國立交通大學

應用化學系分子科學研究所

碩士論文

利用共振腔振盪衰減法研究 C6H5O 近紅外吸收光譜

研究生:鄭棋文 (Chi-Wen Cheng) 指導教授:李遠鵬 博士 (Dr. Yuan-Pern Lee)

中華民國九十六年六月

摘要

吾人利用共振腔振盪衰減光譜法觀測 C₆H₅O 在 1.15-1.33 μm 光區 之吸收光譜。其中,C6H5O 係由 193 nm 雷射光光解氣態之甲氧苯 (C₆H₅OCH₃)和乙氧苯(C₆H₅OC₂H₅)產生。在8097 cm⁻¹、8360 cm⁻¹、8403 cm^{-1} 和 8630 cm^{-1} 觀測到 C_6H_5O 之 $\tilde{A}^2B_2 \leftarrow \tilde{X}^2B_1$ 躍遷的電振吸收譜 带。由理論計算所得之電子態能階及激發態振動波數之結果和譜帶輪 廓的指認,上述譜帶可分別指派為 12_0^1 、 14_0^1 、 17_0^1 和 18_0^1 躍遷,而8148 cm^{-1} 、8197 cm^{-1} 和 8451 cm^{-1} 可分別指派為 $14_0^1 20_1^1$ 、 $14_0^1 20_2^2$ 、 $17_0^1 20_1^1$ 熱 譜帶,其中 v_{20} (186 cm⁻¹)是 C₆H₅O 之 \tilde{X} 基態的最低能量之振動模。在 8540 cm⁻¹和 8607 cm⁻¹亦觀測到微弱之吸收譜帶,根據計算之結果, 411111 暫時指派為 15_0^1 、 16_0^1 躍遷。此外吾人亦觀察到在 7681 cm⁻¹之吸收譜 帶為躍遷譜帶起始點,與利用 UB3LYP/6-311++G (3df, 3pd)和 CASPT2(9,8)/cc-pVDZ 之計算方法所得之能量分別為 7304 cm⁻¹ 和 8032 cm⁻¹,僅相差約 5%。

謝誌

兩年了!真的兩年了!在新竹活了兩年,轉眼間又到了回憶的時候 了。聽說回憶是老化的開始,雖然如此,但是還是強忍著淚水回憶這 兩年的心酸血淚成長史。

首先是我的指導教授一李遠鵬老師。感謝老師這兩年來不厭其煩的 指導我,並且忍受我這個腦袋裡無邏輯可言外加中文爛到爆的人。由 您的教導,讓懵懂無知的我,對於這個"大"領域有更深的瞭解。這 兩年最常聽到的邏輯和思考能力,在我身上可能不易見,我想吾人應 需非常加強,否則出外打拼,可是會丟了老師的臉呢!

丙年前,初到位於光復路旁的清大,那時正值實驗室大搬家的時候。
當時靠著搬家的機會,可說是天天"水電工"上身,水管、電線、鎖
螺絲、搬鋼瓶、鑽地...等等,沒有一樣是沒有受到專業的訓練,老
師在講沒有不敢不聽的,真的是忙到翻掉了。但是很幸運的一件事,就是跟實驗室的大家有了更深的認識與瞭解:天天保持笑容且親切的"
美聲加保養品教主" 佳燕學姐、倾全力把東西傳給我就好比傳球豪邁
+盡全力的"強肩體壯"鐘昭宇學長、常常糾正我"前天≠去年≠昨
天"和"謝謝一不客氣一沒關係"和"神錦≠什錦炒飯"滴號稱"
有多高就有多高+台語小破天后"的芝敏大大,在那時最深刻的印象
就是那個會飛的 chamber,搞到真是疲憊不堪呀!但是還是蠻好玩的。

讓人捉不到看的到又飄呼不定且招牌拍照姿勢"下巴"的黃登登, 能 夠瞭解"弟弟"滴心聲和"香水天王+永遠不會老"的朱小花學長, 講中文好比講廣東話而且超好相處又食物總比我吃兩倍多的雪兒都 不"雪兒"、走路輕飄飄又"請問那個很白的女生在嗎?"的慧芬學 姐、超獨立又自主的"網拍皇后"小韓、酷酷的呂志偉學長、熱心且 人超讚的白馬和隆哥、不小心我常寫錯名字總覺得很不好意思的韶徽, 還有盈琪、郁旋、瓊緯、親愛滴莊媽, 謝謝你們平時能夠幫助那龜毛 的我和容忍我那冷冷的"笑"話, 跟你們相處的這兩年, 總覺得很開 心。

還有許多大學的摯友:李阿皮、陳大頭、許大俠、蔡大隻、玉菁、 菲姐、和老杜,謝謝你們能夠在某些特定的假日挪出時間,放鬆休閒 一下,讓我的生活增添了不少色彩。

最後,要感謝的是我最親愛的家人,尤其是在我心情低落時,給我 大大的鼓勵,讓我無時無刻都能感受到你們對我的愛護和關心。我想 沒有你們的支持,我會很難熬過這兩年來的學習。最後,我想把這一 丁點的成就獻給我最愛的家人。

鄭棋文

2007年7月 交大

第一章	緒論1
	附表7
	參考文獻10
第二章	實驗原理與技術
2.1	共振腔振盪衰減光譜法簡介13
2.2	共振腔振盪衰减光譜法的原理
	2.2.1 光子彈模型14
	2.2.2 腔模16
	2.2.3 雷射頻寬效應
	2.2.4 模匹配
	2.2.5 受激拉曼散射
2.3	共振腔振盪衰減光譜法的優點
附置	B
參考	テ文獻
第三章	實驗系統與實驗步驟
3.1	實驗系統
3.2	實驗步驟

3	.3 實驗條件
ß	付圖40
第四章	章 結果與討論
	4.1 C ₆ H ₅ O 之電振躍遷
	4.2 理論計算
	4.3 實驗結果與分析
	4.3.1 C ₆ H ₅ O 的電振吸收譜帶56
	4.3.2 C ₆ H ₅ O 光譜的指認57
	4.4 結論
	附圖
	附表
	參考文獻
	附錄 4-1

第一章 緒論

 C_6H_5O (phenoxyl)被視為苯(benzene)於大氣中的氧化過程,以及甲 氧苯(anisole)或苯酚(phenol)的高溫裂解中,很重要的中間產物[1、2、 3、4]。關於 C_6H_5O 的應用研究相當的廣泛,如:過渡金屬催化的反 應,以 $Cu(II)為中心的錯合物,當加入 <math>C_6H_5O$ 之官能基的衍生物,如 $CH_3C_6H_4OH,在溶液中會生成 <math>C_6H_5O$ —Cu(II)的錯合物。可藉由偵測 其 UV-VIS 吸收光譜,從吸收譜帶之位置瞭解半乳糖氧化酶(galactose oxidase)是否被活化的依據[5]。當生物體內進行酵素反應時,如:山 茲過氧化酵素(horseradish peroxidase) [6],會生成 C_6H_5O 。可添加 NADH (nicotinamide adenine dinucleotide)與 C_6H_5O 反應,並藉由偵測 NADH 之消失速率,瞭解酵素代謝路徑的機制。此外還有許多動力學 的研究,測量氣態之 C_6H_5O 和氧氣、臭氧、一氧化氮、二氧化氮、 及 CH_3 的反應速率[7、8、9、10、11]。

許多研究組由電子自旋共振光譜(electron spin resonance spectroscopy)獲得電子密度分布,並指出 C_6H_5O 的C=O鍵是具有雙鍵的性質[12、13、14、15、16、17]。關於 C_6H_5O 基態(ground state)之振動波數(wavenumber), Spanget-Larsen等人[18]利用間質隔離(matrix isolation)技術,觀測到 C_6H_5O 在Ar間質下的紅外吸收光譜,並指認出 C_6H_5O 三十個振動模式中的二十六個振動波數。此外,許多研究組使

用共振增強(enhanced)激發光源分別為240 nm [19]、245 nm [20]、400 nm [21、22、23], 偵測C₆H₅O之共振拉曼光譜(resonance Raman spectra),總共指派出八個振動波數,如表(1-1)所列。

到目前為止,已有五個 C₆H₅O 的電子激發態, $\tilde{A}^{2}B_{2} \times \tilde{B}^{2}A_{2} \times \tilde{C}^{2}B_{1} \times \tilde{D}^{2}A_{2} \times \tilde{E}^{2}B_{1}$,被觀測到,其能量分別高於基態約 8900 cm⁻¹ [24、25]、16000 cm⁻¹ [25、26、27、28、32]、25200 cm⁻¹ [25、26、29、31、32]、33900 cm⁻¹ [8、25、29、30、31、32]及 41800 cm⁻¹ [8、25、29],如表 1-2 所示。

Ward [27]所觀測到的 500 cm⁻¹序列峰指派為 C-C-C 彎曲(bend)運動。 他們利用 CAS-SCF (complete active space self-consistent-field)之理論 計算方法,認為 Ward [27]當時將此躍遷指派為 $n \rightarrow \pi^*$,卻沒有看到 羰基伸展(carbonyl stretch)序列峰,是有爭議的。此外,依據他們的理 論計算,認為 $n \rightarrow \pi^*$ 躍遷之能量差約為 10161 cm⁻¹ (1.26 eV),為對 稱禁制(symmetry forbidden)躍遷,但當時並無實際觀測到此躍遷。

Gunion 等人[24]利用光致分離(phtodetachment)技術觀測 C₆H₅O⁻之 光電子光譜(photoelectron spectrum),得到 C_6H_5O 電子基態 \widetilde{X} 之兩個 振動波數,分別為 515 cm^{-1} 和 1490 cm^{-1} ,並且將在距離電子基態約 8550cm⁻¹ (1.06 eV)處觀測到的譜線指派為 C₆H₅O 激發到其第一個電 子激態之躍遷, $\tilde{A} \leftarrow \tilde{X}$ 。Radziszewski 等人[25], 利用間質隔離技術, 搭配 UV-VIS 偏極化光譜(ultraviolet-visible polarization),於 Ar 間質中 觀測到 C₆H₅O 五個電子激發態和其相關之躍遷偶極矩(transition dipole)方向,分別為 $\tilde{A}^{2}B_{2}$ 、 $\tilde{B}^{2}A_{2}(y)$ 、 $\tilde{C}^{2}B_{1}(z)$ 、 $\tilde{D}^{2}A_{2}(y)$ 、 $\tilde{E}^{2}B_{1}(z)$; 其中括號表示躍遷偶極矩方向。在這些激發電子態中,對於第一個電 子激發態 $\tilde{A}^{2}B_{0}$,他們僅在8900 cm⁻¹ (1.10 eV)觀察到微弱的吸收, 但測量不出其躍遷偶極矩。間質隔離光譜所觀測到的 $\widetilde{A} \leftarrow \widetilde{X}$ 躍遷能 量和 Gunion 等人[24]利用光電子譜技術所測之躍遷能量(8550 cm-¹),差異達 350 cm⁻¹。

多數對於 C₆H₅O 電子態的理論計算研究,均指出其基態 *X* 為平面 分子,屬於 C_{2v} 對稱群組,對稱性為 ²B₁。而 C₆H₅O 結構中,C-O 鍵長約為 1.24 Å,與一般 C-O 鍵長為 1.43 Å,C=O 鍵長為 1.12 Å 相比較,C₆H₅O 的 C-O 鍵長介於單鍵和双鍵之間。

至於由量子計算所得 C6H5O 之各個電子態之垂直躍遷能量,差異 頗大[11、25、33、34、35、36、37],尤其是對於第一電子激發態 $\tilde{A}^{2}B_{3}$ 之垂直躍遷能量,預測值由 5322 至 12685 cm^{-1} 不等,相差約2倍, 如表 1-3 所列。 \tilde{A} 電子態之對稱性為 B_2 ,與基態構形上的差別,主要 是 $\tilde{A}^{2}B_{3}$ 激發態之C-O鍵長拉長,從基態之1.24 Å伸長為1.35Å, 具有單鍵的性質。Chang [33]等人,利用 CNDO/S 半經驗計算方法, 計算三個等同電子組態(isoelectronic configuration)分子,分別為 C₆H₅CH₂ (benzyl)、C₆H₅NH (anilino)、和 C₆H₅O,指出 C₆H₅O 第一電 子激發態垂直躍遷能量為 5322 cm⁻¹。Chipman 等人[35]利用不同的方 法和基底進行量子化學計算,指出需描述更多電子組態之交互作用力 (correlation)並加入多個偏極性(polarized)基底(basis set),才能精確地 預測基態 C₆H₅O 的結構。Liu 等人[36],利用 CAS-SCF 計算方法,考 慮活躍空間(active space)是由九個電子,即七個 π 電子加上氧原子上 兩個孤對(lone pair)電子,在八個軌域中之分配,預測各電子激發態 的構形、躍遷能量、振動頻率,並排出能階順序。他們指出第一電子

激發態Ã垂直躍遷能量約為 10564 cm⁻¹,與 Chang [33]等人預測差 5242 cm⁻¹。

C₆H₅S 與 C₆H₅O 之電子組態相似,其相關之研究亦有助吾人對 C_6H_5O 之瞭解。Tripathi [38]等人,利用共振拉曼光譜法得到 C_6H_5S 之全對稱振動波數,並且以RO(restricted open)-HF/3-21G*之計算 方法,計算 C_6H_5S 之基態的振動波數和 $\widetilde{A}^2B_1 \leftarrow \widetilde{X}^2B_1$ 對稱禁制 躍遷之垂直(vertical)激發態能量(3226 cm^{-1})。他們指出 C_6H_5S 和 C_6H_5O 之 \tilde{X} 結構主要的差異,為 C-S 是單鍵性質,未成對電子 大部份定域化(localized)在硫原子之 3p 軌域上;而 C-O 鍵是介 於單鍵和双鍵之間,未成對電子大部份定域化在環上。關於 C6H5S 與 C_6H_5O 之 $\tilde{A}^2B_2 \leftarrow \tilde{X}^2B_1$ 躍遷型式,前者主要是由硫原子之 σ 軌 域(HOMO-1)躍遷至硫原子π軌域(SOMO),而後者主要是由氧原 子上之n軌域(HOMO-2)躍遷到苯環的 π^* 軌域(SOMO)。兩者 \widetilde{X} 能 態之分子軌域排序不同,主要是氧原子之 2p 原子軌域與碳環之 π 軌域混合程度較大,而硫原子之 3p 原子軌域與碳環之 π 軌域作用 程度小所造成。Lim 等人利用 H 或 D 離子動能顯像(ion velocity imaging)技術,以偏極化的 248 nm 雷射選擇性光解 C_6H_5SH (或 C_6H_5SD)產生 H (或 D),由兩個明顯的非均相性(anisotropic)的 H (D)離子影像,得到光解碎片之全動能分布,並藉由此動能譜推測

