
Chapter 2  

The plane wave expansion method  

2.1 Plane wave expansion concept  

In principle, plane wave expansion (PWE) can be applied to find the time-independent 

modes of any lossless photonic structure. For the most part, however, it is intended to be 

applied to structures with some degree of periodicity in the refractive index distribution. 

Indeed, even when applied to non-periodic structures, the calculation is performed by 

introducing an artificial periodicity.  

To begin with, we introduce a number of standard concepts common to all periodic 

systems, electromagnetic or not. Subsequently, we derive some basic results for the vector 

Helmholtz equation as applied to periodic dielectric systems.  

2.1.1 Geometry of periodic structures 

PWE method can find the optical modes of photonic structures with periodic dielectric 

constants. For instance, in one, two and three dimensions the refractive index distribution 

)(Rε  can be pictured schematically like Fig. 2.1: 

 

 

 

 

 

 

 

 

 2.1 One, two and three dimensions photonic crystal structures.  
 

It is a basic property of all periodic systems, photonic or not, that a periodic function f (R) can 

be expressed in terms of a lattice.  A lattice is a set of discrete points in space that repeats 

periodically. Mathematically, we say that there are fixed vectors a1, a 2 and a 3 such that for all 

points R in the lattice, R= la1+ma2+na3 , for some integers l, m and n. The points R are known 

as lattice vectors, while the basis vectors, a1, a2 and a3 are termed primitive lattice vectors. (In 

one- or two-dimensional problems, we naturally need only one or two primitive lattice 
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vectors.)  Note that the primitive lattice vectors are not unique. The connection between the 

continuous periodic function f (R) and the discrete lattice is provided by the unit cell. A unit 

cell is any region of space which, when translated by every lattice vector in the lattice, maps 

out the entire function. 

 

2.1.2 The first Brillouin zone 
When we study the optical modes of conventional photonic structures such as optical 

fibers or other waveguides, one of the central aims is to determine the dispersion relation 

)(ωkk =   connecting the wavevector or propagation constant k of a given mode with the 

frequency ω. The propagation constant of course determines the phase velocity of the mode 

according to  

 

)/(exp(),(),( pvztiyxEtxE −= ω                                         

(2.1) 

where we have chosen a mode propagating along the z  axis, and the phase velocity is 

vp=ω/k.  If we invert the dispersion relation to obtain )(kωω = , then typically we find a 

different solution for every value of the wave vector k.  So for example in an optical fiber, as 

we increase k without limit, the mode profile E(x,y) becomes ever more tightly bound to the 

core, and the effective index of the mode asymptotically approaches the core refractive index. 

For sufficiently large k, the system will support multiple modes and there are several 

solutions iω  for each value of k. This kind of behavior may seem odd to treat the wavevector 

as the independent variable, since experimentally we have direct control over the frequency of 

the optical source, rather than the propagation constant.  

 

2.1.3 Theory of band Structure 
We now proceed to the calculation of band structures themselves. For technical reasons, 

we express the problem in terms of the magnetic field H(x) (see [1] for details).  PWE solves 

for time independent solutions so we express the magnetic field as H(x,t)=H(x)exp(-iωt). We 

first show that the magnetic field in a periodic system possesses a specific form. 

 The modes of the photonic crystal must of course be solutions of Maxwell’s equations. 

However, symmetry considerations place restrictions on the possible form of the solutions. In 
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particular, the modes must satisfy the appropriate translation symmetry. Since the refractive 

index distribution is identical in every unit cell, a mode must remain unchanged if it is shifted 

in space by any lattice vector R. At most, the solution can change by a constant phase factor. 

We express the translation in terms of an operator  and seek solutions which 

are eigenvalues of —solutions which differ only by a change of phase under operation 

by . 

