
Chapter 4 
 

The Formation of Photonic Band  
Gap in a Two-dimensional Square 

Lattice of Dielectric Rods in Air 
 

It is well known that the most severe limit to the PBG width comes from the 

degeneracy of photonic bands at high symmetry point in the Brillouin zone. Several 

methods have been suggested for lifting the band degeneracy and obtaining the 

complete PBG, which involve varying the contrast of dielectric contrast ratio, design of 

lattice element, filling ratio and reducing the structural symmetries. Generally, the PCs 

have been mainly investigated for square, hexagonal and triangular lattices of air rods 

or dielectric rods with various cross sections. In the chapter 3, we have shown that the 

complete PBG for square lattice appears when the rods are designed with dielectric 

square columns, whereas closes when the rods are designed with circular cross 

section of the columns. This is an interesting issue that the isolated-dielectric rods can 

appear an complete PBG by the use of square rod without including dielectric veins. 

The regular shape and the side of dielectric rods may strong affect the band structures 

in the square lattice. Hence, in order to understand this issue, we increase the 

symmetry of rod up to circular rod in this work. Now, we consider the 2D photonic 

crystals with dielectric N-polygonal rods as inclusions in the square lattice. The 

plane-wave method is employed in this study to calculate the band structures and field 

patterns. The effects of N-polygonal rods on the E-polarization and H-polarization 

band structures have been examined. Our calculations also show that the band 
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structures of polygonal rod approach the same to that of circular rod while N is large. 

These results may provide a guiding for fabricating the photonic crystals. Moreover, 

we have shown that the relative position for either E-polarization or H-polarization 

band gaps in the anisotropic PCs can be matched to obtain a large complete PBG. 

Following these ideas, we also calculate the band structures of N-polygonal rod with 

anisotropic materials, under the same filling factor, to find a large complete PBG in 

this photonic crystal. 

Our calculations have also shown that the use of octagonal rods as inclusions in 

the square lattice can not open the complete PBG. It is interesting that there is such 

difference between square and octagonal rods in the square lattice. To understand 

how the boundary of rods affects the formation of PBG in square lattice, we little by 

little cut the corners of square rod to form octagonal shape at the fixed filling factor. 

The effect of the rods’ shape on the E-polarization and H-polarization modes is 

examined. In particular, the band center and the band width of bands associated with 

the complete PBG of square dielectric rods in the square lattice have been calculated 

either. From the band-structure viewpoint, it provides a simple and helpful method to 

understand how the complete PBG disappears in the octagonal structure.  

   

4.1. The Dielectric Function of Polygonal Structure 

Assuming the dielectric material in the photonic crystal has an anisotropic 

refractive index; the principal refractive indices are the ordinary refractive index  

and the extraordinary refractive index  The extraordinary axis is set to be parallel 

to the axis of the rod. The refractive index is  when the electric field vector in the 

E-polarization mode is parallel to the extraordinary axis, while the refractive index is 

0n

.en

en
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0n  when the electric field vector in the H-polarization mode is perpendicular to the 

extraordinary axis. The calculations are restricted to the case in which the wave 

vectors of the eigenmodes lie in the 2D x-y plane and are uniform in the z-direction. 

The dielectric constant is given by 

,( ) ( ) ( )b e o b rodr S rε ε ε ε= + − ⋅K K                                          (4.1) 

where  is a function for the rod. Dielectric constants ( )KrodS r eε  and oε  respectively 

correspond to the refractive index  and . The Fourier coefficient can be 

expressed as,  
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The filling factor f  is the cross-sectional area fraction in a primitive unit cell. The 

structure factor is denoted by 1( ) iG r

cell Rod
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. For the circular rod, the structure 

factor is given by 
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where G G=
K

 and  is the first-order Bessel function of the first kind.  is the 

radius of circular rod. For the polygonal rod, we consider a polygonal rod with N sides, 

and the coordinate of  vertex is denoted 

1J ar

jth ( , )j j jP x y=
K

. According to Stokes’ 

theorem, the structure factor for the polygonal rod can be written, 
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The band structures for a photonic crystal are calculated by the standard 

plane-wave method. The calculations for anisotropic photonic crystals are calculated 

in the same way as for isotropic photonic crystals. In this study, 841 plane waves were 

adopted, and the computational errors in the E- and H-polarization modes for each 

case were estimated to be less than 1%. 

