
Chapter 3   

The Finite Difference Time Domain (FDTD) Method 

In this chapter, we provide a review of theoretical techniques of FDTD method 

employed in the current work. Our simulations are based on the well-known finite-difference 

time-domain (FDTD)[1] technique. The FDTD method is a rigorous solution to Maxwell's 

equations and does not have any approximations or theoretical restrictions. This method is 

widely used as a propagation solution technique in integrated optics, especially in situations 

where solutions obtained via the Plane Wave Expansion (PWE) [3,4] method cannot cope 

with the structure geometry or are not adequate solutions. FDTD is a direct solution of 

Maxwell’s curl equations and therefore includes many more effects than a solution of the 

monochromatic wave equation. While most of these techniques are existing developed 

methods, the aim here is to provide a comprehensive picture of these methods. 

3.1. Discretizing Maxwell’s equation in space and time 

FDTD Method Introduction 

Firstly introduced by Kane Yee in 1966 [1], the FDTD approach is based on a direct 

numerical solution of the time-dependent Maxwell's curl equations by using the 

Finite-Difference technique. This leads to a full-wave analysis for all wavelength information 

without any presumption to the material model and to the structure.  

 

Maxwell's equation in three dimensions (3D) 

The time-dependent Maxwell's equation for the homogeneous material with no electric 

or magnetic current sources can be expressed as:. 
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Where 0εεε r=  is the dielectric permittivity, σ is the conductivity, and 0µ  is the magnetic 

permeability of the vacuum. The refractive index is given by 
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We now write out the vector components of the above equations in Cartesian coordinates. 
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This yields the following system of six coupled scalar equations: 
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Maxwell's equations in two dimensions (2D) 

In 2D simulation, we assume that the structure being modeled extends to infinity in the 

y-direction, and the photonic device is laid out in the x-z plane. The propagation is along z (or 

x). This assumption removes all the derivatives from Maxwell's equations and splits them into 

two (TE and TM) independent sets of equations. 

TE mode Maxwell's equations in 2D 

In the 2D TE cases, Maxwell's equations take the following form: 

  

 

                                                                      (3.5a) 

 

                                                                      (3.5b) 

                                                                      (3.5c) 
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In general, Ey is the major component in the simulation. 

 

TM mode Maxwell's equations in 2D 

In the 2D TM cases, Maxwell's equations take the following form: 

  

                                                                     (3.6a) 

                                                                     (3.6b) 

 

                                                                     (3.6c) 

 

In general, Hy is the major component in the simulation. 

  

      -
x

H
z

H
E

t
E

x
E

t
H

z
E

t
H

y
y

yz

y

∂∂∂

∂
=

∂

∂∂

µ

x

∂
=

∂
µ

∂∂

zx ∂∂
=+

∂
σε

                      

             

                      

0

0

x
H

E
t

H
z

H
E

t
H

z
E

x
E

t
H

y
z

x

xzy

∂∂
∂∂

∂
−

∂
=

∂
µ

∂∂∂
yy ∂

−=+
∂

σε           

x

∂
=+

∂
σµ

 22



Yee's Algorithm-FDTD equations 

The Yee algorithm solves both the electric and magnetic fields in Maxwell's equations 

in time domain and space domain by using the finite-difference technique. It centers its E and 

H components in three-dimensional space so that every E component is surrounded by a 

circulating H component, and every H component is surrounded by a circulating E 

component. 

