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SUMMARY

One of the conventional approaches used in off-line quality control is the Taguchi method. However,
most previous Taguchi method applications have only dealt with a single-response problem and the
multi-response problem has received only limited attention. The theoretical analysis in this study reveals
that Taguchi’s quadratic loss function and the indifference curve in the TOPSIS (Technique for order
preference by similarity to ideal solution) method have similar features. The Taguchi method deals
with a one-dimensional problem and TOPSIS handles multi-dimensional problems. As a result, the
relative closeness computed in TOPSIS can be used as a performance measurement index for optimizing
multi-response problems in the Taguchi method. Next, an effective procedure is proposed by applying
fuzzy set theory to multiple attribute decision making (MADM). The procedure can reduce the
uncertainty for determining a weight of each response and it is a universal approach which can
simultaneously deal with continuous and discrete data. Finally, the effectiveness of the proposed
procedure is verified with an example of analysing a plasma enhanced chemical vapour deposition
(PECVD) process experiment. 1997 by John Wiley & Sons, Ltd.

key words: Taguchi method; parameter design; multi-response problem; multiple attribute decision making;
TOPSIS method

1. INTRODUCTION design parameters and noise factors in the orthog-
onal arrays. The signal-to-noise (SN) ratio is com-
puted on the basis of quality loss for each experi-A cost-effective method to improve product quality

and operational procedures is with the use of off- mental combination. Finally, SN ratios are analysed
to determine the optimal settings (i.e. control factorsline quality control. This area includes those quality

control activities used in the product planning, and their levels) of the design parameters. The
merits and shortcomings of the Taguchi method candesign and production engineering stages (but not

during actual production).1 The Taguchi method, be found in References 2, 4 and 5.2,4,5 However, a
customer usually considers more than one qualitywhich combines the experimental design techniques

with quality loss considerations, is the conventional characteristic in most manufactured products. The
Taguchi method can only be used for a single-approach used for off-line quality control. The Tagu-

chi method carefully considers the impact of the response case; it cannot be used to optimize a multi-
response problem. Engineering judgement has, upvarious factors influencing performance variation.

This method consists of three stages: (a) systems until now, been used primarily for the optimization
of the multi-response problem in the Taguchidesign, (b) parameter design, and (c) tolerance

design. A more detailed description of these three method. Unfortunately, an engineer’s judgement will
normally increase the uncertainty during the decisiondesign types is provided by Kackar2 and Phadke.3

From their investigations, the variability and average making process. Another approach to solve such a
problem entails the assigning of a weight for eachof performance are of primary concern.

Product and operational procedures are influenced response. Determining a definite weight for each
response in an actual case remains difficult. Inby design parameters (i.e. factors that are controlled

by designers) and noise factors (i.e. factors that addition, a factor which is significant in a single
response case is not necessarily significant whencannot be controlled by designers, such as environ-

mental factors). The parameter design of the Taguchi considered in a multi-response case. Therefore, a
more effective approach is required to solve such amethod involves selecting the levels of the design

parameters to minimize the effects of the noise complicated problem.
Fuzzy set theory provides membership functionsfactors. That is, the design parameter’s settings for

a product or a process should be determined so that which represent uncertain and subjective infor-
mation. Multiple attribute decision making (MADM)the product’s response has the minimum variation,

and its mean is close to the desired target. Experi- refers to a situation in which selections among some
courses of action must be made in the presence ofmental design is used in this method to arrange the
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multiple, usually conflicting, attributes. In this paper, application could be limited. Their method increases
the computational process complexity, thereby mak-a systematic procedure is developed via the appli-

cation of fuzzy set theory to MADM to optimize ing it difficult for use on the shop floor. Vining and
Myers9 applied the dual response approach to achi-the multi-response production process. A fuzzy num-

ber is first applied to determine the weight for each eve some of the goals of the Taguchi philosophy,
specifically to obtain a target condition on the meanresponse. By considering the quality loss of each

response, a multi-response performance measure- while minimizing the variance. They focused on the
single-response problem. Castillo and Montgomery10ment index is developed on the basis of an MADM

