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This investigation elucidates the dense entropy of two-dimensional inhomogeneous cellular neural
networks (ICNN) with/without input. It is strongly related to the learning problem (or inverse
problem); the necessary and sufficient conditions for the admissibility of local patterns must
be characterized. For ICNN with/without input, the entropy function is dense in [0, log 2] with
respect to the parameter space and the radius of the interacting cells, indicating that, in some
sense, ICNN exhibit a wide range of phenomena.
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1. Introduction

Cellular neural networks (CNN), as presented by
Chua and Yang [1988a, 1988b] have been exten-
sively investigated, and described in a review [Chua,
1998], which contains relevant references. Two of
their applications are in image processing and pat-
tern recognition. An important class of applications
is steady-state solutions, including mosaic solutions
and defect solutions [Chua, 1998; Hsu et al., 2000;
Juang & Lin, 2000]. In recent years, the com-
plexity of steady-state solutions has been exten-
sively studied, and much attention has been paid
to the complexity of the set of global patterns, with

particular reference to entropy [Ban et al., 2001a,
2001b, 2002; Ban & Lin, 2005; Ban et al., 2007a,
2007b; Chow et al., 1996a, 1996b; Hsu et al., 2000;
Hsu & Yang, 2002; Juang & Lin, 2000; Lin & Shin,
1999; Lin & Yang, 2000, 2002; Lind & Marcus,
1995].

Two-dimensional (2-D) CNN is of the form,

dxi,j

dt
= −xi,j + z +

∑
|k|,|l|≤d

ak,lf(xi+k,j+l)

+
∑

|k|,|l|≤d

bk,lui+k,j+l, (1)
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where (i, j) ∈ Z2, d ∈ N, f(x) is a piecewise-linear
output function, defined by

y = f(x) =
1
2
(|x+ 1| − |x− 1|).

A = [ak,l] =


a−d,d · · · ad,d

...
. . .

...
a−d,−d · · · ad,−d

 and

B = [bk,l] =


b−d,d · · · bd,d

...
. . .

...
b−d,−d · · · bd,−d


represent the feedback template and the controlling
template, respectively; z denotes the biased term
or threshold. The quantities xi,j denote the state at
cell Ci,j , and yi,j denote the output at Ci,j .

As is generally known, stationary solutions x =
(xi,j) are essential to understand CNN, and their
outputs are called patterns. This study considers a
specified class of output patterns called mosaic pat-
terns. Ban et al. [2007b] investigated the connection
between CNN with/without input and shift spaces,
and an important question arose.

Problem. For CNN with/without input, if the
radius of the interacting cells d is treated as a
parameter, is {h(A,B, z, d)}/{h(A, z, d)} dense in
[0, log 2]?

Multifractal analysis is introduced to a spec-
ified dynamical system when one of its invariants
is essentially the same as an interval (see [Pesin,
1997] for more detail), this motivates us to con-
sider such a problem. However, since the well-
known fact that the entropy of subshift of finite
type takes a family of specific values, called Per-
ron number [Lind & Marcus, 1995], the “dense”
assumption cannot be removed. The main diffi-
culty in solving the problem is related to the fact
that the admissible local patterns that are pro-
duced by CNN are very limited [Hsu et al., 2000;
Juang & Lin, 2000]. Restated, there exists U ⊆
{1,−1}Zn×n such that U �= B(A, z, d)/B(A,B, z, d)
for all chosen values of the parameters A,B, z, d,
where n = 2d+ 1.

For example, consider the one-dimensional
CNN without input, and the length of interac-
tion d = 1. Figure 1 is the bifurcation dia-
gram that relates admissible local patterns to the
parameters A = (al, a, ar) and z; readers may
refer to [Hsu et al., 2000; Juang & Lin, 2000] for

Fig. 1. The bifurcation diagram of 1-D CNN.

more details. First, choosing (al, ar) yields a total
of eight partitions, as shown in Fig. 1. Second, the
(a−1, z) plane has 25 regions such that the admissi-
ble local patterns will be uniquely determined once
the region is chosen. For instance, if the parameters
A, z are in region [3, 4] of partition IV, the admissi-
ble local patterns are

B = {− ⊕ +,−⊕−,+ ⊕ +,+ �−,+ � +,

−�−,− � +}.
That is, “3” indicates that the three patterns with
“+” in the center should be chosen from the bot-
tom, and “4” indicates that all four patterns with
“−” in the center can be chosen in IV. Thus, Figs. 1
and 2 show all admissible local patterns of 1-D CNN
with d = 1.