 

Finite Differences and notation 

In general, a space point in the Cartesian system (x,y,z) in a uniform rectangular lattice can be 

denoted as: ),,(),,( zkyjxikji ∆∆∆=                                        (3.7) 

where  and are the space steps in the three directions. Following this, any function 

u(x,y,z,t) of space and time domain evaluated at a discrete point in the rectangular lattice can 

be denoted as:                           (3.8) 

x∆ y∆ z∆

n
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where Δt is the time increment, assumed uniform over the observation interval, and n is an 

integer. By using the centered finite-difference method that originally is derived from Taylor's 

series expansion, the partial space derivative of u in x-direction at the fixed time          

can be expressed as:  tntn ∆=

  

 

 

                                                                     (3.9) 
            )][(                     

),,,(),,,(

2,,2/1,,2/1 x
x
uu

tnzkyjxiu
xx

tzyxu

n
kji

n
kji ∆Ο+
∆

−
=

∆∆∆∆
∂
∂

=
∂

∂

−+

 

 

Three Dimensional FDTD equations 

In a 3D simulation, the simulation domain is a cubic box, the space steps are 

Δx,Δy ,and Δz in x, y, and z directions respectively. Each field component is presented by a 

3D array—Ex(i,j,k), Ey(i,j,k), Ez(i,j,k), Hx(i,j,k), Hy(i,j,k), Hz(i,j,k). The field component 

positions in Yee's Cell are shown in Figure 3.1. This placement and the notation cause the E 

and H components to be interleaved at intervals of in space and for the purpose of 

implementing a leapfrog algorithm.  
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Figure 3.1 In a Yee cell dimension Ax, Ay, Az, note how the H field is 
computed at points shifted one-half grid spacing from the E field grid points 
[1]. 

w we can apply the above finite-difference ideas, notation and field displacement to 

hieve a numerical approximation of Maxwell's equation (3-3 - 3-4). The FDTD equation 

n be written as: 

                                                                   (3.11a) 

                                                                   (3.11b) 

(3.11c) 
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                                                                     (3.12b) 
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2D TE Wave FDTD equation 

 The 2D computational domain is shown in Figure 3.2. The space steps in the x and z 

directions are Δx and Δz , respectively. Each mesh point is associated with a specific type of 

material and contains information about its properties, such as refractive index and dispersion 

parameters  
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Figure 3.2 Numerical representation of the 2D computational domain 
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In the 2D TE simulation, Each field is represented by a 2D array—Ey(i,k), Hx(i,k) and 

Hz(i,k)—corresponding to the 2D mesh grid shown in Figure 3.2. The indices i and k account 

for the number of space steps in the X and Z directions, respectively. The location of the 

fields in the mesh is shown in Figure 3.3.   

  

 

 

 

 

 

 

 
Figure 3.3 Location of the TE fields in the computational domain 
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  )-(

t)(2
t2-                                     

)-(
t)

 

 

2D TM wave FDTD equation 

In the 2D TM simulation, Each field is represented by a 2D array—Hy(i,k), Ex(i,k) and 

Ez(i,k)—corresponding to the 2D mesh grid given in Figure 3.2. The location of the TM fields 

in the computational domain follows the same philosophy and is shown in Figure 3.4. 
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Figure 3.4  Location of the TM fields in the computational
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e fundamental constraint of the FDTD method is the step size both for the space and 

ce and time steps relate to the accuracy, numerical dispersion, and stability of the 

thod. Many references and books discuss these problems [4,5]. In general, to ensure 

sults are accurate and have a low numerical dispersive, the mesh size is often quoted 

lls per wavelength", meaning that the side of each cell should be λ/ 10 or less at 

st frequency (shortest wavelength). Note that FDTD method is volumetric 

onal method, so that if some portion of the computational space is filled with 

 material, we must use the wavelength in the material to determine the maximum 

The following equation is for the suggested mesh size 
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where nmax is the maximum refractive index value in the computational domain. Once the cell 

size is determined, the maximum size for the time step immediately follows the 

Courant-Friedrichs-Levy (CFL) condition. For a 3D FDTD simulation, the CFL condition is: 
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where v is the speed of the light in medium. 

 For a 2D simulation, the above CFL condition can be simplified as:  
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FDTD Boundary condition 

 The boundary conditions [8,9] at the spatial edges of the computational domain must 

be carefully considered. Many simulations employ an absorbing boundary condition that 

eliminates any outward propagating energy that impinges on the domain boundaries. One of 

the most effective is the perfectly matched layer (PML) [8], in which both electric and 

magnetic conductivities are introduced in such a way that the wave impedance remains 

constant, absorbing the energy without inducing reflections. 

