
Chapter 3 
 

Photonic Band Gap of Two-dimensional 
Photonic Crystals with Broken 

Structural and Rotational Symmetries 
 

For two dimensional photonic crystals, the electromagnetic waves in the 

complete PBG can not propagate in two dimensions, and may be able to propagate in 

other direction. The width of complete PBG at least larger than kT is required for 

device applications. If we consider the energy E located at the centre of a large band 

gap, the photons with energy E in in-plane propagation can be controlled well and its 

extent of incident angle can be increase. Since the photonic devices for the 

applications always operate at a fixed energy or a fixed energy range, it is preferable 

to have a large band gap at a higher normalized energy. The gap center located at 

high frequency means that the lattice constant of photonic crystal is large, and the 

photonic device may be fabricated easily. Recently, Many attempts have been made 

to design various kinds of photonic band structures in an effort to obtain a large PBG, 

such as choosing materials and structures, inserting a third component into system 

and reducing the structural symmetries.33,38-41,51,52  

There are two main approaches for obtaining large complete PBGs. One 

approach is to augment the gap width of the E-polarization or H-polarization modes, 

and the other approach is to enlarge the overlap of both polarization modes.41 Note 

the E-polarization and H-polarization modes are the electric and magnetic fields 

polarized along the rod axis respectively. With regard to the first approach, the most 

 25



severe limit to the PBG width is due to the degeneracy of photonic bands at high 

symmetry points in the Brillouin zone. Several methods have been suggested for 

lifting the band degeneracy and obtaining the complete PBG, which involve varying 

the contrast of dielectric contrast ratio, lattice structure and filling ratio. The dielectric 

contrast ratio is often limited by material properties and causes a severe constraint to 

the search for photonic crystal with large complete PBGs, particularly in the 

technologically important near-infrared region. Several groups have introduced 

metallodielectric materials with large dielectric constant into the photonic crystals; 

however, these materials also suffer from absorption.53   

 The symmetry of photonic crystal plays a very important role in enlarging the 

PBGs. The symmetry-breaking patterns can change the aspect of the dispersion 

curves, either by opening some additional gaps or by widening the existing gaps. 

There are two familiar methods to reduce the symmetries of photonic-crystal band 

structures. One is to insert a different size rod or a third component into the original 

structure to reduce its structural symmetry. For example, in square lattice and 

honeycomb structure, and in group 4mm photonic crystals, small circular rods are 

inserted between the original circular rods; the degeneracy bands are split and 

consequently the PBG widths are widened.35,39,54 Anderson and Giapis have shown in 

2D photonic crystal that the gap width for either E-polarization or H-polarization 

modes and the overlap for both modes can be increased by inserting a different rod 

into the square lattice.35 The results shown some gaps at high frequency region is 

enlarged, the ones at low frequency region is often reduced as the symmetry is 

broken.  

The other method to reduce the structural symmetry of photonic crystal is through 

the use of irregular lattice or rod into the structure. Several dielectric functions of 

regular rods have been shown in the chapter two. In particular, the circular rod exhibits 
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full symmetries, including rotation, inversion, and translation symmetries. The 

inversion and rotation symmetries will be broken as the rods are deformed to oval 

rods. Early studies on triangular lattice with oval, square, rectangular and hexagonal 

rods fail to open new gaps or create larger gaps than those using circular rods.36-38 

The use of the circular rods in triangular lattice is the best design to obtain the largest 

complete PBGs. More recently, It has also been reported that the complete PBGs of 

2D photonic crystals can be widened not only by deforming the shape of rods but also 

by rotating the orientation of rods, which are usually designed in triangular, square 

and hexagonal lattice with various shapes and cross sections.29,55-57 The degenerate 

band structures at high-symmetry points in the first Brillouin zone can be split, and 

even cause both polarization modes to overlap each other by reducing the rotational 

and structural symmetries.  

In this chapter, we systematically investigate how the effect of reduction of 

symmetry on the photonic band structure. The two-dimensional triangular and square 

photonic crystals are considered. The optimal parameters in obtaining the largest 

PBG are calculated and the parameters influencing the formed PBG are examined. 