However, let U ⊆ {1,−1}Z3×1 be the set of pat-
terns which are listed as follows.

U = {− ⊕ −,−⊕ +,+ ⊕−,−�−,−� +,+ �−}.
Notably, U consists of patterns that are selected
from different partitions for al and ar. More pre-
cisely, the patterns with “+” in the center are
located in partition V such that the parameters
al and ar must satisfy the conditions al < 0 and
ar > 0. Moreover, the patterns with “−” in the cen-
ter are selected from partition I, in which the associ-
ated parameters al, ar must then satisfy al, ar > 0.
Accordingly, there does not exist A, z such that
B(A, z) = U . Thus, some values of entropy cannot
be attained for all choices of 3 × 1 basic sets for
d = 1.
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This study elucidates the ICNN system (defined
later). Most materials in natural systems, including
physical, biological and electronic systems, are

spatially inhomogeneous [Ferdinand & Fisher, 1969;
Perdew, 1986; Rosenfeld, 1989; Kravtsov & Orlov,
1990; Pesin, 1997; Debye & Bueche, 2004]. The
ICNN system is of the form,

dxi,j

dt
=


−xi,j + z +

∑
|k|,|l|≤d

ak,lf(xi+k,j+l) +
∑

|k|,|l|≤d

bk,lui+k,j+l, i, j ≡ 0 mod m;

−xi,j + z′ + a0,0f(xi,j), otherwise,

(2)

for some m ∈ N, i, j ∈ Z. Restated, the difference
between CNN and ICNN is that the templates and
threshold at each cell Ci,j are spatially invariant
for CNN but variant for ICNN. This work presents
a solution to the problem of ICNN, but does not
solve the problem of CNN. The authors suspect the
answer to the problem of CNN is also positive.

In a work on dense entropy, Quas and Trow
[2000] showed that every subshift of finite type
(SFT) X with positive entropy has proper SFT X′
which is a subsystem of X whose entropy is strictly
less than the entropy of X, but whose entropy is
arbitrarily close to that of X. However, they cannot
be guaranteed to be mixing [Quas & Sahin, 2003].
Recently, Desai [2006] proved that for any Zd-SFT
R of positive entropy, the SFT subsystems achieve
dense entropy in [0, h(R)]. Thus, if R is treated as
a full shift, then the SFT is dense in [0, log |A|],
where A denotes the symbols of R, and this result
can be generalized to sofic systems. Restated, given

Fig. 2. The partition of a − z plane of 1-D CNN.

a Zd sofic shift T, the sofic shift subsystems achieve
dense entropy in [0, h(T)]. However, a difficulty sim-
ilar to that associated with CNN arises in solving
the problem of ICNN. The difficulty is to guar-
antee that the patterns that would achieve the
desired entropy can be produced by an ICNN sys-
tem with/without input. This investigation pro-
poses a necessary and sufficient condition for the
admissibility of local patterns of ICNN, and demon-
strates that suitable local patterns can be found
that achieve the given t ∈ [0, log 2] (according to
Theorem A for ICNN without input and Theorem
B for the case with input). Finding these patterns
solves the dense entropy problem for ICNN.

The rest of this paper is organized as fol-
lows. Section 2 introduces preliminaries that consti-
tute the background for this work. Section 3 then
presents a general theory that yields details about
how ICNN relates to a shift of finite type. The solu-
tion to the dense entropy problem is also addressed.
Section 4 extends the results in Sec. 3 to ICNN with
input.

2. Preliminary

Several notions for the formulation of the main
results in Secs. 3 and 4 are presented in this sec-
tion. Since the states Ci,j with i = k1m, j = k2m
for k1, k2 ∈ Z are crucial for the study of the mosaic
solutions of ICNN, these cells are the main focus in
the rest of this investigation.

Definition 2.1. Let x = (xi,j) be the stationary
solution of system (2). x is called a mosaic solution
if |xi,j| > 1 for all i, j ∈ Z, and is called an interior
solution if |xi,j| < 1 for all i, j ∈ Z. A defect solu-
tion x satisfies |xi,j| > 1 for some (i, j) ∈ D and
|xk,�| < 1 for some (k, �) /∈ D, where D � Z2 and
D �= ∅.