  

Periodic boundary conditions (PBC) 

Periodic boundary conditions (PBC) [9] are also important because of their applicability 

to PBG structures. There are a number of variations on the PBC, but they all share the same 

common thread: the boundary condition is chosen such that the simulation is equivalent to an 

infinite structure composed of the basic computational domain repeated endlessly in all 

dimensions. PBCs are most often employed when analyzing periodic structures.  Periodic 

boundary conditions are quite useful when working with periodic structure types. A periodic 

boundary stipulates that any field which leaves the boundary on one side of the domain 

should reenter the domain on the opposite side. This can be expressed mathematically as 

E(xi)=E(xi+∆) exp(kixi) where the structure is assumed to be periodic along the coordinate 

with period ∆ and a phase difference ki. The period is defined by the length of the domain 
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along the specified coordinate xi. Periodic boundaries can only be applied to any combination 

of the three coordinates, but cannot be applied to each boundary individually. 

 

Symmetric 

Symmetric boundary conditions assume that the field is symmetric about one or more 

planes of reflection, and are also known as “even” boundary conditions. This is useful when 

both the structure and the simulated fields have symmetry about one or more planes of 

reflection. This can be expressed mathematically as E(x i) = (E (-x i), where x i is the specified 

coordinate about which the field is to be assumed symmetric. The position of the reflection 

plane is given by the domain definition. Symmetric boundary conditions can be applied to any 

combination of the three coordinates as well as each of the six boundaries individually. 

 

Anti-Symmetric 

Anti-Symmetric boundary conditions assume that the field is anti-symmetric about one 

ore more planes of reflection, and are also known as “odd” boundary conditions. The field is 

therefore set to 0 at the boundary, and the fields on both sides of the boundary are assumed to 

be of opposite sign. This can be useful for symmetric structures which support an 

antisymmetric field, for instance anti-symmetric mode E (x i) = -E (x i), where x i is the 

specified coordinate about which the field is to be assumed anti-symmetric. The position of 

the reflection plane is given by the domain definition. Anti-symmetric boundary conditions 

can be applied to any combination of the three coordinates as well as each of the six 

boundaries individually. 

 

Input Wave 

The FDTD numerical scheme yields the solution of an initial value problems, The 

algorithm requires the initial field excitation that will be propagated through the 

computational domain. The Input Wave must contain four kinds of the information: (1) Input 

wave propagation direction (2) Input wave formation in time domain (3) Input wave profile in 

transverse plane (4) Polarization. Total-Field/Scattered-Field (TF/SF) results from attempts to 

realize a wave propagation in a desired direction. The computational domain is separated into 

two sub-regions—the total field region and the reflected field region. The plane separating 

these regions is called the incident field (input plane) (see Figure 3.5). 
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igure 3.5 Total/Reflected field formulation 

 Total Field Region, the waveguide structures of interest are designed. The 

between the incident field and the waveguide structure take place in this region. 

 the Total Field Region contains information for both the incident and scattered 

aves. In the Reflected Field Region, the geometry is uniform and the propagating 

resented by the fields reflected from the Total Field Region. There are no objects 

n, and the signal will not be reflected back to the total field region. Continuous 

 or pulsed excitations can be used. You can consider the incident field as being 

y a flashlight located on the incidence plane facing the +Z direction. Before 

 simulation, the flashlight is turned off and the field values in the whole 

nal domain are equal to zero. The flashlight is switched on at t = 0 and illuminates 

tal Field Region. If the excitation scheme is perfect, there should not be any light 

 an observer located in the Reflected Field Region, unless there are some obstacles 

ld generate the reflections. The incident wave can be generated by specifying the 

distribution on the incident plane at each time interval. The TF/SF requires the 

tment for FDTD equation in the Input plane. 