出 C_6H_5S 之第一激發態 \tilde{A} 躍遷能量約為 $2600\pm 200 \text{ cm}^{-1}$,證實了 此低能量激發態的存在[39、40]。他們亦利用 CASPT2 (complete active space second-order perturbation theory)計算方法,預測出 \tilde{A} 躍遷能量為 2674 cm^{-1} ,和其實驗值及 Tripathi [38]等人之計算值 相符合。

綜上所述, $C_6H_5O \stackrel{\sim}{\sim} \widetilde{A}$ 電子態僅有兩個研究組觀測到,為Gunion [24] 等人以光致分離技術在 8550 cm⁻¹ 觀測到一根譜線和 Radziszewski [25]等人以間質隔離技術在 8900 cm⁻¹觀測到一微弱的吸收譜帶,其 躍遷能量差異不小並且無電振譜帶的資訊。由於 CoH5O 之 $\tilde{A}^{2}B_{2} \leftarrow \tilde{X}^{2}B_{1}$ 為禁制躍遷,偵測不易,而共振腔振盪衰減光譜法具 有高靈敏度, 適合用來研究此禁制躍遷。以 CH_3OO 之 $\widetilde{A}^2A' \leftarrow \widetilde{X}^2A''$ 躍遷為例,利用共振腔振盪衰減光譜法仍可觀察到吸收截面積僅為 2.7×10⁻²⁰ cm² 之躍遷譜帶起始點(7382.8 cm⁻¹) [41], 並且觀測到許多 \tilde{A} 之電振吸收譜帶,如 7_0^1 、 6_0^1 和 $7_0^112_1^1$ 躍遷[42]。在此論文中,吾人 討論以 193 nm 雷射光解氣態之甲氧苯、乙氧苯(phenolate)產生 C₆H₅O, 再利用共振腔振盪衰減光譜法觀察其在 1.15 µm 到 1.35 µm 光區的吸收光譜,並且以理論計算為輔助,首次對 C_6H_5O 的 \widetilde{A} 電子 態之能階及振動波數作出精確之測量。

	-	Ex	xperiment	Calculation	_
No.	Sym	Matrix ^a	Raman ^b	B3LYP/cc-pVTZ ^a	Mode description
1	a_1	3090		3199	CH str
2	a_1	3065		3188	CH str
3	a_1	3018		3166	CH str
4	a_1	1550	1557	1598	CC str
5	a_1	1481	1505	1482	CO str
6	a_1	1397	1398	1422	CH bend/CO str
7	a_1	1167	1163	1167	CH bend
8	a_1	1038		1011	CH bend/ring breath
9	a_1	977	990	991	CCC bend
10	a_1	813	801	807	ring breath
11	a_1	520	528	533	CCC bend
12	a_2			996	HCCH tor
13	a_2			809	CH wag
14	a_2			ES 383	ring def
15	b_1	1061		1010	HCCH tor
16	b_1	898	3	189c ⁹³⁶	CH wag/boat def
17	b_1	784	30	808	CO CH wag/chair def
18	b_1	635	- <i>a</i>	660	CH wag / chair def
19	b_1	472		487	CO wag/ boat def
20	b_1			191	boat def / CO wag
21	b_2	3074		3196	CH str
22	b_2	3054		3172	CH str
23	b_2	1515		1550	CC str/CH bend
24	b_2	1441		1449	CC str/CH bend
25	b_2	1318	1331	1340	CC str/CH bend
26	b_2	1266		1277	CC str/CH bend
27	b_2	1140		1167	CH bend
28	b_2	1072		1092	CH bend/CC str
29	b_2	616		599	CCC bend
30	b_2	446		447	CO bend
2	安老	文獻 18	•		

表 1-1 C ₆ H ₅ O	電子基態之振動波數	動波數(cm ⁻¹)及振動模式		
	Experiment	Calculation		

表 1-2 實驗觀測 C_6H_5O 之各個電子態的躍遷起始點 (T_0 / cm^{-1}) 及振動 波數 (cm^{-1})

States	T ₀	Vibrational wavenumber	References
$\widetilde{E}^{-2}B_{1}$	43100		8
	41800		25 \ 29
$\widetilde{D}^{2}A_{2}$	33900		$8 \cdot 25 \cdot 29 \cdot 30 \cdot 31 \cdot 32$
$\widetilde{C}^{2}B_{1}$	25320		29 \cdot 31 \cdot 32
	25175	920 • 1140 • 1462	25 • 26
$\widetilde{B}^{2}A_{2}$	16360	500	27 • 28 • 32
	15930		25 • 26
$\widetilde{A}^{-2}B_2$	8900		25
	8550		24
$\widetilde{X}^{2}B_{1}$	0	見表 1-1	L.

計算值	$\widetilde{A}^{2}B_{2}$	$\widetilde{B}^{2}A_{2}$	$\tilde{C}^{2}B_{1}$	$\widetilde{D}^{2}A_{2}$	$\tilde{E}^{2}B_{1}$	
計算方法						參考文獻
CNDO/S	5322	18870	25967	30725	38145	33
MR-SD-CI	12685	23774	26330	41596	46435	34
CAS-SCF/6-311G(2d,p)		20967	28225			35
CASSCF/6-31G(d,p)	10564	20737	27697			36
TD-UB3LYP/cc-pVDZ	8467	19193 🔬				37
TD-UB3LYP/cc-pVTZ	8300	19200	28900	36300	44000	25
TD-UB3LYP/aug-cc-pVTZ	8400	18900	28800	36000	43100	11
		-				

表 1-3 C_6H_5O 之各個電子態之垂直躍遷能量(ΔE^{vert})的理論預測值(cm^{-1})。

- [1] D. S. Haynes, in *Fossil Fuel Combustion*, edited by W. Bartok and A. F. Sarofim (Wiley, New York, 1991), pp. 261.
- [2] H. Bockhorn, in *Soot Formation in Combustion* (Springer-Verlag, New York, 1995).
- [3] C. Y. Lin and M. C. Lin, J. Phys. Chem. 90, 425 (1986).
- [4] R. G. W. Norrish and G. W. Taylor, Proc. Soc. London, A 234, 160 (1956).
- [5] S. Itoh, M. Taki, and S. Fukuzumi, Coord. Chem. Rev. 198, 3 (2000).
- [6] J. Xu, X. Wu, W. Yan, and R. Cai, Talanta 70, 323 (2006).
- [7] F. Berho and R. Lesclaux, Chem. Phys. Letter 279, 280 (1997).
- [8] J. Platz, O. J. Nielsen, T. J. Wallington, J. C. Ball, M. D. Hurley, A. M. Straccia, W. F. Schneider, and J. Sehested, J. Phys. Chem. A 102, 7964 (1998).
- [9] Z. Tao and Z. Li, Int. J. Chem. Kinet. **31**, 65 (1999).
- [10] T. Yu, A. M. Mebel, and M. C. Lin, J. Phys. Org. Chem. 8, 47 (1995).
- [11] K. Tonokura, T. Ogura, and M. Koshi, J. Phys. Chem. A 108, 7801 (2004).
- [12] T. J. Stone and W. A. Waters, Proc. Chem. Soc. London 253 (1962).
- [13] W. T. Dixon and R. O. C. Norman, Proc. Chem. Soc. London 97 (1963).
- [14] T. J. Stone and W. A. Waters, J. Chem. Soc. 213 (1964).
- [15] W. T. Dixon and R. O. C. Norman, J. Chem. Soc. 4857 (1964).
- [16] P. Neta and R. W. Fessenden, J. Phys. Chem. 78, 523 (1974).
- [17] W. T. Dixon and D. Murphy, J. Chem. Soc. Faraday Trans. 72, 1221 (1976).
- [18] J. Spanget-Larsen, M. Gil, A. Gorski, D. M. Blake, J. Waluk, and J. G. Radziszewski, J. Am. Chem. Soc. 123, 11253 (2001).

- [19] A. Mukherjee, M. L. McGlashen, and T. G. Spiro, J. Phys. Chem. 99, 4912 (1995).
- [20] G. R. Johnson, M. Ludwig, and S. A. Asher, J. Am. Chem. Soc. 108, 905 (1986).
- [21] S. M. Beck and L. E. Brus, J. Chem. Phys. 76, 4700 (1982).
- [22] G. N. R. Tripathi and R. H. Schuler, J. Chem. Phys. 81, 113 (1984).
- [23] G. N. R. Tripathi and R. H. Schuler, J. Phys. Chem. 92, 5129 (1988).
- [24] R. F. Gunion, M. K. Gilles, M. L. Polak, and W. C. Lineberger, Int. J. Mass Spectrom. Ion Process 117, 601 (1992).
- [25] J. G. Radziszewski, M. Gile, A. Gorski, J. Spanget-Larsen, J. Waluk, and B. J. Mroz, J. Chem. Phys. 115, 9733 (2001).
- [26] D. Pullin and L. Andrews, J. Mol. Struct. 95, 181 (1982).
- [27] B. Ward, Spectrochim. Acta 24, 813 (1967).
- [28] L. J. Johnston, N. Mathivanan, F. Negri, W. Siebrand, and F. Zerbetto, Can. J. Chem. 71, 1655 (1993).
- [29] J. L. Roebber, J. Chem. Phys. 37, 1974 (1962).
- [30] F. Bayrakceken, S. Aktas, M. Toptan, and A. Unlugedik, Spectrochimica Acta Part A 59, 135 (2003).
- [31] G. Porter and F. J. Wright, Trans. Faraday. Soc. **51**, 1469 (1955).
- [32] G. Porter and B. Ward, J. Chim. Phys. 61, 1517 (1964).
- [33] H. M. Chang, H. H. Jaffe, and C. A. Masmanidis, J. Phys. Chem. 79, 1118 (1975).
- [34] J. Takahashi, T. Momose, and T. Shida, Bull. Chem. Soc. Jpn. 67, 964 (1994).
- [35] D. M. Chipman, R. Liu, X. Zhou, and P. Pulay, J. Chem. Phys. 100, 5023 (1994).
- [36] R. Liu, K. Morokuma, A. M. Mebel, and M. C. Lin, J. Phys. Chem. 100, 9314 (1996).

- [37] M. Dierksen and S. Grimme, J. Chem. Phys. 120, 3544 (2004).
- [38] G. N. R. Tripathi, Q. Sun, D. A. Armstrong, D. M. Chipman, and R. H. Schuler, J. Phys. Chem. 96, 5344 (1992).
- [39] J. S. Lim, I. S. Lim, K. S. Lee, D. S. Ahn, Y. S. Lee, and S. K. Kim, Angew. Chem. Int. Ed. 45, 6290 (2006).
- [40] I. S. Lim, J. S. Lim, Y. S. Lee, and S. K. Kim, J. Chem. Phys. 126, 034306 (2007).
- [41] M. B. Pushkarsky, S. J. Zalyubovsky, and T. A. Miller, J. Chem. Phys. 112, 10695 (2000).
- [42] 鐘昭宇,國立清華大學博士論文,民國九十五年。

第二章 實驗原理與技術

2.1 共振腔振盪衰減光譜法(cavity ringdown spectroscopy, CRDS)簡介 共振腔振盪衰減光譜法(CRDS)最早開始發展主要是由 Herbelin 等 人[1],以連續式雷射(cw-laser)為光源,用來測量鏡子的反射率。1988 年,O'Keefe 及 Deacon[2]改以脈衝式雷射(pulsed laser)作為偵測光 源,偵測氣態分子,其最小可偵測的吸收度可低於 1 ppm,從此共振 腔振盪衰減法研究的領域逐漸拓展開來。他們認為脈衝式雷射因其同 調長度(coherence length)短,當光子在共振腔體來回振盪時不會發生 自我干涉現象(self-interference),亦即注入共振腔體所有頻率的光都 可以離開腔體,與共振腔體的長度無關,可提升測量振盪衰減時間的 穩定性。而且利用脈衝式雷射為光源可以不用去觀測能量是否達到離 開腔體的臨界值(threshold value),或者在觀察到衰減訊號後關掉雷 射,大為簡化了測量訊號的架設。

如果反射鏡的反射率很高時,當光強度衰減至原來強度的 1/e 時, 光吸收的路徑長可達數十公里,因此共振腔振盪衰減光譜法靈敏度很高,可以利用此技術來偵測濃度很低的自由基光譜,或者分子微弱吸 收譜線,也可用來測量分子間的反應速率[3],或者研究液相[4]、薄 膜[5]、以及表面[6]的分子光譜。 2.2 共振腔振盪衰减光譜法的原理

2.2.1 光子彈模型 (photon bullet model)

利用光子彈模型可以簡單說明共振腔振盪衰減光譜法的原理,如圖 2-1所示。將脈衝雷射光視為粒子,當脈衝雷射光注入到由兩面高反 射率鏡子(R>99.99%)所組成的共振腔內,並在腔體內作來回反射 時,每次只有一小部分的光子可以穿過鏡子,抵達偵測器。隨著時間 變化,偵測器可偵測到一連串的光子,而光子間隔的時間為

$$t_r = \frac{2L}{c} \quad , \tag{2-1}$$

其中 L 為腔體長度, c 為光速。如果腔體長度為 65 公分,則 t_r = 4.3ns。 偵測器所得到的訊號為入射光強度隨時間變化,強度的衰減可利用微 分方程式表示成

$$dI/dt = -(1 - R + \alpha L')Ic/L \quad , \tag{2-2}$$

其中L'為物質的吸收長度。式(2-2)亦可表示成

$$I = I_0 e^{-ct(1-R+aL')/L} , (2-3)$$

其中 I₀表示入射光强度, I 為偵測器所測得的强度, t 是時間, R 為鏡 片反射率, α 為腔內氣體吸收係數,單位為 cm⁻¹。從偵測器所得到的 訊號為入射光強度的衰減呈現單一指數衰減的情形,則當α=0, I 衰 減成 I₀ 的 1/e 時, 吾人定義其振盪衰減時間(ringdown time)為

$$\tau_{empty} = \frac{L}{c(1-R)} , \qquad (2-4)$$

其中1-R代表在真空下每經過腔體一次,光強度的部分漏失比例 (fractional loss per pass)。例如, R=0.9999,則漏失比例為100 ppm。 當α≠0時,假設腔內物質吸收符合 Beer-Lambert law,其強度呈現 單一指數衰減,振盪衰減時間為

$$\tau_{abs} = \frac{L}{c(1 - R + \alpha L')} \quad , \tag{2-5}$$

而光子在腔體裡平均來回反射次數 n,可以表示成

$$n = \frac{\tau_{empty}}{t_r} = \frac{1}{2(1-R)} , \qquad (2-6)$$

例如1公尺的腔體,R=0.9999,n=5000,平均光徑可以達到10公里。 在波長λ下吸收的物質,可以由(2-4)及(2-5)式相減得到吸收係數為

$$\alpha = \left(\frac{1}{\tau_{abs}} - \frac{1}{\tau_{empty}}\right) \frac{1}{c} \quad , \tag{2-7}$$