First, considering the system (2) without input,
that is, the template B ≡ 0. For each given mosaic
solution x, the output pattern at cell Ci,j is +, i.e.
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xi,j > 1, if and only if∑
|k|,|l|≤d

(k, l) �=(0,0)

ak,ly i+k,j+l + a+ z − 1 > 0, (3)

where a0,0 ≡ a. Similarly, the output pattern at cell
Ci,j is −, i.e. xi,j < −1, if and only if∑

|k|,|l| ≤ d
(k, l) �= (0,0)

ak,ly i+k,j+l − a+ z + 1 < 0. (4)

(3) and (4) can be rewritten in a much more com-
pact form by introducing the following notations.

Denote n = 4d2 + 4d. Let Xn be the n-
dimensional lattice points, i.e.

Xn = {v = (vi) ∈ Rn : |vi| = 1 for 1 ≤ i ≤ n}. (5)

Then, for a given pair of template A and threshold
z, the basic set of admissible local patterns with
“+” state in the center is defined by

B(+, A, z, d) = {v ∈ Xn : α · v + a+ z − 1 > 0},

where “·” is the inner product, α = (a1, a2, . . . , an), v = (v1, v2, . . . , vn) are obtained from

a4d2+2d · · · a2d2+d+1 · · · a1

...
... · · · ai,j · · · ...

...
an · · · a2d2+3d · · · a2d+1


=



ai−d,j+d · · · ai,j+d · · · ai+d,j+d

...
... · · · ai,j · · · ...

...
ai−d,j−d · · · ai,j−d · · · ai+d,j−d


and 

v4d2+2d · · · v2d2+d+1 · · · v1
...

... · · · vi,j · · · ...
...

vn · · · v2d2+3d · · · v2d+1


=



yi−d,j+d · · · yi,j+d · · · yi+d,j+d

...
... · · · yi,j · · · ...

...
yi−d,j−d · · · yi,j−d · · · yi+d,j−d


,

respectively. In other words, α represents the sur-
rounding template of A without center, and v indi-
cates the output patterns at cell Ci,j whose center is
omitted. Similarly, the basic set of admissible local
patterns with “−” in the center is defined by

B(−, A, z, d) = {v ∈ Xn : α · v − a+ z + 1 < 0}.
An investigation of the basic sets of admissi-

ble local patterns B(+, A, z, d) and B(−, A, z, d) is
essential for the understanding of the global mosaic
patterns on Z2 that are generated by the given
(A, z). Some definitions and theorems should be
stated first.

Definition 2.2. Given U ⊂ Xn, U is called separa-
ble if there is a hyperplane H in Rn such that U
and Uc can be separated by H, where Uc = Xn \U .

Hsu et al. [2000] investigated how the admis-
sible local mosaic patterns B(∗, A, z, d) relate to

the parameters A, z and d in CNN systems, where
∗ ∈ {+,−}.
Theorem 2.3 [Hsu et al., 2000]. There exists (A, z)
and d such that U = B(∗, A, z, d) for some ∗ ∈
{+,−} if and only if U is separable.

Moreover, the classical theory of convex set
[Lay, 1992] gives the necessary and sufficient con-
dition when U ⊆ Xn is separable.

Theorem 2.4 (Linear Separating Theorem). U and
Uc can be separated by a hyperplane in Rn if and
only if

conv(U) ∩ conv(Uc) = ∅, (6)

where conv(K) is the convex hull of K in Rn.

Let z = (z, z′) denote the thresholds, and let
B(A, z)/B(A,B, z) denote the basic set of admissi-
ble local patterns of ICNN without/with input for
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the given templates. The result in Theorem 2.3 still
holds for ICNN systems.

Theorem 2.5. There exists (A, z) and d such that
U = B(∗, A, z, d) for some ∗ ∈ {+,−} if and only if
U ⊆ Xn is separable.

Proof. It suffices to show that B(+, A, z, d) = U
for some (A, z) and d if and only if U is separable.
The proof for ∗ = − is essentially the same, thus is
omitted.

First, considering the output pattern at Ci,j,
where (i, j) �= (k1m,k2m) for some k1, k2 ∈ Z. The
output pattern is + if and only if a + z′ − 1 > 0,
and is − if and only if a− z′− 1 > 0. Let a > 1 and
z′ = 1/2(a − 1). The output pattern at Ci,j can be
arbitrary in such a case. It remains to show that U
can be realized on Ci,j for some appropriate choice
of (A, z), where i, j ≡ 0 mod m.

