
Chapter 2 
 

Theoretical Framework 
 

Recently various methods have been proposed to calculate band structures of 

photonic crystals such as the plane-wave expansion method (PWEM),44,45 the transfer 

matrix method,46,47 the finite-difference time-domain (FDTD) method,48 scattering 

matrix method,49 and the finite element method.50 Among these methods, the band 

structures of photonic band gap material have almost exclusively been obtained from 

the PWEM. 

Plane-wave expansion method is a frequency domain for calculations of band 

structure and mode field in the general periodic structure. This full-vector method can 

treat macroscopic electromagnetic problems by applying periodic boundary, and the 

non-periodic (defect structure) system can also be solved by applying the super-cell 

technique. This method has been showing great promise to treat complicated PBG 

structures and real PBG devices. In this thesis, the plane-wave expansion method is 

employed to calculate band structures and mode fields, allowing us to investigate the 

optical properties of 2D photonic crystals.   

Theory and features of PWEM will be formulated in this chapter. The issues and 

limitations of PWEM in obtaining accurate predictions of the optical properties of 

photonic crystal will also be briefly discussed. The propagation of electromagnetic 

waves in periodic structures will be formalized for models and arrangement. We will 

formulate the eigenvalue problem of the wave equation in the photonic crystal and 

give a general numerical method to solve it. Additionally, the structure factor plays an 

important role in the PWEM and it has a strong relation with the structural design of 
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photonic crystal. The structure factor for a given column will be described and proofed, 

and the transformation of structural factors with regard to a single rod will be 

interpreted and discussed in detail. The aim of this chapter is to provide us with the 

background necessary to support the theoretical investigations and views presented 

in following chapters. 

 

2.1 Maxwell Equation 

    The photonic band gap can be obtained by solving Maxwell’s equations. In a 

source-free space ( 0,  0Jρ = = ), time-invariant, lossless medium (dielectric constant 

is real) and nonpermeable 0( )μ μ=  space, Maxwell’s equations in the most general 

form are given in SI units as follows, 

        

( , ) 0,

( , ) 0,

( , ) ( , )

( , ) ( , )

D r t

B r t

E r t B r t
t

H r t D r t
t
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∇⋅ =
−∂

∇× =
∂
∂

∇× =
∂

                                           (2.1) 

The notations for electric field (E), magnetic field (H), electric displacement (D), and 

magnetic flux density (B) are used in these equations. Assuming the fields oscillate 

sinusoidal with time, so the fields can be written as ( , ) ( ) exp[ ( )]E r t E r i t k rω= ⋅ − ⋅  

and ( , ) ( ) exp[ ( )]H r t H r i t k rω= ⋅ − ⋅ . 

Using 0( ) ( )rD r E rε ε= , 0( ) ( )B r H rμ=  and jt ω∂ →∂ , the time derivatives of 

Maxwell equations can be eliminated as, 

0
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ε
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∇× =

                                         (2.2) 
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where ω  is the eigen-angular frequency. We denote the dielectric constant of free 

space by 0ε  and the relative dielectric constant of the photonic crystal by ( )rε . 

When we eliminate ( )E r  or ( )H r  in equation (2.2), we obtain the following wave 

equations, 
2

2

1( ) [ ( )] ( ),
( )H H r H r H r
r c

ωϑ
ε

= ∇× ∇× =                              (2.3) 

2

2

1( ) [ ( )] ( ),
( )E E r E r
r c

ωϑ
ε

= ∇× ∇× = E r                               (2.4) 

Equations (2.3) and (2.4) are so-called master equations. The transverse condition in 

(2.2) shows that H and D fields continue everywhere, but E field is discontinuous. For 

( )rε  is a highly discontinuous function, so E field is not proper for calculation. For this 

reason, it is more convenient to use H to get E, instead of using E to get H, i.e. we use 

equation (2.3) to calculate band structure of photonic crystal. When we solve the 

master equation in equation (2.3), the allowable modes H(r) can be found for a given 

frequency. Then E(r) can be obtained by following relation, 

0

1( ) ( )
( )