method; namely, a technique for order preference by further showed that the generalized reduced gradient
(GRG) algorithm can lead to better solutions thansimilarity to ideal solution (TOPSIS). The developed

index can be used to determine the optimum con- those obtained with the dual response approach.
They also demonstrated that the GRG algorithm canditions in the parameter design stage for multi-

response problems. The proposed optimization pro- be applied to a multiple response problem. However,
the above three methods may be difficult for thosecedure includes a series of steps capable of decreas-

ing the uncertainty in engineering judgement when users having limited statistical training.
Phadke3 used the Taguchi method to study thethe Taguchi method is applied. Only the static qual-

ity characteristic problem, in which the desired surface defects and wafer thickness in the polysil-
icon deposition process for a VLSI circuit manufac-response value is fixed, is discussed in this paper.

The remainder of this paper is organized as fol- turer. Based on the judgement of relevant experience
and engineering knowledge, trade-offs were madelows. A literature review of the multi-response prob-

lems in the Taguchi method is given in Section 2. in Phadke’s investigation to select the optimum
factor levels for a problem with multiple qualitySection 3 introduces MADM problems. Section 4

proposes an optimization procedure for solving the characteristics. By human judgement, the validity of
the experimental results cannot be easily assured.problem of multi-response cases in the Taguchi

method. An illustrative example for the implemen- Contradictory results could be reached by different
engineers addressing the problem. Therefore, thetation of the proposed procedure is provided in

Section 5. Concluding remarks are made in uncertainty in the optimum factor levels is increased.
Phadke’s approach can usually only be used by anSection 6.
experienced engineer.

Hung11 transformed various types of quality
2. LITERATURE REVIEW

characteristics (smaller-the-better, larger-the-better
and nominal-the-best) into the nominal-the-bestDerringer and Suich6 demonstrated how several

response variables can be transformed into a desir- characteristics with a target of 0 and gave a weight
to each quality characteristic for computing the SNability function, which can be optimized by univari-

ate techniques. The desirability function approach is ratio. However, his method could not handle a prob-
lem involving continuous and discrete data. Whensimple and permits the user to make subjective

judgements on the importance of each response. the weight of a particular quality characteristic is
increased, the optimum conditions will not moveHowever, the inexperienced user in assessing a

desirability value may lead to inaccurate results. toward the same direction of that quality character-
istic; therefore, this result is unsatisfactory.Khuri and Conlon7 proposed a procedure capable of

simultaneously optimizing several response variables Shiau12 assigned a weight to each SN ratio of the
quality characteristic and summed the weighted SNthat can be represented by polynomial regression

models. They used a distance function to measure ratios for computing the performance measurement
of a multi-response problem. For example, there arethe deviation from the ideal optimum. By minimiz-

ing this function, one can specify suitable operating two quality characteristics with SN ratios: SN1 =
−10logL1 and SN2 = −10logL2, where L1 and L2conditions for the simultaneous optimization of the

responses. The notion of using the minimax represent the quality losses of these two character-
istics. As a result, the weighted SN ratio for thisapproach in their method is quite similar to that

in the TOPSIS method. However, their method is two-response problem will be SN0 = w1(SN1) +
w2(SN2), wherewi is the weight of theith response.computationally complicated, thereby making it dif-

ficult to explain to practitioners. If SN0 = −10logL, where L can be viewed as the
total quality loss, we then haveL = Lw11 · Lw22 . ThisOnly limited attention has been given to multi-

response problems in the Taguchi method. Logo- equation is difficult to explain from the perspective
of the Taguchi method’s quality loss.thetis and Haigh8 applied the multiple regression

technique and the linear programming approach to Tai, Chen and Wu13 claimed that quadratic model-
ling was invalid for non-symmetric loss functions.optimize a five-response process by the Taguchi

method. However, sufficient details were not pro- In their investigation, empirical loss functions were
developed for a multi-response problem involvingvided in their work to establish their procedure.

Moreover, if the t-values of the regression coef- six variables and nine responses for the surface
mount process. Multiple responses can be convertedficients are insignificant or the value ofR2 (the

coefficient of determination) is low, their method’s into a single response on the basis of the quality
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loss of each response. However, these empirical loss salient features of the information. According to
their taxonomy, TOPSIS, in which the informationfunctions can only be used in a particular process.

