
Chapter 5 
 

Effects of Photonic Crystal Band Gap 
on Rotation and Deformation of Hollow 

Te Rods in Triangular Lattice  
 

In chapter 3 and 4, we have demonstrated that the deformed rods, rotational 

rods and perturbation of shape of rods strongly affect the band structures of 2D 

photonic crystals. The solid rods are used for a given lattice type, and the rotational 

and structural symmetries influencing the band structures have been examined 

systematically. The results may provide guiding routes for fabrication and design the 

photonic crystals. Recently, the hollow oval rods have been designed as inclusions in 

the triangular lattice.66,67 The anisotropic materials are used, and the results have 

shown that photonic crystal exhibit a large PBG at high normalized frequencies. The 

importance of hollow structure in the photonic crystal can be understood from the 

viewpoints of fabricated process and structural design. It’s known that the standard 

fabrication of 2D PCs is the electrochemical etching of rods in a slab of materials. The 

etching process may result in a rough and porous interface between the rods and the 

background matrix. This interface can be described by an effective medium, and its 

dielectric constant may be different. The thickness and dielectric constant of interfacial 

layers are dependent on the preparation process of the PCs, and the interfacial layer 

influencing the properties of band structures can be calculated and realized by using 

hollow structure as inclusions in the photonic crystal.  

The dependence of band structures on the shape of hollow rods are more 
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complicated than that on the shape of solid rod, the high-frequency bands especially. 

The hollow part of rods is equivalent to a cavity, and the propagation of light of high 

frequency in the hollow rods may depend strongly on the shape of rod. The study of 

high-frequency band gaps is an important topic for fabricating a large size of photonic 

device. The hollow structure may provide a possible method to realize a large PBG in 

high frequency region. Some studies have focused on the design of hollow oval 

structure, such as geometric parameters, dielectric constant, for obtaining a large 

complete PBG.67 However, the effects of structural and rotational symmetries 

associated with the deformation and rotation of rods on E-polarization and 

H-polarization band gaps of the system has not been studied thoroughly.  

This work investigates the effect of structural and rotational symmetries on the 

E-polarization and H-polarization band gaps of hollow rods embedded in a triangular 

lattice. The plane-wave method is employed to calculate the band structures and field 

patterns. The symmetry of hollow rods is more complex than that of solid rods 

because the former can be broken by deforming and rotating inner and shell rods. 

Three deformed and two rotational structures are constructed in this study. Three 

deformed structures, involving inner-rod deformation, shell-rod deformation and 

whole-rod deformation, are considered to explore the effect of structural deformation 

on the band structures. Two rotational structures -inner rod rotation and whole rod 

rotation- are introduced to investigate the effect of rotational symmetry on the band 

structures. The correlations between the hollow structures and PBGs can be 

reasonably explained, and the scattering mechanisms are systematically examined. 

 

5.1. Dielectric Function of Hollow Structure 

Figure 5.1 displays the geometry of the 2D triangular lattice of hollow oval rods, 
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where  is the lattice constant, a 1 (1,0)a a=  and 2 (1 2, 3 2)a a=  are the basic 

vectors of the triangular lattice. Each hollow rod comprises an inner rod (hollow 

portion) with isotropic dielectric constant rε , and an outer shell with anisotropic 

dielectric constants eε  and oε . The optical property of anisotropic material is 

described in Fig. 5.2. The structured background is homogeneous with dielectric 

constant bε . The dimensions of the inner rod and the outer shell are, in units of lattice 

constant  and in the directions of the major and minor axes,  and a ( 1 1, w ) ( )2 2, w , 

respectively. The terms 1 1 w1α =  and 2 2 w2α =  are used for convenience.  

The plane-wave theory and method have been described in chapter two. The 

electromagnetic fields in the 2D photonic crystals are obtained by solving master 

equation. Here only the dielectric function of hollow structure is expressed. As shown 

in Fig. 5.3, the dielectric constant can be written as,  

,( ) ( ) ( ) ( ) ( )b e o b shell r b innerr S r S rε ε ε ε ε ε= + − + −                            (5.1) 

where  and  are the functions of the outer shell and the inner rod, 

respectively. The magnitudes of these two functions are set to unity inside the 

interesting region and zero outside. The Fourier transform of 
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The second and third terms represent ( )Gε  for the shell and the inner rods, 