Let S = {U ⊆ Xn| U satisfies (6)}. For each
U ∈ S, denoted by

A+(U) = {(α, p) | α · v + p > 0 for all v ∈ U}, (7)

A−(U) = {(α, q) | α · v + q < 0 for all v ∈ Uc}. (8)

Then A+(U)∩A−(U) �= ∅ if and only if U satisfies
(6). In this case, the boundary ∂A+(U) of A+(U)
consists of (A,B, z) such that α · v+ a+ z − 1 = 0,
where p = a+ z − 1.

Defining

B̂(+, α, p) = {v : α · v + p > 0}, (9)

then B̂(+, α, p) = U for all (α, p) ∈ A+(U). For
each U ∈ S so that there exists (α, p) ∈ A+(U),

consider

z =
p

2
− k, a = 1 +

p

2
+ k, (10)

where k is chosen so that p/2 + k > 0. Then
B(+, A, z, d) = B̂(+, α, p) = U , and vice versa. This
completes the proof. �

Next, considering system (2) with input. Given
a mosaic solution x, the output pattern at cell Ci,j

is + if and only if∑
|k|,|l|≤d

(k, l) �=(0,0)

ak,ly i+k,j+l +
∑

|k|,|l|≤d

bk,lui+k,j+l

+ a+ z − 1 > 0. (11)

Similarly, the output pattern at cell Ci,j is − if and
only if ∑

|k|,|l| ≤ d
(k, l) �= (0,0)

ak,ly i+k,j+l +
∑

|k|,|l|≤d

bk,lui+k,j+l

− a+ z + 1 < 0. (12)

It is seen from the above discussion that the
basic set of admissible local patterns with “+” in
the center is defined by

B(+, A,B, z, d) = {(v,w) ∈ Xn ×Xn+1 : α · v
+β · w + a+ z − 1 > 0},

and the basic set of admissible local patterns with
“−” in the center is defined by

B(−, A,B, z, d) = {(v,w) ∈ Xn ×Xn+1 : α · v
+β · w − a+ z + 1 < 0}.

Herein, β = (b1, b2, . . . , bn+1) and w = (w1,
w2, . . . , wn+1) are obtained from

b4d2+2d+1 · · · b2d2+d+1 · · · b1
...

... · · · b2d2+2d+1 · · · ...
...

bn+1 · · · b2d2+3d+1 · · · b2d+1


=



bi−d,j+d · · · bi,j+d · · · bi+d,j+d

...
... · · · bi,j · · · ...

...
bi−d,j−d · · · bi,j−d · · · bi+d,j−d


and 

w4d2+2d+1 · · · w2d2+d+1 · · · w1

...
... · · · w2d2+2d+1 · · · ...

...
wn+1 · · · w2d2+3d+1 · · · w2d+1


=



ui−d,j+d · · · ui,j+d · · · ui+d,j+d

...
... · · · ui,j · · · ...

...
ui−d,j−d · · · ui,j−d · · · ui+d,j−d


,
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respectively. Namely, β represents the template B
and w indicates the input patterns at cell Ci,j.

Ban et al. [2007b] generalized Theorem 2.3 to
a common case that the controlling template B is
considered.

Theorem 2.6 [Ban et al., 2007b]. There exists
(A,B, z) and d such that U = B(∗, A,B, z, d) for
some ∗ ∈ {+,−} if and only if U is separable.

Theorem 2.6 can also be applied for ICNN with
input.

Theorem 2.7. There exists (A,B, z) and d such
that U = B(∗, A,B, z, d) for some ∗ ∈ {+,−} if
and only if U is separable.

Proof. This can be accomplished via analogous
method as in the proof of Theorem 2.5, thus is
omitted. �

3. Inhomogeneous Cellular Neural
Networks without Input

The dense entropy property for the ICNN without
input is studied in this section. Section 3.1 develops
the fundamental theory and presents its application
for ICNN in Sec. 3.2.

3.1. Two-dimensional subshift of
finite type

This subsection investigates the preliminaries that
are necessary for the understanding of dense
entropy property of ICNN without input.

Definition 3.1. Let X ⊆ {1,−1}Z
2

be a two-
dimensional shift space with finite alphabet
A(X) = {1,−1}.
(1) If x ∈ X and S ⊆ Z2, the restriction of x to S

is denoted by πS(x).
(2) Let Λ(n) = {(p, q) : p, q ∈ Z, 0 ≤ p, q ≤ n − 1}.