Moreover, the effect of structural and rotational symmetries associated with the 

deformation and rotation of rods on E-polarization and H-polarization band gaps has 

also been studied. We choose the media with dielectric constant 12.96ε =  (gallium 

arsenide or silicon at 1.55 mμ ) and air with dielectric constant 1ε =  as inclusions in 

the photonic crystal. The air/GaAs patterns of submicron size can be made by 

reaction ion etching (RIE). The plane-wave expansion method is used for calculations 

of photonic band structures. We use 625 plane waves throughout the calculations of 

this chapter. The convergence accuracy for the lowest twenty photonic bands of both 

E- and H-polarization modes is better than 1%.  
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3.1. Air Rods with Triangular Lattice 

It is well known that the triangular lattice embedded with circular air rods can 

create an complete PBG. Figure 3.1 displays the band structure of a photonic crystal 

consisting of circular air rods at a filling factor 0.8f = . The solid curves are for the 

E-polarization modes and the dotted curves are for the H-polarization modes. The 

dispersion curves have been traced along the T-M-K-T path in the first Brillouin zone. 

Three high-symmetry points T, M, and K correspond to 0k = , 
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)xk
a

eπ
= . The inset in figure shows the high-symmetry 

points at the corner of the irreducible Brillouin zone (shaded region). The shading 

region in the figure represents the complete PBG, which the light can not propagate in 

this frequency region.  

The appearance of complete PBG in this photonic structure is attributed to the 

arrangements of connected dielectric veins and isolated dielectric spots. The 

schematic drawing of vein and spot in the triangular lattice is displayed in Fig. 3.2. 

From the rule of thumb, the isolated high-dielectric spots are favorable for the large 

E-polarization band gaps, while the connected veins are favorable for the large 

H-polarization band gaps.43 So an complete PBG is favored in photonic crystals with 

high-dielectric regions that are both practically isolated and connected. 

Figure 3.3 displays the gap map plotted with respect to the filling factor f . As the 

results, the bands for both E-polarization and H-polarization modes move toward high 

frequencies when the filling factor increases. The band-structure features can be 

understood easily by considering the average dielectric constant. The increase in the 

filling factor leads to the decrease in the value of average dielectric constant of the 

photonic crystal. This indicates that the field-energy proportion concentrated in the 

dielectric region is reduced, resulting in the increase of normalized frequency of band. 
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Therefore, the overall photonic dispersion curves for either E- or H-polarization modes 

tend to move toward high frequency. We also see that E-polarization gaps can not 

open until the filling factor is great than 0.6. The absence of E-polarization gap for 

small filling ratio may be supposed that the field energy in the dielectric-spot regions 

can not appear a large difference between dielectric and air bands. To understand 

how the field distribution dependent on the filling factor, the field patterns of the two 

lowest E-polarization bands are calculated. Figures 3.4(a)-(d) show the level 

distribution of the displacement field for 0.3f =  and 0.85f =  in the two lowest 

bands. Each figure plots the displacement-field distributions associated with the first 

and second bands at the T-symmetry point. As the diagrams indicate, the difference in 

field distributions between 1st and 2nd bands for 0.3f =  is smaller than that for 

. The similar field patterns for dielectric and air bands imply that the 

dielectric-band frequency approaches to the air-band frequency, resulting in the 

absence of E0polarization gap. Moreover, the thumb rule has shown that the isolated 

spots favor in the appearance of the E-polarization gap. In comparison with the 

description in Fig. 3.2, we find the photonic structure with 

0.85f =

0.85f =  has constructed 

the isolated dielectric spots in the field patterns. The large difference in field 

distribution between dielectric and air bands and the formed isolated spots may cause 

the appearance of E-polarization gap at large filling factor. For the H-polarization 

mode, the gap widths are increased when the filling factor is increased. Because the 

H-polarization fields are oriented in the x-y plane, the partial tangential fields that link 

nearest-dielectric veins must be forced to penetrate regions of air to satisfy the 

continuity boundary condition. For this reason, the variation in the interaction between 

high-dielectric veins strongly influences the fraction of field energy in the dielectric 

regions, and thereby enlarges the H-polarization gap width.  

The maximum width of complete PBG is obtained when the filling factor is 
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designed with 0.85. This structure possesses both isolated dielectric regions and 

connectivity and is the almost close-packing condition for circular rods in the triangular 

lattice. Since the maximum filling factor for the triangular lattice with circular rod is 

, the dielectric size between air circular rods is very thin for 0.91f = 0.85f = . 