respectively. The factors 2 2( )shell cellf w Aπ=  and 1 1( )rod cellf w Aπ=  are the ratios of 

the area of the outer shell and of the inner rod to the area of a primitive unit cell.  is 

the Bessel function of the first kind. The function 

1J

1 1( )g θ  represents the magnitude of 

the reciprocal-lattice vector as inner rods are rotated through an angle 1θ , and the 

function 2 2( )g θ  represents the magnitude of the reciprocal-lattice vector as the outer 
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shells are rotated through an angle 2θ . They are given by 
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where xG  and yG  are the x- and y-axial components of G , respectively. The band 

structures for such anisotropic photonic crystals can be calculated in the same way as 

for isotropic crystals. In this study, 1000 plane waves were adopted, and the 

computational errors in the E- and H-polarization modes for each case were estimated 

to be less than 1%. 

     

5.2. Effect of Deformed Symmetry of Hollow Structure on 

Band Structures 

This study calculates photonic-band structures of hollow Te (tellurium) rods in a 

triangular lattice. The hollow rods with cross section in the size of micrometers could 

be patterned with the nano-lithographic technology. However, Te is not the popular 

material for the current lithographic technology; it is still not well developed for making 

Te microstructures to photonic crystals. The usage of Te in this study is taking 

advantage of its high refractive index. The high index of refractivity allows us to tune 

the complete PBG within a large extent. Furthermore, the large difference between 

the extraordinary and the ordinary refractive indices also permits us to study more 

flexibly about the effects of the structural and rotational symmetries on the PBG of 

hollow structure.  

In this study, we calculated the photonic band structures of Te shells, which 

possess the anisotropic optical properties with refractive indices  and 

. The dielectric constants for the background material and the inner hole 

portion are taken as 

6.2en =

4.8on =

1b rε ε= = . Figure 5.4 shows the band structure for a triangular 
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lattice of hollow oval rods at a rotation angle of 1 2 0θ θ= = ° . The geometric 

parameters ( 1 2, , )α  for hollow oval rods are taken as 1 0.27a= , , and 2 0.48 a=

1.58α = . The solid curves are for the H-polarization modes and the dotted curves are 

for the E-polarization modes. It has to be noted that k-lines - - -M KΓ Γ  of 1/12 of the 

irreducible Brillouin zone may be not sufficient to identify the minimum complete PBG 

for an arbitrarily deformed or rotational hollow rods, because of the breakdown of 

symmetry laws. All modes throughout the calculations are plotted along the 

' 'M K M K MΓ- - - - -  path in the first Brillouin zone. From the figure, one can see that 

there are three complete PBGs for this photonic crystal structure and the gap widths 

are about 0.009, 0.052, and 0.041 ( )2wa cπ . Note, especially for the E-polarization 

modes, that the band structure has not only many discrete band gaps but also a 

flat-band property near the complete PBG edge. 

For Te, its extraordinary refractive index and ordinary refractive index of actually 

decrease with optical wavelength λ  from ( 6.372, 4.929)e on n= =  at λ= 3.5 mμ  to 

 at = 14 ( 6.23, 4.785)e on n= = λ mμ .63,67,68 To verify the validity of calculated photonic 

band structures with assumed constant refractive indices, we calculated the photonic 

band structures of a hollow oval Te rod photonic crystal with various refractive indices 

which are constant with frequency. Table 1 lists the widths of first two complete PBG of 

an A-type photonic crystal considered in this study with various minor changed 

refractive index sets  in the range between (6.18, 4.78) and (6.22, 4.82). The 

width of the first complete PBG remains almost unchanged for a constant 

( , )e on n

en  with 

varying  and varies about 2.5% within the set range. The result can be interpreted 

alternatively that for a photonic crystal with refractive indices varying with frequency in 

the range between (6.18, 4.78) and (6.22, 4.82), its first complete PBG width will 

on
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deviate most 2.5% [=(0.052-0.0507)/0.052] from the averaged first complete PBG 

widths which are accounted to the non-wavelength dependent refractive indices in the 

set range. That is, the calculated gap width accordingly is inherently involved 2.5% 

inaccuracy, which is nevertheless acceptable as being a base for analysis, compared 

with exact solution for refractive indices being varying with frequency. Comparatively, 

the width of the second complete PBG associated with the high-order modes appears 

disordered without a significant trend. For the large width variation, the apriority for the 

first complete PBG width cannot be plausibly applied to the case for the second 

complete PBG width. Accordingly, the use of the constant refractive indices for 

calculations is reasonable in suitable infrared regime. In this work, Te has anisotropic 

optical properties with approximate extraordinary refractive index  and 

ordinary refractive index  in the wavelength regime between 3.5 and 14 

6.2en =

4.8on = mμ . 

