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4.1 Introduction 
The major problem in near field scanning optical microscopes (NSOM) [1,2,3,4] is the 

determination of field distributions and radiation properties of a given probe/sample structure. 

Therefore, the precise spatial resolution depends upon such factors as the taper angle, the 

diameter of tip opening, refractive index of inner dielectric material of the coated probes, 

thickness and shape of the metal coating, and polarization and mode pattern of the excitation, 

all of which can affect the field pattern near the tip. In addition, the presence of the object 

being scanned can interact with the near field pattern, depending upon the electromagnetic 

properties of the object, causing it to change from its unobstructed behavior. A better 

understanding will lead to an unambiguous analysis of an NSOM image and will make the 

NSOM the more reliable imaging tool for both biologically interesting samples and 

nanostructured materials. Due to the complicated boundary conditions imposed by numerical 

methods only, requiring extended computational work. Experimental limitations in general 

prevent the direct probing of near fields. So far, the questions of achievable resolution and 

contrast have been left mainly to heuristic arguments and experimental evidence. It also 

requires for correct interpretation of NSOM images, by no means trivial task as will be seen 

from the results to be presented here. In the past, several efficient methods were implemented 

to overcome the difficulties raised by the complex geometry of such optical systems. Memory 

requirement is important in particular for calculating the three dimensionally distributed field 

with probe and sample. It has been done by means of using the dipole approximation method 

(DAM)[5], the boundary element method (BEM)[6], the multiple multi-pole method 

(MMP)[7, 8], the finite element method (FEM)[9], the Green tensors method[10, 11], and the 

FDTD method[12,13,14]. Among these methods, the FDTD method reduces the computer 

memory amount for the same 3-D model than the others, and solves Maxwell's equations 
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without any simplifying approximately other than the discretized grid, the method is well 

suited to simulate near field configurations and has been proved to be fruitful for solving near 

field optical problems[15,16,17,18,19,20,21]. Since the resolution provided by the 2 D model 

NSOM is lower than expected on the basis of experiments and can not handle a complex 

probe-sample system. Of the several possible reasons, the soft decay of the fields in 2 D 

( r(-1/2)
  instead of  r(-1) ) might be the most fundamental one. This shows the need for 3D 

calculations which, however, require much longer computation times. Because of treating 

metals as a perfect conductor [22,23,24] cause concern that the optics in the near field region 

surrounded by metal may not be simulated accurately.  

In this chapter, the treatment of dispersive metals in a time domain dependent fashion is 

considered. Little has been known if and how the emerging light from the tip lose the 

characteristics of polarization, after exiting from the tip apex, produces two perpendicularity 

polarized electric field components. This phenomenon of near field effeect will be described 

here. In this chapter, we investigate from a three-dimensional model, different aspects of this 

local interaction. Firstly, we will discuss some preliminary results recorded with the near field 

distribution of subwavelength circular  aperture in an infinite aluminum plane to construct 

the foundation of latter analysis. The following section will compare the field distributions 

produced by two kinds of tips (non-coated and metal-coated) and give a suggestion for 

fabricating an optimal tip. 

 
 

4.2 Numerical method 

The finite difference time domain method is a flexible numerical means of solving 

electromagnetic problems by integrating Maxwell's differential equations,  
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for an arbitrary geometry in three-dimensional space. Where ε(r), µ(r), σ(r) are the position 

dependent permittivity, permeability, and conductivity of the material, respectively. The 

vectorial wave equation, issued from these equations, must then be solved in the specific 
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conditions imposed by the nature and the geometry of the tip-sample junction. When the 

surfaces limiting the illuminated objects display a complicated shape simultaneously with 

strong variations of the dielectric functions, seeking solutions of these universal equation 

needs specific care. We employed the numerical technique known as Finite-difference time 

domain (FDTD) for this analysis. The FDTD method treats Maxwell equation as a set of 

