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摘 要       
本論文是在理論的基礎上探討電磁波(光波)在近場環境下與散

射體之交互作用，以及在光子晶體中不同介面間之傳輸行為。研究內

容包含兩大領域：近場光學與光子晶體。  

本文討論之重點著重在（一）光纖探針的優化設計。（二）固態

浸入式透鏡光儲存系統之改良。（三）傳統波導與不同光子晶體波導

間介面傳輸效率的提昇設計。 

在近場光學領域裏，我們研究了一系列半波長尺度下孔徑之通

光效率及場型分佈特性,提出光纖探針的優化設計程序以達成縮小光

斑之目的。另外我們研究固態浸入式半球狀透鏡附加局部鍍鋁膜優化

探針之光學儲存系統，提出了如何實現高密度光儲存之最佳化設計。 
在光子晶體領域裏，我們針對如何提昇傳統波導與平面型光子晶

體波導兩端之傳輸效率問題，我們設計的目的著重在簡單、高效率、

小型化、製造誤差之容忍度高且易與光積體電路匹配。我們先以平面

波展開法從包覆在二氧化矽基材中之二維正方晶格圓柱及三角晶格

圓柱結構探討不同幾何形狀下之能帶結構，找出真正的傳輸模態，並

輔以時域有限差分法設計出高效率傳輸的光積體傳輸電路，接著再探

討光子晶體平板(slab)的三維計算情形，並比較兩者之間的差異，此

外異質波導的傳輸效率之提昇，我們亦有專章討論。  
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ABSTRACT 
In this dissertation, we have undertaken a theoretical approach to the complex 

problem of modeling the flow of electromagnetic waves in near field optics and 
photonic crystals. Our focus is to address the feasibility of using the exciting 
phenomena of near field optics and photonic band gaps (PBG) in actual applications, 
such as the near field optic probe design and solid immersion lens (SIL) probe system 
used in high density storage process in near field zone, and the transmission efficiency 
between silica waveguide (SWG) and planar photonic crystal waveguide (PPCWG) in 
two dimensional (2D) and three dimensional (3 D) calculation versions. We start by 
providing analytical derivations of the computational electromagnetic methods used 
in our work. We also present a detailed explanation of the physics underlying each 
approach, as well as a comparative study of each problem addressed in this 
dissertation. Basically, this dissertation can be separated into two parts. The first part, 
we present the analysis and applications of the interaction phenomena between light 
waves and scatters (e.g. optical fiber, sample and SIL probe system) in the near field 
zone using 3D finite difference time domain (FDTD) method. In the second part, the 
high efficiency coupling techniques between SWG and PPCWGs are proposed using 
both plane wave expansion (PWE) and FDTD method. In the first part, there are two 
issues to be investigated. The first issue we have studied is a series using the FDTD 
method to get more insight in the near field distribution of subwavelength aperture 
with sample interactions and fiber probes are numerically investigated. Besides, the 
FDTD design of field enhancing NSOM probe is illustrated and gives a suggestion for 
fabricating an optimal probe. The second issue of the first part is a SIL combined with 
near field probes which are conic dielectric probe and local metallic coating one are 
designed for optical recording by means of a 3D FDTD method to gain more insight 
in the near field distribution. We investigate the optical properties of near field 
distributions between the SIL-probe and recording-layers. A promising idea for 
fabricating a new type of the SIL-probe system was proposed. As regards the part 2, 
we report high efficiency coupling techniques between SWG and PPCWGs using 
optimal configurations which can remarkably enhance the coupling efficiency at the 
entrance and exit terminals of PPCWGs. From simulations, we find that the 
transmission efficiency reaches up to 90%. Moreover, the suggested structures 
possess other advantages, such as the shortness taper, the ease of fabrication and its 
low cost. It is anticipated that the proposed structures might feasibly apply to the 
integrated optical circuits compatibility. Also, a comparison between the 2D devise and 
3D slab version is given. Besides, we present an efficient mode coupling technique between 
silica SWGs and a planar photonic crystal heterostructure waveguide (PPCHWG).  
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