengbing Bian, “Evaluation of Different TCP Congestion Control

61

Algorithms using NS-2”, ENSC 835/CMPT 885, Spring 2002.
[17] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment

Options”, RFC2018, October 1996.
[18] Hari Balakrishnan , Venkata N. Padmanabhan , Srinivasan Seshan , Randy H. Katz, “A

comparison of mechanisms for improving TCP performance over wireless links”, ACM
SIGCOMM Computer Communication Review, v.26 n.4, p.256-269, Oct. 1996

[19] Balakrishnan, H., V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links”, IEEE/ACM
Transactions on Networking, December 1997.

[20] Balakrishnan, H., S. Seshan, E. Amir and R. H. katz, “Improving TCP/IP Performance
Over Wireless Networks”, MOBICOM’95, November 1995.

[21] Balakrishnan, H., and Randy H. Katz, “Explicit Loss Notification and Wireless Web
Performance”, Proc. IEEE GLOBECOM’98 Internet Mini-Conference, November 1998.

[21] Dah-Ming Chiu and Raj Jain, "Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks," Computer Networks and ISDN Systems,
vol. 17, pp. 1-14, 1989.

[23] M.Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-order Markov Model
for data transmission on fading channels”, Proc. IEEE ICUPC’95, pp. 211-215,
November 1995.

[24] Dept. of Computer Science, Univ. UCLA, “TCP WESTWOOD – Modules for NS-2”,
http://www.cs.ucla.edu/NRL/hpi/tcpw/index.html

[25] NS2 使用說明手冊, http://140.116.72.80/~smallko/ns2/ns2.htm

