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Using Kernel Discriminant Analysis to Improve
the Characterization of the Alternative Hypothesis

for Speaker Verification
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Abstract—Speaker verification can be viewed as a task of mod-
eling and testing two hypotheses: the null hypothesis and the al-
ternative hypothesis. Since the alternative hypothesis involves un-
known impostors, it is usually hard to characterize a priori. In this
paper, we propose improving the characterization of the alterna-
tive hypothesis by designing two decision functions based, respec-
tively, on a weighted arithmetic combination and a weighted geo-
metric combination of discriminative information derived from a
set of pretrained background models. The parameters associated
with the combinations are then optimized using two kernel dis-
criminant analysis techniques, namely, the kernel Fisher discrim-
inant (KFD) and support vector machine (SVM). The proposed
approaches have two advantages over existing methods. The first
is that they embed a trainable mechanism in the decision func-
tions. The second is that they convert variable-length utterances
into fixed-dimension characteristic vectors, which are easily pro-
cessed by kernel discriminant analysis. The results of speaker-ver-
ification experiments conducted on two speech corpora show that
the proposed methods outperform conventional likelihood ratio-
based approaches.

Index Terms—Kernel Fisher Discriminant (KFD), likelihood
ratio, speaker verification, support vector machine (SVM).

I. INTRODUCTION

S PEAKER verification is usually formulated as a hypoth-
esis testing problem and solved using a likelihood ratio

(LR)-based decision function [1]. Given an input utterance ,
the goal is to determine whether or not was spoken by the
target (hypothesized) speaker. Let us consider the following hy-
potheses:

is from the target speaker

is not from the target speaker (1)
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The LR-based decision function can be expressed as

accept
accept (reject )

(2)

where , , is the likelihood that hypothesis
gives the utterance , and is a decision threshold. and

are called the null hypothesis and the alternative hypothesis,
respectively. Although can be modeled straightforwardly
using speech utterances from the target speaker, does not in-
volve any specific speaker, and thus lacks explicit data for mod-
eling. As a result, various approaches have placed special em-
phasis on better characterization of . One simple approach
involves pooling all the speech data from a large number of
background speakers, and training a single speaker-independent
model , called the world model or the universal background
model (UBM) [1]. During a test, the logarithmic LR measure
that an unknown utterance was spoken by the claimed speaker
can be evaluated by

(3)

where is a target speaker model trained using speech from the
claimed speaker. The larger the score of , the more
likely it is that was spoken by the claimed speaker.

Instead of using a single model, an alternative approach is to
train a set of models using speech from sev-
eral representative speakers, called a cohort [2], which simu-
lates potential impostors. This leads to the following logarithmic
LRs, where the alternative hypothesis can be characterized as
follows.

1) The likelihood of the most competitive cohort model [3],
i.e.,

(4)

2) The arithmetic mean of the likelihoods of the cohort
models [4], i.e.,

(5)

3) The geometric mean of the likelihoods of the cohort
models [3], i.e.,

(6)
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In a well-known score normalization method called T-norm [6],
is divided by the standard deviation of the log-likeli-

hoods of the cohort models.
The LR measures in (3)–(6) can be collectively expressed in

the following general form [1]:

(7)

where represents a certain function that combines
the likelihoods of a set of so-called background models

. For example, if the background model set is
generated from a cohort, letting be the maximum function
gives , while the arithmetic mean gives , and
the geometric mean gives . When is an identity
function, , and , (7) becomes .