E r
j rωε ε

= ∇×H r                                         (2.5) 

Equation (2.3) is a standard eigenvalue problem. The operator Hϑ  acts on 

eigenvector H(r), and the eigenvalue 
2

2c
ω  are proportional to the squared frequencies 

of those modes. Note that the operator Hϑ  has some important features, 

1. Hϑ  is a linear operator. If H1(r) and H2(r) are both modes with the same frequency, 

then linear combination of (α H1(r)+β H2(r)) is also a mode, where α  and β  are 

constants. 

2. Hϑ  is a Hermitian operator. We know ( , ) ( , )H Hf g f gϑ ϑ=  for any vector fields f  

and . The operator g Hϑ  acts on H(r) must have real eigenvalues. Moreover, we 

consider Hϑ  forces any two normalized modes H1(r) and H2(r) with different 

frequency 1ω  and 2ω . Using the relations of 2( ) ( ) ( )H H r H r
c
ωϑ =  and 
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2( , ) ( ) ( , )HH H H H
c
ωϑ = , we can obtain, 

2 22 1
1 2 1 2 1 2 1 2

2 2
1 2 1 2

( , ) ( ) ( , ) ( , ) ( ) ( ,

( )( , ) 0

H HH H H H H H H H
c

H H

ω ωϑ ϑ

ω ω

= = =

⇒ − =

)
c

2

                (2.6) 

(1). If two modes have different frequencies ( 1ω ω≠ ), then we must have 1 2( , ) 0H H = . 

That is H1(r) and H2(r) orthogonal to each other.  

(2). If two modes have the same frequencies ( 1 2ω ω= ), then we say these modes are 

the degenerate modes.  

 

2.2 Periodicity of Dielectric Function 

    To solve the electromagnetic problem for a photonic crystal, it is necessary to 

impose that the dielectric function is periodic. The periodicity can be in one, two or 

three dimensions and the photonic crystal correspondingly is one-, two-, or three 

dimensions. Notice that the dielectric function of a photonic crystal is made of a unit 

cell repeated in space according to a well defined pattern. In this framework, the 

periodicity of the dielectric function implies, 

1 1 2 2 3 3( ) ( ),        r T r T a a aε ε+ = = + +                              (2.7) 

where  is translation vector,  T 1a , 2a  and 3a  are elementary lattice vectors, { }i  

are arbitrary integers. Because of the spatial periodicity, the inverse of dielectric 

function in the master equation can be expanded in a Fourier series.  

1 1 2 2 3 3( ) ( )exp( ),        
G

r G iG r G h b h bε ε= ⋅ = +∑ h b+                       (2.8) 

where  is reciprocal vector, G 1b , 2b  and 3b  are elementary reciprocal lattice 

vectors. { }ih  are arbitrary integers. Two sets of basic vectors are orthogonal to each 

other, and they are related by, 
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                                            (2.9) 

The expansion coefficient  in equation (2.8) can be solved by calculating the 

inverse Fourier transform,  

( )Gε

00 V

1( )  ( ) exp( )
V

G dr r iGε ε= ∫ r− ⋅                                    (2.10) 

where  denotes the volume of the unit cell of the photonic crystal. From equaiton 

(2.10), it is obviously that the coefficient 

0V

( )Gε  is mainly dominated by the dielectric 

function (related to the geometry and arrangement of rods) and lattice vectors (related 

to the lattice types).  