An n-block is πc+Λ(n)(x) for some c ∈ Z2,
x ∈ X. The set of n-blocks is denoted byBn(X).

(3) A configuration on S ⊆ Z2 is a map E : S →
A(X). For x ∈ X, E occurs in x if πc+S(x) = E
for some c ∈ Z2.

(4) For each c ∈ Z2, the shift map σc : X → X is
defined by πd(σc(x)) = πc+d(x) for all d ∈ Z2.
Moreover, the iteration of σc is denoted by
σ�
c = σc ◦ σ�−1

c for all � ∈ N.

Denote πΛ(n)(x) by πn(x) for simplicity.

Definition 3.2. Given U ⊆ {1,−1}Zn×n , s ∈ N, s <

n, the shift space Xs(U) ⊆ {1,−1}Z
2

is defined by

Xs(U) = {x ∈ {1,−1}Z
2

: πn(σ�
(i,j)(x)) ∈ U

for all � ∈ Z, i, j ∈ {0, n − s}}. (13)

Moreover, the r-copy of U , Ur ⊆ {1,−1}Zk×k , where
k = rn− (r − 1)s, is defined by

Ur = {v ∈ {1,−1}Zk×k : ∃ x ∈ Xs(U)

such that πk(x) = v}. (14)

Remark 3.3. In other words, Ur consists of those
patterns combined by r2-many patterns in U with
s-many rows/columns overlapped. For example,
consider U ⊆ {1,−1}Z4×4 and s = 1. U2 consists
of those patterns with size 7×7 such that each pat-
tern v ∈ U2 is a combination of four patterns in U
with one-row/column overlapped. As seen in Fig. 3,
the last column on the right-hand side in pattern 1
can be overlapped with the first column on the left-
hand side in pattern 2 if and only if these two 1× 4
patterns are exactly the same. The same applies to
the top row in pattern 1 and the bottom row in
pattern 3.

Next, the effect of the parameter s is studied.
In general, the range of s is less than n and greater
than one. After constructing Ur from a given U ,
the lemma below studies the relationship between
the subshifts of finite types Xs(U) and Xs(Ur). In
addition, it reduces the complexity caused by s.

Lemma 3.4. Given U ⊆ {1,−1}Zn×n and r ∈ N,
then Xs(U) = Xs(Ur).

Proof. Since Ur is constructed from U such that
each pattern in Ur consists of r2-many patterns in
U with s-many columns/rows overlapped, it is seen
that Xs(Ur) ⊆ Xs(U). This remains to show that
Xs(U) ⊆ Xs(Ur).

If x ∈ Xs(U), then πn(σ�
(i,j)(x)) ∈ U for all

� ∈ Z, where i, j ∈ {0, n − s}. Definition 3.2 shows
that πk(x) ∈ Ur, where k = rn − (r − 1)s − 1.
Let y = σ(i,j)(x) for some i, j ∈ {0, n − s}. Then
πk(y) ∈ Ur via the same argument. It can be easily
checked that πk(σ�

(i,j)(x)) ∈ U for all � ∈ Z by math-
ematical induction, where i, j ∈ {0, n − s}. There-
fore, x ∈ Xs(Ur) and this completes the proof. �

Without loss of generality, assuming that s ≤
[n/2], where [·] is the Gauss function. The case
where s > [n/2] is discussed in Remark 3.8.
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1
1

2
2

3
3

4
4

(a)

(b)

Fig. 3. The construction of Ur for a given U and r ∈ N. Take U ⊆ {1,−1}Z4×4 , r = 2 and s = 1 as an example. First pick
four patterns in U , say P1, P2, P3, P4. If the patterns in the first row of P1 differ from the patterns in the last row of P3, then
nothing happens. Otherwise, P1 and P3 are combined with one-row overlapped. Repeating this process, a new pattern with
size 7 × 7 is thus derived.

It is seen so far that a subshift of finite type is
generated once U and s are given. The method that
embeds a chosen set of admissible local patterns in
an ICNN system is introduced.

If U ⊆ {1,−1}Zn×n is given and n is
even, then an extension of U , denoted by
V ⊂ {1,−1}Z(n+1)×(n+1) , is constructed as follows.
v = (v(i,j)) ∈ V if and only if

(i) v(i,j) = −1 if i = (n/2) + 1 or j = (n/2) + 1.
(ii) v〈(n/2)+1〉 = u for some u ∈ U , where v〈p;q〉 ∈

{1,−1}Zn×n is obtained from v by deleting row
p and column q, and denoted by v〈p〉 if p = q.