Finite difference equations in both time and space. The model space considered includes both 

the probe and the sample surface and consists of an aggregation of cubic cells with each cell 

which divides the model to be analyzed into a gridwork of small square or cuboidal cells, 

called "Yee cells" with each cell are positioned vector components of the electric field and 

magnetic field for the cell location. This object definition mechanism is the heart of the 

flexibility of FDTD, as any arbitrary geometry can be simulated. Each cell is assigned the 

susceptibility for a given material. The FDTD method calculates the electric and magnetic 

fields in each cell by integrating the Maxwell's equations in a "leap-frog" fashion until the 

steady state is reached [14]. In the case of the Gaussian pulse modulate with a sinusoidal 

excitation source, the steady state is reached (that is, the fields are not changing in peak-to- 

peak amplitude) when all scattered fields vary sinusoidally in time. The size of each cell is 

limited on the upper bound to be no longer than about one-tenth of the wavelength in order to 

assure sufficient sampling of the spatially varying fields. However, near field problems are 

well within this length limitation, and in fact there is no lower limit on the size of the Yee cell 

in terms of wavelength. Such small cells result in extremely short time steps in thesimulation, 

as the FDTD algorithm is stable only if 
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where c is speed of light, △ is the side of a cubical cell. This is a result of the Courant 

stability condition, which has its basis in the fact that the plane wave traveling in the FDTD 

space must not travel through more one cell in space of a time. The Finite difference 

equations corresponding to Ampere's law based on central difference approximation resulting 

in an explicit time-stepping algorithm, the Finite-difference form of this equation for the 

z-component of electric field in any given Yee cell can be written as: 
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The magnetic induction elements Hx are calculated using Farad’s law of induction:  
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The updating equations for x- and y-components are obtained by rotation of in-dices, where 

the subscript on each field value gives its polarization and cell location. Δx=Δy=Δz =Δ are 

the lengths of the cell in the three directions, respectively, Δis the unit time increment, and 

the superscript n is for time stepping, the refractive index is related to the permittivity ε1/2, 

( iΔx, jΔy, kΔz ) is a grid pint, ε(i, j, k) is the permittivity at ( iΔx, jΔy, kΔz ) , and 

similarly electrical conductivity σ(i, j. k) and permeability µ(i,j,k). Special consideration 

should be given at the boundary of the finite computational domain, where the fields are 

updated using special boundary conditions as information out of the domain is not available. 

The outside of the simulation area is considered to be the boundary of perfectly matched layer 

(PML) absorption [25], so that the electromagnetic field arriving at the boundary is not reflect 

but is perfectly absorbed by PML. Hence one can obtain the electromagnetic field inside the 

calculated space. 

Typically, FDTD calculations have been carried out for dielectric materials. For noble 

metals (aluminum, gold, silver, and copper) in the optical regime posses complex refractive 

indices in which the imaginary part is greater than the real component. At optical frequencies 

the permittivity which is defined in the frequency domain is complex, with the real part of the 

permittivity being negative [26, 27]. In the case of inserting a negative real permittivity in the 

FDTD algorithms will cause the unstable situations in simulating process. This cause the 

apparent sign change in D (ω) (the Fourier transform of electric displacement). The sign 

change is caused by a material response that is 1800
 out of phase with respect to the electric 
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incident on the medium. To represent real metals correctly and maintain numerical stability 

require that a second order materials model for the medium be included in the FDTD scheme. 

Values for the complex refractive index for many materials including the noble metals have 

been measured and tabulated in the CRC laser handbook [28]. Refer to [29], the materials 

with frequency dependent, complex dielectric constants have been developed for treating 

dispersive materials in a time dependent form. The relation among electric 

displacement D, dielectric constant ε, and electric field E are 
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We used the recursive convolution scheme(RC) method to evaluate the system which includes 

a dispersive medium such as metal films[30]. The relative dielectric constant in frequency 

domain is 
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where ε∞ is the infinite frequency permittivity, χ is the susceptibility,  ω is the angular 

frequency. If χ(∞)= 0 , then the Eq.(5) can be expressed as 
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Here, χ(τ) is the Fourier transform of χ(ω), and ε0 is the permittivity of free space. The 

frequency domain Lorentz dispersion model can be designed to give the correct refractive 

index for any material at a singleω. 