The absorption coefficient of Te in the infrared region is less than 1 1cm− .69  In 

the appropriate infrared range and for a photonic crystal with limited size, the 

refractive indices of Te can be treated as constants and the absorption effect can be 

neglected in the calculation. In fact, a preliminary calculation shows that very small 

uncertainty involved in our calculation when the refractive indices of Te is assumed as 

constants and the absorption effect is neglected. The axis of Te rod is set to be parallel 

to the extraordinary axis and provides different refractive indices for the E- and 

H-polarization modes in the structure. The band gaps of two modes are overlapped to 

give the complete PBG width of the photonic crystal system.  

The dielectric constants of the background material and the inner holes are set to 

1b rε ε= = . Three deformed structures, A, B and C are considered to investigate the 

effect of the shape of a hollow rod on the PBG. The schematic diagram for three 

deformed structures is displayed in Fig. 5.5. The structures are deformed by altering 

the factors 1α  and 2α , which are designed to prevent overlap between nearest 
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neighboring rods. The optimal parameters of major axes of inner rods and outer shells, 

taking as  and , are adopted throughout the simulation to study 

how the structural and rotational symmetries affect the PBG of hollow structure. 

Basically, the choice of  and 

1 0.27a= 2 0.48 a=

1 0.27a= 2 0.48 a=  provides us eclectically the 

largest two complete PBG widths. And both complete PBG widths decrease with 

increasing  for a constant  but fluctuate with varying  for a constant . 

Table 2 lists the widths of first two complete PBG, in unit of 

2 1 1 2

2a cω π , of A-type 

photonic crystals considered in this study with constant refractive indices 

 and various L1 and L2 lengths. Basically, the photonic crystal with 

L1 = 0.27a and L2 = 0.48a (a is lattice constant.) provides eclectically the largest two 

complete PBG widths. Roughly, both complete PBG widths decrease with increasing 

L2 for a constant L1 but fluctuate with varying L1 for a constant L2. 

( 6.2, 4.8)e on n= =

Structures A are designed such that the lengths of the minor axes of the inner and 

shell rods are simultaneously reduced to equalize 1α  and 2α . Figure 5.6(a) presents 

the dependence of the gap map on 1α . Many gaps appear for E-polarization modes, 

and three gaps appear for H-polarization modes between 0.2 and 0.8 ( )2a cω π . The 

width of the H1 gap is maximal at 1 1α = , and is zero at approximately 1 1.7α = . H2 

and H3 gaps do not appear in the hollow circular structure, until structural symmetry is 

broken. As shown in the diagram, this configuration generally has three complete 

PBGs and the E-polarization modes dominate the complete PBG widths.  

Structures B with circular inner rods ( 1 1α = ) and vertically deformed shell rods are 

considered. That is, the structural symmetry of the inner rod is retained, whereas that 

of the shell rod is broken. Figure 5.6 (b) presents the calculations. When 2α  exceeds 

1.35, the gap widths of the E-polarization modes vary more than those in structures A, 

drastically reducing the complete gap widths. However, the width of the H-polarization 
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gap as a function of 2α  is quite similar to those in structures A. The width of the H1 

gap declines while that of the H3 gap increases as 2α  increases. The behavior of the 

H3 gap width can be elucidated by wave scattering in the hollow rods. The 

propagation of light of short wavelength in the hollow rods depends strongly on the 

shape of rod, so resonance can be easily produced. Therefore, the shape of the rod 

determines the high-frequency gaps of H-polarization modes. With respect to the H1 

gap, light with long wavelength cannot easily be trapped with resonance in the rods, 

so the interaction among the fields of the rods must be examined in detail. In the 

H-polarization modes, fields are oriented in the x-y plane and the tangential fields that 

connect nearest-neighboring rods must be forced to penetrate regions of air to satisfy 

the continuity boundary condition. Accordingly, the variation in the y-directional length 

influences the fraction of energy in the dielectric regions, and thereby alters the 

low-frequency gap width.  

