
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1887-1900 (2008) 

1887  

Short Paper__________________________________________________ 

 
Reducing the TLB Context Switching Miss Ratio With 

Banked and Prefetching Mechanism 

 
CHANG-JIU CHEN AND WEI-MIN CHENG 

Department of Computer Science 
National Chiao Tung University 

Hsinchu, 300 Taiwan 

 
Address translations from virtual addresses to physical addresses are widely con-

sidered as one of the most important issue for memory system performance. In order to 
improve the performance, the Translation Lookaside Buffer (TLB) is used. Lots of dif-
ferent methodologies are proposed to reduce TLB misses. Most designs just simply try to 
increase the total size of their TLBs to reduce the capacity misses or just simply use the 
fully associativity to reduce the conflict misses. Furthermore, some designs even try to 
incorporate the operating system (OS) and TLBs with very complex methods. Only some 
studies consider influence of performance on the context switching issue. Most tradi-
tional designs just simply added some types of address space identifier within the TLB 
tags. Nevertheless, the worse case of all is the x86 architecture which flushes all its TLB 
entries on context switching. This paper proposes a banked TLB structure with prefetch-
ing mechanism to reduce the miss rate in context switching for 32K page size. All simu-
lations were done with modified SimpleScalar 3.0d tool suite and SPEC95 benchmarks. 
The results show that the proposed mechanism can provide acceptable performance im-
provement than the worse case x86 style design. The miss rate may even be only 1/10 or 
less. Thus, the proposed architecture may be suitable to be implemented inside proces-
sors to reduce the context switching misses. Furthermore, we’ll try to implement it inside 
our new asynchronous processor.   
 
Keywords: TLB, operating system, context switching, virtual memory, address transla-
tion  
 
 

1. INTRODUCTION 
 

In order to support larger memory requirements for modern applications, it’s im-
portant for modern operating systems (OS) to provide the virtual memory mechanism. To 
provide virtual memory, the OS is responsible to provide mechanisms to map virtual 
address to physical address. However, all these virtual address to physical address trans-
lations are stored in main memory. To reduce the cost of address translations, the transla-
tion lookaside buffers (TLBs) are widely implemented inside the processor [1-5]. In fact, 
the virtual memory mechanism varies with different processor architecture and OS im-
plementation. The page table organization dominates the page table traversal time that 
occupies most TLB miss handling time. Though some new architectures use some ad-

 
Received January 23, 2007; revised December 26, 2007 & March 20 & May 23, 2008; accepted May 29, 2008. 
Communicated by Liang-Gee Chen. 



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1888 

 

vanced page table organizations to reduce the page table traversal time such as inverted 
page table structure, the forward-mapped hierarchical page table structure are still widely 
used, such as the latest AMD64 architecture [6]. It costs several main memory accesses 
to fetch the correct Page Table Entry (PTE) if any miss occurs. That impacts the overall 
system performance seriously. Thus it’s important to reduce the TLB miss rates for sys-
tems with such page table structure.  

In addition, frequently happened context switching may cause some extra TLB 
misses. Thus most processors except x86 implement some kinds of address space identi-
fier (ASID) to distinguish each address space. However, the x86 simply flushes all its 
TLB entries when the context switch occurs [7]. In this paper, we treat it as the worse 
case performance. Though lots of different research about TLB has been done, only some 
notice the influence of context switching. That may be because it’s very hard to model 
and estimate the context switching activities caused by the OS and it’s also hard to con-
sider this issue without considering the OS behavior first. In this paper, we tried to pro-
vide an alternative to address the context switching issue for TLB. To support the pro-
posed mechanism, the OS should be modified a little. The mechanism can be easily im-
plemented in future high performance systems.   

All the simulations will be done by the modified SimpleScalar Version 3.0d tool 
suite [8] provided by the SimpleScalar LLC with SPEC95. Except the performance of 
traditional 1024-entry fully-associative TLB with x86-style assumption, we also compare 
the performance of 1024-entry fully-associative TLB with ASID and two different pre-
fetching mechanisms incorporate with our proposed design. The results show that our 
banked design can work very well with sequential prefetching (SP, also called linear pre-
fetching).   