When their method is applied, the empirical loss given is a cardinal preference of the attributes, is
the most suitable technique for this study. A detailedfunctions need to be determined in advance. Conse-

quently, the complexity of the problem is increased description of this method is provided later in this
paper.if this does not occur.

Pignatiello14 presented a quadratic loss function
for multiple-response quality engineering problems. 3.2. Fuzzy multiple attribute decision making
The expected loss function was expressed in terms

The classical MADM methods cannot effectivelyof a variance component and a squared deviation-
cope with uncertain (or imprecise) information. Thefrom-target component. To minimize the expected
use of the fuzzy set theory is a perfect means toloss function, a predictive regression model
resolve such a difficulty. Fuzzy MADM methods(univariate response) can be established by using
are designed to solve MADM problems with fuzzycontrollable variables. The repeated procedure was
data. A good source of existing fuzzy decisionapplied to minimize the expected loss by following
making studies can be found in the work of Zimmer-the descent direction and establishing a new local
mann.17 The existing fuzzy MADM approaches haveexperimentation region. One disadvantage of his
two major drawbacks. First, cumbersome compu-method is that the cost matrix is difficult to deter-
tations are required, thereby limiting fuzzy MADM’smine, thereby making it nearly impossible to esti-
applicability to real world problems. Secondly, mostmate the predictive regression model precisely.
approaches require that the problem’s data beAnother limitation is that additional experimental
presented in a fuzzy format, even though they areobservations are required in conparison to the tra-
crisp in nature. Converting crisp data into a fuzzyditional Taguchi method. Several different strategies
format will increase computational efforts. Accord-were also discussed in Pignatiello’s work. However,
ingly, Chen and Hwang18 proposed an approachthese strategies were either impractical or infeasible
to overcome these difficulties. Their approach isfor determining the optimal factor/level combination.
composed of two major phases. The first phaseTong, Su and Wang15 proposed a procedure to
converts fuzzy data into crisp scores. When thedetermine the multi-response signal-to-noise
problem encountered contains only crisp data, classi-(MRSN) ratio through the integration of the quality
cal MADM methods can be used to determine theloss for all responses with the application of Tagu-
ranking order of alternatives in the second phase.chi’s SN ratios. In their method, it was still difficult
The procedure described in Section 4 is proposedto determine the weight ratio for responses. In
on the basis of Chen and Hwang’s approach toaddition, the quality loss at each trial was divided
solving fuzzy MADM problems.by the maximum quality loss in the total of the

trials. In this case, it is likely that the optimal
factor/level combination could be dominated by the 3.3. TOPSIS
‘maximum quality loss’. This fact is not desired.

TOPSIS considers that the chosen alternativeAccordingly, a more effective procedure is proposed
should have the shortest distance from the idealin this work to optimize multi-response problems in
solution and the longest distance from the negative-the Taguchi method.
ideal solution. Such an approach is both comprehen-
sible and functional. This approach stipulates only

3. MULTIPLE ATTRIBUTE DECISION that the attributes must be numerical and compara-
MAKING ble. For example, let a MADM problem be

expressed in matrix format as
3.1. Multiple attribute decision making

x1 x2 % xnMultiple attribute decision making (MADM)
involves the selection among some alternatives each
having multiple, usually conflicting, attributes. From D =

A1

A2

:

Am 







x11 x12 % x1n

x21 x22 % x2n

: : :

xm1 xm2 xmn 







(1)

a practical viewpoint, the number of alternatives is
predetermined in the MADM problems. The term
‘attributes’ is referred to as a ‘goal’ or a ‘criterion’.
MADM problems have common characteristics. For whereAi (i = 1, 2, %, m) are possible alternatives;xj

instance, multiple attributes usually conflict with (j = 1, 2, %, n) are attributes with which alternative
each other. Each attribute has a different measure-performances are measured;xij is the performance
ment unit. The relative importance of each attribute of alternative Ai with respect to attributexj. The
is usually given by a set of weights. Many MADM procedure of TOPSIS can be described in the follow-
methods are available, with each one having its own ing six steps.16

characteristics and applicability. Hwang and Yoon16

classified MADM problems on the basis of the type Step 1. Calculate the normalized decision matrix,
R = [ r ij ]m × n:of information from the decision maker and the
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3.4. A comparison of Taguchi’s loss function and
r ij =

xij

!Om
i=1

x2
ij

, i = 1, 2, %, m; j = 1, 2, %, n the indifference curve in TOPSIS

Taguchi’s quadratic loss function is presented in
Figure 1, wherey is the quality characteristic of a(2)
product andT is the target value fory. Notably, at
y = T, the loss is zero. The loss increases slowly