Structures C have circular shell rods ( 2 1α = ) and deformed inner rods. The 

air-space sizes between the rods are very thin in such structures. As shown in Fig. 5.6 

(c), the width of the H1 gap is almost independent of 1α , because the air-space sizes 

among the rods are kept invariable, while the width of the H3 gap varies drastically, 

since the rods are deformed. Furthermore, the width of the E-polarization gap may not 

be increased by reducing the structural symmetry of the inner rods, so no complete 

PBG is present in such structures.  

     The calculated band gaps of structures A, B and C show that the E-polarization 

modes dominate the complete PBG widths. The field patterns of each structure are 

examined to investigate the effect of structural symmetry on the E-polarization modes. 

Figures 5.7(a)-(d) show the level distribution of the displacement field in hollow 

circular structures and deformed structures A, B and C, respectively. Each figure plots 

the distribution of magnitudes of the displacement field associated with the seventh 
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band at the K-symmetry point. The fields in structure A are concentrated in the 

dielectric regions for all 1 2( )α α=  values. However, the deformation in the shell rods 

of structure B strongly influences the field distribution. In particular, the displacement 

fields in the thin section are expelled from the dielectric region and are distributed 

non-uniformly within the rods, so the gap widths in the E-polarization modes of 

structure B vary more than those of structure A. Figure 5.7(d) shows the field patterns 

in structure C. The variation in the field distribution is not as strong as that in structure 

B as the geometry of the rods is changed. This result may be attributed to the fact that 

the sizes of the inner rods are not large enough and the field distribution is similar to 

that in the hollow circular structure.  

      

5.3. Effect of Rotational Symmetry of Hollow Oval Structure 

on Band Structures 

The symmetry of the hollow structure can also be broken by rotating the inner 

and shell parts without changing the geometric parameters. Figure 5.8(a) and (b) 

show the representation of inner and whole rod rotation, respectively. Two rotations, 

inner and whole rod rotation, under the geometric parameter constant 1 2α α= , are 

considered herein. All structures have the same filling fraction but are differently 

orientated with respect to the triangular lattice. Figures 5.9(a) and (b) show the 

photonic band structures associated with rotations of the inner and whole rods, 

respectively, through an angle of . The geometric parameters ( )30 1 2, ,α  for 

hollow oval rods are taken as 1 0.27a= , 2 0.48 a= , and 1.6α = . The line shapes of 

the H-polarization bands of the inner-rod rotation are identical to those in Fig. 5.4, but 

they shift simultaneously downward in frequency. The H-polarization band structures 

also exhibit the same tendency at an arbitrary angle of rotation 1θ . However, the line 
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shapes of the H-polarization bands associated with the rotation of the whole rod vary 

more than those in Fig. 5.4. The reason for the difference between band structures 

associated with inner and whole rod rotations can be elucidated by considering eq. 

5.2. On the basis of the assumption that the inner rods of each rotational type are 

rotated through the same angle, the third terms for both rotational types are equal. 

However, the shell orientation associated with the whole rotation differs from that 

associated with the inner rotation, and ( )g θ  in the second term dominates the 

difference between the band structures of the inner-rod and whole-rod rotations. 

Figures 5.10(a) and (b) plot the H-polarization gap width against the angles of 

inner-rod and whole-rod rotations, respectively. The rotational symmetry of each 

structure is such that a 90  angular period of the gap width is obtained for the 

inner-rod rotation, and a  angular period of the gap width is obtained for the 

whole-rod rotation. For the inner-rod rotation, the width of the third gap (H3) increases 

to 150% at a rotation angle of 

°

60°

1 90θ = ° , while the widths of the first gap (H1) and the 

second gap (H2) decline markedly as the angle of rotation increases. For the 

whole-rod rotation, the H1 gap width increases to reach a maximum gap width at a 

rotation angle of 1 2 30θ θ= = ° , while the H3 gap width approaches zero at around 

1 2 40θ θ= = ° . Furthermore, the dependence of the H1 and H3 gap widths on rotating 

angle for various α  have also been examined.  