Therefore, the photonic structure for application is difficult to fabricate. Generally, one 

would expect the complete PBG to get larger as the filling factor is increased. In fact, 

since the E-polarization and H-polarization modes in 2D photonic crystal are 

decoupled and are dominated by different equations. The enlargement and overlap do 

not follow a simple rule and may be optimized by the proper design of structure, filling 

factor and material.  

Next, we replaced full-symmetry circular rods with square rods in the triangular 

lattice to study the formation of PBG. Note the parameters in calculations are the 

same with that in circular case. The frequencies calculated along symmetry directions 

of first Brillouin zone are plotted in Fig. 3.5. The H-polarization gap of square rods with 

triangular lattice resembles to that of circular rods, but there are some novel 

E-polarization gaps appearing in the square rods. The reason why the E-polarization 

bands are split is that the symmetry of photonic crystal may be changed by the use of 

square rods. It is supposed that the variations in field distribution inside the dielectric 

region lead to alter the E-polarization band. The difference in band structures between 

circular and square rods will be calculated and examined systematically in chapter 4.    

Figure 3.6 plots the gap map as a function of filling factor associated with the 

square rods of triangular lattice. The first thing we notice is that there are two 

complete PBGs in this structure, which are labeled G1 and G2 in figure. The features 

of band structure on increasing filling factor can also be understood by using the same 

qualitative arguments as that for circular rods. In particular, we see that numerous 

E-polarization band gaps are observed for this 2D photonic crystal, and the 
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E-polarization gap can be opened at small filling factor. The complete PBG G1 opens 

at a smaller filling factor  and closes at 0.55f = 0.8f = ; the G2 opens at 0.65f =  

and reaches the maximum gap width at 0.85f = . Comparing with the previous 

results of circular rods, the width of complete PBG for the present PC consisting of 

square rods is smaller. In Fig. 3.7 the gap width to mid-gap frequency ratio is plotted 

with respect to the filling factor for the complete PBG as shown in Figs. 3.1 and 3.6. 

The maximum width of complete PBG is for the circular rods at 0.85f = , 

approximately 2 times larger than the maximum gap width for the square rods. The 

results show that full-symmetry circular rods with triangular lattice can overlap both 

modes well at high filling factor, while the square rods with triangular lattice can open 

more E-polarization gaps. 

3.2. Dielectric Rods with Square Lattice 

The use of circular rods is a well design to obtain the larger complete PBG 

than the use of square rods in triangular lattice. In particular, only the air rods 

with triangular lattice can overlap both polarization modes and appear 

complete PBGs. The dielectric rods with triangular lattice can not appear an 

overlap of both polarization modes; this point will be examined further in the 

following section. For the photonic structure based with square lattice, the 

large complete PBGs appear when the rods are designed as dielectric media 

and almost close when the rods are designed in air. This condition is contrary 

to the case based with triangular lattice. In this section, we turn to examine the 

formation of PBG by using square lattice in the photonic structure.   

Figures 3.8(a) and (b) show the photonic band structures associated with 

circular and square dielectric rods embedded with square lattice, respectively, 
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at the filling factor of 0.45. The inset in figure shows the high-symmetry points 

at the corner of the irreducible Brillouin zone (shaded region). The dispersion 

curves have been traced along the T-X-M-T path in the first Brillouin zone. 

Three high-symmetry points T, X, and M correspond to , 0k =

2 1 ˆ(
2

)xk e
a
π

= and 2 1 1ˆ ˆ(
2 2

)x yk e
a

eπ
= − . As shown in Fig. 3.7(a), the circular rods 

with square lattice can not open an enough size of H-polarization band gap 

when the frequency is less than 1.0 ( (2 )a cω π . Therefore, the results shown 

the circular dielectric rods with square lattice can not open the complete PBG. 

The isolated columns may favor to open E-polarization band gap, but this 

structure lack for dielectric veins to open H-polarization band gap. On the 

contrary, the band structures of square rods in the square lattice are shown in 

Fig. 3.7(b), with a sizable complete PBG at higher frequencies of EM waves. 

The complete PBG occurs where E8 and H6 gaps overlap, where Ei and Hi 

denote the gap that appears between the ith and (i+1)th bands for the 

corresponding polarization.  