The work is trying to reduce the extra TLB miss rate caused by context switch. 
Though most processors reduce the miss rate caused by context switch with ASID, this 
paper provides an alternative to address this issue. This paper also discusses why sequen-
tial prefetching is more suitable for the proposed design. Moreover, we’ll try to realize 
this design on the asynchronous processor which we currently work for. That would not 
be too hard to realize the proposed mechanism on an asynchronous processor with some 
extra handshaking signals on bundled delay or dual-rail design.  

2. RELATED WORK 

In order to reduce the TLB miss rate, most processors increase the size (total entries) 
of TLBs with fully or set associative. For example, recent AMD OpteronTM processor has 
both 512-entry L2 instruction TLB (ITLB) and L2 data TLB (DTLB) [9] and the IBM 
POWER4 processor has a common 1024 entry TLB for each processor core [10]. Fur-
thermore, some processors even try to provide multi-level TLBs, such as 2-level ITLB/   
DTLB design on recent AMD OpteronTM processor [9]. In addition, some processors 
begin to provide larger page sizes to increase the TLB span, such as 2MB or even 4MB 
page size on all new Intel x86 Processors after the Pentium® Pro Processor [11]. How-
ever, to provide several page sizes, most commercial designs put several TLBs inside the 
processor for each individual size. Recently, several interesting mechanisms are proposed 
to support multi-page size processor. Lee et al. propose a novel banked-promotion TLB 



BANKED TLB WITH PREFETCHING MECHANISM 

 

1889 

 

Fig. 1. (a) Promotion TLB structure and banked-promotion TLB structure. 

structure to support two page sizes dynamically [12]. Four 4KB pages can be promoted to 
a 16KB superpage. To support such mechanism, an interesting promotion TLB is de-
signed. The heuristic promotion algorithm can promote four consecutive entries from 
small-page TLB bank to large-page TLB bank. Thus, the four 4KB TLB entries can be 
reused. Furthermore, in order to reduce the power consumption and TLB reference la-
tency, they even divided the TLB for 4KB page into two banks [13]. Fig. 1 shows the 
structures of their promotion TLB and banked-promotion TLB. In addition, Swanson et 
al. present a novel memory controller which can aggressively create superpages even 
from non-contiguous and unaligned regions of physical memory space [14]. Channon et 
al. presents the re-configurable partitioned TLBs to improve the TLB performance [15].  

Though lots of these new mechanisms are proposed, just only a few studies focused 
on the TLB entries prefetching/preloading. Saulsbury et al. introduces an interesting 
mechanism, called the Recency-based TLB Preloading (RP), to prefetch the TLB entry 
according to the ‘Recency’ of the referenced pages [16]. The mechanism maintains the 
‘Recency Stack’ via augmented translation table entry in memory and the TLB inside the 
processor according to the recently referenced pages. Thus the next possible referenced 
page number can be prefetched. However, the mechanism may increase the memory traf-
fic and the PTE should do some changes to store the stack pointers for the link-list. To 
solve these possible problems, Kandiraju et al. propose a new prefetching technique, 
called the Distance Prefetching (DP), according to the recently referenced pages ‘distance 
(stride)’ [17]. The mechanism maintains a table to keep the track of differences between 
successive address references and do prefetching according to the predicted distance. The 
paper also compares other possible prefetching techniques borrowing ideas from the 
cache prefetching techniques, such as Sequential Prefetching (SP), Arbitrary Stride Pre-
fetching (ASP) and the Markov Prefetching (MP). Because of the implementation costs, 
we’ll focus on the studying of the SP and DP in this paper. 

 



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1890 

 

 
Fig. 1. (b) Promotion TLB structure and banked-promotion TLB structure. 

3. RELATIONSHIPS BETWEEN THE MISS RATES AND TLB SIZES 

It is widely known that the two most important issues for cache system performance 
are lower miss rate and the miss penalty. It’s almost the same for the TLB performance. 
In fact, because the miss rate has the greatest impact on TLB performance, most studies 
focus on it. In this section, we consider the relationships among miss rates, page sizes 
and TLB sizes. 

Let’s consider the relationship between the miss rates and TLB sizes with 4KB page 
size. Fig. 2 shows the relationship between TLB sizes and miss rates of running gcc. The 
two results show that the miss rates would be lower if the TLB sizes can be increased. 
We can also find that in order to obtain better performance for 4KB page the size should 
be at least 64 entries. However, that’s not always true for all applications. Let’s observe 
the result of ijpeg showing in Fig. 3. It’s very clear that a 16-entry TLB is enough. It’s 
useless to increase the number of TLB entries. In fact, it’s almost the same for some 
other benchmark programs, such as vortex and li. Thus the results vary from application 
to application.   