 

 

The refractive index associated with the Lorentz model, nL(ω), has the form 
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where εR,  ω0 and Γ are the total complex permittivity, the resonant frequency and the 

damping coefficient for the model, respectively. The relations between εR  and   n r (the 
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real part of the refractive index) and ni (the imaginary part of the refractive index) can be 

expressed as 
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where ωp is the radian plasma frequency, and vc is the collision angular frequency. The Drude 

model reveals the simple physical picture of a free electron gas [31]. The response of near 

field probes has been simulated under the Drude model using FDTD with some success [21]. 

We note that this Lorentz dispersion model contains the standard Drude model for metals as a 

limiting case. One obtains the Drude model by taking limit ω＞＞ω0  and introducing the 

plasma frequency ωp
2

 = χ0 ω0
2 and the collision frequency vc =Γ/2π. For calculating the 

permittivity of the materials, one can choose reasonable DC and high-frequency response χ0 

andε∞ then solves for ω0 and Γ and can be given by 
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The parameters are adjusted to closely match the experimentally observed optical properties. 

We set χ0=10 and ε∞=2.98ε0 in this work. The refractive indices for metal materials 

(Aluminum) in our simulations at wavelength λ =488 nm ( ω=3.86×1015s-1) is -34.5 + 

i8.5[32].  From the Eqs. (10) and (11) the values for ω0 and Γ are obtained for the material 

and the time domain version of the Lorentz model with these parameters is included in the 

FDTD computation in the metal ¯lm region of the numerical mesh. 

 

 

4.3 The models and results  

4.3.1 Subwavelength circular aperture image when the sample 

interactions are included 
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The optical properties for the metals have been of interest for more than 100 years.[35] 

During the past century, there are many important literatures concerned about it, such as the 

form of the solution to the problem of light scattering by spherical metal particle.[36] Other 

high-symmetry forms, including finite thickness slabs, cylinders, and ellipsoids, have been 

analytically solved.[37] The analytical solutions require only the particle size and 

frequency-dependent index of refraction n = nr +i ni, with the real part, nr, representing the 

index of refraction, and the imaginary part, ni, representing the extinction coefficient. In the 

real near-field optical recording systems, the light can be expressed as a wave vector and 

consists of only a real component in the normal state. The wave vector has a scale value 

2πn/λ, where n and λ mean the refractive index and wavelength, respectively. In metal, the 

component of the wave vector will be larger than the above scalar value when it is dispersed 

from the situation of high frequency or total internal reflection from the interface between two 

different materials. The component of the wave vector becomes purely imaginary, and thus 

this wave cannot be a propagation wave but an evanescent wave in one spatial direction, 

resulting in an exponential decay within a small distance compared to its wavelength. Since 

the optical properties in near field zone are much different compared to the far field zone. 

However, we can obtain the high quality resolution beyond the diffraction limit of an optical 

wave if we used the evanescent wave within the very short distance from the interface. The 

resolution of the evanescent wave has no relationship to its wavelength and reaches below 

100 nm and has already been applied in the area of NSOM.[38] Although the thin metal plate 

with a subwavelength circular aperture with a sample interactions is a simple case, we think it 

is important to the near field region and necessary to make more detail analysis for the 

foundation of our latter simulations. The two sets of equations described by Eqs. (4.3) and 