 

4.2. Photonic Band Gap in a Two-dimensional Square 

Lattice of Polygonal Dielectric Rods in Air 

Figures 4.1(a) and (b) show the size of side, the radii of inscribed circle (R-inner) 

and circumcircle (R-outer) in unit of lattice constant  for each equilateral polygon, 

respectively. In our study, each polygonal structure in Fig. 4.1 has the same filling 

factor. The optimal filling factor of square rods, taking as , is adopted 

throughout the simulations for either isotropic or anisotropic photonic crystals. The 

dielectric constant of rod is chosen as 12.96, which corresponds to that of GaAs or 

Silicon at 

a

.f = 0 45

.  mμ1 55 , and the dielectric constant for the background material is taken as 

air with ε =1b . Figures 4.2(a) and (b) show the photonic band structures associated 

with the circular rods  and square rods ((N = ∞) )4N =  in the square lattice, 

respectively, at a filling factor of 0.45. The solid curves are for E-polarization modes 

and the dotted curves are for H-polarization modes. The dispersion curves have been 

traced along the T-X-M-T path in the first Brillouin zone of square lattice. As shown in 

Fig. 4.2(a), the circular rods in the square lattice do not open an enough size of 

H-polarization band gap when the frequency is less than 1.0 ( 2 )a cω π . The results 

consequently show the absence of complete PBG in this photonic structure. On the 
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other hand, the calculated band structures of square rods are shown in Fig. 4.2(b), 

with a sizable complete PBG at high normalized frequencies (about 0.62) of EM 

waves. The complete PBG occurs in E8 and H6 gaps overlap, where Ei and Hi denote 

the gap that appears between the ith and (i+1)th bands for the corresponding 

polarizations.  

Figure 4.3 presents the dependence of gap width of each polarization mode on 

number of side (N) of equilateral polygon. Here we only consider the bands below 

fourteenth band for both polarizations. As the results, the shape of polygonal rods 

influences gap width slightly as N is even, whereas that influences gaps strongly as N 

is odd. Moreover, because the H-polarization gap width can not be widened and 

overlapped with E-polarization gap width on increasing N, so no complete PBG 

presents. 

The fields for H polarization are oriented in the x-y plane and the tangential fields 

that link nearest-dielectric rods must be forced to penetrate into low dielectric 

background regions (air) to satisfy the continuity boundary condition. The 

electromagnetic interaction between high-dielectric rods affects the proportion of field 

energy in the dielectric regions, and thereby changes the band structures of 

H-polarization modes. As shown in the Fig. 4.1(b), the radius of circumcircle 

decreases as N increases. The air-space size among the nearest-dielectric rods is 

small for small N, indicating that the wave scattering among rods affects the 

H-polarization bands drastically, strongly varying the H-polarization band gaps. When 

N is greater than ten, the air-space size remains almost constant, and varies below 

1% with varying N. This means that the interaction between the fields of the rods 

affects the H-polarization bands in almost the same way, slightly changing the 

H-polarization band gap. The gap-midgap ratio is the ratio 0r ω ω≡ Δ  of the gap 
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width U Dω ω ωΔ = −  to the midgap frequency 0ω , where Dω  and Uω  are the lower 

and upper band corner frequencies of the gap, respectively. The ratio of H-polarization 

gap of circular structure is . The difference in gap-midgap ratio between the 

circular and polygonal structures there is less than 1% as N is greater than ten.   

. %4 5r =

In the E-polarization mode, the proportion of field energy concentrated in the 

dielectric regions dominates the gap width and band frequency. The field patterns for 

each structure are examined to investigate the effect of polygonal structure on the 

E-polarization modes. Figures 4.4(a)-(h) show the field patterns of structures from 

N=4 to N=11, respectively. Figure 4.4(i) shows those for circular structure. The 

E-polarization mode is associated with the displacement field  normal to the 

plane,

D

( ) ˆ( ) zD r d r e=K K , where ( )d rK  is a scalar function. The field patterns in each 

figure are displayed for the E8 band at the M-symmetry point. It is obviously that the 

field energies can be localized inside the dielectric rods for even N and circular 

structures. The result is reasonable to suppose that the E-polarization bands for even 