BANKED TLB WITH PREFETCHING MECHANISM 

 

1891 

 

Fig. 3. ITLB/DTLB miss rate for ijpeg with 4KB page. 

 

  
 Fig. 2. ITLB/DTLB miss rate for gcc with 4KB page. 

 



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1892 

 

Another solution to improve the performance of TLB is to extend the page size into 
larger one. In fact, most modern processors provide multiple page sizes, such as 4KB, 
2MB, and 4MB on all new Intel® x86 series processors [11]. The advantages of larger 
page size are not only obtaining better performance but saving the implementation cost 
with shorter tags of virtual page number (VPN) and translations (physical page number, 
PPN) needed to be stored. It is also a good method to reduce the cost on TLB implemen-
tation of processors with larger addressing space, such as processors with 64-bit ad-
dressing capability. Certainly, larger page size is suitable to be implemented for proces-
sor core of SoC or embedded systems. Fig. 4 shows the miss rate of compress for 4KB, 
16KB, 32KB, 64KB, and 1MB page sizes with different TLB sizes. Observing the results, 
we can easily find that the performance of 1MB page size of TLB with only 8 entries can 
even outperform 4KB page size of TLB with 256 entries. In fact, with the larger page 
size the larger working set can be covered. In addition, we can also find that the per-
formance of 32KB page size TLB with 32 entries is good enough for compress. With 
prefetching mechanism, the performance would be even better. However, according to 
the previous discussion, even with 4KB page size, the total TLB entries needed may still 
vary from application to application. Sometimes, even 16-entry TLB is good enough for 
4KB page. But, for reliable reason, we selected the 32KB page size. That’s why the page 
size we select is 32KB, and each TLB bank has 32 entries. In fact, the new proposed 
model can be implemented to support different page size and the TLB size of each bank 
is also configurable depending upon the system needs. It’s an implementation tradeoff! 

 

Miss Rates

0.000000

0.000200

0.000400

0.000600

0.000800

0.001000

4KB-256 16KB-

256

32KB-32 64KB-32 1MB-8

ITLB Configuration

M
is

s 
R

at
e

0.000000

0.001000

0.002000

0.003000

0.004000

0.005000

0.006000

0.007000

4KB-256 16KB-

256

32KB-32 64KB-32 1MB-8

DTLB Configuration

M
is

s 
R

at
e

 
Fig. 4. ITLB/DTLB miss rate for compress with different page sizes and TLB sizes. 

4. ARCHITECTURE OF THE PROPOSED TLB 

This section describes in detail of the new TLB structure and mechanism we pro-
posed for processors with 32KB-page size. The new novel design can be implemented 
not only in contemporary processors but future high performance processors comprised 
with billion of transistors. Furthermore, the mechanism is especially suitable to be im-
plemented on processors with larger addressing space than current processors with just 
32-bit addressing ability. 



BANKED TLB WITH PREFETCHING MECHANISM 

 

1893 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. The proposed TLB architecture. 

4.1 Overview 
 
Fig. 5 shows in detail the proposed TLB structure to reduce the miss rate in context 

switching with 32-KB page size. We select 32 KB as our default page size because we 
expect that processors tend to provide larger page sizes with larger addressing space in 
the future. However, it can be easily changed to adequate for different page sizes with 
little configuration changes. Furthermore, we’ll have other new study for TLB to provide 
superpages with page promotion mechanism. 

The proposed structure consists of the following parts − 32 TLB banks with group 
tags to store the address translations, a multiplexer to select specific TLB banks, a pre-
fetch buffer to store the prefetching entries, and the prefetch & control logic to activate 
the prefetching mechanism. Each TLB bank has 32 entries and it can be implemented 
with CAM (content addressable memory) which is commonly used in the traditional TLB. 
Furthermore, each TLB bank is implemented with fully associativity with the LRU entry 
replacement policy. That means each bank can be easily implemented the same as tradi-
tional design. Thus there are totally 1024 entries in this new design. However, we can 
easily find that other new processors also try to increase the total entries of their TLB 
(TLB size) to reduce the possibilities of the TLB misses, such as 1024-entry common 
TLB for each processor core of IBM POWER4 processor [10]. Furthermore, with larger 
page sizes, the cost is decreased. Except the 32 TLB banks, there are also 32 extra regis-
ters to store the bank tag for each bank as shown in Fig. 5. The register contains task tag 
to identify each task, the current bit to identify the current task, the valid bit to validate a 
bank, and the LRU bits to replace the victim bank. It should be noted that the task tag can 
be any address space identifier (ASID) which the processor itself provides or the PPN 
(Physical Page Number) of the executing instruction when the context switch occurs on 
processors without any ASID support (x86 based processors). On processors without 
ASID support, the PPN of the executing instruction when the context switching occurs 