Figures 5.11(a) and (b) show the H1 gap widths associated with inner and whole 

rod rotations for various 1α . The width of the H1 gap slightly decreases under the 

inner-rod rotation as the angle of rotation increases. Notably, the air-space sizes 

among the rods remain constant under the inner-rod rotation through an arbitrary 

angle, indicating that the interaction between the fields of the rods affects the 

H-polarization modes almost equally at any angle of rotation. At whole-rod rotation 
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drastically increases the width of the H1 gap; the gap width is largest at approximately 

. These results are attributable to the strong interactions among the rods and 

the reduction in the rotational symmetry. Exactly how rotational symmetry affects the 

H-polarized band structures can be elucidated by modeling wave scattering within the 

hollow oval rods. Light with a long wavelength cannot easily be trapped or resonate in 

the rods; hence, the interaction between the fields of the rods must be considered to 

examine the H1 gap. In the H-polarization modes, the fields are oriented in the plane 

and are distributed among the rod and air regions satifying the continuity condition. 

The air-space size between the rods remains constant under inner-rod rotation 

through an arbitrary angle, indicating that the interaction between the fields of the rods 

affects the H-polarization bands in almost the same way at all angles of rotation, 

slightly changing the H1 gap width. Under whole-rod rotation, the variation in the 

air-space size influences the wave scattering between rods, so the H1 gap width 

varies markedly. 

1 30θ =

Figures 5.11 (c) and (d) plot the H3 gap width for inner and whole rod rotations, 

respectively. As shown in the diagrams, the gap width associated with the inner–rod 

rotation increases with the rotating angle, but that associated with the whole-rod 

rotation approaches to zero at around 1 2 40θ θ= = ° . Light with a short wavelength 

propagating in the rod may cause resonance and be trapped in the cavity, so the H3 

gap width depends strongly on the shape of the rods. The shape of the hollow oval rod 

is changed for the inner-rod rotation, so the H3 gap width varies because the 

structural symmetry is broken. The shape of the rods is constant under whole-rod 

rotation to an arbitrary angle, so the H3 gap width varies markedly because the 

rotational symmetry is broken. The results associated with the inner-rod rotation are 

governed mainly by the shape of the rod, and those associated with the whole-rod 
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rotation are governed by the angle of rotation.  

The E-polarization modes of the hollow oval structure under inner-rod or 

whole-rod rotation exhibit many flat-band gaps. Figures 5.12(a) and (b) show plots of 

the E-polarization gap width vs. the angles of inner-rod and whole-rod rotations, 

respectively. As the diagram shows, the E-polarization gap widths vary markedly 

under inner-rod rotation. The E1 (between the 7th and 8th bands) and E2 (between the 

7th and 8th bands) gap widths at 1 2 1.6α α= =  as a function of rotating angle is plotted 

in Fig. 5.13. The gap widths in E1 and E2 vary slightly with the rotation of the whole 

rod, but vary markedly with the rotation of the inner rod. These results may also be 

understood by considering the field distribution within the hollow oval rods. 

Figure 5.14(a) shows the field patterns of the structure at , and Figs. 5.14(b) 

and 5.14(c) show those of the inner-rotation and whole-rotation structures at , 

respectively. The E-polarization mode is associated with the displacement field  

normal to the plane,

0°

30°

D

( ) ˆ( ) zD r d r e= , where ( )d r  is a scalar function. The field patterns 

in each figure are displayed for the seventh band at the K-symmetry point. The 

profiles of the rods are shown as solid lines, and the brightness represents the 

amplitude of the displacement field. The rotational symmetry is broken by rotating 

whole rods, but the amplitude of the displacement field, the field distribution and the 

amount of field energy in the dielectric regions are equal to those in Fig. 5.14(a). This 

result may imply that the E-polarization modes are confined within hollow rods, and 

the band structure then exhibits the flat-band property. The confinement in the 

E-polarization mode may be attributed to the high contrast between refractive indices 

in the extraordinary direction, so the line shape of the band is invariable and the 

frequency varies slightly.  

Moreover, the field energy associated with inner-rod rotation is similar to that in 
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Fig. 5.14(b), but the field distributions differ. The fields inside the rods tend to move 

toward the thin dielectric region, and the fields in the thin region are expelled from the 

dielectric region. Consequently, the proportion of fields inside the rods varies under 

inner-rod rotation, strongly influencing the E-polarization band structures. The field 

patterns of the higher bands at an arbitrary angle of rotation have also been calculated, 

and the results and discussions are analogous to those mentioned above. Therefore, 

the E-polarization band structures are determined primarily by the shapes of the 

individual rods, even though the rotational symmetry of hollow oval structures is 

broken.  