當得到物質吸收峰在特定波長之吸收度 $S^p = N\sigma_p L'$,可以結合(2-7)式表示成

$$S^{p} = N\sigma_{p}L' = \left(\frac{1}{\tau_{abs}} - \frac{1}{\tau_{empty}}\right)\frac{L}{c} , \qquad (2-8)$$

其中 σ_p 為樣品的吸收截面積(cross section), N為單位體積的分子個數。假設 $\Delta \tau_{\min} (= \tau_{empty} - \tau_{abs})$ 夠小,則最小可偵測到的吸收係數為

$$\alpha_{\min} = \frac{1}{c\tau_{abs(\min)}} - \frac{1}{c\tau_{empty}} = \frac{\Delta\tau_{\min}}{c\tau_{abs(\min)}\tau_{empty}} = \frac{1}{c\tau_{empty}} \left(\frac{\Delta\tau}{\tau_{abs(\min)}}\right)$$
(2-9)

$$\cong \frac{\Delta \tau_{\min}}{\tau_{empty}^2} \frac{1}{c} \quad , \tag{2-10}$$

由(2-9)可知,當物質吸收度大時,τ_{abs}變小,會降低偵測的靈敏度。 如果是反射率高的鏡子,τ_{empty}變大,可以增加偵測的靈敏度。由(2-10) 式可知,振盪衰減時間的準確度可以決定共振腔振盪衰減光譜法的靈 敏度,以本實驗系統而言,R=99.99%,L=90cm,τ=30μs,振盪衰 減時間測量的準確度大約在 0.1-0.25 μs 之間,因此估計本系統之最小 可偵測到的吸收係數為(0.6-1.5)×10⁻⁸ cm⁻¹之間[7],與世界上以脈衝式 雷射作為偵測光源的共振腔振盪衰減光譜法所能達到的最佳靈敏度 相當。

2.2.2 腔模 (cavity modes)

光子彈模型只是簡單的描述共振腔振盪衰減光譜法,無法完整地解 釋其它複雜光學現象,如:多重(multi)腔模所產生模拍頻(mode beating) 的現象,導致不能精確得到衰減時間,而降低偵測系統的靈敏度。或 者因吸收物質譜線寬太窄以至於不能夠包含一個腔模,導致不易觀測 到吸收的譜線。相同地,如果當雷射線寬比腔模頻率間距(spacing) 窄,在掃瞄雷射波長時,有些波長沒包含到一個腔模,光線不會振盪 衰減出腔體被偵測到。在此小節吾人以另一種角度簡單說明腔模的原 理。

根據光學原理,兩面曲率半徑為r的高反射率鏡子,相距L,若當 0<L<r或r<L<2r時,所形成的共振腔為一穩定共振腔(stable resonator),而所形成的縱模(longitudinal mode)及橫模(transverse mode) 可表示成

$$v_{qmn} = \frac{c}{2L} \left[q + (m+n+1)\frac{2}{\pi} \tan^{-1} \left(\frac{L}{[L(2r-L)]^{1/2}} \right) \right] , \qquad (2-11)$$

其中q為縱模模數,m,n為橫模模數。當m=n=0時,所形成的模稱為 TEM₀₀模(transverse electromagnetic waves)。由(2-11)式可知其縱模間距,又稱自由光譜範圍(free spectral range)為

$$\Delta v = \frac{c}{2L} \quad , \tag{2-12}$$

橫模間距為

$$\frac{c}{\pi L} \tan^{-1} \left(\frac{L}{\left[L (2r - L) \right]^{1/2}} \right)$$
 (2-13)

依據費布立—培若(Fabry-Perot)原理,因光波在腔體內來回反射時, 光波本身會自我干涉,當共振腔體為共軛腔體時(L=r),此時的共 振腔體就像是一個頻率的選擇器,只有頻率為<u>C</u>的整數倍的光才能 離開腔體。但當L≠r且橫模間距與縱模間距的比值是無理數時,可將 共振腔體內的模結構視為一連續的結構 [8、9],因此當雷射注入共振 腔時所有頻率的光皆可離開腔體,並不會發生有某些頻率的光出不去 的情形。

若注入共振腔體的雷射光是多重模,或者雷射光在腔體內包含多種 腔模,例如腔體長度65公分,鏡子曲率半徑6公尺,則縱模間距為 230 MHz, 橫模間距為 35 MHz, 如果染料雷射的線寬為 0.2 cm⁻¹ (6 GHz),則一個脈衝雷射會包含約26個腔模。當上述情況發生時,因 為光在共振腔體內來回反射時,不同的模所行經的光徑不同,故離開 腔體的週期亦不同,造成強度呈現多重指數衰減的情形,會使得雜訊 增加。若偵測器反應時間夠快,則可偵測到模拍頻的現象。然而模拍 頻的頻率是很快的,一般都在數十至數百個 MHz [10]。目前實驗系 統所使用的腔體長度為 65 cm 或 90 cm, 鏡子的反射率為 99.99%, 測 量到腔體振盪衰減時間約20~30μs,因此利用單一指數函數去適解此 振盪衰減曲線可以平均掉模拍頻的效應。但在某些光區因鏡子的反射 率不好,例如 R= 99.9%,且腔體長度很短 L= 10 cm,振盪衰減時間 變短至奈秒(nanosecond, 10^{-9} s)等級,則就不可忽略模拍頻的現象,此 時便不易得到正確的振盪衰減時間。

2.2.3 雷射頻寬效應 (laser bandwidth effect)

吸收物質線寬需要大於雷射線寬,使每個雷射頻率的光被物質吸 收,才能符合 Beer-Lambert law 的條件。1994 年 Zalicki 及 Zare [11] 認為若雷射的線寬大於吸收物質的線寬,則光強度隨時間的衰減情形 就不適合以 Beer-Lambert law 來描述。因為在雷射的線寬範圍內, 有些頻率的光會被物質吸收,有些雷射頻率則無法被物質所吸收,因 此造成其強度衰減呈現非單一指數衰減(non-single exponential decay) 的情形,故若只是用單一指數函數去適解此物質吸收振盪衰減曲線 (ringdown curve),隨著選取適解衰減曲線的時間變長,會得到較小的 吸收係數,因為前面時間部份,會因物質吸收有較快的衰減,得到較 大且正確的吸收係數,後面時間部份,越接近無吸收的衰減時間。他 們亦利用光學理論去估計若只是去適解振盪衰減曲線的前面時間部 分,其所得到的吸收係數的誤差應會小於10%。1996年, Hodges 等 人[12]利用兩種不同線寬的雷射,去測量 O_2 的 $b^1\Delta_a^+$ – $X^3\Sigma_a^-$ 躍遷之 'R(9)吸收峰, 雷射線寬越窄所得到的衰減曲線會越趨近單一指數的 衰減,不會因為選取適解的時間,強度有太大的變化。在1999年, Newman 等人[13]利用霍式轉換紅外光譜儀(Fourier-transformed infrared spectrometer) 及 共 振 腔 振 盪 衰 減 光 譜 法 測 量 O_2 的 $a^{1}\Delta_{g} - X^{3}\Sigma_{g}^{-}(0,0)$ 吸收譜帶,用來證明 Zalicki 及 Zare [11]的理論。此 共振腔振盪衰減法的實驗條件為雷射線寬為 0.25 cm^{-1} , O_2 的都卜勒

線寬(Doppler linewidth)為 0.098 cm⁻¹, 若去適解振盪衰減曲線前面的 時間(0-0.5 μ s),則共振腔振盪衰減光譜法所得之 O₂ $a^{1}\Delta_{g} - X^{3}\Sigma_{g}^{-}(0,0)$ 吸收譜帶的整體譜帶強度(integrated band strength)與用霍式轉換紅外 光譜儀(其解析度為 0.0015 cm⁻¹)所得之整體譜帶強度只有相差 2%左 右。

2.2.4 模匹配 (mode matching)

利用近軸近似理論(paraxial approximation) [14],假設雷射光束為高 斯光束(Gaussian beam),在腔體中心,光束腰(waist)大小為 w_0 ,則在 離腔體中心距離 z 的光束其大小w(z),可表示成 $w(z) = w_0 \left(1 + \left(\frac{\lambda z}{\pi w_0^2}\right)^2\right)^{\frac{1}{2}}$, (2-14)

而共聚焦系數(confocal parameter),

$$b = \sqrt{d(2R-d)} = \frac{2\pi w_0^2}{\lambda} \quad , \tag{2-15}$$

其中 d 為鏡子距離腔體中心的距離, R 為鏡子的曲率半徑。例如雷射 波長為 1.2μm, 共振腔體長 65 cm, 鏡子曲率半徑為 6 m, 則 b=1.94 m, w₀=1.22 mm, w(32.5 cm)=1.29 mm。

為了避免模拍頻的現象,模匹配是必要的。利用一望遠鏡組以及針孔(iris)使雷射光模變成 TEM₀₀模,聚焦至共振腔體中心,雷射聚焦大

小和利用公式(2-14)所算出至腔體中央和至兩面鏡子時光束大小一致,此為模匹配。

2.2.5 受激拉曼散射 (stimulated Raman scattering, SRS)

運用受激拉曼散射的原理是一種改變雷射光頻率有效率的方法,而 且架設簡易。簡單的來說,就是利用高能量的雷射光,經由聚焦後, 在受激物質的焦點附近產生頻移,此頻移大小取決於受激物質的振動 能階,如果改變填充的受激物質,則可以改變頻移的大小。利用受激 拉曼散射的方式,吾人可以很容易地利用染料雷射的可見光束產生近 紅外或者可見雷射光。通常利用 single-pass 的方式產生的第一史拖克 (1st Stokes)雷射頻率,其轉換效率約為5-15% [15],而第二、第三... 史拖克雷射頻率的轉換效率呈指數遞減。也可以使用 multipass 的方 式產生第一和第二史托克雷射,效率分別提升到 27%和 12.5% [16、 17],也減低產生頻移門檻(threshold),可使用較低的入射能量和較小 的受激物質壓力。以下簡單介紹受激拉曼散射的原理。

受激拉曼散射為一四波混頻(four-wave mixing)的過程,與受激物質 的第三階極化率(susceptibility) $\chi^{(3)}$ 有關。其激發過程如圖 2-2 所示。 一般說來, $\chi^{(3)}$ 為一複數的四階張量(tensor),與頻率 w_L 、 w_s 及 w_A 有關。 w_L 、 w_s 及 w_A 分別表示激發雷射頻率、史拖克頻率以及反史拖克 (anti-Stokes)頻率。物質的增益因子(gain factor)可表示成 [18]

$$g = \frac{192\pi^2 w_s}{c^2 n^2} \chi^{(i)} (-\omega_s, \omega_L, -\omega_L, \omega_s) , \qquad (2-16)$$

其中 c 為光速, n 是物質在史拖克頻率下的折射率, $\chi^{(i)} \in \chi^{(3)}$ 的虛數 部分。對頻率為 w_0 , 阻尼常數為 Γ , 具有拉曼活性(active)的振動躍遷 來說, (2-16)式就變成

$$g = \frac{16\pi^2 c^2 N\Delta}{\hbar w_s^3 n^2 \Gamma} \left(\frac{d\sigma}{d\Omega}\right) \frac{\Gamma^2 / 4}{\left[w_0 - \left(w_L - w_S\right)\right]^2 + \Gamma^2 / 4} , \qquad (2-17)$$

其中N是單位體積內的分子數, △為振動基態與激發態佈居數

(population)之差,
$$\left(\frac{d\sigma}{d\Omega}\right)$$
是散射截面積。值得注意的是 $\left(\frac{d\sigma}{d\Omega}\right)$ 與 $w_L w_s^3$ 成
正比,當激發頻率越小,散射截面積越小,則g值也越小。而g值也
與 $\frac{N}{\Gamma}$ 成正比,但是當壓力增至某個值時會因壓力增寬效應(pressure
broadening)的影響,g值的變化就與壓力無關。以氫氣來說,當壓力
上升至超過20大氣壓時 [19],此時其g值的變化與壓力無關。

若以強度為I_L的雷射作為激發光源,則受激拉曼散射的強度可表示成

$$I_a = I_e \exp(gI_L l) \quad , \tag{2-18}$$

 I_a 和 I_a 分別表示為初始及放大(amplified)史拖克強度,l為增益物質的 長度。由(2-18)式可知,當 $I_L l > g^{-1}$ 時,自發性拉曼散射(spontaneous Raman scattering)開始轉變成受激拉曼散射, I_a會隨著I_L或1的增加急 遽地增加強度。若將激發雷射聚焦至增益物質,則在焦點附近因激發 雷射的光通量高,可提升史拖克雷射的強度。而此時增益因子可表示 成[20]

$$g = \frac{4f\alpha P}{\lambda_L} \tan^{-1}\left(\frac{2l}{b}\right)$$

$$=\frac{2f\alpha P}{\lambda_L} \quad \text{(for b<<21)} \quad \circ \tag{2-19}$$

 $f = \frac{\lambda_s}{(\lambda_s + \lambda_L)}$ 是模充填參數(mode filling parameter), α 為(2-16)式的增 益因子, b為共聚焦參數, P是入射雷射功率(W)。由(2-19)式可知史 拖克雷射的強度與增益物質的長度無關,只和物質濃度、入射雷射波 長以及雷射功率有關,亦可看出受激拉曼散射大都在焦點附近產生。

2.3 CRDS 的優點

利用吸收技術來偵測氣態的原子或分子光譜一直是一種很簡單且 實用的方法。吾人首先比較光源的部份。傳統的吸收技術主要是直接 偵測光被物質吸收後所造成的差異,然而傳統的光源強度較弱,如: 汞燈、氙燈光源等,造成光強度的差異變化很小,那麼很難去區別是 因物質吸收而造成光強度上的差異,還是周邊儀器的雜訊(如暗電 流),造成光强度上的變化。

CRDS 是以雷射做為光源的吸收技術,由於雷射光源之強度比上述 的傳統光源強度要高上好幾個級數,可以彌補傳統光源之強度微弱的 缺點,故可大大提升訊雜比(signal to noise ratio)。此外,雷射光源具 有高同調性(coherence)和高直準性,當吸收光徑增長時,雷射光的發 散程度比傳統光源小,故靈敏度高;再者,雷射光源的解析度通常要 比傳統光源還好,在掃瞄雷射頻率不但可以直接得到分子光譜,其頻 率的準確度也比利用傳統光源的方法還高。

相較於其它雷射吸收技術比較,如頻率調變光譜法(frequency modulation spectroscopy)等, CRDS 技術的優點如下:

(1) 直接得到物質之絕對濃度、 1896

由式 2-8 可知,利用 CRDS 技術得到物質之差異光譜(扣除背景值) 的吸收強度,在已知吸收截面積之下,可以直接得到物質之絕對濃 度。不需要另外測量已知的標準物,間接得到物質之絕對濃度。