In essence, there is no theoretical evidence to indicate what
sort of is optimal, so the selection of is usually ap-
plication and training data dependent. Simple functions, such
as the arithmetic mean, the maximum, and the geometric mean,
are heuristics that do not involve an optimization process. Thus,
the resulting system is far from optimal in terms of verifica-
tion accuracy. To handle the speaker-verification problem more
effectively, it is necessary to devise a decision function with a
trainable mechanism, such that one hypothesis can be optimally
separated from another. To this end, we formulate the character-
ization of the alternative hypothesis as a problem of optimally
combining the discriminative information derived from a set of
pretrained background models, and design the decision function
based on two perspectives: a weighted geometric combination
(WGC) and a weighted arithmetic combination (WAC) of the
likelihoods of the background models. In contrast to the geo-
metric mean in and the arithmetic mean in ,
both of which are independent of the system training, our com-
bination scheme treats the background models unequally ac-
cording to how close each model is to the target model. The
unequal nature of the background models is quantified by a set
of weights optimized in the training phase. Since the optimiza-
tion is related to the verification accuracy, the resulting decision
function is expected to be more effective and robust than those
of conventional methods. Thus, the task is to determine the as-
sociated weights. To obtain a reliable set of weights, we regard
the WGC- and WAC-based decision functions as nonlinear dis-
criminant classifiers. Then, we apply kernel-based techniques,
namely the kernel Fisher discriminant (KFD) [7], [8] and sup-
port vector machine (SVM) [9], to solve the weights, by virtue
of their good discrimination ability.

In recent years, a number of SVM-based speaker verification
techniques have been developed [10]–[14]. One of the main is-
sues with using SVMs for speaker verification is that the number
of training samples represented by frames is usually too large to
handle efficiently. For this reason, the concept of a sequence
kernel [10]–[14] was proposed to compare speech utterances
at the sequence level instead of the frame level. However, con-
structing a proper sequence kernel for utterance-based SVMs
is an issue that requires further investigation. In this paper, as
the proposed WGC and WAC methods convert variable-length
utterances into fixed-dimension characteristic vectors, the de-
rived kernel processes play the same role as the sequence kernel

method, but they have the advantage of not having to specifi-
cally design the kernel functions.

In addition, most existing SVM-based speaker verification
approaches only use a single background model, i.e., the world
model, instead of multiple background models, to characterize
the alternative hypothesis. For example, Bengio et al. [13] pro-
posed the following decision function:

(8)

where , , and are adjustable parameters estimated using
SVM. The input to SVM comprises the two-dimensional vector

. An extended version of (8) using
the Fisher kernel and the LR score-space kernel for SVM was
investigated in [14]. In contrast, our framework integrates more
available information from multiple background models into
a characteristic vector as the input to SVM, which makes it
easier to distinguish one hypothesis from another. The results
of speaker verification experiments conducted on both the
XM2VTS database and the ISCSLP2006-SRE database show
that the proposed methods outperform all of the above-men-
tioned approaches.

The remainder of this paper is organized as follows.
Section II introduces the design of the decision function used
in our methods. Section III presents the kernel discriminant
analysis techniques that we use to find the weight vector.
Sections IV and V describe the concepts related to the charac-
teristic vector and the background model selection methods,
respectively. Section VI details the experiment results. Then, in
Section VII, we present our conclusions.

II. PROPOSED DECISION FUNCTIONS

To characterize the alternative hypothesis, we generate a set
of background models using data that does not belong to the
null hypothesis. Instead of the arithmetic mean or the geometric
mean mentioned earlier, our goal is to design a function
that can optimally exploit the information available from back-
ground models. In this section, we present our design approach,
which characterizes the alternative hypothesis in two ways: by
a weighted geometric combination (WGC) and by a weighted
arithmetic combination (WAC). Each combination can be
viewed as a generalized and trainable version of conventional
approaches.

A. Weighted Geometric Combination (WGC)

We begin by defining the function in (7) in terms of a
weighted geometric combination as

(9)

where is the weight of the likelihood ,
. This function assigns different weights to back-

ground models according to their individual contribution to the
alternative hypothesis. It is clear that (9) is equivalent to the
simple geometric mean when , ; i.e., it is
assumed that all the background models contribute equally. One
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additional advantage of WGC is that it avoids the problem of
. This problem can arise with

the simple geometric mean because some values of the likeli-
hood may be rather small when the background models are
irrelevant to an input utterance , i.e., . However,
if a weight is attached to each background model, defined
in (9) may be less sensitive to very small likelihood values, and
hence should be more robust than the simple geometric mean.
It is also clear that (9) will reduce to a maximum function if

, and , .
By substituting (9) into (7), and taking the logarithmic form,

we obtain

accept
reject

accept
reject

(10)

where is an weight vector,
the new threshold , and is
an vector in the space expressed as

(11)

The implicit idea in (11) is that the input utterance can be
represented by a characteristic vector .