Step 2.Calculate the weighted normalized decision
wheny is nearT; however, the loss increases rapidly

matrix, V = [vij ]m × n: as y goes further away fromT. In Figure 1, the
loss increases by AB wheny is increased 1 unitvij = wjr ij, i = 1, 2, %, m; j = 1, 2, %, n (3)
nearing T. The loss increases by CD wheny is
increased 1 unit further away fromT. Obviously,where wj is the weight of thejth attribute and
CD . AB. When the TOPSIS method is applied,
some typical indifference curves for a two attributesOn

j=1

wj = 1. problem are drawn and are presented in Figure 2.
In Figure 2, whenC*

i $ 0·5 or is near 1 (close to
the ideal solutionA* ), the marginal rate of substi-

Step 3.Determine the ideal and negative-ideal sol- tution decreases with an increase inV1. On the other
utions: hand, whenC*

i , 0·5 or goes further from 1 (away
from the ideal solutionA*), the marginal rate of(a) The ideal solution:
substitution increases with an increase inV1. From
equation (8), we havecS*

i − (1 − c)S−
i = 0, where 0A* = {(max vij u j P J),

, c , 1. This equation implies that the indifference
(min viju j P J′)ui = 1, 2, %, m} curves observed in TOPSIS can be viewed as hyper-

bolae. Taguchi’s quadratic loss function and the= { V*
1, V*

2, %, V*
j , %, V*

n}, (4)
indifference curve in TOPSIS have similar features.

(b) The negative-ideal solution: The latter can be viewed as an extension of the
former. Notably, Taguchi deals with one-dimen-A− = {(min vij u j P J),
sional problems, in contrast, TOPSIS handles multi-

(Max vij u j P J′)ui = 1, 2, %, m} dimensional problems. As a result, the relative close-
ness computed in TOPSIS can be used as a perform-= { V−

1, V−
2, %, V−

j , %, V−
n}, (5)

ance measurement index for optimizing multi-
response problems in the Taguchi method.where J = { j = 1, 2, %, nu j associated with benefit

criteria}; J′ = { j = 1, 2, %, nu j associated with
cost criteria}. 4. PROPOSED OPTIMIZATION PROCEDURE

The most frequent issues encountered in multi-
Step 4.Calculate the separation measures: The sep-response problems are (a) the conflict among
aration of each alternative from the ideal one is responses, (b) a different measurement unit for each
given as response, and (c) a difficulty in assigning a set of

weights to the present information regarding the
relative importance of each response. To solve these

S*
i = !On

j=1

(vij − V*
j )2, i = 1, 2, %, m (6) issues, a systematic optimization procedure is pro-

posed in this section of the paper. The proposed

The separation of each alternative from the nega-
tive-ideal solution is given as

S−
i = !On

j=1

(Vij − V−
j )2, i = 1, 2, %, m (7)

Step 5.Calculate the relative closeness to the ideal
solution: The relative closeness ofAi with respect
to A* is defined as

C*
i =

S−
i

S*
i + S−

i

, i = 1, 2, %, m (8)

Step 6.Rank the preference order: The alternative
Figure 1. Taguchi’s quadratic loss functionwith the largest relative closeness is the best choice.