Overlapping the band gaps of H- and E-polarization modes gives the complete 

band gap. Figures 5.15(a) and (b) show plots of the complete gap widths vs. the 

angles of inner-rod and whole-rod rotations, respectively. The results reveal that the 

E-polarization modes dominate the complete PBG width under inner-rod rotation and 

the H-polarization modes dominate the complete PBG width under whole-rod rotation. 

The complete gap widths of the inner-rod rotation vary markedly because they are 

governed by the E-polarization modes. The complete gap widths under whole-rod 

rotation decline as the angle of rotation increases because they are dominated by the 

H-polarization modes. The properties of the formed complete PBGs also have the 

same results for any 1 2( )α α=  value. 

The photonic crystals considered here are made of 2-dimensional array of 

tellurium hollow oval rods. i.e., the light wave is free along the direction of rods. To 

approach to the case, the height of the rods should be infinity or much larger than the 

lattice constant of the 2D crystalline arrays.  Practically and macroscopically, if the 

height of the rods is an order larger than the beam size of perpendicular (to the rods) 

incident light, which can be minimized to a few wavelengths, the height of rods can 

then be considered as infinity ideally. Microscopically, for the case of perpendicular 
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incidence to the rods, if the height of the rods is an order larger than the light 

wavelength, the wave phenomena of light can be neglected along the direction of rods 

and the height of rods can be considered infinity. So for the structures we considered 

here, the minimal height of the rods should be larger than tens microns to ensure our 

calculation results well agree with the results for the exact 2D array photonic crystals. 

For the smaller height of the rods, our analysis and comments would be more or less 

applicable or valid until the photonic crystals become critically 3D confined systems. 

With the current semiconductor nano-lithographic technology, it would not be very 

difficult to pattern the hollow rods with cross section in the size of micrometers. 

However, tellurium is not a popular material in the nano-lithographic technology; it is 

still not well developed for making Te microstructures to photonic crystals. The most 

challenging task could be the process for etching the Te bulk to long rods.  

    In this chapter, the plane-wave method is used to calculate the field patterns and 

the band structure of a triangular lattice of hollow Te rods. Firstly, three deformed 

structures are designed by altering the geometric parameters of rods to investigate 

the effect of structural symmetry on E- and H-polarization modes. The results in the 

H-polarization modes indicate that the air space among the rods dominates the 

low-frequency gaps while the shape of the rods affects mainly the high-frequency 

gaps. The results in the E-polarization modes indicate a strong relationship between 

the shape of the rods and the band gaps, as determined from the field patterns. Two 

rotations, inner and whole rod rotations, are considered with fixed geometric 

parameters to investigate the effect of rotational symmetry on E- and H-polarization 

modes. The effect on the E-polarization mode for rotational structures is similar to that 

for deformed structures. However, H-polarization modes are affected not only by the 

field distribution among rods but also by the reduction of rotational symmetry. 

Analyzing the structural and rotational symmetry of the hollow structure is useful in 
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understanding the properties of the formed PBGs and provides a path for designing 

proper photonic crystal structures with desired PBGs.  

 

 

 

 90



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Schematic configuration of a triangular lattice with hollow oval Te rods.  

 

 

 

Figure 5.2 The representation of anisotropic optical property. The refractive index is 

 when the electric field vector in the E-polarization mode is parallel to the 

extraordinary axis, while the refractive index is  when the electric field vector in the 

H-polarization mode is perpendicular to the extraordinary axis. 

en
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Figure 5.3 Schematic illustration of the unit cell construction for the hollow oval 
dielectric rod. The dielectric function can be understood from this illustration.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 The band structure for a triangular lattice of hollow oval rods at a rotation 

angle of 1 2 0θ θ= = ° . The geometric parameters ( )1 2, ,α  for hollow oval rods are 

taken as , , and 1 0.27a= 2 0.48 a= 1.58α = . 
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Table 1. Complete photonic band gap widths in unit 2a cω π  for a photonic crystal 

with various refractive indices. 
 