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1894 

 

from the PPN field (or last translation) is used. Considering the worse x86-style case, the 
PPN is selected; however, the implementation with ASID provided by the processor itself 
can be more easily. The discussion will be ignored in this paper. However, we still have 
to point out that we treat ITLB and DTLB as a couple, and they share the same bank tag. 
That means they stores translations for the same task in the same related bank.    

Except previous discussed parts, the remainder parts are designed for the entry pre-
fetching mechanism. The prefetch & control logic initiates when the TLB misses occurs. 
When the lookup misses in the current TLB bank but hits in the prefetch buffer, the ad-
dress translation is generated from that hit entry and it will be inserted into the current 
TLB bank that is the same as traditional TLB entry replacement. Then, the prefetch & 
control logic tries to prefetch other entries into the prefetch buffer. If the lookup are 
missed in both current TLB bank and the prefetch buffer, the traditional address transla-
tion mechanism is initiated to generate the correct address translation and then the pre-
fetch & control logic prefetches new entries into the prefetch buffer depending upon the 
current address. The ‘Prefetch Logic’ can be SP or DP described in [17].   

 
4.2 OS Modification 

 
In order to implement the mechanism, the OS is needed to do a little modification. 

Except the page size issue, the OS is required to send ‘the clear TLB signal’ to the proc-
essor only when page swapping with disks occurs or page frames release. If the signal is 
received by the control logic, the control logic should flush all the TLB banks and the 
prefetch buffer for the worse case example (the only example is x86) or the correspond-
ing TLB bank and the prefetch buffer for the general cases. Fortunately, it’s not hard to 
realize. In fact, almost all modern processors, except x86 processors, provide some ways 
to flush TLB entries, such as STA instruction with alternative addresses on SPARC ar-
chitecture [18].   

 
4.3 Mechanism of the Design 

 
The proposed TLB structure is divided into 32 banks and once the virtual address is 

generated from the CPU, the virtual page number (VPN, from the most significant bit to 
the previous bit of the offset, for example [31:15] in 32-bit addressing environment) is 
sent to the 32 banks and the prefetch buffer in parallel. Each bank and the prefetch buffer 
work as the conventional TLB, and the PPN of the hit entries of each bank and prefetch 
buffer are sent to a multiplexer. In addition, the select signals are obtained from ‘AND’ 
of the current bit of group tags and hit signal of each TLB bank, and also the hit signal 
from the prefetch buffer, to select the correct translation. If it’s a hit in current TLB bank, 
the current TLB bank works as conventional TLB. The physical address can be simply 
generated by combining the output PPN and the offset from the virtual address. If it’s a 
miss in current TLB bank but a hit in prefetch buffer, the operations are the same as what 
mentioned in the previous section. However, except the simplest situation, all other con-
ditions should be carefully handled by the prefetch & control logic. The Following de-
scribes them in details.  

 
(1) No current bit set in all banks: The situation could be happened only when the first 



BANKED TLB WITH PREFETCHING MECHANISM 

 

1895 

 

instruction fetching after a context switching for ITLB, the system initialization, or 
swapping pages with disks occurs. In this situation, no valid physical address can be 
provided via TLB translation. The address should be generated in conventional way 
by the OS and MMU. After the physical address or address space identifier (ASID) 
supported by the architecture is generated, it is compared with the task field of bank 
tags. If any of it is hit with a valid bank tag, the current bit of that bank tag is set. On 
the contrary, if it’s a miss, the prefetch & control logic should try to select a victim 
bank with invalid bit and LRU bits from the bank tag and flush all its 32 entries (both 
related ITLB and DTLB). Then the current bit of this bank should be set and the LRU 
bits of all bank tags should be updated. Then the correct translation is stored into the 
current ITLB bank entry, and the task tag of the current bank tag should be set. 
Moreover, it is the generated PPN or ASID provided by the processor that is stored 
into the task tag field of the current bank tag. Finally, the prefetch logic & control 
logic initiates the prefetching mechanism that is the same as what mentioned in pre-
vious section.  