(2) 不受雷射光源強度波動的影響

CRDS 技術是偵測光在共振腔體內光強度的衰減速率,而不是偵測 光強度的差異,故外在的雷射波動並不會影響在共振腔體內物質吸收 的情形。

(3) 靈敏度高

因為光在腔體中來回地反射,其吸收光徑很長,在衰減時間內(當 光強度衰減至原來強度的 1/e 所需時間)可達到數十公里,所以使的 CRDS 的靈敏度很高。

圖 2-1 以光子彈模型圖說明共振腔體衰減法之示意圖。

圖 2-2 拉曼散射示意圖,虛線表示虛態(virtual state),實線表示分子之振動態。其中w_L、w_s及w_A分別表示激發雷射頻率、史拖克頻率以及反史拖克(anti-Stokes)頻率。

- J. M. Herbelin, J. A. Mckay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, Appl. Opt. 23, 1238 (1984).
- [2] A. O'Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
- [3] T. Yu and M. C. Lin, J. Am. Chem. Soc. 115, 4371 (1993).
- [4] A. J. Hallock, E. S. F. Berman, and R. N. Zare, J. Am. Chem. Soc. 125, 1158 (2003).
- [5] R. Engeln, G. V. Helden, A. J. A. V. Roij, and G. Meijer, J. Chem. Phys. 110, 2732 (1999).
- [6] A. C. R. Pipino, J. W. Hudgens, and R. E. Huie, Chem. Phys. Lett. 280, 104 (1997).
- [7] C. Y. Chung, J. F. Ogilvie, and Y.- P. Lee, J. Phys. Chem. A 109, 7854 (2005).
- [8] G. Meijer, G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, Chem. Phys. Lett. 217, 112 (1994).
- [9] J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S. Jr. Harris, C. H. Kruger, and R. N. Zare, Chem. Phys. Lett. 258, 63 (1996).
- [10] J. J. Scherer, J. B. Paul, A. O'Keefe, and R. Saykally, J. Chem. Rev. 97, 25 (1997).
- [11] P. Zalicki, and R. N. Zare, J. Chem. Phys. 102, 2708 (1995).
- [12] J. T. Hodges, J. P. Looney, and R. D. van Zee, Appl. Opt. 38, 3951 (1999).
- [13] S. M. Newman, I. C. Lane, A. J. Orr-Ewing, D. A. Newnham, and J. Ballard, J. Chem. Phys. **110**, 10749 (1999).
- [14] A. Yariv, Quantum Electronics, 3th ed. (John Wiley, New York, 1975).

- [15] K. W. Aniolek, D. L. Miller, N. P. Gernansky, and K. G. Owens, App. Spectr. 51, 820 (1997).
- [16] R. Sussmann, T. Weber, E. Riedle, and H. J. Neusser, Opt. Comm. 88, 408 (1992).
- [17] W. Hartig, and W. Schmidt, Appl. Phys. 18, 235 (1979).
- [18] M. Maier, Appl. Phys. 11, 209 (1976).
- [19] J. B. Paul, Ph. D. Dissertation, University of California at Berkeley, 1998.
- [20] P. Rabinowitz, A. Stein, R. Brickman, and A. Kaldor, Opt. Lett. 3, 147 (1978).

第三章 實驗系統與實驗步驟

3.1 實驗系統

實驗系統如圖 3-1 所示,主要由雷射光源、拉曼頻移器(Raman shifter)、濾光片組、模匹配鏡組以及偵測系統五部分所組成,以下分別說明之:

3.1.1 雷射光源

雷射光源是由脈衝式紀鋁石榴石雷射(Neodymium-doped Yttrium Aluminum Garnet, Nd-YAG)及染料雷射(dye laser)所組成。

纪鋁石榴石 雷射(model Pro-270, Spectra Physics)以 10 Hz 的頻率發 出時間脈寬為 8-10 ns、波長 1064 nm 的近紅外光。此近紅外光可經 由諧頻產生器(harmonic generator, model HG-4)內的一組可控溫穩頻 裝置的 KDP 晶體(SHG)轉換成波長 532 nm 的諧頻光,再利用兩片 532 nm 的分色鏡(dichroic mirror)將 532 nm 的光分離出來。吾人利用此垂 直偏極性之 532 nm 雷射光為染料雷射的激發光源。

本實驗使用的染料雷射有兩種,分別為 PDL-3 (Spectra Physics)和 XRES-D-1800 (Sirah)。初期實驗主要利用 PDL-3 當作可調頻染料雷 射,以下為其工作原理。

圖 3-2(A)為 PDL-3 之光學元件架構,當 532 nm 雷射光進入染料雷
射內,會經由第一片分光片(B₁)將雷射光分成兩束,其中一束反射光 會經由柱狀聚焦鏡(C₁)聚焦後激發共振腔內染料槽(DC₁)的染料產生 染料雷射光;另一束穿透光經過由兩個稜鏡(P₁和 P₂)所組成的時間延 遲稜鏡組後,經由第二片分光片(B₂)將532 nm 的雷射光分成兩束, 其中一束反射光經柱狀聚焦鏡(C₂)聚焦後,激發前級放大染料槽(DC₂) 的染料產生雷射光,與由共振腔出來的染料雷射重合;另一束穿透光 先經90[°]稜鏡(P₃)以及柱狀透鏡(C₃)聚焦,再經由柱面反射鏡(M₁)將 532 nm 的雷射光橫向展開並以90[°]的角度射入放大染料槽(DC₃),並 在此槽內和經前級放大的染料雷射光重合以增大雷射光的增益。

圖 3-2(B)為 XRES-D-1800 之光學元件架構,工作原理與 PDL-3 相 (4),不同之處在於共振腔內的設計:XRES-D-1800 之擴展光束稜鏡 組(PE₂)和光柵為水平擺設;PDL-3 之擴展光束稜鏡組(PE₁)和光柵為 垂直擺設。當 532 nm 之垂直偏極性雷射光激發共振腔內染料槽的染 料(DC₄),產生之染料雷射光經由擴展光束稜鏡組(PE₂)和光柵後,從 共振腔出來之染料雷射大部份為水平偏極性。利用布魯士板使水平偏 極性之染料雷射通過,經過特殊之 180[°]稜鏡組改變染料雷射光成為 垂直偏極性和光行徑之方向,使染料雷射光再次入射回染料槽 (DC₄),與另一道以 532 nm 之垂直偏極性雷射光激發染料槽(DC₄)的 染料雷射重合。此設計使產生染料雷射光束的效率大大提升。

31

XRES-D-1800 可利用兩個光柵(G₂和G₃, 1800 g mm⁻¹)來選擇輸出的 波長, 雷射線寬在波長 625nm 下約為 0.06 cm⁻¹, 而 PDL-3 使用單一 光柵(G₁, 600 g mm⁻¹), 雷射線寬約為 0.13 cm⁻¹。輸出皆為水平偏極性 之染料雷射光, 可調變雷射光的範圍為 400~900 nm。吾人比較染料 雷射光之轉換效率,將量測到染料雷射光的強度對波長作圖,如圖 3-3 所示, XRES-D-1800 之轉換效率比 PDL-3 高約 3%左右。其中使 用的染料為 LDS-821 (Exciton, Inc.), 波長範圍 790 -855 nm, 入射雷 射光能量為 300 mJ,

另外,本實驗中以氟化氫準分子雷射(ArF excimer laser, Lambda Physik, model LPX 120i)作為光解光源,雷射共振腔輸出波長為 193 nm,最大輸出能量為 160 mJ pulse¹⁵,雷射出口處之雷射光大小約 2.4×1.1 cm²。

3.1.2 拉曼頻移器

染料雷射光通過焦距為 12 英吋的圓形聚焦鏡後,聚焦在拉曼頻移器的中央以產生史拖克雷射光。拉曼頻移器長度為 50 公分,腔體兩端以兩片直徑為兩英吋、厚度為一英吋的 BK7 光窗封住,內部充入約 300-400 psi 的氫氣。因為氫氣的振動頻率為 4155 cm⁻¹,是所有物質中振動頻率最大的,所以可以利用染料雷射輸出的可見光束,經過

拉曼頻移器產生近紅外光雷射。例如輸出波長為800nm的染料雷射 光,經過頻移後產生的第一史托克雷射光波長為1198nm,而第二史 托克雷射光波長為2386nm。本實驗以單次通過頻移器的方式,產生 第一史托克頻移雷射光的轉換效率約13%,而第二史托克頻移雷射光 的轉換效率約2%。

3.1.3 濾光片組

雷射光經過拉曼頻移器後,會產生第一、第二等多階之史托克頻移 雷射光,本實驗利用多片濾光片做波長的篩選,將11494-12787 cm⁻¹ 之染料雷射光頻移後,使波長 7300-8650 cm⁻¹ 通過。吾人所使用的濾 光片,由OMEGA 出品的為 1200WB200 (8900 -7600 cm⁻¹)、 1420WB250 (7820 -7020 cm⁻¹):由 SPECTROGON 出品的為 SP-2000 nm (9600 -4990 cm⁻¹)、SP-1420 nm (13600 -7090 cm⁻¹)、SP-1310 nm (10864 -7600 cm⁻¹)和 LP-1200 nm (8400 -2100 cm⁻¹)。

3.1.4 模匹配鏡組

利用一組凸透鏡組及針孔將史托克頻移雷射光變成接近 TEM₀₀ 模,且調成幾乎是平行光,進入振盪衰減腔體。

3.1.5 偵測系統

史拖克雷射經過濾光片組,進入已抽真空的振盪衰減腔體後,訊號

由 Indium-Antimonide(InSb, Kolmar Technologies)或者

Mercury-Cadmium-Telluride(MCT, Kolmar Technologies) 偵測器偵測。

3.2 實驗步驟

3.2.1 振盪衰減腔體的對正步驟

利用氦氖雷射(Uniphase, model 1107P-0622)來作振盪腔體的對正, 如圖 3-1 所示。其步驟如下:

- (1)首先先將振盪衰減腔體(不包含振盪衰減鏡座)固定在光學桌上,儘 量與光學桌平行。
- (2)在共振腔體的兩端放入兩個壓克力材質的小孔,往復調整 M₁及 M₂反射鏡使氦氖雷射通過此兩小孔以決定振盪衰減腔體的中心 位置。接下來將兩個振盪衰減鏡座固定於振盪衰減腔體上,調整 兩個振盪衰減鏡座的角度使氦氖雷射亦通過振盪衰減鏡座的中 心。
- (3) 放入 P1及 P2 可調式光圈(iris),使氦氖雷射通過其中心。其目的在 於利用 P1及 P2 以標定出通過腔體中心之光軸。
- (4)利用 M₃及 M₄反射鏡將氦氖雷射導至 M₆、M₅反射鏡處,並與拉 曼頻移雷射光束大致重合。
- (5) 放入 P₃及 P₄可調光圈,使氦氖雷射通過其中心。

- (6) 放入 L₂ 凸透鏡(焦距 2 英吋)使得氦氖雷射依然通過 L₂和 P₄之中 心,不改變光徑,接著放入 L₃ 凸透鏡(焦距 3 英吋)使得氦氖雷 射通過 L₃和 P₄之中心。L₂及 L₃的距離可依據(2-14)式所計算出來 之光束腰來決定。
- (7)放入濾光片 F₁、F₂、F₃、及 F₄在光徑上,往復調整 M₅及 M₆使拉 曼頻移雷射光可以通過P₃及 P₄。此時在氦氖雷射處應可以看到 dye laser 的光點。
- (8)將靠近P2端的振盪衰減鏡片裝上,調整振盪衰減鏡座的角度,使 得氦氖雷射經由此鏡子之光點通過P1且可在氦氖雷射出口處看到 反射點。
- (9)將靠近 P1 端的另一振盪衰減鏡片裝上,調整振盪衰減鏡座的角度,使得氦氖雷射的反射點通過P1 且可在氦氖雷射出口處看到反射點。
- (10)將振盪衰減腔體抽真空,並將偵測器所觀測到的訊號接至示波器上,微調振盪衰減鏡座的角度及 M₃、M₄、L₂、L₃以得到最佳之振 盪衰減訊號。

3.2.2 訊號擷取之步驟

由偵測器所偵測到的訊號先接到數位儲存示波器(Tektronix

TDS220,解析度8bit,取樣速度1GHz)上作初步的觀測,粗略移動

偵測器位置得到訊號。然後藉由調整 xyz 軸精密平移台,微調偵測器 的位置和微調振盪衰減鏡片的角度得到最強的振盪衰減訊號,將此訊 號接至在電腦主機板上的 GaGe 取樣板(GaGe Applied, Model 14100, A/D 解析度 14 bit,單通道最大取樣速度 100 MHz)擷取振盪衰減波 形,此時也可以微調振盪衰減鏡片的角度得到鏡子最佳的漏失比例。 當無法得到最佳的漏失比例(鏡子反射率為 R=99.99%時,漏失比例應 該為 100 ppm 左右),經常發生的情形為鏡子表面不潔,需要重新擦 拭,再重覆上述的步驟。一般觀察到的波形如圖 3-4 所示。

3.2.3 模匹配之步驟

如圖 3-5 所示, 吾人使用一組 BK7 凸透鏡組(直徑 2 英吋, 焦距分 別為 3 英吋及 2 英吋) 及針孔將史拖克頻移雷射光變成接近 TEM₀₀ 模後,聚焦至腔體中心(必要條件)。雷射光通過鏡組後之焦距 f 可由 下式求得

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} , \qquad (3-1)$$

其中 f₁、 f₂分別為凸透鏡之焦距,d 為兩凸透鏡的距離。接下來大約 測量雷射光束之大小,需與利用公式(2-14)所算出至腔體中央和至兩 面鏡子時光束大小一致。並且確定入射至腔體中央之雷射光束為高斯 光束。完成後,此為模匹配。 3.2.4 周邊儀器時序控制與振盪衰減波形擷取

圖 3-6 所示,本實驗利用脈衝產生器(Standford Research Systems, DG535)提供數個脈衝波觸發 Nd-YAG 雷射、準分子雷射及 GaGe 取 樣板。其中 T₀和 A(TTL 脈衝, 50 Ω)輸出端分別觸發 Nd-YAG 雷射之 lamp 和 Q-switch,其中 A=T₀+182 μ s。B 輸出端觸發 GaGe 取樣板, B=A。當需要光解時,C 輸出端觸發 excimer 雷射,C=T₀+180 μ s。實 際的儀器接線圖如圖 3-7 所示。

3.2.5 振盪衰減波形擷取與數據處理

振盪衰減波形撷取是以Labview (Laboratory Virtual Instrument Engineering Workbench)語言撰寫的程式,內部數據處理是以迴圈的方 式進行,首先指定波長給染料雷射後,染料雷射會回傳實際波長給電 腦,接下來以Labview 擷取 GaGe 取樣板上的振盪衰減波形後,利用 單一指數函數去適解所得到之振盪波形,得到振盪衰減時間(r_{get})。代 入 $Loss = \frac{L}{c \times r_{get}}$ (其中L為腔體長度,c為光速),得到漏失比例。迴圈 之步數取決於掃描的波長範圍和每一步之距離,例如掃描之波長範圍 800~830 nm,每 0.5 nm 記錄一點,則需要 60 步完成。吾人使用波長 校正器(model 4550, Burleigh)校正上述染料雷射輸出之波長。