e formation in time domain 

 kinds of time domain input wave formations can be simulated in the FDTD. One 

ngle wavelength simulation-the Continuous Wave (CW) input. The other is for the 

simulation-the Gaussian Modulated Continuous Wave (GMCW). In general, it is 

d Input. 
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CW Excitation 

 In CW excitation, the time dependence of the incident field is a single frequency 

sinusoidal function. For example the incident Ey field has the following form: 

  
      )sin(),()(),( iincinc

inc
y tzxFtATzxE θω += (3.18) 

 

where A is the field amplitude, AF (x , zinc )is the transverse field distribution at the incident 

plane location zinc. The initial phase offset θi  is the phase difference between points in the 

incidence plane. This offset can be adjusted to define the direction of the incident field. ω= 

(2π/λ)c is the frequency of the input wave. In the CW case the optical wave analog 

propagates until it reaches the stationary state everywhere in the computational window. 

 

Gaussian Modulated Continuous Wave (GMCW) Excitation (Pulsed Excitation) 

 For pulsed excitations the incident field has the form: 
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(3.19) 
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is the pulse envelope function, t_0ff is the time offset and t_0 is the pulse width parameter. For 

pulsed excitations the time stepping continues until the desired late-time pulse response is 

observed at the field points of interest. 

  

Gaussian Transverse excitation 

 For Gaussian Transverse excitation, the transverse field has a Gaussian profile that can 

be calculated from the following equation: 
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Where (x0, y0) is the center point where the Gaussian beam has the peak value. X and Y are the 

half widths.  

 

Material Model [6,7] 

One of the main advantages of the FDTD approach is the lack of approximations for the 

propagating field-light is modeled in its full richness and complexity. The other significant 

advantage is the great variety of materials that can be consistently modeled within the FDTD 

context. Here, we make a brief review of some of the main material properties that can be 

handled. 

 

Lossy dielectrics 

Before proceeding with a more detailed description, it should be emphasized that the fact that 

in the time domain all the fields (Hx, Ey, Hz) are real quantities. Thus, accounting for loss is 

possible only through a non-zero conductivity s of the medium: 

  

(2.23) 
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∂  corresponds to time-to-frequency domain 

Fourier transform. The real and imaginary part of the permitivity can be expressed through the 

real and imaginary part of the Imaginary  refractive index: 

       

   EiE )i-(i  eff0
0

r00

rrr
r

s
εωε

ωε
σεωεσεε ==+

∂
∂

=×∇ E
t
EH

  

(3.24)      n/-2 ,2n  ,-n 0
Im
r

22Re σωεκκεκε ===e

 

This makes the refractive index approach and the conductivity approach equivalent.  

  

Sellmeier equation model 

 In the Sellmeier equation model, the material constant refractive index for the user specified 

wavelength is calculated by the Sellmeier equation: 
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Where A is the Strength, λ is the resonant wavelength, mΓ the damping coefficient, and    
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mλ is the working wavelength. Note that there are two applications for the Sellmeier equation 

model in the FDTD. One is used to calculated the constant refractive index for a material. It is 

the constant refractive index coupled into the Maxwell's equation, and not the Sellmeier 

equation coupled into Maxwell's equation, so in such a simulation, the material still does not 

have the dispersive properties. The second application for Sellmeier equation is to transfer the 

Sellmeier model to Lorentz model that will be coupled into Maxwell's equation. In such a 

simulation, the material will have the dispersive.  

 

Lorentz Dispersion material 

By Lorentz dispersion materials, we mean materials for which the frequency 

dependence of the dielectric permittivity can be described by a sum of multiple resonance 

Lorentzian functions: 
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In the lossless case, Equation 3.26 is directly related to the Sellmeier equation which in the 

three resonances can be presented as: 
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In the lossy case, the Sellmeier equation can be written in a generalized form, accounting for a 

non-zero damping coefficient Γm, as well as for anisotropy in the dispersion properties: 

  

(3.28) 
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There are different ways to implement Equation 3.26 into the FDTD formalism. Here we 

consider the so-called polarization equation approach in the single resonance case. It uses the 
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dielectric susceptibility function: 
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and the relation between the polarization and the electric field. Taking the Fourier transform 

of the last equation leads to the following differential equation: 
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Drude model material 

Drude model is another dispersion effect. In most cases, it simulates the noble metal or 

the surface plasma. Materials with Drude dispersion are optically linear materials for which 

the frequency dependence of the dielectric permittivity can be described by the Drude 

Dispersion relation: 
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where ωp is the plasma frequency and Γis the damping rate. The above equation only 

describes the dispersion relation in frequency domain. Because FDTD is a time domain 

method, the Drude model must be transferred to the time domain and solved in time domain. 