(2) One current bit found but no valid translation in both current bank and prefetch buffer: 
If one current bit is found but no valid translation can be generated, that means the 
TLB (ITLB or DTLB) reference of the current task is available before but the missed 
page has not referenced yet. The operation of the current TLB bank just simply acts 
as a conventional TLB, and no bank tag modification is needed. Then the prefetch 
mechanism is worked as what mentioned in previous section.  

(3) Context switching: Once the context switching occurs, the MMU just needs to clear 
the current bit of the bank tags and flush the prefetch buffer. No more other actions 
are needed. 

(4) Page swapping with disk occurring or page frame releasing: If the page swapping 
with disks or page frame releasing occurs, the modified OS that we already discussed 
sends the ‘clear TLB signal’ to the MMU. Hence, the prefetch & control logic can 
clear the valid bit of all bank tags on system without architecture supported ASID 
(x86) or and flush the prefetch buffer. 

5. SIMULATION RESULTS 

All of the simulations were done with modified SimpleScalar Version 3.0d tool 
suite. The SPEC95 benchmark programs were simulated to estimate the performance. 
We assume that the context switching would happen after executing one million instruc-
tions, and we also assume that the compared 1024-entry TLB is the worse case x86-style 
example. In addition, we compared the miss rates of worse case style 1024-entry fully- 
associative TLB with the proposed TLB structure of 32 entries each bank with SP and 
DP prefetching mechanism after correctly keeping the entries and 1024-entry full-asso-
ciative TLB with ASID of the same workload assumption with proposed TLB structure. 
We assume that the SP can prefetch entries with VPN of + 9 and − 8. That means total 17 
entries are prefetched. Moreover, we also assume that the DP can prefetch total 16 entries 
with 64-row distance table and each row has 2 predicted distance slots. Though we as-
sume the DP with only 16-entry prefetch buffer, the costs of DP is still higher than SP. 
That’s because the extra distance table is required in the DP methodology. Figs. 6 (a) and 
(b) give the simulation results of SPEC95 benchmark. 



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1896 

 

Miss Rate of ITLB

0.000157

0.000002 0.000002 0.000001

0.001273

0.000004 0.000001 0.000001
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

1024-li DP-li ASID-li SP-li 1024-go DP-go ASID-go SP-go

li and go with different TLB Configurations

M
is

s 
R

at
e

 
Miss Rate of ITLB

0.004305

0.003690

0.004305

0.001230

0.002782

0.002308
0.002143

0.002627

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

1024-vortex DP-vortex ASID-vortex SP-vortex 1024-gcc DP-gcc ASID-gcc SP-gcc

vortex and gcc with different TLB Configurations

M
is

s 
R

at
e

 
Miss Rate of ITLB

0.000260
0.000007 0.000002 0.000002

0.003476 0.003481

0.000614
0.000410

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

1024-m88ksim DP-m88ksim ASID-m88ksim LP-m88ksim 1024-perl DP-perl ASID-perl SP-perl

m88ksim and perl with different TLB Configurations

M
is

s 
R

at
e

 
Miss Rate of ITLB

0.024381 0.024380

0.013410

0.008127

0.001914
0.000091 0.000068 0.000023

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

1024-ijpeg DP-ijpeg ASID-ijpeg SP-ijpeg 1024-compress DP-compress ASID-compress SP-compress

ijpeg and compress with different TLB Configurations

M
is

s 
R

at
e

 
Fig. 6. (a) ITLB miss rates for SPEC95 benchmarks. 



BANKED TLB WITH PREFETCHING MECHANISM 

 

1897 

 

Fig. 6. (b) DTLB miss rates for SPEC95 benchmarks. 