N structures are quite similar to circular structure. However, the fields for odd N 

structures can not be confined well in the dielectric regions, N=5 especially. Partial 

fields inside the rods are expelled out from the dielectric regions. This reflects that the 

E-polarization bands in the pentagonal structure tend to move toward higher 

normalized frequencies in comparison with N=4. Furthermore, the amplitude of the 

displacement field, the field distribution and the amount of field energy in the dielectric 

regions are almost the same with those in Fig. 4.4(f) when N is increased. The E8 gap 

of circular structure is a gap-midgap ratio of . The difference in gap-midgap 

ratio between circular and polygonal structures is less than 1% as N is greater than 

twelve.  

. %14 8

From the above discussions in E-polarization and H-polarization modes, the 
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number of side of polygonal rods in the square lattice is not favorable for affecting the 

band structures as N is greater than twelve. These results may provide guidance for 

designing and fabricating polygonal structure in the square lattice. Moreover, the band 

structures N=12 with filling factor f=0.45 are plotted in Fig. 4.5. The band-structure 

features for both polarizations are identical with that in Fig. 4.2(a).   

Next, we calculated the photonic band structures of polygonal and circular 

structures with tellurium (Te) rods. The refractive indices of Te are assumed as 

constants and the absorption effect is neglected in our calculations. Figure 4.6(a) and 

(b) show the photonic band structures for a square lattice of anisotropic circular and 

square rods in air, respectively, at a filling factor of 0.45. The circular rods with 

anisotropic material appear two large complete PBG, but the square rods with 

anisotropic material close the complete PBG. The dependence of gap map on number 

of side N of polygonal structure is displayed in Fig. 4.7. Because the refractive indices 

for both polarizations are increased simultaneously, the overall bands of either 

E-polarization or H-polarization modes tend to move toward lower frequencies in 

comparison with that in Fig. 4.3. In particular, the H-polarization gap opens a sizable 

width for each N, and overlaps well with E-polarization gaps. Hence, the large 

complete PBGs appear in photonic crystals when the polygonal rods are designed 

with anisotropic materials.  

The difference in H-polarization gap-midgap ratio between circular and polygonal 

structures is less than 1% for . The features of H-polarization bands on 

varying N can be understood by using the same qualitative arguments as for isotropic 

cases. However, the E-polarization bands of anisotropic structure are more sensitive 

to N than that of isotropic structure. The gap-midgap ratio of E

10N ≥

3 gap of circular 

structure is 17.5%. The difference between N-polygonal structures and circular 
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structure is less than 1% as N is greater than eighteen. It is obviously that the band 

structures strongly depend on the shape and the boundary of polygonal rods if the 

photonic crystals are designed with an anisotropic material as inclusions. For this 

reason, the fabrication requirements of anisotropic photonic crystal should be more 

precise than that of isotropic photonic crystal.  

 

4.3. Photonic Band Gap in a Two-dimensional Square 

Lattice of Corner-cutting Dielectric Rods in Air 

Figure 4.8 shows the representation and the cross-sectional geometry of the rods. 

The sizes of cutting corner and rod’s side are defined as  and , respectively. 

Each corner-cutting structure has the same filling factor of the dielectric rod 

b A
.f = 0 45 . 

The difference in the size of cutting corner between square and octagonal rods is 

8 2a ⋅A , where  is the size of side of the octagonal rod and  is the lattice 

constant of square lattice. In this work, the corner-cutting calculations from square to 

form octagonal shapes are divided into fifteen equal parts, and the increment is 

defined as 

8A a

(8 15 2aβ = ⋅ ⋅A ) . For convenience, we describe the size of cutting 

corner as b m β= ⋅ , where .  , , ,0 1 14 15m = ⋅⋅⋅

Figures 4.9 show the photonic band structures of octagonal rods ( 15b β= ⋅ ) in the 

square lattice, at a filling factor of 0.45. The band structures of the square rods 

( 0b β= ⋅ ) in the square lattice have shown in Fig. 4.2(b). The square dielectric rods in 

the square lattice appear a complete PBG occurring in E8 and H6 gaps overlap, the 

complete gap center is .0 628 ( 2 c )aω π  and the complete PBG width is 

. (0 036 2a c)ω π . Contrary the Fig. 4.9 shows that the complete PBG is closed when 

the square dielectric rods are replaced with the octagonal dielectric rods. It is 
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suggested that four corners of square rods may have a strong influence on the band 

structure.  