B. Weighted Arithmetic Combination (WAC)

We can also define the function in (7) in terms of a
weighted arithmetic combination as

(12)

where is the weight of , . Similar
to the weighted geometric combination, (12) considers the in-
dividual contribution of background models to the alternative
hypothesis by assigning a weight to each likelihood value. It is
clear that (12) is equivalent to the arithmetic mean when ,

. It is also clear that (12) will reduce to a max-
imum function if , and

, . Suppose that all the background models are
Gaussian mixture models (GMMs) [4]. Then, (12) constitutes a
two-layer GMM, in which one layer represents each background
model and the other layer represents the combination of back-
ground models.

By substituting (12) into (7) and reversing (7), we obtain

accept
reject

accept
reject

(13)

where is an weight vector,
the new threshold , and is an

1 characteristic vector in the space , expressed by

(14)

III. KERNEL DISCRIMINANT ANALYSIS

The process of representing an utterance as a character-
istic vector in (11) or (14) can be regarded as ,
where 1 is a nonlinear mapping function. If we replace the
threshold in (10) or in (13) with a bias , the decision func-
tions in (10) and (13) can be rewritten as

(15)

where forms a nonlinear discriminant classifier for . The
classifier translates the goal of solving an LR test problem into
one of optimizing and , such that the utterances of target
speakers and nontarget speakers can be separated. To realize this
classifier, we need three distinct data sets: one for generating
each target speaker’s model, one for generating the background
models, and one for optimizing and . Since the bias plays
the same role as the decision threshold of the LR test defined
in (2), which can be determined through a tradeoff between the
false acceptance and the false rejection rates, our main goal here
is to find .

To solve the weight vector , we propose using two kernel-
based discriminant techniques, namely the KFD [7], [8] and
SVM [9], because of their ability to separate samples of target
speakers from those of nontarget speakers efficiently.

A. Kernel Fisher Discriminant (KFD)

Suppose that we have training utterances
for hypothesis , , or 1. The goal of KFD is to locate
the weight vector that maximizes the between-class scatter,
while minimizing the within-class scatter. According to [7], the
solution of must lie in the span of all mapped training utter-
ances; therefore, we can represent as

(16)

1More precisely, �(U) should be denoted by �(U ;�;� ; � ; . . . ; � ).
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where
, , and is the combi-

nation coefficient. Substituting (16) into (15), we obtain

(17)

where the inner product of two vectors and is ex-
pressed by a kernel function . Such a kernel function is
also called the sequence kernel [10], because it takes two utter-
ance sequences, and , as inputs. The goal therefore changes
from finding to finding , which
maximizes

(18)

and are computed by

(19)

and

(20)

respectively, where is an vector with element
; is an matrix with element

; is an identity matrix; and
is an matrix in which all elements are equal to
. Following [8], the solution to , which maximizes

defined in (18), is taken as the leading eigenvector of .

B. Support Vector Machine (SVM)

The weight vector can also be solved with SVM. In this
case, the goal is to find a separating hyperplane that maximizes
the margin between the classes. Following [9], can be ex-
pressed as

(21)

which yields

(22)

where each training utterance , , is labeled by
either (a null hypothesis) or (an alternative hy-
pothesis). The optimal coefficients
can be determined by maximizing the objective function

(23)

subject to the constraints and ,
, where is a penalty parameter [9]. This process can be

performed with quadratic programming techniques [15]. Note
that most elements of are equal to zero, and training samples

associated with nonzero are called support vectors. A few
support vectors play a key role in deciding the optimal margin
between classes in SVM.