29fuzzy multiple attribute decision making

Figure 2. Typical indifference curves observed in TOPSIS10

procedure assumes that decision data are fuzzy. (b) Normalize these crisp scores in order to
obtain a set of weights to represent the rela-That is, the relative importance of each response is

fuzzified in order to incorporate unquantifiable tive importance of each response such that
and/or imperfect information into a decision. In
order to reduce the computational complexity and On

j=1

wj = 1
to satisfy the perspective of Taguchi’s quality loss,
TOPSIS is applied to find a performance measure-
ment index for each trial. This index is calculated where wj is the weight of thejth response (j
from the relative closeness as obtained from equ- = 1, 2, %, n).
ation (8). This index is referred to here as a ‘TOP-

For example, the linguistic terms suggested bySIS’ value. The larger the TOPSIS value the better
Chen and Hwang18 are summarized in Table I. Thisthe product quality is implied. As a result, the
scale system is both comprehensible and feasibletraditional Taguchi method can be applied on the
for practical applications. Table I is capable ofbasis of TOPSIS values. The proposed optimization
converting linguistic terms into fuzzy numbers. Byprocedure is described as follows in six detailed
applying Chen and Hwang’s fuzzy ranking methodsteps:
(using left and right scores), the crisp scores of
fuzzy numbers in Table I are computed in Table II.Step 1. Transform the relative importance of each
The relative importance of three responses isresponse into a fuzzy number
assumed here to be very high, medium and low.

(a) Express the relative importance of each Scales 3, 6, 7 and 8 in Table I contain these three
response by the linguistic term, as determined terms. The simplest scale—scale 3—is chosen as
from the experience of an engineer. our conversion scale. The corresponding crisp scores

(b) Establish a formal scale system which can for these three responses can be found in Table II.
be used to convert linguistic terms into their They are: 0·909 (very high), 0·500 (medium) and
corresponding fuzzy numbers. 0·283 (low). These three scores can be normalized

(c) Find a conversion scale which matches all of by a simple calculation. For instance, for the first
the linguistic terms. If more than one scale response (very high), the normalized weight can be
is found, the scale with the least number 0·537 = 0·909/(0·909+ 0·500 + 0·283). The nor-
of terms (the simplest scale) is to be used malized weights for the other two responses are
for conversions. 0·296 and 0·167.

Step 2. Assign crisp scores to the selected
Step3. Compute the quality lossconversion scale( fuzzy number)

(a) Apply a fuzzy scoring method to convert In this step, the quality loss for each response is
computed. Notably, the quality loss computation forfuzzy numbers into crisp scores.
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Table I. Linguistic terms used in the study

Scale 1 2 3 4 5 6 7 8
No. of terms used two three five five six seven nine eleven

1. extremely high yes
2. very high yes yes yes yes yes
3. high–very high yes yes
4. high yes yes yes yes yes yes yes yes
5. fairly high yes yes yes
6. mol high yes yes
7. medium yes yes yes yes yes yes yes
8. mol low yes yes
9. fair low yes yes yes

10. low yes yes yes yes yes yes yes
11. low–very low yes yes
12. very low yes yes yes yes yes
13. none yes

Table II. Crisp scores of fuzzy numbers

Scale 1 2 3 4 5 6 7 8
No. of terms used two three five five six seven nine eleven

1. extremely high 0·954
2. very high 0·909 0·917 0·909 0·917 0·864
3. high–very high 0·875 0·701
4. high 0·750 0·833 0·717 0·885 0·750 0·773 0·750 0·667
5. fairly high 0·700 0·584 0·630
6. mol high 0·637 0·590
7. medium 0·583 0·500 0·500 0·500 0·500 0·500 0·500
8. mol low 0·363 0·410
9. fair low 0·300 0·416 0·370

10. low 0·166 0·283 0·115 0·250 0·227 0·250 0·333
11. very–very low 0·125 0·299
12. very low 0·091 0·083 0·091 0·083 0·136
13. none 0·046

the ‘nominal-the-best’ response is based on the loss
ȳij =

1
r O

r

k=1

yijkafter adjusting the mean on target. According to
the Taguchi method, the following three formulae
are given:

s2
ij =

1
r − 1 O

r

k=1

(yijk − ȳij )2

Lij = k1

1
r O

r

k=1

y2
ijk (9)

k1, k2, k3 are quality loss coefficients,i = 1, 2, %,
m; j = 1, 2, %, n; k = 1, 2, %, r.

for the smaller-the-better response
Step 4.Determine the TOPSIS value for each trial

(a) LetLij = k2

1
r O

r

k=1

1
y2

ijk

(10)

rij =
Lij

!Om
i=1

L2
ij

(12)
for the larger-the-better response

andLij = k3 Ssij

ȳij
D2

(11)
vij = wj rij, i = 1, 2, %, m; j = 1, 2, %, n, (13)

for the nominal-the-best response where wj is the weight of thejth response
obtained from step 2.