Similarly, if n is odd, constructing V ⊂
{1,−1}Z(n+2)×(n+2) by v = (v(i,j)) ∈ V if and
only if

(i) v(i,j) = −1 if either i or j ∈ {(n + 1)/2,
(n+ 3)/2}.

(ii) v′〈(n−1)/2〉 = u for some u ∈ U , where v′〈p;q〉 ∈
{1,−1}Zn×n is obtained from v〈p;q〉 by deleting
row p and column q, and denoted by v′〈p〉 if
p = q.

More precisely, U is extended to V by adding a
cross of “−1” to the center of each u ∈ U . Under
such extension, there is a one-to-one correspon-
dence between U and V. Figure 4 gives two exam-
ples for the cases where n is odd and n is even,
respectively.

Remark 3.5. Notably, the size of V is odd no matter
what the size of U is. That is, V ⊆ {1,−1}Z�×� for
some � = 2k + 1, k ∈ N.

For each U ⊆ {1,−1}Zn×n , there associates
an unique V ⊆ {1,−1}Z(n+1)×(n+1) under the con-
struction above. The relationship between Xs(U)
and Xs(V) is investigated below. Before stating the
lemma, a definition is given first.

Definition 3.6. Let X,Y be shift spaces with shift
maps σX and σY, respectively. Define φ : X → Y
be a factor map from X to Y if φ is onto and
φ ◦ σX = σY ◦ φ. X is conjugate to Y, denoted
by X ∼= Y, if φ is a factor map and one-to-one.

A key lemma then follows.

Lemma 3.7. Given U ⊆ {1,−1}Zn×n , constructing
V as above, then Xs(U) ∼= Xs(V).
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(a)

(b)

Fig. 4. (a) Extend a 4 × 4 pattern to a 5 × 5 pattern by adding a cross of pattern into the center of the original one. The
pattern “+” is represented by red and the pattern “−” is represented by white and blue, herein blue is used to distinguish
from the original pattern. (b) Extend a 5 × 5 pattern to a 7 × 7 pattern.

Proof. Define ψ : V → U by ψ(v) = u, where

u =

v〈
n
2
+1〉, n is even;

v′〈n−1
2

〉, n is odd.
(15)

For simplicity, assume n is even. The case where n is
odd can be done similarly. It is easily seen that ψ(v)
is bijective. Furthermore, defining φ : Xs(V) →
Xs(U) by φ(y)(�i,�j)+c = ψ(πn+1(y(�qi,�qj)))c, where
i, j ∈ {0, n− s}, � ∈ Z, q = (n− s+ 1)/(n − s), c ∈
Λ(n) and y ∈ Xs(V). In such a case, φ ◦ σXs(V) =
σXs(U)◦φ and φ is a conjugacy since ψ is one-to-one
and onto. This completes the proof. �

Remark 3.8. If s > [n/2], let � ∈ N satisfy[
(�− 1)(n − s) + s

2

]
< s ≤

[
�(n− s) + s

2

]
. (16)

Then construct V via the same method mentioned
above so that there is a one-to-one correspondence
between V and U �. Similar as above, Lemmas 3.4
and 3.7 show that Xs(U) ∼= Xs(V).

3.2. Two-dimensional inhomogeneous
cellular neural networks
without input

Section 3.1 shows that Xs(U) = Xs(Ur) and
Xs(U) ∼= Xs(V), where U ⊆ {1,−1}Zn×n is given,
V ⊆ {1,−1}Z(n+1)×(n+1) is obtained from U and

r ∈ N. This subsection applies the theory devel-
oped in the last subsection to ICNN without input.
First, the preservation of the separation property
between U and V is given below.

Lemma 3.9. Given U ⊆ {1,−1}Zn×n , then U is
separable if and only if V is separable.

Proof. For simplicity, the case where n is even
is proved. It can be done similarly when n
is odd.