3.3 實驗條件

3.3.1 偵測光源

本實驗中, 吾人所使用的染料分別為 LDS867 和 1:1 的 LDS821 與 LDS765(Exciton, Inc.)染料混合物。前者適用光區為 832-900 nm, 在 波長 850 nm 時,輸出能量約為 35 mJ pulse⁻¹;後者適用光區為 820-770 nm,在波長 800 nm 時,輸出能量約為 30 mJ pulse⁻¹。利用焦距為 12 英吋的凸透鏡,將染料雷射光聚焦後導入內裝約 350 psi 氫氣的拉曼 頻移器中。上述兩種染料雷射光經移頻後產生第一史托克的波長分別 約為 1.314 µm 和 1.2 µm,能量均約為 3 mJ pulse⁻¹。

3.3.2 光解雷射

本實驗中,吾人使用氟化氫準分子雷射作為光解光源,光通量 (fluence)約為57 mJ cm⁻²(雷射能量為150 mJ pulse⁻¹,雷射光面積為 2.4×1.1 cm²)。關於C₆H₅OCH₃和C₆H₅OC₂H₅在波長193 nm 之吸收截 面積σ,目前並無相關文獻。吾人可以大約量測樣品之吸收截面積, 根據 Beer-Lambert law,可表示成

$$Ln(\frac{I_0}{I}) = \sigma Lc = \sigma L \times \frac{P}{RT} \quad , \tag{3-2}$$

其中I為穿透後的光強度、 I_0 為穿透前的光強度、L 為光束通過樣品的路徑長度(cm)、c 為樣品的濃度(molecule cm⁻³)、P 為氣體的壓力(mTorr)、T 為溫度(K)、R 為氣體常數(1.036×10⁻¹⁶ mTorr cm³ molecule⁻¹

 K^{-1})。吾人調控樣品之壓力,以 193 nm 雷射光作為量測光源,利用雷 射能量計(power meter)量測光束通過樣品的強度。以 $Ln(I_0/I)$ 對 P 作 圖,求其斜率,再由斜率轉換成吸收截面積。本實驗樣品的 吸收截面積如圖 3-8 所示: $C_6H_5OCH_3$ 約為 2.86×10⁻¹⁷ cm² molecule⁻¹, $C_6H_5OC_2H_5$ 約為 9.07×10⁻¹⁸ cm² molecule⁻¹。

3.3.3 樣品與反應條件

吾人以 193 nm 雷射光光解 C₆H₅OCH₃ (99%, Aldrich)或 C₆H₅OC₂H₅ (98%, Aldrich)產生 C₆H₅O 自由基。所使用的試劑皆未加以純化,在 室溫下(298 K), C₆H₅OCH₃和 C₆H₅OC₂H₅的蒸汽壓分別約為 3 torr 及 1.5 torr。當光解雷射抵達腔體中心 2 μs 之後,偵測脈衝光源才抵達腔 體以偵測此生成物。而各樣品在標準狀態(S.T.P., 273K, 1atm)下之流 速分別為: $F_{C6H5OCH3+N2} \cong 2.9$ 或 $F_{C6H5OC2H5+N2} \cong 3.5$ 、 $F_{N2} \cong 48$ STP cm³ s⁻¹。 C₆H₅OCH₃和 N₂的比例為 1:72, 而 C₆H₅OC₂H₅和 N₂的比例為 1:145, 壓力總和控制在 220 Torr。

圖 3-1 實驗儀器裝置圖。其中 L1 焦距為 20 英吋, L2 焦距為 2 英吋, L3 焦距為 3 英吋, P₁~P₇代表可調式光圈(iris), M₁~M₁₀表示反射鏡, B.S.為分光片。

(B)

圖 3-2 (A) PDL-3 之光學元件架構。(B) XRES-D-1800 之光學元件架構。組線和細線分別為入射雷射光和染料雷射光之光徑。其中 P₁~P₆ 為棱鏡,B₁~B₄為分光片,C₁~C₆為柱狀聚焦鏡,L₁~L₅為望遠鏡組, G₁~G₃為光柵,PE₁和 PE₂為擴展光束之棱鏡組,DC₁~DC₅為染料槽, OC₁和 OC₂為輸出偶合器,BP 為布魯士板和偏極化棱鏡組。

圖 3-3 比較(A) XRES-D-1800 和(B) PDL-3 輸出染料雷射之轉換效率,分別約為 7%和 4%。其中使用的染料為 LDS-821,波長 532 nm 之入射能量為 300 mJ pulse⁻¹。

圖 3-5 模匹配之示意圖。其中 L_1 和 L_2 為凸透鏡, M_1 和 M_2 為高反射率鏡組, d 為鏡子的距離, W_0 和 $W_{(z)}$ 分別為光 束腰和距離腔體中心 Z之光束大小。

圖 3-7 共振腔振盪衰減(CRDS)實驗之周邊儀器線路連接圖。

圖 3-8 以 193 nm 雷射光照射樣品之吸收截面積的量測。(A) C₆H₅OCH₃之吸收截面積約為 2.86×10⁻¹⁷ cm² molecule⁻¹(B) C₆H₅OC₂H₅ 之吸收截面積約為 9.07×10⁻¹⁸ cm² molecule⁻¹。

第四章 結果與討論

本實驗利用 193 nm 雷射光光解 $C_6H_5OCH_3$ 或 $C_6H_5OC_2H_5$ 產生 $C_6H_5O, 並利用共振腔體衰減光譜法研究 <math>C_6H_5O \stackrel{\sim}{\sim} A^2B_2 \stackrel{\leftarrow}{\sim} X^2B_1$ 電 子態對稱禁制躍遷。以下首先討論 $C_6H_5O \stackrel{\sim}{\sim} x + h$ 躍遷選擇律,此對 於其後光譜之分析極為重要。其次利用理論計算和 PGopher 之模擬軟 體,做為指認 C_6H_5O 之電振譜帶的工具。

4.1 C₆H₅O 之電振躍遷

C₆H₅O 為平面分子,屬於 C_{2v}對稱群組, 吾人將此平面訂為 yz 平面, 沿 C-O 方向為 z 軸, 如圖 4-1(A)所示。以下為 C_{2v} 之對稱特徵表 (character table)

C_{2v}	Е	C_2	$\sigma_v(xz)$	$\sigma'_v(yz)$	
A_1	1	1	1	1	Z
A_2	1	1	-1	-1	R_z
\mathbf{B}_1	1	-1	1	-1	x, R _y
B_2	1	-1	-1	1	y, R _x

依據 Born-Oppenheimer 近似,由於電子之運動速度很快,而原子 核的運動速度很慢,當電子由初始態躍遷至終了態時,可將電子和原 子核的運動分開處理,故可將分子之波函數表示成電子波函數和原子 核的振動波函數之乘積。電振躍遷偶極矩可表示成

$$R_{e'v'e''v''} = \int \psi_{e'v'}^* \mu \psi_{e'v'} d\tau_{ev} = \int \psi_{e'}^* \psi_{v'}^* \mu \psi_{e''} \psi_{v''} d\tau_{ev}$$

$$= \int \psi_{e'}^* \mu \psi_{e'} d\tau_e \int \psi_{v'}^* \psi_{v''} d\tau_v = R_{e'e''} \int \psi_{v'_1}^* \psi_{v'_1} dQ_1 \int \psi_{v'_2}^* \psi_{v'_2} dQ_2 \cdots ,$$
(4-1)

其中 $R_{\mu\nu\sigma\nu}$ 為電振躍遷偶極矩, $R_{\mu\sigma}$ 為電子躍遷偶極矩, ν 為波函數, μ 為電子偶極矩,下標e和v分別表示電子態和振動態,'(prime)的符 號表示激發態," (double prime)的符號表示基態,Q為簡正振動模座 標(normal mode coordinate)。R, 之電子躍遷選擇律須考慮 y, µ和 y, 波函數之對稱性,其中 *u* 之對稱性和位移(x、y 和 z)的對稱性相當, 當三者之直積為全對稱,為可允許躍遷之條件。以 C6H5O 之 $\widetilde{A}^{2}B_{2} \leftarrow \widetilde{X}^{2}B_{1}$ 電子態躍遷為例, μ 之對稱性可為 A_{1} 、 B_{1} 和 B_{2} , 由於 $B_2 \otimes A_1 \otimes B_1 = A_2 \times B_2 \otimes B_1 \otimes B_1 = B_2 和 B_2 \otimes B_2 \otimes B_1 = B_1 皆不為全對稱,故$ 此為禁制躍遷;同理可知, \tilde{B}^2A , $\leftarrow \tilde{X}^2B$, 電子態躍遷為可允許之躍 遷。對於可躍遷之電子態,全對稱振動模和非全對稱振動模的電振躍 遷,其振動量子數的選擇律分別為 $\Delta v_i = 0, \pm 1, \pm 2, \dots$ 和 $\Delta v_i = 0, \pm 2, \pm 4, \dots$, 其強度由該振動模之 Franck-Condon 因子決定。但通常電子之運動會 伴隨原子核之振動,此時不適用 Born-Oppenheimer 近似,原來為電 子態之禁制躍遷可藉由電振作用(vibronic interaction)變為可允許之躍 遷,此作用稱為 Herzberg-Teller 效應[1]。在此情況下(4-1)可改寫成

$$R_{e'v'e''v''} = \int \psi_{vibronic'}^* \mu \psi_{vibronic''} d\tau \quad , \tag{4-2}$$

其中ψ_{vibronic}"和ψ_{vibronic},分別為電振基態和電振激發態之波函數。躍遷之 選擇律必須考慮ψ_{vibronic}"、μ和ψ_{vibronic},的對稱性。當三者之直積為全對 稱時,為可允許之條件。禁制躍遷之譜帶強度取決於振動和電子態之 波函數混合的程度。當混合程度不嚴重時,可用微擾理論來說明。將 電子態波函數擴展成

$$\psi_{e'} = \psi_{e'}^{0} + \sum c_{k} \psi_{k}^{0} = \psi_{e'}^{0} + \sum \psi_{k} \frac{\left\langle \psi_{k}^{0} | \hat{H}' | \psi_{e'}^{0} \right\rangle}{E_{e'}^{0} - E_{k}^{0}} , \qquad (4-3)$$

其中上標0表示為無電振作用力,k為其它激發態,ck為混合係數,Ĥ' 為對各個振動模座標之第一階泰勒展開項之和。而電子躍遷偶極矩可 改寫成

$$R_{e'e'} = \int \psi_{e'}^* \mu \psi_{e'} d\tau_e = \int (\psi_{e'}^*)^0 \mu \psi_{e''}^0 d\tau_e + \sum c_k \int (\psi_k^*)^0 \mu \psi_{e''}^0 d\tau_e \quad , \qquad (4-4)$$

其中禁制躍遷之第一項為零,第二項不為零,稱之為強度借用 (intensity borrowing)。由於禁制躍遷之強度主要來自於電振作用,故 須考慮下列式子之對稱性

$$\left\langle \boldsymbol{\psi}_{k}^{0} \mid \hat{H}^{\prime} \mid \boldsymbol{\psi}_{e^{\prime}}^{0} \right\rangle = \left\langle \boldsymbol{\psi}_{k}^{0} \mid \left(\frac{\partial H}{\partial Q_{i}} \right)_{Q_{j}=0} Q_{i} \mid \boldsymbol{\psi}_{e^{\prime}}^{0} \right\rangle , \qquad (4-5)$$

表示當電振波函數之對稱性 $\Gamma^{Q_i} \otimes \Gamma^{\psi^0_s}$ 與躍遷電子態波函數之對稱性 $\Gamma^{\psi^0_s}$ 的直積為全對稱時,其躍遷之強度不為零。例如 C_6H_5O 之 $\widetilde{A}^2B_2 \leftarrow \widetilde{X}^2B_1$ 電子態對稱禁制躍遷,雖然觀測不到起始譜帶(band origin),當其它之電子態為可允許之躍遷時,如 $\tilde{B}^{2}A_{2} \leftarrow \tilde{X}^{2}B_{1}$ 和 $\tilde{C}^{2}B_{1} \leftarrow \tilde{X}^{2}B_{1}$, $\tilde{A}^{2}B_{2}$ 之電子態可經由電振作用,分別伴隨一個量 子數之具 b₁ 及 a₂ 對稱性的振動模,使 $\psi_{vibronic'} = B_{2} \otimes b_{1} = A_{2}$ 和 $\psi_{vibronic'} = B_{2} \otimes a_{2} = B_{1}$,分別與 $\tilde{B}^{2}A_{2}$ 和 $\tilde{C}^{2}B_{1}(\vec{a}\tilde{X}^{2}B_{1})$ 躍遷電子態作 用,觀測到 \tilde{A} 之 b₁和 a₂振動模的電振譜帶。然而 b₂之振動模也是可 允許之電振躍遷,但是因 $\tilde{A}^{2}B_{2}$ 與鄰近之電子態無電振作用,如未有 A₁之電子態被觀測到,故 \tilde{A} 之 b₂振動模的電振譜帶強度應該非常微 弱。

4.2 理論計算

吾人利用 Gaussian03 程式[2],以密度泛涵理論 UB3LYP 的方法, 搭配基底函數 6-311++G (3df, 3pd),計算 C₆H₅O 之電子基態 \tilde{X}^2B_1 和 第一電子激發態 \tilde{A}^2B_2 之最佳幾何結構、能量、轉動常數和振動頻率。 此外,吾人亦利用 MOLPRO 程式[3],以全始分子軌域理論 CASSCF 和 CASPT2 方法,搭配基底函數 cc-pVDZ,考慮活性激發空間是由九 個電子,即七個π電子加上氧原子上兩個孤對電子在八個軌域中之分 配,以(9,8)表之,計算 C₆H₅O 之電子基態 \tilde{X}^2B_1 和第一電子激發態 \tilde{A}^2B_2 之最佳幾何結構、能量和轉動常數。至於以全始分子軌域理論 之方法計算兩電子態之振動頻率,目前尚未得到可靠之結果。