(b) Apply equations (4)–(8) to compute the rela-where Lij is the quality loss for thejth response at
the ith trial, yijk is the observed data for thejth tive closeness of each trial (C*

i ).
(c) The TOPSIS value in theith trial is set toresponse at theith trial, kth repetition, r is the

number of replications for each response, C*
i .
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Step 5. Determine the optimal factor/level tors were selected for optimization. These factors
and their alternative levels are listed in Table III.combination
The standard arrayL18 was selected for the experi-

(a) Estimate the factor effects based on the ment. The data for eighteen experiments are summa-
TOPSIS value. rized in Table IV.

(b) Determine the optimal control factors and
their levels.

5.1. The conventional Taguchi approach

The difficulties encountered in optimizing multi-Step 6. Conduct the confirmation experiment
response problems are illustrated in the conventional

A confirmation experiment should be performed analysis based on the Taguchi method. The factor
to verify that the optimum condition derived by the effects on SN ratios are illustrated in Figure 3.
experiment actually yields an improvement. If the According to the Taguchi method, the larger the SN
predicted and observed SN ratios for each responseratio, the better the quality. Therefore, the tentative
are close to each other, one can conclude that theoptimum setting can be separately made in the fol-
additive model on which the experiment was based lowing:
is a good approximation. As a result, the rec-
ommended optimum condition can be adopted for RI response: A1B3C2D1E3F1G1H3 (14)
the process under study. If the predicted and

DT response: A1B1C3D2E2F2G2H3 (15)observed SN ratios for one of the responses do not
match, one may suspect that the additive model is
inadequate and that the interactions are important.Based on this observation, these two responses can
In the latter case, another experiment may be neces-be optimized by setting factor A at level 1 and
sary to achieve the required objective. setting factor H at level 3. However, determining

the optimal settings for factors B, C, D, E, F and
G can be complicated. For instance, factor B set at

5. IMPLEMENTATION level 3 creates an advantage for the RI response,
but a disadvantage for the DT response. In contrast,A case study is presented in this section which
factor B set at level 1 creates an advantage for theverifies the effectiveness of the proposed optimiz-
DT response, but a disadvantage for the RI response.ation procedure. This case study involves the
This observation illustrates that different levels ofimprovement of a plasma enhanced chemical vapour
the same factor can be optimum for differentdeposition (PECVD) process in the fabrication of
responses. As a result, the decision is not clear.ICs. This case study was conducted by the Industrial

Technology Research Institute located in Taiwan.
The three-inch wafers were mounted on holders 5.2. The proposed optimization procedure
(boats). Each boat can carry five wafers. The depo-
sition process entails depositing a uniform layer of When the proposed procedure was applied in this

case study, the relative importances of responsessilicon nitride (SiNx) with a specified thickness as
one step in the IC fabrication process. In the past, were first transformed into fuzzy numbers. From

Table I, scales 1, 2, 3, 4, 6, 7 and 8 containthe uniformity of the output was unstable. The
reason for this low uniformity was unknown to the linguistic terms ‘high’ and ‘medium’. Scale 1 with

the least number of terms is selected as the conver-process engineers. Therefore, these engineers were
unaware of how to adjust the multiple settings of sion scale. From Table II, the crisp scores for the

two responses are: 0·750 (high) and 0·583the process parameters when the quality of the wafer
was not meeting the requirements. In this study, an (medium). These two scores were then normalized

and the normalized weights were 0·562 and 0·438experiment was performed to determine the effects
of process parameters on the silicon nitride depo- which were obtained for the RI response and the