 

2.3. Bloch Theorem for Periodic Structure 

In periodic structure, the plane waves propagated in the periodic structure will be 

modulated by periodicity. According to the Bloch theorem, the magnetic field in 

equation (2.3) can be expressed as,  

ˆ( ) ( ) exp( )ekH r h r ik r= ⋅  

where  is a periodic function that satisfy the relation of . ( )h r ( ) ( )h r T h r+ = k  is a 

wave vector in the first Brillouin zone.  is an unit vector parallel to the H(r) and 

perpendicular to the wave vector 

êk

k . Like the expression of  in equation (2.8), 

the periodic function  can also be expanded in Fourier series,  

1( )rε −

( )h r

     ( ) ( )exp( )
G

h r h G iG r= ⋅∑

So, the magnetic field can be expressed as, 

 15



    
,

ˆ( ) ( , ) exp[ ( ) ]e ,
G

H r h G i k G r λ
λ

λ= +∑ ⋅                                     (2.11) 

Two independent polarizations characterized by the unit vectors ê ( 1, 2)=λ λ  are 

perpendicular to the propagation vector (k G+ ).  Considering light to propagate 

perpendicularly to the rods, we can decouple light propagation from H-polarization 

and E-polarization modes whose magnetic and electric fields, respectively, are 

parallel to the rods.  

Putting equations (2.8) and (2.11) into (2.3), then the wave equation can be 

transformed to linear matrix equations, 

    
1 1 2

2 , ' 2 2 , ' 1 1, ' 1,
21 1

' 2, ' 2,1 , ' 2 1 , ' 1

ˆ ˆ ˆ ˆ'     '
' ,

ˆ ˆ ˆ ˆ'      '
G G G G G G

G G GG G G G

e e e e h h
k G k G

h hce e e e

ε ε ω
ε ε

− −

− −

⎡ ⎤⋅ ⋅ − ⋅ ⋅ ⎡ ⎤ ⎡
+ + =⎢ ⎥

⎤
⎢ ⎥ ⎢

− ⋅ ⋅ ⋅ ⋅⎢ ⎥
⎥

⎣ ⎦ ⎣⎣ ⎦
∑

⎦

')

             (2.12) 

where 1 1
, ' (G G G Gε ε− −= −  represents the inverse of the matrix  The 

eigenvalue equation (2.12) is real and symmetric, then it can be solved using the 

matrix diagonalization technique. For two-dimensional photonic crystal, the dielectric 

constant is periodicity in the x-y plane and invariant along the z direction. For the 

condition of in-plane propagation, i.e. 

(G G−ε ').

0zk = , the unit vectors  and  are in 

the x-y plane, the polarization modes  and  become decoupled. 

Furthermore, the master equation (2.12) can be decomposed separately into 

H-polarization and E-polarization modes, 

2ˆ ˆe e= z 1ê

1, 'Gh 2, 'Gh

2
1

1, ' 1, '2
'

' ( ') G
G

k G k G G G h h
c
ωε −+ + − =∑ G ,  for E-polarization mode           (2.13)         

2
1

2, ' 2, '2
'

( ) ( ') ( ') G
G

k G k G G G h h
c
ωε −+ ⋅ + − =∑ G , for H-polarization mode         (2.14) 

Theoretically, the number of G vectors should be set infinitely. However, this is 

difficult to set infinite number of G vectors in the calculation. In the actual numerical 

calculation of the photonic bands, the summation in equation (2.13) and (2.14) need 
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to be calculated up to a sufficiently large number N of reciprocal lattice vectors G, and 

an eigenvalue problem for each k  can be solved, which is equivalent to the 

diagonalization of the matrix defined by the left-hand side equations. In short, the 

lower-frequency bands of interest can be approached very well when the number of G 

vectors is large enough.  

The band structure in the photonic crystal is presented as a k ω−  relation. Only 

 points in the first Brillouin zone are considered to calculate the band structures. 

Because of the periodicity in the photonic crystal, the frequencies correspond to 

k

k  

points outside the Brillouin zone will fall inside the first Brillouin zone by considering 

the translation property.  