C. Mercer Kernels

The effectiveness of the above KFD or SVM approaches de-
pends essentially on how the kernel function is designed. A
kernel function must be symmetric, positive definite, and con-
form to Mercer’s condition [16]. There are a number of kernel
functions [16]. However, since we have converted speech utter-
ances into characteristic vectors, the kernel function takes the
form

(24)

Equation (24) indicates that the sequence kernel function with
two input utterances, and , forms a dot product kernel with
two input characteristic vectors, and . Alternatively, if we
use the closure property of Mercer kernels [16] to form a kernel
function

(25)

where is a tunable parameter, then is equivalent to
the following radial basis function (RBF) kernel with two inputs

and

(26)

IV. CONCEPTS RELATED TO THE CHARACTERISTIC VECTOR

In this section, we compare the proposed classifiers with sev-
eral approaches related to the characteristic vector. It is worth
noting that the major advantage of our classifiers lies in a train-
able mechanism, which tries to optimally exploit useful infor-
mation from background models, rather than make an ad hoc
modification or use a combination of existing approaches.

A. Direct Fusion of Multiple LRs

The most intuitive way to improve the conventional LR-based
speaker verification method would be to fuse multiple LR mea-
sures directly. Similar to the fusion approaches in [17] and [18],
we define a fusion-based LR as

accept
reject

(27)

where , and

(28)

As with WGC and WAC, the weight vector can be trained
using the methods described in Section III. A preliminary result
reported in [19] shows that, compared to approaches that use a
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single LR, such a fusion scheme improves speaker verification
performance noticeably. However, we found that direct fusion
is often dominated by one particular LR, or it is limited by some
inferior LRs.

B. Relation to the Anchor Modeling Approach

The concept of our methods is similar to that of the anchor
modeling approach [20], [21] used in speaker indexing and
speaker identification applications. The objective of the anchor
modeling approach is to construct a speaker space based on
a set of pretrained representative models ,
called anchor models. Then, any speech utterance can be
projected into the space, and represented as a characteristic
vector [20]

(29)

The speaker of an unknown utterance can be identified by
computing the distance between the characteristic vector and
the typical vectors of the target speakers. The characteristic
vector defined in (29) is similar to the characteristic vector used
in this study. However, to find the location of a target speaker
in the speaker space, the anchor modeling approach only
considers the projection of the speech utterance from the target
speaker, which is different from the proposed discriminative
framework. More specifically, the decision functions based on
WGC and WAC characterize a target speaker by locating the
boundary that optimally separates the characteristic vectors of
a target speaker from those of nontarget speakers; hence, the
proposed methods are expected to be more effective than the
anchor modeling approach.

V. BACKGROUND MODEL SELECTION

In general, the more speakers that are used as background
models, the better the characterization of the alternative hy-
pothesis will be. However, it has been found [2]–[5] that
using a set of preselected representative models is usually
more effective and efficient than using the entire collection
of available speakers. For this reason, we propose selecting

background models, including cohort models used in
, , and , and one world model used

in , to form the characteristic vector. As a result,
the proposed decision functions based on WGC and WAC can
be viewed as generalized and trainable versions of ,

, , or .
We consider two widely used methods for selecting

cohort models [4]. One selects the closest speaker
models for each target speaker;
and the other selects the closest speaker models

, plus the farthest speaker
models , for each target speaker.
Here, the degree of closeness is measured in terms of the
pairwise distance defined in [4]

(30)

where and are speaker models trained using the th
speaker’s utterances and the th speaker’s utterances

, respectively. As a result, each target speaker has a se-
quence of background models, or

, for (11) and (14).

VI. EXPERIMENTS

We conducted the speaker-verification experiments on two
databases: the XM2VTS database [22] and the ISCSLP2006
speaker recognition evaluation (ISCSLP2006-SRE) database
[24].

For the performance evaluation, we used the detection error
tradeoff (DET) curve [26], which shows the tradeoff between
the false-alarm probability and the miss probability based on
their corresponding Gaussian deviates. We also measured the
NIST detection cost function (DCF) [27], which reflects the per-
formance at a single operating point on the DET curve. The DCF
is defined as

(31)

where and are the miss probability and the false-
alarm probability, respectively; and are the respec-
tive relative costs of the detection errors; and is the a
priori probability of the target speaker.