To understand why there is such difference in appearance of complete PBG 

between square rod and octagonal rods in the square lattice, we little by little cut the 

corners of square rods to form octagonal shape at the fixed filling factor. Figure 4.10 

shows the dependence of the gap map on m. Here we only consider the frequency 

range of interest from 0.55 to 0.7 ( 2 ca )ω π . As the results, the widths for both E8 and 

H6 gaps simultaneously decline as m increases. The variation in the frequencies of air 

bands (E9 and H7 bands) is larger that those of dielectric bands (E8and H6 bands), and 

drastically reduces the complete gap width. 

The field patterns for structures of m=0, 8, 11 and 15 are plotted in Figs. 

4.11(a)-(d) respectively, to examine the effect of cutting corner on the E-polarization 

modes. The field patterns of each figure are displayed for E8 (left part) and E9 (right 

part) bands at the M-symmetry point. The field distributions of E8 band are almost 

independent of m, but the amounts of field energy inside the rods increase as m 

increases. For the field patterns of E9 band, it is obviously that the shape of rods 

strongly affects the field distribution and the amount field energy. When m increases, 

the fields near the boundary of rod are expelled out from the dielectric regions and the 

amounts of field energy are decreased. Because the amount of field energy inside the 

dielectric rods has strong related to the frequency of band, the difference in the 

amounts of field energy between E8 and E9 bands leads to the absence of 

E-polarization gap.          

Following we use the band-structure viewpoint to understand why the complete 

PBG appear in the square rods, but close in the octagonal rods. For a given band, the 

band center (BC) reflects the resonant frequency of modes, while the band width (BW) 

reflects the strength of the interaction of electromagnetic waves among rods. These 
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band-structure concepts are similar to those in the LCAO method. Here the BC and 

BW are defined as, 

,max ,min( )
2

i i
i

F F
F BC

+
=     and    ,max ,min( )i i iF BW F F= −                  (4.5) 

where  and ,maxiF ,miniF  respectively denote the maximum and minimum frequencies 

of  band in the first Brillouin zone. Here the E-polarization and H-polarization 

bands associated with the complete PBG in the photonic crystal are chosen. Figure 

4.12(a) and (b) respectively show the band center and band width of E

thi

8 and E9 bands 

as a function of m. The BC of E9 band varies more than that of E8 band when m 

exceeds four. These results reflect that the effect of cutting corner on the resonance 

frequency of E9 band is stronger than that of E8 band, and the resonance frequencies 

for both bands approach gradually as m increases. Furthermore, we turn to examine 

BW to study how field energy concentrates inside dielectric regions to influence the 

band structures. The BW of E9 band on increasing m is much different to that of E8 

band. The BW for the E8 band is almost independent of m, and may imply that the 

field energies are strongly localized in the dielectric rods. However, the BW of E9 band 

reveals a large variation and increases to 137% at m =11. The results may reflect that 

partial fields of E9 band are expelled out from the dielectric rods when the cutting 

corner of the rod is changed. Although the BC and BW of E8 band are insensitive on 

shape or boundary of the rods, the decrease in BC and the increase in BW for the E9 

band lead to close the E-polarization gap when m exceeds eleven. The results and 

discussions with the band-structure viewpoint are similar to that with the field patterns, 

and it may provide a simple and effective method to understand the features of the 

band structures. 

Figures 4.13(a) and (b) show the band center and band width associated with the 

H6 and H7 bands for various m. The BC of H6 band varies slightly with m, but the BC of 
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H7 band varies markedly. It indicates that the resonance frequency of H7 band strongly 

depends on the shape of the rod. Moreover, the BWs for both H6 and H7 bands reveal 

a large variation with m and all increase about 0.017 as m is eleven. These mean that 

the fields propagated in the x-y plane can not be well-localized inside the dielectric 

region when cutting corner of the rod is changed. In fact, the fields of H-polarization 

modes concentrated in the rods are strong related to the air-pace size among the rods. 