 

Miss Rate of DTLB

0.000996

0.000009 0.000006 0.000006

0.006577

0.000032 0.000017 0.000018
0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

1024-li DP-li ASID-li SP-li 1024-go DP-go ASID-go SP-go

li and go with different TLB Configurations

M
is

s 
R

at
e

 
Miss Rate of DTLB

0.012911 0.012911

0.010759

0.008607

0.007404

0.000326
0.001082

0.000300

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

1024-vortex DP-vortex ASID-vortex SP-vortex 1024-gcc DP-gcc ASID-gcc SP-gcc

vortex and gcc with different TLB Configurations

M
is

s 
R

at
e

 
Miss Rate of DTLB

0.003446

0.001220

0.002463

0.001068

0.004733 0.004737

0.004060

0.002030

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

1024-m88ksim DP-m88ksim ASID-m88ksim BL-m88ksim 1024-perl DP-perl ASID-perl SP-perl

m88ksim and perl with different TLB Configurations

M
is

s 
R

at
e

 
Miss Rate of DTLB

0.089158 0.089158

0.050871 0.053495

0.003004
0.000165 0.000158 0.000108

0.0000

0.0100

0.0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0.0900

0.1000

1024-ijpeg DP-ijpeg ASID-ijpeg SP-ijpeg 1024-compress DP-compress ASID-compress SP-compress

ijpeg and compress with different TLB Configurations

M
is

s 
R

at
e

 



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1898 

 

Fig. 7. TLB entry with ASID. 

Figs. 6 (a) and (b) show the simulation results for ITLB and DTLB with 1024-entry 
conventional TLB, new TLB structures with DP and SP prefetching mechanism, and 
1024-entry conventional TLB with ASID respectively. Observing the simulation results, 
we can find that our design can deliver better performance than conventional TLB struc-
ture if correct TLB entries can be kept. Furthermore, we can also find that the proposed 
banked TLB with SP prefetching mechanism can deliver better performance than DP 
prefetching mechanism and conventional TLB with ASID under multiprogramming en-
vironment. Through observing the simulation results, we can also find that prefetching 
mechanism may be sometimes more important than just increasing more entries. For 
example, both of the DTLB performances of new TLB structures with SP and DP mecha-
nism are better than conventional TLB with ASID for gcc. However, in most cases, the 
performance of new TLB structure with DP prefetching mechanism is still worse than 
conventional TLB with ASID. That’s because after the context switching occurring the 
DP prefetching mechanism needs the learning time to fill in the distance table. According 
to the simulation results, we strongly suggest to use the simplest SP prefetching mecha-
nism in our design. 

Even so, we still have to point out several important issues. The first, it’s not really 
very fair to assume the conventional fully associative TLB works as the worse case x86- 
style. The only architecture which flushes all its TLB entries in context switching is x86. 
Most processors incorporate their own address space identifiers with TLB tags. These 
designs, including our methodology, incorporated tags with ASID may have almost the 
same performance. However, our structure can save some tag bits because of our banking 
method. Fig. 7 shows the TLB entries with ASID tag. It’s very clear that it needs more 
tag bits than our design. We provide an alternative method to store the ASID. Second, 
it’s not a very nice model to assume that context switch occurs after executing each one 
million instructions. In fact, it may differ from different environments. Most OS defines 
its own time slice with several milliseconds, and with different processors, the total in-
structions executed may have enormous differences. In addition, the real situation de-
pends upon real OS running situation. In fact, we seriously consider developing a new 
generic simulator incorporated with Linux OS to more accurate modeling the real envi-
ronment. Third, though the page size we assume in this paper is 32KB, it’s not very hard 
to change it to other sizes with some configurations change. Finally, though only a few 
studies about TLB entry prefetching, it still possible to provide more heuristic prefetch-
ing mechanism for TLB entry prefetching. Furthermore, it may be also possible to in-
corporate other prefetching mechanism with our structure. 

 
 
 
 
 
 
 
 
 



BANKED TLB WITH PREFETCHING MECHANISM 

 

1899 

 

6. CONCLUSIONS 

The TLB misses cause serious performance degradation on modern processors. In 
addition, the context switching under the multiprogramming OS may cause this problem 
even more seriously. However, only some studies focus on the context switching issue. 
In this paper, we presented an alternative TLB mechanism for 32-KB page size environ-
ment to reduce the miss rate in context switching. We also discuss how OS should be 
modified to support this mechanism. Furthermore, we also discuss how to implement 
TLB entry prefetching mechanism in this structure. Finally, according to the simulation 
results, we suggested just simply to use the sequential prefetching (SP) mechanism in 
this design. Except the proposed mechanism, we have already begun to find solution to 
integrate the proposed structure to support superpaging with bank promotion methodol-
ogy. To obtain more accurate performance evaluation in real environment, the new 
simulation model and simulator are under developing. In addition, we’ll try to realize this 
mechanism in our current new RISC asynchronous processor project. We believe that 
still lots of work should be done in this field. 