)exp(ˆ ∇⋅= iRTR

RT̂

RT̂

Consider the form  
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which represents an arbitrary plane wave multiplied by a Fourier series in the reciprocal 

lattice vectors. The are expansion coefficients and thejc jε̂ are polarization vectors chosen to 

guarantee that the field is transverse. Applying the translation operator to H(x), we obtain 
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(2.3) 

 

Thus, this form for the magnetic field changes by only a phase factor under translation by a 

lattice vector, and indeed satisfies the required symmetry. In fact, it can be shown that this is 

the most general form of solution possible, a result known as Bloch’s Theorem--the magnetic 

field must take the form of a plane wave multiplied by a function with the periodicity of the 

lattice: 

)()exp()( xuikxxH k= ,         

(2.4) 

where  for all vector R. Note that Bloch’s theorem justifies our earlier 

claim that in mapping the band structure, we only need to consider wavevectors k inside the 

1BZ. For consider a wavevector k’outside the 1BZ. Then there is a reciprocal lattice vector G 

)()( Rxuxu kk +=

 17



such that k’ =k+G and k is inside the 1BZ. Therefore 
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(2.5) 

 

where we have used the fact that exp(iGx) is a function with the periodicity of the lattice. So 

any solution for a wavevector outside the 1BZ simply corresponds to a solution in a different 

band inside the 1BZ.  

Since it relies only on symmetry arguments, Bloch’s Theorem applies far beyond 

photonics to problems of waves of all types in periodic systems.  

We now derive the governing equation solved by PWE, which is based on the vector 

Helmholtz equation. Starting from the Maxwell curl equations in SI units: 
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(2.6) 

 

we assume for now that all materials are linear, lossless and isotropic, so that  

 

HBExD 00 ,)( µεε ==                                                       

(2.7) 

 

where the dielectric function )(xε  is the square of the refractive index. Taking 

time-independent solutions 
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we can combine the Maxwell equations to obtain the vector Helmholtz equation 
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In the photonic crystal literature, this equation is sometimes referred to as the “master 

equation”, though we shall not use this term here. Using Bloch’s theorem, we write, 

where  is a function with the periodicity of the lattice. Inserting 

this expression in the Helmholtz equation we obtain 
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(2.10) 

where we have defined the operator L̂ and the normalized frequency c/ωϖ = . This is the 

fundamental equation solved by PWE. It is to be viewed as an eigenvalue equation for the 

unknown eigenvalue ϖ and eigenvector , with the wavevector  k as a free parameter. 

This justifies our earlier discussion of dispersion relations using the wavevector as the 

independent variable. We emphasize again that is “back-to-front” to the normal picture for 

waveguide modes in which the frequency is the independent variable and the wavevector or 

propagation constant is the eigenvalue. In essence, this “back-to-frontness” is the price to be 

paid for exploiting periodic boundary conditions in the solution.  

ku

Our method of solution for Eq. (2.10) is discussed below.  

For each value of k, Eq. (2.10) has an infinite number of solutions nk ,ϖ  labeled by the band 

number n  in order of increasing frequency. In PWE, we use the convention that the lowest 

band is labeled by n=0. As we vary k over all possible values, the set of solutions mk ,ϖ for a 

fixed integer m constitute a band, and the band structure of the crystal is the collection of all 

these bands. Thus a complete description of the band structure consists of finding all the 

solutions  mk ,ϖ  for all values of k in the 1BZ. (For a numerical description, we of course 

discretize k at a suitable resolution and solve the problem at all the discrete values.) For any 

reasonable index distribution, the frequencies in a particular band , mk ,ϖ  vary smoothly as 

the wavevector varies, forming a curve in k-space in 1D problems, a surface in 2D problems 
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or a hypersurface in 3D problems. 

The concept of a band gap arises by considering the relationship of adjacent bands, say 

m and m+1. In most cases, there are one or more points in k-space where the adjacent bands 

touch.  

However, if the index distribution is chosen correctly, there can be adjacent bands which 

do not touch at any point. In this case, there is a range of frequencies between the two bands 

for which there are no solutions at all. Such a range comprises the band gap, and it is 

impossible for radiation of a frequency inside the gap to propagate in the crystal. 

 

2.2. Problems with the Plane Wave Expansion Method 

The PWE has the twin advantages of accuracy and efficiency. However, the approach has two 

drawbacks: (1) Inability to treat loss : The operator L̂  is only Hermitian if the material is 

assumed to be lossless. The PWE method can therefore not account for materials with loss, or 

obtain complex eigenvalues representing decaying modes. (2) Inability to treat dispersion : As 

we have seen, the method solves for a number of frequency eigenvalues at a given wavevector 

k. In order for the minimization algorithm to make sense, the refractive index distribution 

must be assumed to be identical at all the frequencies of the modes being found. Consequently, 

it is not possible to account for material dispersion.  
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