A. Evaluation on the XM2VTS Database

The first set of speaker verification experiments was con-
ducted on speech data extracted from the XM2VTS multimodal
database [22]. In accordance with “Configuration II” described
in [23], the database was divided into three subsets: “Training,”
“Evaluation,”2 and “Test.” For our experiments, we used the
“Training” subset to build each target speaker’s model and the
background models, and the “Evaluation” subset to estimate
the decision threshold in (2), and the parameters and
in (15). The accuracy of speaker verification was then evalu-
ated on the “Test” subset. As shown in Table I, a total of 293
speakers3 in the database were divided into 199 clients (target
speakers), 25 “evaluation impostors,” and 69 “test impostors.”
Each speaker participated in four recording sessions at approx-
imately one-month intervals, and each recording session con-
sisted of two shots. In each shot, the speaker was prompted to
utter three sentences:

1) “0 1 2 3 4 5 6 7 8 9.”
2) “5 0 6 9 2 8 1 3 7 4.”
3) “Joe took father’s green shoe bench out.”
Using a 32-ms Hamming-windowed frame with 10-ms shifts,

each utterance was converted into a stream of 24-order feature
vectors, each consisting of 12 Mel-scale frequency cepstral co-
efficients [28] and their first time derivatives.

We used 12 (2 2 3) utterances per target speaker from ses-
sions 1 and 2 to train the target speaker model, represented by
a GMM with 64 mixture components. For each target speaker,
we used the utterances of the other 198 clients in sessions 1 and

2This is usually called the “Development” set in the speech recognition
community. We use “Evaluation” in accordance with the configuration of the
XM2VTS database.

3We omitted two speakers (ID numbers 313 and 342) because of partial data
corruption.
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TABLE I
CONFIGURATION OF THE XM2VTS SPEECH DATABASE

TABLE II
SUMMARY OF THE PARAMETRIC MODELS USED IN EACH SYSTEM

2 to generate the world model (UBM), represented by a GMM
with 256 mixture components. We then chose speakers from
those 198 clients as the cohort. In the experiments, was set to
20, and each cohort model was also represented by a GMM with
64 mixture components. Table II summarizes all the parametric
models used in each system. To estimate , , and , we used
six utterances per target speaker from session 3, along with 24
(4 2 3) utterances per evaluation-impostor over the four ses-
sions, which yielded 1194 (6 199) target speaker samples and
119 400 (24 25 199) impostor samples. However, because a
kernel-based technique can be intractable when a large number
of training samples are involved, we reduced the number of im-
postor samples from 119 400 to 2250 using a uniform random
selection method. In the performance evaluation, we tested six
utterances per target speaker from session 4 and 24 utterances
per test-impostor over the four sessions, which produced 1 194
(6 199) target speaker trials and 329 544 (24 69 199) im-
postor trials.

1) Weighted Geometric Combination Versus Geometric
Mean: The first experiment evaluated the proposed weighted
geometric combination of background models, i.e.,
defined in (10). The set of background models was comprised of
1) the world model and the 20 closest cohort models (“w_20c”),
or 2) the world model and the ten closest cohort models, plus
the ten farthest cohort models (“w_10c_10f”). The weight
vector was optimized by kernel-based discrimination solutions
(KFD or SVM). We derived the following eight WGC-based
systems:

1) KFD with defined in (24) and “w_20c”
(“WGC_dot_KFD_w_20c”);

2) KFD with defined in (24) and “w_10c_10f”
(“WGC_dot_KFD_w_10c_10f”);

3) SVM with defined in (24) and “w_20c”
(“WGC_dot_SVM_w_20c”);

4) SVM with defined in (24) and “w_10c_10f”
(“WGC_dot_SVM_w_10c_10f”);

5) KFD with defined in (26) and “w_20c”
(“WGC_RBF_KFD_w_20c”);

6) KFD with defined in (26) and “w_10c_10f”
(“WGC_RBF_KFD_w_10c_10f”);

7) SVM with defined in (26) and “w_20c”
(“WGC_RBF_SVM_w_20c”);

8) SVM with defined in (26) and “w_10c_10f”
(“WGC_RBF_SVM_w_10c_10f”).