 

2.4. Dielectric Function 

The plane-wave expansion method is based on the Bloch theorem, which states 

that the eigenvalue equations with periodic coefficient may be expressed as a product 

of plane waves and lattice-periodic functions. Thus, the periodic functions can be 

expanded into appropriate Fourier series. Since the eigenvalue problem of equations 

(2.13) and (2.14) is a standard problem, the difficulty lies in evaluating the Fourier 

transforms of different structures. Such columns’ shape, lattice geometry and 

dimensionality have the different Fourier transforms. As seen in equation (2.10), the 

inverse Fourier transform is strong related to the shape of rods and should be prior to 

derive before solving the master equation. The most common shapes of column such 

as the cross sections of cylinder, hexagonal, square and diamond are extensively 

studied in the photonic crystals.29,36,42 Here we only show a simple case of circular 

cross-section organized in a square lattice to get its Fourier coefficients. Generally, 

there are only two media in a PBG structure, the rod and the background material, 
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and very often one material in air, so actually only one material is used. In the case, 

we denote the radius and the dielectric constant of the circular column by  and ar aε , 

respectively, and the dielectric constant of the background material by bε . The 

dielectric constant ( )rε  is a position-dependent function, and it can be written with 

the concept of spatial position. As shown in Fig. 2.1, the dielectric constant can be 

written as,  

( ) ( ) ( ) ( ) ( )b a b b a br S r S r S rε ε ε ε ε ε ε= + ⋅ − ⋅ = + − ⋅                          (2.15) 

where  is a function for the rod and is defined such that, ( )S r

    
1          ,  

( )
0         ,

a

a

for r r
S r

for r r

⎧ ≤⎪= ⎨
>⎪⎩

 

Substituting (2.15) into equation (2.10), the Fourier coefficient can be expressed as,  

0 00 0

1 1( ) ( ) ( )iG r iG r
b a b

V V

G e dr S r e
V V

ε ε ε ε− ⋅ − ⋅= + − ⋅∫ ∫ dr  

Now we evaluate the first integral 1( )I G  and the second integral 2 ( )I G  separately,  

Evaluation of 1( )I G , 

The first integral is easily evaluated as: 

1

        0 
( )

0        
b pif G

I G
elsewhere

ε⎧ =⎪= ⎨
⎪⎩

 

Evaluation of 2 ( )I G , 

2

2
0

  0,    ( ) ( ) ( )a
p a b a

r
bIf G I G f

V
πε ε ε ε= = − = − ⋅  

0

2
0

( )  0,    ( ) ( ) ( ) ( )iG ra b
p a

V
bIf G I G S r e dr S G

V
ε ε ε ε− ⋅−

≠ = = − ⋅∫  

Here, we denote the volume fraction of the circular rods by 
2

0

arf
V
π

=  and the structure 

factor of this structure by 
00 0

1 1( ) ( ) iG r iG r

V Rod

S G S r e dr e dr
V V

− ⋅ − ⋅= =∫ ∫ . 

For this case, we use the polar coordinate ( , )r ϕ  in the system and the integral can 
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be modified to, 

0

2

0 0

2

0 0

( )  exp[ sin( )]
2

                     ( ) exp[ ( )]
2

a

a

riG r

V

r

S r e dr dr d r iGr

dr d r J Gr i

π

π

πϕ ϕ

πϕ ϕ

− ⋅

∞

=−∞

= −

= −

∫ ∫ ∫

∑∫ ∫
 

where G G=  and  is the Bessel function of the  order. Upon using (J Gr) th

0 1( ) (x )xJ x dx J xα αα=∫  and exp[ sin( )] ( ) exp( )i J iω ϕ ω
∞

=−∞

= ∑ ϕ , we continue with,  

     
0

0 10

2( ) 2 ( ) ( )ariG r a
a

V

rS r e dr rJ Gr dr J Gr
G
ππ− ⋅ = =∫ ∫  

and, 

     2 1
0

( ) 2 2( ) ( ) ( ) ( )a b a
a a b

a

r f
1 aI G J Gr

V G Gr
J Grε ε π ε ε−

= = −  

This lead to the final result that: 

    
1

(1 )                 for G=0
( )       2( ) ( )        elsewhere

a b

a b a
a

f f
G f J Gr

Gr

ε ε
ε

ε ε

⋅ + ⋅ −⎧
⎪= ⎨ − ⋅⎪⎩

                          (2.16) 

The expressions of dielectric function for various columns are shown as follows. 