If U is separable, there is a linear functional
g : {1,−1}Zn×n → R and α ∈ R so that g(u) < α
for all u ∈ U , and g(u) > α for all u ∈ Uc.
Let ρ = α − min{g(u) : u ∈ U}. Define ĝ :
{1,−1}Z(n+1)×(n+1) → R by

ĝ(v) = g(u) + ρ
∑

i or j=(n/2)+1

v(i,j), (17)

where u ∈ {1,−1}Zn×n is obtained from v by delet-
ing row ((n/2) + 1) and column ((n/2) + 1). Then
ĝ(v) < α − (2n + 1)ρ for v ∈ V and ĝ(v) >
α− (2n + 1)ρ for v ∈ Vc. Thus, V is separable.

Similarly, if V is separable, then so is U . This
completes the proof. �

Before stating the main theorem, the following
theorem is essential for the study of the mosaic solu-
tions of ICNN.
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Theorem 3.10. Given U ⊆ {1,−1}Zn×n , and s ∈ N. If U is separable, then there exist m ∈ N and (A, z, d)
for system (2) such that X(B(A, z, d)) ∼= Xs(U), where B(A, z, d) is the admissible local patterns obtained
from (2) with parameters (A, z, d),

X(B(A, z, d)) =

{
x ∈ {1,−1}Z

2
: πκ(d)(σ�

(i,j)(x)) ∈ B(A, z, d)

for all � ∈ Z, i, j ∈ {0,m}

}
, (18)

and κ(d) = {(p, q) : −d ≤ p, q ≤ d, p, q ∈ Z}.

Proof. Without loss of generality, assume that n is
even and s ≤ n/2. Once U is given, construct V as
above. Lemmas 3.7 and 3.9 indicate that Xs(V) ∼=
Xs(U) and V is separable. Consider d = n/2, The-
orem 2.5 shows that there exists (A, z, d) so that
B(A, z, d) = V.

Let m = 2d− s+1. For each x ∈ X(B(A, z, d)),
(18) implies

πκ(d)(x�(i,j)) ∈ B(A, z, d)

for all � ∈ Z, i, j ∈ {0, n − s+ 1}.
It is easily seen that X(B(A, z, d)) = Xs(V). Since
Xs(U) ∼= Xs(V), the proof is completed. �

When (A, z, d) is given, the basic set of admis-
sible local patterns B = B(A, z, d) is immedi-
ately determined. Let Σp,q(X(B)) denote the set of
global patterns in X(B) with size p × q, and let
Γp,q(X(B)) = |Σp,q(X(B))|. The entropy of X(B) is
defined by

h(X(B)) ≡ lim
p,q→∞

log Γp,q(X(B))
pq

.

The existence of the limit can be found in [Chow
et al., 1996b].

The first main theorem of this investigation, the
dense entropy property of ICNN without input, is
as follows.

Theorem A. For t ∈ [0, log 2], ε > 0, there exist
m ∈ N and (A, z, d) such that |h(X(B(A, z, d))) −
t| < ε.

Before proving the theorem, the following lem-
mas should be stated first.

Lemma 3.11. Let Sn,l ⊂ Xn be defined by

Sn,l = {x = (x1, . . . , xn) ∈ Xn : xk = −1

for all l + 1 ≤ k ≤ n}, (19)

1 ≤ l ≤ n − 1, and Sn,n = Xn. Then Sn,l is
separable.

Proof. Define a linear functional g : Rn → R by

g(x) =
n∑

i=l+1

xi for all x = (xi)ni=1 ∈ Rn. (20)

Let h(x) = g(x)+(n−l−1). It can be easily checked
that h(x) < 0 for all x ∈ Sn,l and h(x) > 0 for all
x ∈ Sc

n,l. That is, Sn,l and Sc
n,l can be separated by

the hyperplane

H = {x ∈ Rn : g(x) = l − n+ 1}. (21)

This completes the proof. �

Theorem 3.12. Given l, d ∈ N and n = 4d2. There
exists Ud,l ⊆ {1,−1}Z2d×2d such that h(Xd(Ud,l)) =
(l/n) log 2 and Ud,l is separable, where 1 ≤ l ≤ n.

Proof. If d, l ∈ N is given, n = 4d2 and 1 ≤ l ≤ n.
Define

T : {1,−1}Zn×1 → {1,−1}Z2d×2d

by

(Tν)i,j = ν2d(i−1)+j

for all ν = (νk) ∈ {1,−1}Zn×1 . (22)

Let Sn,l be defined as in Lemma 3.11, and let Mn,l

be defined as follows.