Both SVM and KFD used an RBF kernel function with
. We used the SSVM tool [29] to implement the SVM

experiments, where the parameter of SVM was set to 1. For
the performance comparison, we used three systems as our base-
lines:

1) (“GMM-UBM”);
2) with the 20 closest cohort models (“Geo_20c”);
3) with the ten closest cohort models plus the ten

farthest cohort models (“Geo_10c_10f”).
Fig. 1 shows the speaker verification results of the above sys-
tems evaluated on the XM2VTS “Test” subset in terms of DET
curves. Fig. 1(a) and (b) compare the DET curves derived by
KFD-based systems and SVM-based systems, respectively.

From Fig. 1, we observe that all the WGC-based systems with
kernel functions or outperform the baseline systems
“GMM-UBM,” “Geo_20c,” and “Geo_10c_10f.” We also ob-
serve that “Geo_10c_10f” in Fig. 1(a) yields the poorest perfor-
mance. This is because the simple geometric mean may pro-
duce some singular scores if any cohort model is poorly
matched to the input utterance , i.e., . In con-
trast, the results show that the WGC-based system sidesteps this
problem with the aid of the weighted strategy. In addition, both
Fig. 1(a) and (b) show that the WGC-based systems with
outperform the WGC-based systems with . Thus, in the
subsequent experiments, we focused on investigating the per-
formance achieved by the kernel-based discrimination solutions
using the kernel function .

2) Weighted Arithmetic Combination Versus Arithmetic
Mean: The second experiment evaluated the proposed weighted
arithmetic combination of background models, i.e.,
defined in (13). We implemented the WAC-based systems using
the kernel-based discrimination solution in four ways:

1) KFD with “w_20c” (“WAC_RBF_KFD_w_20c”);
2) KFD with “w_10c_10f” (“WAC_RBF_KFD_w_10c_10f”);
3) SVM with “w_20c” (“WAC_RBF_SVM_w_20c”);
4) SVM with “w_10c_10f” (“WAC_RBF_SVM_w_10c_10f”).

In the above cases, SVM and KFD used an RBF kernel function
with . For the performance comparison, we used

three systems as our baselines:
1) (“GMM-UBM”);
2) with the 20 closest cohort models (“Ari_20c”);
3) with the ten closest cohort models plus the ten

farthest cohort models (“Ari_10c_10f”).
Fig. 2 shows the results of the above systems evaluated on the
XM2VTS “Test” subset in terms of DET curves. Clearly, all
the WAC-based systems based on either KFD or SVM out-
perform the baseline systems “GMM-UBM,” “Ari_20c,” and
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Fig. 1. Geometric mean versus WGC: DET curves for the “Test” subset in the
XM2VTS database.

“Ari_10c_10f.” We also observe that the performances of SVM
and KFD are similar.

3) Discussion: An analysis of the experiment results based
on the DCF with , , and is
given in Table III. In addition to the above systems, we evaluated
four related systems:

1) with the 20 closest cohort models (“Max_20c”);
2) using an RBF kernel function with

(“GMM-UBM/SVM”);

Fig. 2. Arithmetic Mean versus WAC: DET curves for the “Test” subset in the
XM2VTS database.

TABLE III
DCFS FOR THE “EVALUATION” AND “TEST” SUBSETS

IN THE XM2VTS DATABASE

3) with a fusion of five baseline LR mea-
sures, namely, “GMM-UBM,” “Max_20c,” “Ari_20c,”
“Ari_10c_10f,” and “Geo_20c,” by KFD (“Fusion_KFD”);

4) with a fusion of five baseline LR mea-
sures, namely, “GMM-UBM,” “Max_20c,” “Ari_20c,”
“Ari_10c_10f,” and “Geo_20c,” by SVM (“Fu-
sion_SVM”).

In the fusion systems, KFD and SVM used an RBF kernel
function with . We did not include “Geo_10c_10f” in the
implementation of the fusion systems because of its poor perfor-
mance. For each approach, the decision threshold was carefully
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TABLE IV
COMPARISON OF ERRORS MADE BY “WGC_RBF_KFD_W_20C” AND

“ARI_10C_10F,” WHERE P AND N DENOTE THE NUMBER OF POSITIVE

(TARGET SPEAKER) TRIALS AND THE NUMBER OF NEGATIVE (IMPOSTOR)
TRIALS, RESPECTIVELY. THERE ARE 1,194P AND 329 544N IN TOTAL

tuned to minimize the DCF using the “Evaluation” subset, and
then applied to the “Test” subset.