圖 4-1(B)為 C₆H₅O 處於電子基態 $\tilde{X}^{2}B_{1}$ 和電子激發態 $\tilde{A}^{2}B_{2}$ 之最佳 幾何結構,其中 CASPT2(9,8)/cc-pVDZ 之計算結果列於括號中。利用 UB3LYP/6-311++G (3df, 3pd)和 CASPT2(9,8)/cc-pVDZ 的方法所得到 之 $\tilde{X}^{2}B_{1}(\mathcal{D}\tilde{A}^{2}B_{2})$ 的平衡結構,其鍵長和鍵角之差異很小:鍵長之差 異小於 0.02 Å,鍵角之差異小於 1 度。在 $\tilde{X}^{2}B_{1}(\vec{a}\tilde{A}^{2}B_{2})$ 之轉動常數 也約略相同(相差小於 1.6 %),如表 4-1 所示。故往後之討論皆利用 UB3LYP/6-311++G (3df, 3pd)所預測之 $\tilde{X}^{2}B_{1}$ 和 $\tilde{A}^{2}B_{2}$ 平衡結構和轉 動常數的數值。吾人計算所得之 $\tilde{X}^{2}B_{1}$ 和 $\tilde{A}^{2}B_{2}$ 平衡結構和轉 14]等人利用 UMP2/6-31G*方法所得到之結果相似,其鍵長誤差小於

比較 C₆H₅O 在 $\tilde{X}^{2}B_{1}$ 及 $\tilde{A}^{2}B_{2}$ 之平衡結構, C-O 鍵長從原本 1.25 Å 變成 1.32 Å, 較 \tilde{X} 電子態伸長約 0.07 Å, 而 C₁-C₂ 和 C₁-C₃ 鍵長由 1.45 Å 縮短至 1.40 Å, 變化約 0.05 Å。鍵角上主要的差異為 C₃-C₁ -C₂ 之鍵角由 117 度增加至 120 度。而 \tilde{A} 電子態與苯環之結構相似(C -C 鍵長約 1.4 Å, C-C-C 鍵角約 120 度), 具有共振結構的性質。 圖 4-2(A)為利用全始分子軌域 CASSCF(9,8)之方法所得到的電子基

態 $\tilde{X}^{2}B_{1}$ 及第一電子激發態 $\tilde{A}^{2}B_{2}$ 之分子軌域,其中 SOMO (singly

occupied molecule orbital)為單電子佔據之分子軌域,HOMO (highest occupied molecule orbital)、HOMO-1、HOMO-2 和 HOMO-3 為雙電子 佔據之分子軌域。C₆H₅O 之 $\widetilde{A}^2B_2 \leftarrow \widetilde{X}^2B_1$ 躍遷,其電子是由氧原子 之未鍵結n軌域(HOMO-2)躍遷至氧原子及苯環組成之 π^* 軌域 (SOMO)。在躍遷的過程中,氧原子及苯環組成之 π^* 軌域(\widetilde{X} 之 SOMO) 可能與內層之 π 軌域(\widetilde{X} 之 HOMO-1)混成,形成 \widetilde{A} 之 π^* 軌域(HOMO)。 可能與內層之 π 軌域(\widetilde{X} 之 HOMO-1)混成,形成 \widetilde{A} 之 π^* 軌域(HOMO)。 而原來已填滿的 \widetilde{X} 之 HOMO-2 變為之 SOMO,則各軌域之相對能量 也因而改變,如圖 4-2(A)所示。由 $\widetilde{A}^2B_2 \leftarrow \widetilde{X}^2B_1$ 躍遷之分子軌域的 變化,可預期當電子由 $n \rightarrow \pi^*$ 躍遷時會造成 C-O 鍵的伸長和碳環之 收縮。

利用 UB3LYP/6-311++G (3df, 3pd)、CASSCF(9,8)/cc-pVDZ 和 CASPT2(9,8)/cc-pVDZ 方法所得到 $\tilde{A}^2B_2 \leftarrow \tilde{X}^2B_1$ 之躍遷能量與前人 之實驗及計算結果作比較,如表 4-2 所示,其中前人計算所得之躍遷 能量皆為垂直躍遷能量。 吾人以 CASSCF(9,8)/cc-pVDZ 及 CASPT2(9,8)/cc-pVDZ 方法得到之垂直躍遷能量與 Liu [4]等人利用 CASSCF(9,8)/cc-pVDZ 方法之結果相似。如不考慮 CNDO/S 之半經驗 計算方法[5]所得到之垂直躍遷能量,前人計算之垂直躍遷能量從 8400 cm⁻¹至 12685 cm⁻¹[4、6、7、8、9],相差甚大,而造成此能量 之差異可能與使用之計算方法有關。由於垂直躍遷之能量高於絕熱之 躍遷能量,故吾人計算所得之結果與前人無不符之處。與 Radziszewski 等人[10]及 Gunion 等人[11]分別利用光電子譜和間質隔離技術所觀測 之 $\tilde{A}^{2}B_{2} \leftarrow \tilde{X}^{2}B_{1}$ 躍遷能量比較,以 CASPT2(9,8)/cc-pVDZ 方法得到 之躍 遷 能 量 較 接 近 實 驗 之 數 值 ,其 誤 差 約 6 ~10%;以 UB3LYP/6-311++G (3df, 3pd)方法得到之躍遷能量較實驗數值為低, 誤差約 17~21%;而以 CASSCF(9,8)/cc-pVDZ 方法得到之躍遷能量誤 差更大,約 22~25%。一般而言,CASPT2 之方法在自由基分子之能 量計算上較為可靠[12]。

表 4-3 為使用 UB3LYP/6-311++G (3df, 3pd)的方法,計算 C₆H₅O 在 $\tilde{X}^{2}B_{1}$ 和 $\tilde{A}^{2}B_{2}$ 之振動頻率和相對應的分子振動模式。吾人計算之 $\tilde{X}^{2}B_{1}$ 的振動頻率與 Radziszewski 等人在 Ar 間質中所觀測到 C₆H₅O 之振動波數及以 UB3LYP/cc-pVTZ 方法所從事之理論計算結果[10]比 較,誤差不大;與其實驗值之誤差約小於 6%,而與其計算之結果誤 差約小於 2%。C₆H₅O 的 $\tilde{X}^{2}B_{1}$ 和 $\tilde{A}^{2}B_{2}$ 電子態之 $v_{1} - v_{30}$ 振動模之位 移向量,列於附錄 4-1 供作參考。

C₆H₅S與C₆H₅O之電子組態相似,Lim 等人[13、14]利用 CASSCF(6,6) 的方法,得到 C₆H₅S 之電子基態 $\tilde{X}^{2}B_{1}$ 及第一電子激發態 $\tilde{A}^{2}B_{2}$ 之分 子軌域,如圖 4-2(B)所示。C₆H₅S 之 $\tilde{A}^{2}B_{2} \leftarrow \tilde{X}^{2}B_{1}$ 躍遷,其電子主 要是由硫原子之未鍵結n 軌域(HOMO-1)躍遷至硫原子之π軌域 (SOMO)。在 $\tilde{X}^{2}B_{1}$ 電子態,由於硫原子之外層原子軌域(3p)與碳環之 π^* 軌域的作用力較小,故 C₆H₅S 之 SOMO 軌域主要是由硫原子之 3p 軌域(p_x)組成,而 C₆H₅O 之 SOMO 軌域為氧原子 2p 軌域(p_x)與苯環組 合成的 π^* 軌域,但一般而言 C₆H₅S 與 C₆H₅O 之 $\widetilde{A}^2B_1 \leftarrow \widetilde{X}^2B_1$ 躍遷型 態大致相同。對 C_6H_5O 或 C_6H_5S 而言,其 SOMO 軌域在 \tilde{X}^2B_1 電子 態為氧或硫原子之 p_x , 而 \widetilde{A}^2B , 電子態為在分子平面之氧或硫原子之 pv或pz 軌域。比較吾人和 Lim 等人[13、14]利用 CASPT2 方法之計算 結果, C_6H_5O 和 C_6H_5S 之 $\tilde{A}^2B_2 \leftarrow \tilde{X}^2B_1$ 垂直躍遷能量分別為 9690 cm^{-1} 和 2674 cm^{-1} , 相差約為 7016 cm^{-1} 。而為何 C_6H_5O 和 C_6H_5S 之 $\widetilde{A}^{2}B_{2} \leftarrow \widetilde{X}^{2}B_{1}$ 躍遷能量差異大?由電子之躍遷可知,當 C₆H₅S 之 $\sigma \rightarrow \pi$ 躍遷後,硫原子之 3p 軌域與碳環上之 π 軌域混成,而 C₆H₅O 之 $n \rightarrow \pi^*$ 躍遷後, 氧原子之 2p 軌域與碳環上之 π 軌域混成。 兩者軌 域混成後造成之能階分裂的程度為前者較小,故造成 C₆H₅O 和 C₆H₅S 躍遷能量的差異。再者,氧原子和硫原子之¹D←³P躍遷能量分別為 15867.862 cm⁻¹和 9238.609 cm⁻¹ [15], 雨者相差約 6629 cm⁻¹, 而 C₆H₅O 及 C_6H_5S 之 $\widetilde{A}^2B_2 \leftarrow \widetilde{X}^2B_1$ 躍遷可視為 $p_x \oplus p_y \oplus p_z$ 軌域之變化。則 當以硫原子取代 C_6H_5O 之氧原子時, 其 $\tilde{A}^2B_1 \leftrightarrow \tilde{X}^2B_1$ 躍遷能量可能 隨之而變小。

4.3 實驗結果與分析

4.3.1 C₆H₅O 的電振吸收譜帶

圖 4-3 為以 193 nm 雷射光照射流動之 C₆H₅OCH₃/N₂ (1:72) 氣態混 合物,在光區範圍 1156-1307 nm (7500-8680 cm⁻¹),掃瞄間隔為 0.05 nm 所測得之 CRD 吸收光譜,樣品在標準狀態下之流速分別為: F_{C6H5OCH3+N2} ≈ 2.9 及 F_{N2} ≈ 48 STP cm³ s⁻¹,總壓為 220 torr。其中(A) 和(B)分別表示於偵測雷射觸發前2 us 觸發光解雷射和未觸發光解雷 射所得到之吸收光譜,而(A)-(B)表示吸收之差異光譜。由(A)-(B)之差 異光譜可知:在7500-7850 cm⁻¹僅有一微弱之吸收譜帶,其譜線位 置在 7681 cm⁻¹; 在 7850-8080 cm⁻¹則無吸收之譜帶; 在 8080-8680 cm⁻¹有許多吸收之譜帶,其譜線位置分別在 8097 cm⁻¹、8148 cm⁻¹、 8197 cm^{-1} 8360 cm^{-1} 8403 cm^{-1} 8451 cm^{-1} 8548 cm^{-1} π 8607 cm^{-1} \circ 此外,吾人利用不同的前驅物(C6H5OC2H5),以193 nm 雷射光照射流 動之 C₆H₅OC₂H₅/N₂ (1:145)氣態混合物,實驗之條件大約相同,在 光區範圍 $8060 - 8200 \text{ cm}^{-1}$ 和 $8350 - 8680 \text{ cm}^{-1}$,也得到相似之吸收譜 帶,如圖 4-4 所示,其中(A)和(B)分別為光解 C₆H₅OC₂H₅和 C₆H₅OCH₃ 所得到之光譜。以 193 nm 雷射光光解 $C_6H_5OCH_3$ 預期可產生 $C_6H_5O +$ CH_3 或 C_6H_5 + OCH₃, 而光解 $C_6H_5OC_2H_5$ 預期可產生 C_6H_5O + C_2H_5 或 C₆H₅+OC₂H₅,由於使用兩種不同之前驅物均得到相似之吸收光譜, 可推測所觀測到之光譜最可能為 C₆H₅O 之吸收光譜。

由於光解前驅物時,兩面石英光窗容易污染,導致通過之光解雷射 光隨實驗時間越長能量越低,所得到吸收譜帶之相對強度不正確,且 影響訊雜比。實驗中吾人觀察到石英光窗受污染之可忍受的實驗時間 約為 20 分鐘,如以實驗中每間隔 0.05 nm 取樣,每次取樣時間為 6 秒,則一次實驗可掃瞄的光區範圍為 10 nm,即必須清潔光窗。故吾 人以 193 nm 雷射光照射流動之 C₆H₅OCH₃/N₂ (1:72)氣態混合物,限 制每次實驗之測量光區的範圍小於 10 nm,分別在~7681 cm⁻¹、8060 -8200 cm⁻¹、8350-8500 cm⁻¹、8520-8680 cm⁻¹附近得到最佳之吸 收譜帶,如圖 4-5 (A)所示。

4.3.2 C₆H₅O 光譜的指認

吾人利用 PGopher [16]光譜模擬程式對於 C_6H_5O 之電振轉譜帶輪廓 做指認。將使用 UB3LYP 方法所計算之 C_6H_5O 的電子基態和第一電 子激發態之轉動常數輸入程式中,固定 C_6H_5O 之電振基態的對稱性 為 B_1 (由 $B_1 \otimes a_1$ 而來)。對於電子激發態 B_2 ,具 $a_1 \times a_2 \times b_1$ 和 b_2 對稱 性之振動模,其電振激發態之對稱性分別為 B_2 (由 $B_2 \otimes a_1$ 而來)、 B_1 (由 $B_2 \otimes a_2$ 而來)、 A_2 (由 $B_2 \otimes b_1$ 而來)和 A_1 (由 $B_2 \otimes b_2$ 而來);其中括號表 示電子態 \otimes 振動模之直積。因 C₆H₅O 在 z、y 和 x 方向上之電子偶極 矩的對稱性分別為 A₁、B₂和 B₁,故知由 \tilde{X}^2B_1 電子態激發至 \tilde{A}^2B_2 電 子態具 a₁對稱性之振動模為禁制躍遷。由圖 4-1(A)可知, z、y 和 x 軸即為此分子之 a、b 和 c 軸,故對於自基底態 B₁至電子激發態 B₂ 之躍遷,電子激發態 B₂具 a₂、b₁和 b₂對稱性之振動模的電振激發態 躍遷型式分別為 a 型、b 型和 c 型躍遷,其模擬譜帶之輪廓如圖 4-6(A)-(C)所示。

由於在 8097 cm⁻¹之吸收譜帶的訊雜比最佳,且譜帶之輪廓與模擬 之 a 型譜帶輪廓十分吻合,如圖 4-7 所示,故吾人可確定在 8097 cm⁻¹ 之吸收譜帶為 a 型躍遷。由於此譜帶為 a 型躍遷,故其允許之振動躍 遷的對稱性應為 a₂,從理論計算之結果可知,C₆H₅O 有三個振動模(v₁₂、 v₁₃和v₁₄)屬於 a₂之對稱性。以下吾人列舉三種指派之可能性,分別討 論和說明之:

(1) 如果 8097 cm⁻¹ 譜帶為14¹ 躍遷

如吾人指派 8097 cm⁻¹之吸收譜帶為14¹, 譜帶, 則依理論計算之振動 頻率, 可能觀測到之譜線位置, 如圖 4-5(B)所示。

吾人觀測到在 8148 cm⁻¹ 和 8197 cm⁻¹ 有兩吸收之譜帶,兩譜帶輪廓 與 a 型躍遷相似,如圖 4-7(B)所示,距離14¹ 譜帶分別為 51 cm⁻¹ 和 100 cm⁻¹。根據表 4-3 所列出之計算結果,可能為14² 和14³ 譜帶($v'_{14} - v'_{14} =$ 51 cm⁻¹和 2 $v_{14}^{'}$ - 2 $v_{14}^{''}$ = 102 cm⁻¹)或者14 $_{0}^{1}$ 20 $_{1}^{1}$ 和14 $_{0}^{1}$ 20 $_{2}^{2}$ 譜帶($v_{20}^{'}$ - $v_{20}^{''}$ = 39 cm⁻¹和 2 $v_{20}^{'}$ - 2 $v_{20}^{''}$ = 78 cm⁻¹)。兩譜帶之強度與14 $_{0}^{1}$ 譜帶強度之比值分別 約為 0.54 和 0.14,當考慮波茲曼分布時,與14 $_{0}^{1}$ 20 $_{1}^{1}$ 和14 $_{0}^{1}$ 20 $_{2}^{2}$ 躍遷之譜 帶強度(0.41 和 0.17)相近,而與指派為14 $_{1}^{2}$ 和14 $_{2}^{3}$ 躍遷之譜帶強度(0.16 和 0.02)差異大,故吾人指派 8148 cm⁻¹和 8197 cm⁻¹分別為14 $_{0}^{1}$ 20 $_{1}^{1}$ 和 14 $_{0}^{1}$ 20 $_{2}^{2}$ 躍遷。然而計算得到之19 $_{0}^{1}$ ($v_{19}^{'}$ - $v_{14}^{''}$ = 83 cm⁻¹)與14 $_{0}^{1}$ 20 $_{2}^{2}$ 譜帶 ($2v_{20}^{'}$ - $2v_{20}^{''}$ = 78 cm⁻¹)相近,吾人暫時無法排除指派 8197 cm⁻¹為19 $_{0}^{1}$ + 14 $_{0}^{1}$ 20 $_{2}^{2}$ 躍遷之譜帶的可能性,往後需計算 Franck-Codon 因子來釐清 19 $_{0}^{1}$ 躍遷是否具有活性。

吾人觀測到在 8360 cm⁻¹ 和 8403 cm⁻¹之譜帶與14¹₀ 譜帶輪廓不同, 雨譜帶之輪廓與 b 型躍遷相似,如圖 4-7(C)所示,故其牽涉之 \tilde{A} 電子 態振動躍遷的對稱性應該為 b_1 ,其中具 b_1 對稱性之振動模為 $v_{15} - v_{20}$ 。 雨譜帶距離在 8097 cm⁻¹之譜帶分別為 263 cm⁻¹和 306 cm⁻¹,根據表 4-3 所列出之計算結果,與18¹₀($v'_{18} - v'_{14} = 239$ cm⁻¹)和17¹₀($v'_{17} - v'_{14} = 302$ cm⁻¹)相近,誤差分別為 24 cm⁻¹和 4 cm⁻¹。故吾人指派在 8360 cm⁻¹ 和 8403 cm⁻¹之譜帶分別為18¹₀和17¹₀躍遷。

吾人觀測到在 8451 cm⁻¹之吸收譜帶亦具有 b 型躍遷之轉動輪廓, 如圖 4-7(C)所示,且與14¹.譜帶差距 354 cm⁻¹。根據表 4-3之計算結果, 可能為 $17_{0}^{1}20_{1}^{1}(v_{17}^{'}+v_{20}^{'}-v_{20}^{'}-v_{14}^{'}=341 \text{ cm}^{-1})$ 譜帶,誤差約 13 cm⁻¹。由 於吸收譜帶之位置與 17_{0}^{1} 相差 48 cm⁻¹,與 14_{0}^{1} 和 $14_{0}^{1}20_{1}^{1}$ 之譜帶差距相似, 且其譜帶強度與 17_{0}^{1} 譜帶強度之比值約為 0.38,故吾人指派 8451 cm⁻¹ 為 $17_{0}^{1}20_{1}^{1}$ 躍遷。雖然 8451 cm⁻¹ 譜帶亦有可能被指派為 $13_{0}^{1}(v_{13}^{'}-v_{14}^{'}=$ 392 cm⁻¹),但誤差大(38 cm⁻¹)且與 b 型躍遷之譜帶輪廓不符,故排除 此指派的可能性。

吾人觀測到在 8540 cm⁻¹ 有一微弱的吸收譜帶,距離14¹ 譜帶為 443 cm⁻¹,根據表 4-3 之計算結果,與吸收譜帶最接近的為v₁₆ - v₁₄ = 453 cm⁻¹(誤差 10 cm⁻¹),然而因為 8540 cm⁻¹之譜帶訊雜比低,目前由模 擬之譜帶無法確認其躍遷型式,故吾人目前暫時指派為16¹ 躍遷,其 譜帶輪廓與模擬之輪廓如圖 4-7(D)所示,尚稱相似。

吾人觀測到在 8607 cm⁻¹和 8630 cm⁻¹有兩吸收之譜帶,分別距離在 8097 cm⁻¹之譜帶為 510 cm⁻¹和 533 cm⁻¹。根據表 4-3 之計算結果,可 能為 $12_0^{'}(v_{12}^{'} - v_{14}^{'} = 542 \text{ cm}^{-1})$ 和 $15_0^{'}(v_{15}^{'} - v_{14}^{'} = 546 \text{ cm}^{-1})$ 譜帶。由於觀測 到之兩吸收譜帶位置相近,相距約 23 cm⁻¹,兩譜帶之輪廓可能部分 重疊,故吾人先對於譜帶強度較強之 8630 cm⁻¹吸收譜帶作指認。在 8630 cm⁻¹之吸收譜帶,因其譜帶之輪廓與 a 型躍遷相似,如圖 4-7(D) 所示,故指派 8630 cm⁻¹之譜帶為 $12_0^{'}$ 躍遷,誤差為 11 cm^{-1} 。然而在 8607 cm⁻¹之微弱吸收譜帶,其譜帶輪廓與b型躍遷較相似,如圖 4-7(D) 所示,故吾人暫時指派在 8607 cm⁻¹之譜帶為 15_0^1 躍遷,誤差 36 cm⁻¹。

吾人觀測到在 7681 cm⁻¹之吸收譜帶距離14¹₀為 415 cm⁻¹,其譜帶輪 廓與 c 型躍遷相似,如圖 4-7(A)所示,故其牽涉之 \widetilde{A} 電子態振動躍遷 的對稱性應該為 b₂,其中具 b₂對稱性之振動模為 $v_{21} - v_{30}$ 。根據表 4-3 之計算結果,當以 b₂之對稱性指派其譜帶時,可能為 \widetilde{X} 和 \widetilde{A} 之電子 態分別伴隨一個量子數之具 a₂和 b₁對稱性的振動模,而其對稱性亦 為 b₂(a₂ \otimes b₁=b₂)。指派此 7681 cm⁻¹之譜帶可能為19⁰14¹₀(v_{19} =479 cm⁻¹) 或者17⁰13¹₀($v_{17}^{*} - v_{13}^{*} - v_{14}^{*} = 448$ cm⁻¹),误差分別為 64 cm⁻¹和 33 cm⁻¹。 如以19⁰14¹₀和17⁰13¹₀之躍遷譜帶回推 $\widetilde{A} \leftarrow \widetilde{X}$ 之躍遷譜帶起始點,分別 為 7732 cm⁻¹和 7661 cm⁻¹。當改以 7732 cm⁻¹或 7661 cm⁻¹為躍遷譜帶 起始點時,上述討論所指派之躍遷譜帶位置,與計算所得之振動頻率 的誤差很大,故排除此種指派之可能性。

當以在 8097 cm⁻¹之吸收譜帶, 14_0^1 , 回推 $A \leftarrow \tilde{X}$ 之躍遷譜帶起始 點為 7669 cm⁻¹, 與在 7681 cm⁻¹之 c 型躍遷譜帶相近(誤差 12 cm⁻¹)。 根據計算之結果, 在 7681 cm⁻¹之吸收譜帶可能為 $\tilde{A} \leftarrow \tilde{X}$ 之躍遷譜帶 起始點。當 C₆H₅O 之對稱群組由 C_{2v}退化為對稱性較低之 C₈對稱群 組時, 吾人可將 C₆H₅O 之 σ_h 的對稱面訂於 xz 平面上, 故y 軸屬於 A", x和z軸屬於A'。則Cs對稱群組之A'與C_{2v}對稱群組之A₁和B₁的對 稱性相當;Cs對稱群組之A"與C_{2v}對稱群組之A₂和B₂和的對稱性相 當。當 \tilde{X} 和 \tilde{A} 電子態分別為A'和A"之對稱性時, $\tilde{A}^{2}A' \leftarrow \tilde{X}^{2}A'$ 為 可允許之電子態躍遷。因此C₆H₅O之結構如考慮其零點振動能上之 運動可能略為偏離平面之結構,造成實驗上觀測到此躍遷譜帶起始點。 當改以7681 cm⁻¹譜帶為 $\tilde{A} \leftarrow \tilde{X}$ 之躍遷譜帶起始點時,實驗上觀測到 之各個譜帶位置與計算得到之 \tilde{A} 和 \tilde{X} 振動頻率相當符合,如表4-4 所 示,其平均誤差約2%,故吾人指派7681 cm⁻¹為 $\tilde{A} \leftarrow \tilde{X}$ 之躍遷譜帶 起始點。

(2) 如果 8097 cm⁻¹ 譜帶為13¹ 躍遷

如吾人亦可以指派 8097 cm⁻¹之吸收譜帶為13¹,躍遷,則依理論計算 之振動頻率,可能觀測到之譜線位置,如圖 4-5(C)所示。如此,則 8148 cm⁻¹和 8197 cm⁻¹之吸收譜帶,可依第(1)種指派熱譜帶之討論,指派 為13¹₀20¹₁和13¹₀20²₂。而在 8197-8607 cm⁻¹之吸收譜帶,根據表 4-3 之 計算結果,吾人可依序指派 8360 cm⁻¹為 28¹₀躍遷(誤差 10 cm⁻¹)、8403 cm⁻¹為 27¹₀躍遷(誤差 54 cm⁻¹)、8451 cm⁻¹為 27¹₀20¹₁躍遷(誤差 45 cm⁻¹)、 8540 cm⁻¹為 26¹₀躍遷(誤差 1 cm⁻¹)和 8630 cm⁻¹為 25¹₀躍遷(誤差 7 cm⁻¹), 雖然計算與吸收譜帶之位置誤差不大(1-54 cm⁻¹),但是根據譜帶輪 廓之指認, v₂₅ - v₂₈均為 b₂對稱性之振動模,則譜帶應均為 c 型躍遷 輪廓,和實驗之觀測為 a 和 b 型躍遷輪廓不一致,故指派為 25¹₀、26¹₀、 27¹₀和 28¹₀躍遷是不合理的。由上述之推論,吾人排除第(2)種指派的 可能性。

(3)如果 8097 cm⁻¹ 譜帶為12¹ 躍遷

吾人亦可指派 8097 cm⁻¹之吸收譜帶為12, 躍遷, 則依理論計算之振 動頻率,可能觀測到之譜線位置,如圖 4-5(D)所示。如此,則 8148 cm⁻¹ 和 8197 cm⁻¹ 之吸收譜帶,亦可依第(1)種指派熱譜帶之討論,指派為 $12_0^1 20_1^1 \pi 12_0^1 20_2^2 \circ c 8197 - 8607 \text{ cm}^{-1} 之吸收譜帶,由量子計算之結果,$ 11...... 吾人可依序指派 8360 cm⁻¹ 為 27¹, 躍遷(誤差 53 cm⁻¹)、8403 cm⁻¹ 為 26¹ 躍遷(誤差 14 cm⁻¹)、8451 cm⁻¹為25¹ 躍遷(誤差 22 cm⁻¹)、8540 cm⁻¹ 為24¹ 躍遷(誤差 39 cm⁻¹)和 8630 cm⁻¹ 為23¹ 躍遷(誤差 77 cm⁻¹),計算 與譜帶之位置誤差較大(14-77 cm⁻¹)。再者,根據譜帶輪廓之指認, V23-V27均為b2對稱性之振動模,則譜帶應均為c型躍遷輪廓,和實 驗之觀測為 a 和 b 型躍遷輪廓不一致,故指派為 23_0^1 、 24_0^1 、 25_0^1 、 26_0^1 、 27。躍遷是不合理的。由上述之推論,吾人亦排除第(3)種指派的可能 性。

由上述之討論可知,吾人如指派 8097 cm⁻¹之吸收譜帶為14¹ 躍遷, 則實驗上觀測到的各個譜帶之位置與躍遷型態均可以得到合理的指 派,而觀測到之譜帶12¹、14¹、15¹、16¹、17¹和18¹躍遷之振動運動 模式主要與環型變運動和 C-O 鍵之擺動運動有關。但如 b 型躍遷之 20_0^1 譜帶和 a 型躍遷之 13_0^1 譜帶,其譜帶之位置分別約為 7894 cm⁻¹和 8489 cm⁻¹,在實驗上並無觀測到吸收之譜帶。觀測不到200 譜帶可能 是由於實驗之高反射率鏡組的反射率在此光區範圍(約 7894 cm⁻¹)變 差,造成偵測之靈敏度降低,使觀測不易;或者是因200。譜帶強度遠 小於目前觀測到之150、160、170和180譜帶的強度,故偵測不到此吸 收之譜帶。往後吾人須藉由計算 Franck-Condon 因子, 釐清是因實驗 上觀測不易或者因無活性而觀測不到200。譜帶。至於130之譜帶,可能 由於v13'之振動運動模式為 C-H 鍵之擺動運動,與所觀測到的電振 譜帶之振動運動模式(主要為環型變運動和 C-O 鍵之擺動運動)不同, 故吾人認為此為非活化之振動模,故觀測不到譜帶。

此外, Gunion 等人[11]和 Radziszewski 等人[10]實驗上所測量之 $\widetilde{A}^{2}B_{2} \leftarrow \widetilde{X}^{2}B_{1}$ 躍遷能量分別為 8550 cm⁻¹和 8900 cm⁻¹, 與吾人量測 之 7681 cm⁻¹高很多。當以 8550 cm⁻¹為躍遷譜帶起始點, 根據表 4-3 之計算結果,可能指派在 8360 cm⁻¹、8403 cm⁻¹和 8451 cm⁻¹之吸收 譜帶,分別為20⁰₁、20¹₂和20²₃、而實驗觀測譜帶之強度約為1:2:1, 與考慮波茲曼分布時之譜帶強度比為5:2:1不符;在8097 cm⁻¹、 8148 cm⁻¹和8197 cm⁻¹之吸收譜帶,分別為14⁰₁、14⁰₁20¹和14⁰₁20²₂,而 與計算之頻率誤差頗大,約54-76 cm⁻¹;在7681 cm⁻¹之吸收譜帶為 28⁰₁,而與計算之頻率誤差亦大,約221 cm⁻¹。同理,以8900 cm⁻¹ 為躍遷譜帶起始點,根據表4-3 之計算結果,可能指派在8360 cm⁻¹、 8403 cm⁻¹和8451 cm⁻¹之吸收譜帶,分別為18⁰₁、19⁰和19⁰₁20¹₁,而與 計算之頻率誤差頗大,約9-106 cm⁻¹;在8097 cm⁻¹、8148 cm⁻¹和 8197 cm⁻¹之吸收譜帶,分別為13⁰、13⁰₁20¹和13⁰₁20²₂,而與計算之頻 率誤差較小,約3-25 cm⁻¹;在7681 cm⁻¹之吸收譜帶為27⁰₁,而與計 算之頻率誤差亦頗大,約54 cm⁻¹。