For Drude material, the corresponding Maxwell's equations are: 
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(3.32) 

 

 

 

The FDTD scheme for Drude material can be derived from the above equations by using the 

finite-difference technique. 
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 Dispersive Nonlinear materials 

In general, the nonlinear behavior is due to the dependence of the polarization P(t) on the 

applied electric field, E(t). Assuming an isotropic dispersive material, Maxwell's equations 

are:  
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(3.33) 

 

 

 

Where LP
r

represents the linear polarization, in general  ,0 EP L
L

rr
εε= D

mP
rr

         

is the dispersive polarization which is controlled by Lorentz model in Equation 3.33 and 

denotes the nonlinear polarization L
mP
rr
. 

  

Post Data Analysis  

 

Discretized Fourier Transform (DFT) and Fast Fourier Transform (FFT) 

FDTD is time domain simulation method. It can obtain all the desired spectral responses 

through a one-time simulation. To obtain the spectral response, you must use the DFT and 

FFT and Analysis. 

 

Discretized Fourier Transform obtains a single wavelength response from a time series. 

 where s(n) is the time domain response, N is the time steps number, and ω is the 

angle frequency.  When DFT is running in the simulation, it obtains the frequency domain 

response for the center wavelength only, while DFT for the observation point, area, and line 

provides the spectral response for a series of user-specified wavelengths. Fast Fourier 

Transform uses the traditional fast Fourier transform scheme to obtain a spectral response 

from the zero frequency to the cutoff frequency. The frequency domain sampling step is N   . 

In general, the sampling frequency step for FFT is comparable to the interested wavelength 

due to the fact that FDTD required time step is very small. So the FFT results may have larger 

errors than that of the DFT results. But FFT is much faster than DFT. 
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Power calculation and Poynting vector 

For the z-direction propagation wave. The total power in the x-y plane can be divided 

into two power values: x-direction polarized z-direction propagation power (Pz-x) and 

y-direction polarized z-direction propagation power (Pz-y). The corresponding formulas are: 
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(3.34) 

 

 

 

 

 

Where the cap dot means the complex value which comes from the DFT calculation, and the 

superscript star means the complex conjugate value. The z-direction Poynting for a point (i,j,) 

in x-y plane is 

 

 

 (3.35) 

 

Poynting vector is a complex value. In FDTD, only the amplitude is shown. 

  

3.2 Advantages versus drawbacks of the FDTD method 

The FDTD approach has several key advantages over all of the preceding methods, as 

well as several drawbacks. The leapfrog time stepping mechanism used is fully explicit, there 

by completely avoids the problems associated with simultanity in this method scale as Nr , Nr 

being the number of real space discretization points. The method further imposes no 

restriction on the type of sources used are not plane wave, but from quantum dot point source 

to Gaussian beams. More important is the fact that by using FDTD method, we are able to 

account for the finiteness of the structure in all 3-D. Moreover, the method allows for the 

explicit examination of the time development of EM waves in the structure and therefore is 

the best suited algorithm for investigating wave guiding mechanisms and cavity coupling.  
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However, there are some rather serious drawbacks to this method. For example to 

calculate the transmission and reflection coefficient, a Gaussian frequency pulse is launched 

into the plane performed on these values and component of the pointing vector perpendicular 

to the corresponding value of a reference medium to yield the transmission and reflection 

coefficients. This is more tedious and sensitive to errors than the Transfer Matrix Method. 
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