 

 no=4.78 4.79 4.80 4.81 4.82 
ne=6.18 Gap1: 0.0520 

Gap2: 0.0347 
Gap1: 0.0520
Gap2: 0.0347

Gap1: 0.0520
Gap2: 0.0338

Gap1: 0.0520 
Gap2: 0.0295 

Gap1: 0.0520
Gap2: 0.0252

6.19 Gap1: 0.0517 
Gap2: 0.0346 

Gap1: 0.0517
Gap2: 0.0346

Gap1: 0.0517
Gap2: 0.0346

Gap1: 0.0517 
Gap2: 0.0355 

Gap1: 0.0517
Gap2: 0.0322

6.20 Gap1: 0.0513 
Gap2: 0.0325 

Gap1: 0.0513
Gap2: 0.0376

Gap1: 0.0513
Gap2: 0.0346

Gap1: 0.0513 
Gap2: 0.0346 

Gap1: 0.0515
Gap2: 0.0372

6.21 Gap1: 0.0510 
Gap2: 0.0266 

Gap1: 0.0510
Gap2: 0.0317

Gap1: 0.0510
Gap2: 0.0345

Gap1: 0.0510 
Gap2: 0.0377 

Gap1: 0.0510
Gap2: 0.0345

6.22 Gap1: 0.0507 
Gap2: 0.0208 

Gap1: 0.0507
Gap2: 0.0259

Gap1: 0.0507
Gap2: 0.0309

Gap1: 0.0507 
Gap2: 0.0344 

Gap1: 0.0507
Gap2: 0.0344

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5 The Schematic diagrams of three deformed hollow structures. The 
structures are deformed by altering the factors 1α  and 2α . 
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Table 2.  Complete photonic band gaps width, in unit of 2a cω π , of photonic crystals 

with constant refractive indices ( 6.2, 4.8)e on n= =  and various L1 and L2 

lengths in unit of the lattice constant.  

 

 

 
L2=0.48*(1-1

0%) 
0.48*(1-5%) 0.48 0.48*(1+5%) 

0.48*(1+
10%) 

L1= 
0.27*(1-10%) 

Gap1: 0.0502 
Gap2: 0.0305 

Gap1: 0.0534
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Figure 5.6 Gap maps of the (a) structure A, 1 2α α=  (b) structure B, 1 1α = , and (c) 

structure C, 2 1α = . The major-axis lengths of shell and inner rods are fixed to 

 and 1 0.27a= 2 0.48a= . 
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Figure 5.7 Displacement-field distribution of E-polarization modes inside the hollow 

rods in the (a) hollow circular structure, 1 2 1α α= =  (b) structure A with 1 2 1.6α α= =  

(c) structure B with 1 21,  1.6α α= = , and (d) structure C with 1 21.6,  1α α= =  at 

K -symmetry point. 
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Figure 5.8 Schematic configuration of triangular lattice with hollow oval Te rods. The 

inner rod rotates at an angle of 1θ . The outer shell rotates at an angle of 2θ . (a) 

inner-rod rotation: 1θ θ=  and 2 0θ = , and (b) whole-rod rotation: 1 2θ θ θ= = . 
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Figure 5.9 Photonic band structures for (a) inner-rod rotation with  and 

, and (b) whole rod-rotation with . 

1 30θ =

2 0θ = 1 2 30θ θ= =
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Figure 5.10 H-polarization band gap as function of rotation angle for (a) inner-rod 

rotation with  and (b) whole-rod rotation with 2 0θ = 1 2θ θ= . 
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Figure 5.11 Gap widths as a function of rotating angles 1θ  and 2θ  for inner rod and 
whole rod rotations with various 1 2( )α α= . H1 gap width for (a) inner rod rotations, 

2 0θ = , and (b) whole rod rotations, 2 1θ θ= ; H3 gap width for (c) inner rod rotations, 

2 0θ = , and (d) whole rod rotations, 2 1θ θ= . Each curve in the same line style in (a), (c), 
and (d) corresponds to the same quantity of 1α , as the list inserted in (b). 
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Figure 5.12 E-polarization band gap as function of rotation angle for (a) inner-rod 

rotation with  and (b) whole-rod rotation with 2 0θ = 1 2θ θ= . 
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Figure 5.13 E1 and E2 gap widths as a function of rotating angle 1θ  for inner rod and 
whole rod rotations at 1 2 1.6α α= = . 
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Figure 5.14 Field patterns of E-polarization modes inside hollow oval rods for (a) 

, (b) inner-rod rotation with  and 1 2 0θ θ= = 1 30θ = 2 0θ = , and (c) whole-rod rotation 

with   at 1 2 30θ θ= = K -symmetry point. 
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Figure 5.15 Complete photonic band gap as function of rotation angle 1θ  for (a) 

inner-rod rotation with  and (b) whole-rod rotation with 2 0θ = 1 2θ θ= . 
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