DT response, respectively. Therefore, the TOPSISsition process in order to raise the quality to meet
requirements. Optimal settings could hopefully be value for each trial could be determined by using

equations (11), (12), (13) and equations (4)–(8).found in this experiment such that a high uniformity
( i.e. low variability) for the response can be achiev- The computational results are summarized in the

last column of Table IV. The main effects on theed.
The two responses (in order of importance) are: TOPSIS values are summarized in Table V and their

corresponding factor effects are plotted in Figure 4.(a) RI: refractive index, in which the target value
is 2, and (b) DT: deposition thickness, in which the The controllable factors on a TOPSIS value in order

of their significance are: F, E, H, B, C, D, G andtarget value is 1000 Å. The priority of the RI
response is higher than that of the DT response. A. The larger the TOPSIS value would imply the

better the quality; consequently, the tentative optimalFollowing a discussion with the IC process engin-
eers, the relative importances of these two responses condition can be set as A1B2C3D2E2F2G2H3. The

predicted SN ratios under the optimum condition andare assumed to be ‘high’ and ‘medium’, respectively.
In the conducted experiment, eight controllable fac- the corresponding two-standard-deviation confidence
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Table III. Control factors and their levels

Factor Level 1 Level 2 Level 3

A. Cleaning method No Yes —
B. The chamber temperature 100°C 200°C 300°C
C. Number of runs after the chamber has been cleaned 1st 2nd 3rd
D. The flow rate of SiH4 6% 7% 8%
E. The flow rate of N2 30% 35% 40%
F. The chamber pressure 160 mtorr 190 mtorr 220 mtorr
G. R. F. power 30 watt 35 watt 40 watt
H. Deposition time 11·5 min 12·5 min 13·5 min

*Starting levels are identified by underscore

Table IV. Data summary by experiment

Expt. Factors Deposition thickness (DT) Refractive index (RI) Average TOPSIS
no. A B C D E F G H 1 2 3 4 5 1 2 3 4 5 DT RI value

1 1 1 1 1 1 1 1 1 694 839 728 688 7042·118 1·919 1·985 2·085 2·056 730·6 2·033 0·8290
2 1 1 2 2 2 2 2 2 918 867 861 874 8512·205 2·240 2·234 2·165 2·275 874·2 2·224 0·9718
3 1 1 3 3 3 3 3 3 936 954 9301058 958 2·677 2·643 2·714 2·456 2·565 967·2 2·611 0·8423
4 1 2 1 1 2 2 3 3 765 828 842 768 8012·096 1·997 1·949 2·046 2·000 800·8 2·018 0·9263
5 1 2 2 2 3 3 1 1 709 743 753 752 9892·032 2·007 1·943 2·003 1·845 789·2 1·966 0·7686
6 1 2 3 3 1 1 2 2 795 785 846 722 8331·860 1·838 1·842 1·999 1·858 796·2 1·879 0·8668
7 1 3 1 2 1 3 2 3 711 8161085 787 1150 2·012 1·909 1·797 1·930 1·819 909·8 1·893 0·5820
8 1 3 2 3 2 1 3 1 580 644 602 607 8111·834 1·760 1·760 1·782 1·744 648·8 1·776 0·8251
9 1 3 3 1 3 2 1 2 590 812 627 595 6091·719 1·707 1·676 1·704 1·675 646·6 1·696 0·8302

10 2 1 1 3 3 2 2 1 9171142 1126 916 966 2·097 1·911 1·889 2·014 1·960 1013·4 1·974 0·7851
11 2 1 2 1 1 3 3 2 1389 1405 1219 2063 1392 1·927 1·860 1·945 1·539 1·867 1293·6 1·828 0·6350
12 2 1 3 2 2 1 1 3 865 914 993 838 8931·963 1·881 1·812 1·923 1·899 900·6 1·896 0·9086
13 2 2 1 2 3 1 3 2 827 884 884 8511066 1·903 1·829 1·788 1·863 1·767 902·4 1·830 0·8706
14 2 2 2 3 1 2 1 3 787 805 780 776 9762·103 2·020 2·011 2·107 1·968 824·8 2·042 0·8733
15 2 2 3 1 2 3 2 1 739 779 745 724 9762·182 2·080 2·071 2·179 1·968 792·6 2·096 0·7598
16 2 3 1 3 2 3 1 2 724 721 6901023 915 2·274 2·166 2·215 2·103 2·203 814·6 2·192 0·7284
17 2 3 2 1 3 1 2 3 771 806 785 869 8591·942 1·905 1·909 1·916 1·900 818·0 1·914 0·9800
18 2 3 3 2 1 2 3 1 712 781 749 692 7602·077 1·961 1·985 2·101 1·980 738·8 2·021 0·9017