This work assumes that the filling factor remains constant throughout calculations, 

and the air-space size among rods consequently varies with m. Therefore, it is 

reasonable to understand that both bands have the same increment of BW. Because 

of the decrease in resonance frequency of H7 band and the increase in band widths 

for both H6 and H7 bands, the H-polarization gap is closed. 

In this chapter, we investigate why the complete PBG appear in the square lattice 

when the square dielectric rods are used, but closes for circular or polygonal dielectric 

rods. The features for both E- and H-polarization bands are examined from the 

band-structure and the field-pattern perspectives. Polygonal structure and 

corner-cutting structure are considered in this chapter. The photonic crystals of 

anisotropic polygonal rod obtain a larger complete PBG width than that of isotropic 

polygonal rod. The band structures of isotropic rods approach the same as that of 

circular rod for N is greater than twelve, while that of anisotropic rods resemble to 

circular rods for N is greater eighteen. The E-polarization bands of anisotropic 

photonic crystal are more sensitive to rods’ boundary than that of isotropic structure, 

and the fabrication requirements of anisotropic photonic crystal consequently are 

more stringent than that of isotropic photonic crystal. These results may provide a 

guiding for designing and fabricating the N-polygonal structure in the square lattice.  

For the corner-cutting structures, the field patterns and band-structure viewpoints 

are used to understand the features of formed PBG in the square lattice. The results 
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in the E-polarization gap (E8 gap) reveal that the cutting corner of rods strongly affects 

the E9 band in resonance frequency and field distribution inside the rod. The decrease 

in resonance frequency and the increase in band width lead to close the 

E-polarization gap. The results in the H-polarization gap (H6 gap) reveal a strong 

relationship between cutting corner of the rod and the H6 or H7 bands. The decrease 

in resonance frequency of H7 band and the increase in band widths for both H6 and H7 

bands lead to close the H-polarization gap. Accordingly, the complete PBG is closed 

in the square lattice when the square dielectric rods are replaced with the octagonal 

dielectric rods. The band-structure viewpoint is a simple and effective method, and is 

helpful in understanding the formation of PBG in the photonic crystal.  
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Figure 4.1 (a) the size of side, and (b) the radius of inscribed circle and 

circumcircle, corresponds to each equilateral polygon with a filling factor of 

0.45. 
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Figure 4.2 The photonic band structures associated with (a) circular rods and 

(b) square rods in the square lattice, at a filling factor of 0.45.  
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Figure 4.3 Gap width as a function of number of side N of equilateral polygon, 

at a filling factor of 0.45.  
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Figure 4.4 Field patterns of E-polarization modes inside polygonal rods of (a) 

N=4 (b) N=5 (c) N=6 (d) N=7 (e) N=8 (f) N=9 (g) N=10 (h) N=11 and (f) circular 

rod, for the E8 band and at the M-symmetry point. 
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Figure 4.5 The photonic band structures of polygonal rod of N=12 in the 

square lattice, at a filling factor of 0.45.   
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Fig. 6 

 

 

 

 

 

 

 

 

Figure 4.6 The photonic band structures for a square lattice of anisotropic (a) 

circular rods and (b) square rods in air, at a filling factor of 0.45. 
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Figure 4.7 Gap width as a function of number of side N of equilateral polygon, 

at a filling factor of 0.45. 
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Figure 4.8 The representation and cross-sectional geometry of the rods. 
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Figure 4.9 Photonic band structures for (a) square rods ( ) and (b) 

octagonal rods (

0b =

15b β= ⋅ ) in the square lattice, at a filling factor of 0.45. 
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Figure 4.10 The gap map as a function of m, and the corresponding size of 

cutting corner for each structure is m β⋅ .  

 

 

 

 

 

 

 

Figure 4.11 Field patterns of E-polarization modes inside the dielectric rods of 

(a) m=0 (b) m=8 (c) m=10 and (d) m=15, for the E8 band and at the 

M-symmetry point. 
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Figure 4.12 The (a) band center and (b) band width associated with E8 and E9 

bands as a function of m. 
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Figure 4.13 (a) Band center and (b) band width associated with H6 and H7 

bands as a function of m. 
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