It is interesting that the isolated-dielectric rods can appear an complete 

PBG by the use of square rod without including dielectric veins. The band 

structures of square lattice of circular and square dielectric rods in air have 

been reported.36,58 However, very few attempts have been made at such 

observation. This problem will be calculated and investigated from the 

perspective of polygonal and edge-cutting structures in the next chapter. The 

influence of polygonal columns on the corresponding dispersion curves and 

field distributions will be studied there. Following we only limit our discussions 

to the effect of filling factor on the band structures of dielectric rods with square 

lattice.  
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Figure 3.9(a) shows the gap map for the square lattice of circular dielectric 

rods as a function of filling factor. Here we only consider the bands below 

fourteenth band for both polarizations. The width of H-polarization gap can not 

be widened by increasing filling factor, resulting in the absence of complete 

PBG. Moreover, gap widths in this photonic crystal are closed at large filling 

factor. The gap map for square lattice of square dielectric rods as a function of 

filling factor is displayed in Fig. 3.9(b). The complete PBG ranges from 

(d/a=0.5) to (d/a=0.81), where d is the size of side of square 

rod. This photonic crystal has the maximum width of complete PBG at , 

which corresponds to d/a=0.63. H

0.25f = 0.65f =

0.4f =

6 is the only H-polarization gap appearing 

below the fourteenth band. Therefore, this photonic crystal has the only one 

complete PBG throughout the filling factors.   

For the triangular lattice the complete PBG exists in the case of air 

columns, and reaches maximum for the circular cross section of the columns. 

For the square lattice the complete PBG exists in the case of dielectric 

columns, and reaches maximum for the square cross section of the columns. 

In particular, the square lattice of circular dielectric rods can not open complete 

PBG by changing filling factor. The results show that the largest width of 

complete PBG appears when the shape of rods resembles the shape of 

Brillouin zone.  

Since the PBG should be open in all directions, early studies have 

indicated that the circular Brillouin zone is preferable to widen the gap widths 

and the three dimensional structures with circular Brillouin zone are employed 

in obtaining large PBG.32,59,60 Normally, the PBG for the triangular lattice is 

larger than that for the square lattice whose Brillouin zone is square shaped. 

Furthermore, the lattice structure and the shape of rods play very important 
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roles in opening and getting the large complete photonic band gaps. The 

largest complete PBG is achieved as the lattice symmetries are the same with 

the columns’ symmetries; such as the circular rods in triangular lattice and 

square rods in square lattice. More photonic crystals consisting of lattices with 

different symmetries and columns of various shapes have been studied.61,62 

Accordingly, the investigation in structural symmetries of photonic crystals is 

important for understanding the formation of PBGs and may provide design 

routes for desired PBGs.    

 

3.3. Effects of Deformed and Rotational Symmetries on 

Band Structures 

We have shown that the isolated dielectric regions favor the E-polarization 

band gap, and the connected dielectric regions favor the H-polarization band 

gap. So an complete PBG is favored in photonic crystals with high-dielectric 

regions that are both practically isolated and connected. Following these ideas, 

the large complete PBGs have been obtained through adjusting the filling 

factors of regular rods. Our calculations in section 3.1 have shown that the 

complete PBGs often appear at a larger filling factor, the results indicate these 

structures are difficult to fabricate with too thin veins. Thus, it is important to 

choose in priority the one with a filling factor far less than the close-packing 

one from different photonic structure possessing the equal size of complete 

PBG. Two-dimensional lattices with irregular rods may be the promising 

candidates to be freely adjusted the isolated dielectric regions and connected 

veins by deforming and rotating the rods. In this section, we expand these 

ideas to widen the complete PBG width by using deformed and rotational rods. 
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The effects of deformed and rotational symmetries on the band structures 

have been studied. 

For simplicity and not without generality, we prefer to focus on the 2D 

triangular lattice of the air rods in a dielectric background. The parameters are 

the same with the case in section 3.1, and the schematic diagram and 

representation of rods in the triangular lattice are shown in Fig. 3.9.  and 1a 2a  

are the basic vectors of the triangular lattice. The lattice constants are defined 

as 1= =a a a2 . The cross-sectional area of the triangular lattice is given by 

1 2 .cellA a a= ×  The dimensions of the rods along the major and minor axes are 

given by ( , )x ya b  in units of the lattice constant. For convenience, the ratio of 

the dimensions along the major and minor axes for the oval rods is denoted 

x ya bα = . The θ  represents a rotating angle with respect to the x axis. In this 

work, we investigate how rotational and structural symmetries affect the E- and 

H-polarization modes of circular rods embedded with triangular lattice. 

Moreover, the optimal parameters associated with the large PBG for this 

photonic crystal will be determined. 