Here we only consider the two-dimensional photonic crystal.   

1. Square Rod 

  

(1 )                                       for 0,  0

( ) 4 sin( )sin( )            for 0,  0
2 2

( ) ( ) 2 sin( )                               for 0,  
2

a b x y

ya b x
x y

u x y

ya b
x y

u y

f f G G

G dG d G G
A G G

G G dd G G
A G

ε ε

ε ε

ε ε ε

⋅ + ⋅ − = =

−
⋅ ⋅ ≠ ≠

= −
⋅ ⋅ = 0

( ) 2 sin( )                               for 0,  0   
2

a b x
x y

u x

G dd G G
A G

ε ε

⎧
⎪
⎪
⎪
⎪⎪
⎨

≠⎪
⎪
⎪ −

⋅ ⋅ ≠ =⎪
⎪⎩

     

where  is the cross-section area of a unit lattice,  is the length of each side of 

the square; and 

uA d

xG  and yG  are the x and y component of G , respectively.  
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2. Hexagonal Rod 

2 2

(1 )                                                     for 0,  0

( ) 34 [ 3 cos( ) cos( )
3 2 2

3( ) 3 cos( ) 3 sin( )sin( )              for 0,  0
2 2

( )

a b x y

ya b x

u y x

yx x
y x

y

a b

u

f f G G

G dG d
A G G

G dG G dG G d G G
G

A

ε ε

ε ε

ε

ε ε

⋅ + ⋅ − = =

−
⋅ ⋅

−

= − − ≠ ≠

−

y

2

1 [1 cos( 3 )
3

3 sin( 3 )]                                              for 0,  3   

x
x

x x x

G d
G

G d G d G G G

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ ⋅ ⋅ −
⎪
⎪
+ ⋅ ≠ = ±⎪⎩ y x

 

3. Diamond Rod 

2 2

(1 )                                                    for 0,  0

( ) 4 [cos( ) cos( )]            for 0,  0
2 2

( )
( ) sin( )                          

2

a b x y

ya b x
x y

u x y

a b x

u x

f f G G

G dG d G G
A G G

G
G dd

A G

ε ε

ε ε

ε
ε ε

⋅ + ⋅ − = =

−
⋅ ⋅ − ≠ ≠

−
=

−
⋅ ⋅                 for 0,    x y xG G G

⎧
⎪
⎪
⎪⎪
⎨
⎪ = = ±⎪
⎪
⎪⎩

 

 

    From above mentions, the integral expressions of structure factor are mainly 

determined by the shapes of rod and the basic vectors of lattice. The structure factors 

for regular rods are easy to derive, but that for the irregular rods are complex and 

difficult to derive. In last chapter, we have described that the shape of rod and the type 

of lattice strongly affect the photonic band structure. Moreover the degenerated band 

in the Brillouin zone may be split by reducing the symmetry of photonic crystal. The 

deformation and rotation are the common and immediate methods to change the 

symmetry of photonic crystal. When the rods or lattices are designed into the irregular 

shapes with deformation and rotation, it may provide an opportunity to increase the 

PBG width for either the E-polarization or H-polarization modes and to increase the 

PBG overlapping the E-polarization and H-polarization photonic band gaps. In order 

to construct the structure factor of irregular rods easily, some features of operation in 
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the PWEM need to evaluate. These operations include translation, rotation and 

scaling and are described as follows.  

1. Translation Operation 

When the coordinate of system is transformed by a displacement of , the new 

structure factor  can be obtained by applying the translation operation, 

0r

'( )S G

               0'( ) [ ( )] exp( ) ( )tS G T S G iG r S G= = − ⋅                          (2.17) 

This translation property is also useful to the Fourier transform for the supercell. 