Several conclusions can be drawn from Table III. First, the
two direct fusion systems, “Fusion_KFD” and “Fusion_SVM,”
as well as “GMM-UBM/SVM,” outperform the baseline
LR systems. Second, the proposed WGC- and WAC-based
systems not only outperform all the baseline LR systems,
“GMM-UBM,” “Max_20c,” “Ari_20c,” “Ari_10c_10f,” and
“Geo_20c,” they are also better than the fusion systems and the
“GMM-UBM/SVM” system. The WGC- and WAC-based SVM
systems are better than the “GMM-UBM/SVM” system because
they consider multiple background models (including the world
model), whereas the “GMM-UBM/SVM” system only con-
siders the world model. Third, the WGC-based systems slightly
outperform the WAC-based systems. Fourth, both KFD and
SVM perform well in terms of finding nonlinear discrimination
solutions. From the actual DCF for the “Test” subset, we observe
that “WGC_RBF_KFD_w_20c” achieved a 30.68% relative
improvement compared to “Ari_10c_10f” – the best baseline
LR system. Table IV compares the correlation of correct and
incorrect decisions between “WGC_RBF_KFD_w_20c” and
“Ari_10c_10f” for the actual DCF [27]. Based on McNemar’s
test [30] with a significance , we can conclude
that “WGC_RBF_KFD_w_20c” performs significantly better
than “Ari_10c_10f,” since the resulting .

B. Evaluation on the ISCSLP2006-SRE Database

We also evaluated the proposed methods on a text-in-
dependent single-channel speaker verification task con-
forming to the ISCSLP2006 Speaker Recognition Evaluation
(ISCSLP2006-SRE) Plan [25]. Unlike the XM2VTS task, the
ISCSLP2006-SRE database was divided into two subsets:
a “Development Data Set” and an “Evaluation Data Set.”
The “Development Data Set” contained 300 speakers. Each
speaker made two utterances, each of which was cut into one
long segment, which was longer than 30 s, and several short
segments. In the experiments, we collected each speaker’s two
long segments to build a UBM with 1024 mixture Gaussian
components, and used the two long segments per speaker to
train each speaker’s 1024-mixture GMM through UBM-MAP
adaptation [1]. For each speaker, speakers’ GMMs were
chosen from the other 299 speakers as the cohort models. The
remaining short segments of all the speakers were used to
estimate , , and . In the implementation, each short segment
served as a positive sample for its associated speaker, but acted
as a negative sample for each of the 20 randomly selected
speakers from the remaining 299 speakers. This yielded 1551

positive samples and 31 020 (1551 20) negative samples for
estimating or . Moreover, we used 1551 positive samples
and 1551 randomly selected negative samples to estimate in
the proposed systems.

The “Evaluation Data Set” contained 800 target speakers that
did not overlap with the speakers in the “Development Data
Set.” Each target speaker made one long training utterance,
ranging in duration from 21 to 85 s, with an average length of
37.06 s. This was used to generate the speaker’s 1024-mixture
GMM through UBM-MAP adaptation. For each target speaker,

speakers’ GMMs were chosen from the 300 speakers in the
“Development Data Set” as the cohort models. In addition,
there were 5933 test utterances (trials) in the “Evaluation Data
Set,” each of which ranged in duration from 5 seconds to 54
s, with an average length of 15.66 s. Each test utterance was
associated with the claimed speaker’s ID, and the task involved
judging whether it was true or false. The answer sheet was
released after the evaluation finished.

The acoustic feature extraction process was same as that ap-
plied in the XM2VTS task.

1) Experiment Results: The GMM-UBM [1] and T-norm
[6] systems are the current state-of-the-art approaches for the
text-independent speaker verification task. Thus, in this part,
we focus on the performance improvement of our methods over
these two baseline systems. As with the GMM-UBM system,
we used the fast scoring method [1] for likelihood ratio compu-
tation in the proposed methods. Both the target speaker model

and the cohort models were adapted from the UBM . Be-
cause the mixture indices were retained after UBM-MAP adap-
tation, each element of the characteristic vector was computed
approximately by only considering the mixture components
corresponding to the top scoring mixtures in the UBM [1]. In
our experiments, was set to 5, and was set to 20.