REFERENCES 

1. B. Jacob and T. Mudge, “Virtual memory: issues of implementation,” IEEE Com-
puter, Vol. 31, 1998, pp. 33-43.   

2. R. Case and A. Padegs, Architecture of the IBM System/370, McGraw-Hill Book 
Company, New York, 1982.      

3. B. Jacob and T. Mudge, “Virtual memory in contemporary microprocessors,” IEEE 
MICRO, Vol. 18, 1998, pp. 60-75.  

4. D. W. Clark and J. S. Emer, “Performance of the VAX-11/780 translation buffer: 
simulation and measurement,” ACM Transactions on Computer Systems, Vol. 3, 1985, 
pp. 31-62.    

5. M. J. Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Jones 
and Bartlett Publishers, Boston, 1995.   

6. Advanced Micro Devices, Inc., AMD64 Technology − AMD64 Architecture Pro-
grammer’s Manual, Volume 2: System Programming, Publication No. 24593, 2006.   

7. Intel Corp., Intel®64 and IA-32 Architecture Software Developer’s Manual, Vol. 3A: 
System Programming Guide, Part 1, Order No. 253668, 2006.   

8. T. Austin, SimpleScalar LLC, http://www.simplescalar.com/.     
9. Advanced Micro Devices, Inc., Software Optimization Guide for AMD AthlonTM 64 

and AMD OpteronTM Processors, Publication No. 25112, 2003.   
10. J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Le, and B. Sinharoy, “POWER4 sys-

tem microarchitecture,” IBM Journal of Research and Development, Vol. 46, 2002, 
pp. 5-25.  

11. Intel Corp., Pentium® Pro Family Developer’s Manual, Vol. 3: Operating System 
Writer’s Guide, Intel Corp., 1995.    

12. J. H. Lee, J. S. Lee, and S. D. Kim, “A dynamic TLB management structure to sup-
port different page sizes,” in Proceedings of the 2nd IEEE Asia-Pacific Conference 
on ASICs, 2000, pp. 299-302.   



CHANG-JIU CHEN AND WEI-MIN CHENG 

 

1900 

 

13. J. H. Lee, J. S. Lee, S. W. Jeong, and S. D. Kim, “A banked-promotion TLB for high 
performance and low power,” in Proceedings of the International Conference on 
Computer Design, 2001, pp. 118-123.   

14. M. Swanson, L. Stoller, and J. Carter, “Increasing TLB reach using superpages 
backed by shadow memory,” in Proceedings of the 25th Annual International Sym-
posium on Computer Architecture, 1998, pp. 204-213.     

15. D. Channon and D. Koch, “Performance analysis of re-configurable partitioned 
TLBs,” in Proceedings of the 30th Hawaii International Conference on System Sci-
ences, Vol. 5, 1995, pp. 168-177.    

16. A. Saulsbury, F. Dahlgren, and P. Stenstrom, “Recency-based TLB preloading,” in 
Proceedings of the 27th International Symposium on Computer Architecture, 2000, 
pp. 117-127.     

17. G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for TLB prefetching: 
an application-driven study,” in Proceedings of the 29th Annual International Sym-
posium on Computer Architecture, 2002, pp. 195-206.    

18. SPARC International Inc., The SPARC Architecture Manual, Version 8, Prentice- 
Hall, Inc., 1992.    
 
 
Chang-Jiu Chen (陳昌居) received his Ph.D. degree in Computer Science from 

University of Oklahoma, in 1993, and his B.S. and M.S. degrees in Computer Engineer-
ing from National Chiao Tung University, Hsinchu, Taiwan, in 1980 and 1986, respec-
tively. He has been an Associate Processor of Department of Computer Science, National 
Chiao Tung University, Hsinchu, Taiwan, since 1994. His research interests include 
asynchronous circuit design, computer architecture, digital system, microprocessor, and 
parallel processing.   

 
 
Wei-Min Cheng (鄭緯民) received the B.S. and M.S. degrees in Computer Science 

and Engineering from Tatung Institute of Technology, Taipei, Taiwan, in 1995 and 1997, 
respectively. He is current a Ph.D. student in Computer Science in National Chiao Tung 
University, Hsinchu, Taiwan. His research interests include computer architecture, asyn-
chronous system design, microprocessor and SoC. 

 
 
 
 