2. Rotation Operation 

When the rods in the photonic crystal are rotated by an arbitrary angle θ , it is 

equivalent to rotate the coordinate of the system by an arbitrary angle θ . Therefore, 

the original  vectors in the x-y plane can be transformed by a matrix, G

' cos     sin
' sin   cos
x x

r
y y

G G
T

G G
θ θ
θ θ

⎛ ⎞ ⎛ ⎞ ⎛⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝

x

y

G
G

⎞
⎟
⎠
                       (2.18) 

where xG  and yG  are the components of original G  vectors. 'xG  and 'yG  are 

the  vectors in the new system. Under this rotation operation, the structure factor 

can be transformed as, 

'G

                                               (2.19) '( ) [ ( )] ( [ ])rS G T S G S T G= = r

3. Scaling Operation 

When the shape or dimension of rods is changed, it is equivalent to change the 

dimension of coordinate of the system. Assuming the dimensions of original rods in x- 

and y-axis are x  and y  respectively. Now we deform the rods and their 

dimensions in x- and y-axis are 'x x xλ=  and 'y y yλ=  respectively. We can write, 

         
'     0
' 0     
x x x

r
y y y

T
λ

λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

x

y
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Under this operation,  

          and  [ ] [ ] [ ]s s sT G r G T r T G r⋅ = ⋅ = ⋅ 'rod x y roddA dAλ λ→  

Thus, the new structure factor under the scaling operation is, 

                                           (2.20) '( ) [ ( )] ( [ ])s x y sS G T S G S T Gλ λ= =

 

2.5. Mode Field Calculation 

The mode-field calculation for a given band and a specific k point is helpful to 

understand and evaluate the formed photonic band gap. After the eigenvalue problem 

is solved, the eigenvalue and associated eigenvector can be obtained, allowing us to 

calculate the field pattern. The eigenvalue is real for eiegnvalue solution, but the real 

and imaginary parts are both solutions for mode-field calculation. The analytical forms 

for calculating field pattern are described as follow.  

For the E-polarization modes, the displacement field D  is along z axis and it can 

be written as,  

, ,

( )
1 1

( )
1

( ) ( ) ( ) ( ) ( )
( )

ˆ        ( ) ( )

1 ˆ        ( )   

n k n k

i k G r

G

i k G r
z

G

icD r r E r r H r
r

ic h G i k G e e

k G h G e e
k

ε ε
ωε

ω
+ ⋅

+ ⋅

−
= = ∇×

−
= + ×

= +

∑

∑

                           (2.21) 

For the H-polarization modes, the displacement field D  is in x-y axis. In fact, the 

displacement field in in-plane is not easy to find the difference in field patterns 

between dielectric and air bands at the same  point. The displacement field for the 

H-polarization modes is,  

k
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, ,

( )
1

( )
1 2

( ) ( ) ( ) ( ) ( )
( )

ˆ        ( ) ( )

1 ˆ        ( )  

n k n k

i k G r
z

G

i k G r

G

icD r r E r r H r
r

ic i k G e e h G

k G h G e e
k

ε ε
ωε

ω
+ ⋅

+ ⋅

−
= = ∇×

−
= + ×

= +

∑

∑

                           (2.22) 

Here the subscript n labels the bands. Finally, it follows from the orthonormality of 

equation (2.12) that the Bloch functions ,n kH  and ,n kE  obey the orthonormality 

relations,  

*
, ', ', '

*
, ', ', '

( ) ( ) ( ')

( ) ( ) ( ) ( ')

n nn k n k

n nn k n k

H r H r dr k k

r E r E r dr k k

δ δ

ε δ δ

⋅ = −

⋅ = −

∫
∫
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Figure 2.1 Schematic illustration of the unit cell construction for the circular 
dielectric rod.   
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