In the beginning, we examine the variations in complete PBG width by 

varying the shape of rods. The y-axis size yb  of oval rod is kept constant, and 

ratio α  is varied solely by xa . In fact, the significant deviations for the etching 

process of circular rods in the 2D photonic crystal have been reported. 

Accordingly, the presented design for calculations can also be helpful to 

understand the effects of deteriorating structure roundness on the band 

structures.      

Figure 3.11 shows the normalized gap width of complete PBG as a 
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function of yb  for various α . The geometric parameters of the rods of each 

structure are designed to not overlap with the nearest neighboring rods under 

deformation. When yb is less than 0.48, the complete PBG width of 

full-symmetry circular rods is larger than those of deformed structures, and the 

circular rod with radius of 0.48 yb a=  has the maximum complete PBG width 

in the triangular lattice. For a given value of yb , the decrease of ratio α  

indicates the filling factor of column is decreased. Thus, the decrease of gap 

widths for deformed structures is due to the decrease of filling factors. Now we 

turn to plot the gap map at 0.75α = , 0.85α =  and 0.95α = , as shown figures 

3.12(a)-(c) respectively, to examine how the deformed rods affect the band 

gaps of both polarizations. Here we replace yb  with filling factor in Fig. 3.12. It 

is observable that band gaps for both polarizations are almost the same with 

those in Fig. 3.3. Thus, the triangular lattice coupled with noncircular rods fails 

to open new complete PBG or create PBGs larger than those using circular 

rods. The filling factor mainly determines the formation of PBG of air rod in 

triangular lattice even though the rods are deformed.    

Next, we consider not only the deformation but also the rotation of rods to 

affect the photonic band structures in the triangular lattice. Only the filling 

factors  and 0.7  are chosen and to not overlap with the nearest 

neighboring rods under deformation and rotation. Figure 3.13 displays the 

dependence of normalized complete gap width on 

0.6,  0.65f =

f  for various α  through 

a rotation angle of . The results reveal that the photonic structure of 30θ =

0.8α =  at  obtains the maximum complete PBG width throughout the 

calculations. The increase of the gap width, observable for 

30θ =

1α <  in figure, is a 
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combined effect of the deformation and rotation of rods. The gap maps at 

0.8α =  and 0.9α = through a rotation angle of  are plotted in Figs. 

3.14 (a) and (b), respectively. In comparison with Figs. 3.12 and 3.3, it is 

obvious that more H-polarization gaps are opened and widened when the rods 

are rotated. For the noncircular rods, the dielectric regions between the 

neighboring air rods are changing by rotating rods. The electromagnetic 

interactions between dielectric regions are varied strongly, and thereby enlarge 

the H-polarization gap width. Accordingly, the reason why the complete PBG 

width can be widened in rotational structures can be understood. Through 

adjusting the filling factor and the rotation angle, the E-polarization band gap 

may overlap with the H-polarization band gap; consequently, a large complete 

PBG will be obtained.  

30θ =

 

3.4. Effect of Anisotropic Materials on Band Structures 

In above sections, we have shown that the structures of air rods in the 

triangular lattice can create complete PBGs. However, our calculations have 

also shown that the use of dielectric circular or square rods as inclusions in the 

triangular lattice can not open the complete PBG. Figs. 3.15(a) and (b) show 

the gap maps plotted with respect to the filling factor and refractive index for 

dielectric circular rods in the triangular lattice, respectively. The filling factor of 

rods is fixed as  for the calculations in Fig. 3.15(b). The 

band-structure features for two cases can also be understood by using the 

same qualitative arguments as for air circular rod of triangular lattice. The 

average dielectric constants for two cases increase as the filling factor or 

refractive index increase. Most field energies are localized in the high-dielectric 

0.45f =
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regions and consequently the normalized frequencies are reduced. For this 

reason, the overall photonic dispersion curves of either E- polarization or 

H-polarization modes in Fig. 3.15(a) and (b) tend to move toward lower 

frequencies.  