Mn,l ≡ {K ∈ {1,−1}Z2d×2d : ∃ ν ∈ Sn,l

such that K = Tν}.
Furthermore, construct Ud,l ⊆ {1,−1}Z4d×4d as fol-
lows. J ∈ Ud,l if π(i,j)+Λ(2d)(J) ∈ Mn,l for i, j ∈
{0, 2d}, where Λ(n) is defined as in Definition 3.1.

Claim. Ud,l is separable.

Let g : Rn → R be defined as in (20) and
g̃ = g ◦ T−1. For w ∈ {1,−1}Z4d×4d , rewriting w
as w = w1 w2

w3 w4
, where wi ∈ {1,−1}Z2d×2d for all i.

Define a linear functional τ : {1,−1}Z4d×4d → R

by τ(w) = g̃(w1) + g̃(w2) + g̃(w3) + g̃(w4) and
τ̃(w) = τ(w) + 4n − 4l − 1. The above constitu-
tion confirms that τ̃(w) < 0 for all w ∈ Ud,l and
τ̃(w) > 0 otherwise. That means Ud,l is separable.
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Moreover, there are 2l-many patterns for each
block of x ∈ Xd(Ud,l) with size 2d× 2d. Therefore,

h(Xd(Ud,l)) = lim
p,q→∞

log Γ2dp·2dq(Xd(Ud,l))
2dp · 2dq

= lim
p,q→∞

log(2l)pq

4d2pq

=
l

n
log 2.

This completes the proof. �

Proof of Theorem A. For t ∈ [0, log 2] and ε > 0,
there exist d, l ∈ N such that |(l/n) log 2 − t| <
ε, where n = 4d2. Theorem 3.12 indicates there
is a separable set Ud,l such that h(Xd(Ud,l)) =
(l/n) log 2. Lemma 3.7, Lemma 3.9 and Theorem
3.10 show h(Xd(Ud,l)) = h(Xd(Vd,l)) and there exist

m ∈ N and (A, z, d) such that B(A, z, d) = Vd,l. The
proof is then completed. �

4. Inhomogeneous Cellular Neural
Networks with Input

In this section, Theorem A is extended to the case
where B is not identical to zero.

Once the parameters (A,B, z, d) are given, the
basic set of admissible local patterns is determined
and denoted by

B ≡ B(A,B, z, d)

= {Y ◦ U} ⊆ {1,−1}Z(2d+1)×(2d+1)×2 ,

where Y,U ∈ {1,−1}Z(2d+1)×(2d+1) . The output pat-
tern Y coupled with input pattern U , denoted by
Y ◦U , is a two-layer array. Defining the output space
generated by B(A,B, z, d) as follows.

X(B) =

y ∈ {1,−1}Z
2

: there exists u ∈ {1,−1}Z
2

such that

πκ(d)(σ�
(i,j)(y ◦ u)) ∈ B for all � ∈ Z, i, j ∈ {0,m}

 , (23)

where κ(d) is defined in Theorem 3.10 and

πκ(d)(σ(i,j)(y◦u)) ≡ πκ(d)(σ(i,j)(y))◦πκ(d)(σ(i,j)(u)).

For d, l ∈ N, let Ud,l be the same as defined in
the proof of Theorem 3.12. Denote by

Vd,l = {Y ◦ U : Y,U ∈ Ud,l} ⊆ {1,−1}Z2d×2d×2 .

(24)

Then the lemma follows.

Lemma 4.1. Vd,l is separable.

Proof. Let τ be the same as in the proof of Theorem
3.12. Define a linear functional θ : {1,−1}Z4d×4d ×
{1,−1}Z4d×4d → R by θ(u, v) = τ(u) + τ(v) and
θ̃(u, v) = θ(u, v) + 8n + 8l − 1. It is easily checked
that θ̃(u ◦ v) < 0 for all u ◦ v ∈ Vd,l and θ̃(u ◦ v) > 0
otherwise. This completes the proof. �

Furthermore, the entropy of the subshift space
induced by Vd,l can be computed via the same
method as in the proof of Theorem 3.12, thus the
proof is omitted.

Theorem 4.2. h(Xd(Vd,l)) = (l/n) log 2.

The dense entropy property of ICNN with input
then follows.

Theorem B. For t ∈ [0, log 2], ε > 0, there exist
m ∈ N and (A,B, z, d) such that |h(X(B(A,B,
z, d))) − t| < ε.

The proof of Theorem B can be accomplished
via the same discussion in the proof of Theorem A,
hence is skipped.
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