The experiment results of the XM2VTS task showed that
there was no significant performance difference between the
two cohort selection methods used to construct the character-
istic vector . Thus, in the following experiments, we only used
one type of characteristic vector, i.e., the vector associated with
the UBM and the 20 closest cohort models (“w_20c”), to com-
pute WGC- and WAC-based decision functions. This yielded
the following four systems:

1) using SVM with and “w_20c”
(“WGC_RBF_SVM_w_20c”);

2) using KFD with and “w_20c”
(“WGC_RBF_KFD_w_20c”);

3) using SVM with and “w_20c”
(“WAC_RBF_SVM_w_20c”);

4) using KFD with and “w_20c”
(“WAC_RBF_KFD_w_20c”).

We compared the proposed systems with the GMM-UBM
system, the T-norm system with the 50 closest cohort models
(“Tnorm_50c”), and Bengio et al.’s system (“GMM-UBM/
SVM”). The kernel parameters for SVM and KFD were
same as those used in the XM2VTS task. Following the
ISCSLP2006-SRE Plan, the performance was measured by the
DCF with , , and . In each
system, the decision threshold was tuned to minimize the DCF
using the (1551 31 020) samples in the “Development Data



CHAO et al.: USING KERNEL DISCRIMINANT ANALYSIS 1683

Fig. 3. Baseline systems versus WAC and WGC: DET curves for the
ISCSLP2006-SRE “Evaluation Data Set.” The stars and circles indicate the
actual and minimum DCFs, respectively.

TABLE V
MINIMUM DCFS AND ACTUAL DCFS FOR THE ISCSLP2006-SRE

“EVALUATION DATA SET”

Set,” and then applied to the “Evaluation Data Set.” Table V
summarizes the minimum DCFs and the actual DCFs derived
from 5933 trials in the “Evaluation Data Set,” and Fig. 3
shows the experiment results for all systems in terms of DET
curves. It is clear that all the proposed systems outperform
“GMM-UBM,” “Tnorm_50c,” and “GMM-UBM/SVM.” The
actual DCFs in Table V show that “WGC_RBF_KFD_w_20c”
achieved a 52.72% relative improvement over “Tnorm_50c.”
Table VI compares the correlation of correct and incor-
rect decisions between “WGC_RBF_KFD_w_20c” and
“Tnorm_50c” for the actual DCF. Based on McNemar’s test
with a significance level , we can conclude that
“WGC_RBF_KFD_w_20c” performs significantly better than
“Tnorm_50c,” since the resulting value .

VII. CONCLUSION

We have presented two novel WGC- and WAC-based deci-
sion functions for solving the speaker-verification problem. The
functions improve the characterization of the alternative hypoth-
esis by combining the likelihoods of all the background models
based on two perspectives: a weighted geometric combination

TABLE VI
COMPARISON OF ERRORS MADE BY “WGC_RBF_KFD_W_20C” AND “

TNORM_50C”, WHERE P AND N DENOTE THE NUMBER OF POSITIVE (TARGET

SPEAKER) TRIALS AND THE NUMBER OF NEGATIVE (IMPOSTOR) TRIALS,
RESPECTIVELY. THERE ARE 347P AND 5,586N IN TOTAL

and a weighted arithmetic combination. These combinations are
more effective and robust than the simple geometric mean and
arithmetic mean used in conventional approaches. The new de-
cision functions are treated as nonlinear discriminant classifiers
that can be solved by using kernel-based techniques, such as
the Kernel Fisher Discriminant and Support Vector Machine, to
optimally separate samples of the null hypothesis from those
of the alternative hypothesis. The results of experiments on two
speaker verification tasks show notable improvements in perfor-
mance over classical approaches. Finally, it is worth noting that
the proposed methods can be applied to other types of data and
hypothesis testing problems.
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