The gap width of E-polarization mode drastically varies with filling factor 

than that with the refractive index. The E-polarization gap widths are strongly 

dependent on the filling factor. The air-band frequency for a given 

E-polarization band gap is very sensitive to an increase in filing factor, whereas 

the dielectric-band frequency is almost insensitive to that. The invariable 

dielectric band may reflect that field energies can be well-localized in the 

dielectric rods, and the changes of cross section area of rods can not affect the 

field distribution. However, the fraction of field energy inside the dielectric rods 

may increase as filling factor increase. The increased average dielectric 

constant leads to reduce the air-band frequency and approaches to 

dielectric-band frequency when filling factor is greater than 0.75. The 

difference in sensitivity of consecutive bands is responsible for the decrease of 

E-polarization gap width for large filling factor. Moreover, the results have 

shown that there only exists an H-polarization gap throughout the calculations 

and both polarization band gaps can not overlap by varying parameters, such 

as refractive index contrast and filling factor.  

It is known the size and position of photonic band gap can be adjusted by 

the lattice type, lattice elements, refractive index contrast, filling factor and 

reductions of rotational and structural symmetries. The degenerate bands in 

the first Brillouin zone can be lift. Recently, it has been reported that the PBG 

width can remarkably increase by the use of anisotropy materials in the 

photonic crystal.63-65 The anisotropic photonic crystal possesses the 
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anisotropic optical properties with extraordinary and ordinary refractive indices. 

The extraordinary axis is set to be parallel to the axis of the rod. The refractive 

index is  when the electric field vector in the E-polarization mode is parallel 

to the extraordinary axis, while the refractive index is  when the electric field 

vector in the H-polarization mode is perpendicular to the extraordinary axis. 

Because the refractive indices for E and H-polarization modes are different, 

therefore, it provides an opportunity to control the E- and H- polarization gaps 

separately.  

en

0n

In this work, we use tellurium (Te) material in the photonic crystal to 

understand the effect of anisotropic optical property on the band structure. 

Tellurium rods, which posses the anisotropic optical properties with refractive 

indices  and  in the wavelength regime between 3.5 and 14 6.2en = 4.8on =

mμ . The further optical features of anisotropic Te rods in the photonic crystal 

will be examined in detail. Figure 3.16 shows the gap map as a function of 

filling factor. Because the refractive index for E-polarization mode is larger than 

H-polarization mode, the frequencies of E-polarization bands are decreased 

markedly than that of H-polarization bands. Therefore, the anisotropic photonic 

crystal can overlap both modes and appear a sizeable complete PBG.  
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Figure 3.1 Photonic band structure of circular air rods in the triangular lattice, 
at a filling factor . The solid curves are for the E-polarization modes 
and the dotted curves are for the H-polarization modes.  

0.8f =

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 The schematic drawing of veins and spots in the triangular lattice. 
Between columns are narrow veins, connecting spots which are surrounded by 
three columns. 
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Figure 3.3 Gap widths as a function of filling factor of circular air rods in the 
triangular lattice.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4 Displacement-field distribution of E-polarization modes associated 
with (a) first and (c) second bands at 0.3f = ; (b) first and (d) second bands at 

. The fields are plotted at the T-symmetry point.   0.85f =
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Figure 3.5 Photonic band structure of square air rods in the triangular lattice, 
at a filling factor .  0.8f =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6 Gap widths as a function of filling factor of square air rods in the 
triangular lattice.  
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Figure 3.7 Complete gap widths to mid-gap frequency ratio as a function of 
filling factor for circular or square air rods in the triangular lattice. 
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Figure 3.8 Photonic band structures associated with (a) circular and (b) 
square dielectric rods embedded with square lattice, at the filling factor of 0.45. 
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Figure 3.9 Gap map for the square lattice of (a) circular and (b) square 
dielectric rods as a function of filling factor.  
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Figure 3.10 Schematic of oval rods in the triangular lattice. 1a  and  are the 

basic vectors of the triangular lattice. 

2a

xa  and yb  are the dimensions of major 

and minor axes. θ  represents a rotating angle with respect to the x axis.  
 
 

 
 

Figure 3.11 Normalized gap width of complete PBG as a function of yb  for 

various α . 
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Figure 3.12 The dependence of gap map on filling factor of (a) 0.75α = , (b) 

0.85α =  and (c) 0.95α = . 
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Figure 3.13 The dependence of normalized complete gap width on f  for 
various α  through a rotation angle of . 30θ =
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Figure 3.14 The dependence of gap map on filling factor of (a) 0.8α =  and (b) 

0.9α =  through a rotation angle of . 30θ =
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Figure 3.15 Gap maps plotted with respect to the (a) filling factor and (b) 
refractive index for circular dielectric rods in the triangular lattice. 
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Figure 3.16 The gap map as a function of filling factor of circular anisotropic 
rods in the triangular lattice. 
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