(4.4) are alternately evaluated to simulate the light propagation. In the past decade, there were 

two different setups have been developed from this basic configuration: (1)The transmission 

illumination mode in which the light radiated by a nanometric emitter is converted into 

propagating waves by the sample itself. (2) The transmission collection mode which is easily 

obtained by reversing the light path. The aperture plays the role of a nano-collector, and the 

light converted in the near-field zone is transmitted to a photo-detector. We will discuss the 

transmission collection mode in this section. Figure 1, shows a schematic diagram of the 3-D 

subwavelength circular aperture with a sample model to be analyzed. It has an aperture 

opening of 80 nm (40 cells) in an infinite aluminum thin metal plate with the thickness of 40 

nm (20 cells), a dielectric sample with the refractive index of n=1.5, and the distance between 

the aperture and the sample surface is 20 nm (10 cells), filled with silica core inside the 
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aperture and the bottom of the model as shown in Fig. 1. The surface profile of dielectric 

sample consists of a flat surface with single cylindrical protrusion whose height and diameter 

are 20 nm (10 cells), 120nm (60cells), respectively. Another difficulty in the FDTD method is 

the error caused by the incident light on the incident surface. Total field/scattered field 

formulation13) is used to introduce the incident light into the calculation space. The 

frequency of the source is 4.74 × 1014Hz, corresponding to a free-space wavelength of 633 nm, 

which propagates from base plane to the aperture, located at the plane shown in Fig.1. The 

dimensions of each cell are Δx=Δy=Δz=2nm, and the total space volume considered 

measures 100(x) ×100(y) ×100(z) cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1 Geometry of three-dimensional subwavelength circular aperture with sample 
interaction. (a) Sectional plane diagram of 3-D subwavelength circular aperture when 
the sample interactions are included. (b) Convention used when considering the effects 
of two orthogonal polarization states (s polarization and p polarization). The incident 
electric field is p-polarized when the electric field vector oscillates in a sectional plane 
that is perpendicular to the surface of the edge structure. On the other hand, 
s-polarization occurs when the field oscillates in normal direction to a sectional plane. 

 

 

 

 

 

The effects of light polarization on the generated near-field images are studied for both 

parallel and perpendicular polarization conditions. When the model structure possess a 

preferred orientation, the characteristics of the scattered light depend on the polarization 

direction (either parallel or perpendicular) relative to the structure orientation. In this paper, 

we define that the incident electric field is p-polarized when the electric field vector oscillates 
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in a sectional plane that is perpendicular to the surface of the edge structure. On the other 

hand, s-polarization occurs when the field oscillates in normal direction to a sectional plane. 

Figs. 2(a)-(d) show the calculated results of the three-dimensional electric field for 

p-polarization and s-polarization illumination, respectively. In the gray-scale used, white is 

used to signify higher intensity values. Although this model is a rotational symmetric system, 

the electric field distributions formed in the two orthogonal cross sections are different from 

each other due to the difference between the boundary conditions in edge interface. This result 

implies that the resolution of an aperture NSOM is given by the size of the aperture rim, 

which is a great advantage of an aperture NSOM. In a NSOM with an aperture in metal 

coating,[15] the penetration of photons through the metal coating smears the spot, so that the 

practical minimum size of the spot is at least practically 50 nm in diameter even if an 

extremely small aperture is used. In the sectional image of the model illuminated by 

p-polarization shown in Fig.2(a) and (b), the intensity becomes stronger near the edges of 

aperture and sample, and the image generated agree reasonably with the geometrical profile of 

the same model shown in Fig.1. The field enhancement is due to the surface plasmon  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.2 Distribution of the 3-D electric field intensity modulus around the 
aperture-sample coupling zone: (a) in x-z plane (at y=50Δ), p-polarization, 
(b) in y-z plane (at x=50 Δ), p-polarization, (c) in x-z plane (at y=50Δ), 
s-polarization, and (d) in y-z plane (at x=50Δ), s-polarization, respectively. 
The electric field results from an incident wave coming from the left side. In 
the gray-scale used, white is used to signify higher intensity values. 
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