以前人之實驗值當作躍遷譜帶之起始點時,與計算之頻率誤差大, 且所觀察到之譜帶位置須全指派為熱譜帶。然而造成多個振動模之*Ĩ* 能階之布居數增加是不常見的,故吾人排除以前人之實驗值做為光譜 之躍遷譜帶起始點的指派。

而前人觀測到之實驗值可能為 $C_6H_5O \ge \widetilde{A}^2B_2 \leftarrow \widetilde{X}^2B_1$ 電振躍遷譜 带。根據表 4-3 之計算結果和吾人實驗上所觀測之吸收譜帶位置,在 8550 cm⁻¹之譜帶可能為 16_0^1 躍遷,誤差 10 cm⁻¹。至於在 8900 cm⁻¹之 譜帶,由於實驗尚未對此光區進行偵測,並無譜帶之資訊。日後仍需 往短波長做偵測,以得到更多譜帶之資訊。而根據表 4-3 之計算結果, 在 8900 cm⁻¹ 可能為 27¹ 躍遷,誤差 39 cm⁻¹。

4.4 結論

吾人利用共振腔振盪衰减法在 8097 cm⁻¹、8360 cm⁻¹、8403 cm⁻¹和 8630 cm⁻¹ 觀測到 C₆H₅O 之 $\widetilde{A}^{2}B_{2}$ ← $\widetilde{X}^{2}B_{1}$ 躍遷的電振吸收譜帶。由理 論計算所得之電子態能階及激發態振動波數之結果和譜帶輪廓的指 認,上述譜帶可分別指派為12,、14,、17,和18,躍遷,而8148 cm⁻¹、 8197 cm⁻¹ 和 8451 cm⁻¹ 可分別指派為14¹₀20¹₁、14¹₀20²₂、17¹₀20¹₁熱譜帶, 其中 $v_{20}(186 \text{ cm}^{-1})$ 是 $C_6H_5O 之 \tilde{X}$ 基態的最低能量之振動模。在 8540 cm⁻¹和 8607 cm⁻¹亦觀測到微弱之吸收譜帶,根據計算之結果,暫時 指派為15¹、16¹躍遷。此外吾人亦觀察到在7681 cm⁻¹之吸收譜帶為 躍遷譜帶起始點,與 Gunion 等人[11]和 Radziszewski 等人[10]分別利 用光電子譜和間質隔離技術所測量之 $\tilde{A}^2B_2 \leftarrow \tilde{X}^2B_1$ 躍遷能量,8550 cm⁻¹和 8900 cm⁻¹,差距很大,但與利用 UB3LYP/6-311++G (3df, 3pd) 和 CASPT2(9,8)/cc-pVDZ 之計算方法所得之能量分別為 7304 cm⁻¹ 和 8031 cm⁻¹,僅相差約 5%。
(A)

圖 4-1 (A) C₆H₅O 在 *X* 的 分 子 轉 軸 a、b 和 c。(B) 利 用 UB3LYP/6-311++G (3df, 3pd)及 CASPT2(9,8)/cc-pVDZ 方法所得之 C₆H₅O 在 *X* 和 *A* 的平衡結構。其中鍵長單位為 Å,鍵角單位為度, CASPT2(9,8)/cc-pVDZ 之計算結果列於括號中。

圖 4-2 (A)利用 CASSCF(9,8)方法所得之 C₆H₅O 的分子軌域,軌域之 能量列於括號中,單位為 hatree。(B)由 Lim 等人利用 CASSCF(6,6) 方法所得之 C₆H₅S 的分子軌域。其中 SOMO 為單電子佔據之分子軌 域,HOMO、HOMO-1、HOMO-2 和 HOMO-3 為雙電子佔據之分子 軌域。(1)和(2)分別表示電子基態 $\tilde{X}^{2}B_{1}$ 及第一電子激發態 $\tilde{A}^{2}B_{2}$ 。

圖 4-3 利用共振腔體振盪衰減光譜法所得之 C₆H₅O 在 7500-8680 cm⁻¹之吸收光譜。其中(A)和(B)分別表示觸發光解雷射和未觸發光解 雷射所得到之吸收光譜,而 (A)-(B)表示吸收之差異光譜。

圖 4-5 (A) 以 193 nm 雷射光照射 C₆H₅OCH₃/N₂ (1:72)所得到之吸收 譜帶。分別在 7681 cm⁻¹、8060-8200 cm⁻¹、8350-8500 cm⁻¹、8520 -8680 cm⁻¹觀察到吸收譜帶。(B)-(D)為考慮 8097 cm⁻¹ 譜帶為 a 型躍 遷,分別指派為14¹。、13¹和12¹2 躍遷後,觀測到吸收譜帶位置之可能 性,其中(B)-(D)譜線位置係利用 UB3LYP/6-311++G (3df, 3pd)計算方 法所得之 \widetilde{X} 和 \widetilde{A} 電子態之振動頻率,圖中直線、虛線和點虛線分別 表示電振激發態之振動模式為 a₂、b₁和 b₂的對稱性。

圖 4-6 在 8097 cm⁻¹之吸收譜帶(D)與利用 PGopher 程式模擬之光譜 (A)-(C)的比較,而實驗之譜帶輪廓與 a 型躍遷十分吻合。模擬光譜之 參數如下: T=300 K、 J_{max} =200、A''=0.1849 cm⁻¹、B''=0.0934 cm⁻¹、 C''=0.0621 cm⁻¹、A'=0.1905 cm⁻¹、B'=0.0926 cm⁻¹、C'=0.0623 cm⁻¹。

圖 4-7 實驗之吸收光譜(A)-(D)和模擬光譜(A')-(D')之比較。模擬光譜 之參數如同圖 4-6。

表 4-1 利用 UB3LYP/ 6-311++G (3df, 3pd)及 CASPT2(9,8)/cc-pVDZ 方 法所得之 C₆H₅O 在 \tilde{X} 和 \tilde{A} 的轉動常數($A' \cdot A'' \cdot B' \cdot B'' \cdot C' n C''$)。其 中轉動常數之單位為 cm⁻¹。

State		B3LYP/6-311++G (3df, 3pd)	CASPT2/cc-pVDZ
\widetilde{X}	<i>A</i> "	0.1849	0.1820
	<i>B</i> ″	0.09342	0.09328
	<i>C</i> ″	0.06206	0.06168
\widetilde{A}	A'	0.1905	0.1891
	<i>B'</i>	0.09258	0.09224
	<i>C</i> ′	0.06229	0.06200

表 4-2 利用 UB3LYP/6-311++G (3df, 3pd)、CASSCF(9,8)/cc-pvDZ 和 CASPT2/cc-pVDZ 方法所得到之 $\tilde{A}^{2}B_{2} \leftarrow \tilde{X}^{2}B_{1}$ 躍遷能量與前人之實 驗及計算之結果比較表。

	Method	$\widetilde{A} \leftarrow \widetilde{X}$ transition energy / cm ⁻¹	Ref.	
Exp.				
	Matrix isolation	8900	Radziszewski et al. ¹⁰	
	Photoelectron	8550	Gunion et al. ¹¹	
Cal.				
	CNDO/S	5322 ^a	Chang et al. ⁵	
	TD-UB3LYP/ aug-cc-pVTZ	~8400ª	Tonokura et al. ⁶ Radziszewski et al. ⁷ Dierksen and Grimme ⁸	
	CASSCF(9,8)/ 6-31G*	10564 ^a	Liu et al. ⁴	
	MR-SD-CI 🌌 🚽	12685 ^a	Takahashi et al. ⁹	
	UB3LYP/ 6-311G++ (3df, 3pd)	7304 ^b	This work	
	CASSCF(9,8)/ cc-pVDZ	10570 ^a • 6648 ^b	This work	
	CASPT2(9,8)/ cc-pVDZ	9690 ^a \ 8031 ^b	This work	

^a 垂直躍遷能量(ΔE^{vert}) ^b絕熱躍遷能量(ΔE^{adia})

表 4-3 利用 UB3LYP/6-311++G (3df, 3pd)計算方法所得之 C₆H₅O 在

mode	symmetry	\widetilde{X}	\widetilde{A}	approximate mode description
v_1	a_1	3203	3212	CH str
v_2	a_1	3192	3202	CH str
<i>v</i> ₃	a_1	3169	3170	CH str
v_4	a_1	1583	1607	CC str/CO str
<i>v</i> ₅	a_1	1483	1454	CO str
v ₆	a_1	1419	1244	CH bend/CO str
v_7	a_1	1165	1192	CH bend
v_8	a_1	1009	1045	CH bend/ring breath
<i>v</i> ₉	a_1	972	987	CCC bend
<i>v</i> ₁₀	a_1	804	829	ring breath
<i>v</i> ₁₁	a_1	531	522	CCC bend
<i>v</i> ₁₂	a_2	993 🔬	970	HCCH tor
<i>v</i> ₁₃	a_2	806	820	CH wag
v_{14}	a_2	377	428	ring def
<i>v</i> ₁₅	b_l	996	974896	HCCH tor
v_{16}	b_l	935 💙	881	CH wag/boat def
v_{17}	b_l	800	730	CO CH wag/chair def
v_{18}	b_1	646	667	CH wag / chair def
<i>v</i> ₁₉	b_1	479	510	CO wag/ boat def
v_{20}	b_1	186	225	CO wag/boat def
v_{21}	b_2	3200	3211	CH str
<i>v</i> ₂₂	b_2	3177	3175	CH str
<i>v</i> ₂₃	b_2	1542	1580	CC str/CH bend
<i>v</i> ₂₄	b_2	1441	1452	CC str/CH bend
<i>v</i> ₂₅	b_2	1337	1346	CC str/CH bend
<i>v</i> ₂₆	b_2	1277	1262	CC str/CH bend
<i>v</i> ₂₇	b_2	1165	1180	CH bend
<i>v</i> ₂₈	b_2	1090	1093	CH bend
<i>v</i> ₂₉	b_2	596	624	CCC bend
<i>v</i> ₃₀	b_2	448	372	CO bend

 $\widetilde{X}^{2}B_{1}$ 和 $\widetilde{A}^{2}B_{2}$ 電子態之振動頻率(cm⁻¹)、振動模式和對稱性。

表 4-4 指派實驗上觀測到 $C_6H_5O \gtrsim \widetilde{A}^2 B_1 \leftarrow \widetilde{X}^2 B_1$ 躍遷在 7500—8680 cm⁻¹ 的吸收譜帶。以 7681 cm⁻¹ 譜帶為 $\widetilde{A} \leftarrow \widetilde{X} \ge$ 躍遷譜帶起始點,實驗上觀測到之各個譜帶位置與計算得到之 \widetilde{A} 和 \widetilde{X} 振動頻率相距 7681 cm⁻¹ 譜帶之比較。

Assignment	Observed frequencies / cm ⁻¹	Experimental shift / cm ⁻¹	Calculated shift/ cm ⁻¹	Transition type
000	7681	0		с
14 ¹ ₀	8097	+416	+428	а
$14_0^1 20_1^1$	8148	+467	+467	а
$14_0^1 20_2^2$	8197	+516	+506	а
18 ¹ ₀	8360	+679	+667	b
17 ¹ ₀	8403	+722	+730	b
$17^{1}_{0}20^{1}_{1}$	8451	+770	+769	b
16 ¹ ₀	8540	+859	+881	b
15 ¹ ₀	8607 🌏	+926	+974	b
12 ¹ ₀	8630	+948	+970	а

- [1] G. Herzberg and E. Teller, Z. Phys. Chem. Abt. B 21, 410 (1933).
- [2] M. J. Frisch, G. W. Trucks, H. B. Schlege *et al.*, GAUSSIAN 03, Revision D. 02, Gaussian Inc., Wallingford, CT, 2004.
- [3] H. -J. Werner, P. J. Knowles, R. D. Amos *et al.*, MOLPRO, a package of *ab initio* programs, version 2006.1.
- [4] R. Liu, K. Morokuma, A. M. Mebel, and M. C. Lin, J. Phys. Chem. 100, 9314 (1996).
- [5] H. M. Chang, H. H. Jaffe, and C. A. Masmanidis, J. Phys. Chem. 79, 1118 (1975).
- [6] K. Tonokura, T. Ogura, and M. Koshi, J. Phys. Chem. A 108, 7801 (2004).
- [7] J. G. Radziszewski, M. Gile, A. Gorski, J. Spanget-Larsen, J. Waluk, and B. J. Mroz, J. Chem. Phys. 115, 9733 (2001).
- [8] M. Dierksen and S. Grimme, J. Chem. Phys. 120, 3544 (2004).
- [9] J. Takahashi, T. Momose, and T. Shida, Bull. Chem. Soc. Jpn. 67, 964 (1994).
- [10] J. G. Radziszewski, M. Gile, A. Gorski, J. Spanget-Larsen, J. Waluk, and B. J. Mroz, J. Chem. Phys. 115, 9733 (2001).
- [11] R. F. Gunion, M. K. Gilles, M. L. Polak, and W. C. Lineberger, Int. J. Mass Spectrom. Ion Process 117, 601 (1992).
- [12] Z. Azizi, B. O. Roos, and Valera Veryazov, Phys. Chem. Chem. Phys.8, 2727 (2006).
- [13] J. S. Lim, I. S. Lim, K. S. Lee, D. S. Ahn, Y. S. Lee, and S. K. Kim, Angew. Chem. Int. Ed. 45, 6290 (2006).
- [14] I. S. Lim, J. S. Lim, Y. S. Lee, and S. K. Kim, J. Chem. Phys. 126, 034306 (2007).

- [15] (a) W. L. Wiese, J. R. Fuhr, and T. M. Deters, J. Phys. Chem. Ref. Data, Monograph No. 7 (1996). (b) W. C. Martin, R. Zalubas, and A. Musgrove, J. Phys. Chem. Ref. Data 19, 821 (1990). NIST Atomic Spectra Database (version 3.1.2), [Online]. Available: <u>http://physics.nist.gov/asd3</u> [2007, June 1]. National Institute of Standards and Technology, Gaithersburg, MD.
- [16] PGopher, a Program for Simulating Rotational Structure, C. M. Western, University of Bristol.

和 \tilde{A} 電子態之 $v_1 - v_{30}$ 振動模之位移向量。