Figure 3. (a) Factor effects on SN ratios (RI response)

Figure 3. (b) Factor effects on SN ratios (DT response)

limits for the prediction errors are computed and A2B1C2D2E2F2G2H2 are tabulated in Table VI.
According to the data in Table VI, an improvementpresented in Table VI.

A confirmation experiment will verify the optimal in refractive index is 5·47 dB (the variance dropped
to 32 per cent) and the deposition thickness is 9·89condition. The results under the optimum condition

A1B2C3D2E2F2G2H3 and under the starting condition dB (the variance dropped to 10 per cent). The factor
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Table V. Main effects on TOPSIS values condition are not satisfactory, the flow rate of SiH4

can be increased and the R. F. power decreased.
Factors Level Max–Min This occurrence subsequently causes the RI response

1 2 3
to be close to its target value (2) and the DT
response close to its target value (1000 Å).A 0·8269 0·7603 — 0·0666

B 0·7286 0·8442 0·8079 0·1156
C 0·7869 0·7423 0·8516 0·1093 6. CONCLUSIONS
D 0·7267 0·8339 0·8202 0·1072
E 0·6813 0·8533 0·8461 0·172 Multi-response problems using the Taguchi method
F 0·8800 0·8814 0·6194 0·262 can be solved by assuming that the weight for each
G 0·8230 0·8243 0·7335 0·0908

response is known and that the weight is presentedH 0·8116 0·7172 0·8521 0·1349
by crisp numbers. However, it is difficult for the
weight to be directly assigned by an engineer in
most cases. Moreover, fuzzy set theory can be usedeffects on the averages of the RI response and the

DT response are plotted in Figures 5(a) and 5(b), to incorporate data which cannot be precisely
assessed. In this study, a procedure involving therespectively. Factor D has only a slight effect on

the TOPSIS value and the average of the DT introduction of fuzzy data into a MADM problem
has been proposed to achieve the optimization ofresponse, but a more significant effect on the aver-

age of the RI response. Factor G has a slight effect multi-response problems in the Taguchi method. The
procedure includes the following steps: (a) trans-on the TOPSIS value and the average of the RI

response, but a more significant effect on the aver- formation of the relative importance of each
response, (b) assignment of crisp scores for theage of the DT response. Factors D and G can be

chosen as adjustment factors for RI response and selected conversion scale, (c) computation of the
quality loss, (d) determination of the TOPSIS value,DT response, respectively. For instance, if the aver-

ages of these two responses under the optimum (e) determination of the optimal factor/level combi-

Figure 4. Factor effects on TOPSIS values

Table VI. Results of confirmation experiment

Starting Optimum Optimum Improvement
condition condition condition

(prediction) (confirmation)

Refractive index SN 32·09 32·29± 5·94 37·56 5·47dB
Average 2·0216 1·9074
Variance 0·00198 0·000638

Deposition thickness SN 22·58 27·99± 6·57 32·47 9·89dB
Average 1043·267 1039
Variance 6000·8 610·5

Figure 5. (a) Factor effects on the average of the RI response
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Figure 5. (b) Factor effects on the average of the DT response

several response variables’,Journal of Quality Technology,nation, and (f) performance analysis of a confir-
12, 214–219 (1980).

mation experiment. Theoretical analysis in this study 7. A. I. Khuri and M. Conlon, ‘Simultaneous optimization
of multiple responses represented by polynomial regressionreveals that Taguchi’s quadratic loss function and
functions’, Technometrics, 23, 363–375 (1981).the indifference curve in the TOPSIS method have

8. N. Logothetis and A. Haigh, ‘Characterizing and optimizingsimilar features and are compatible. The Taguchi multi-response processes by the Taguchi method’,Quality
and Reliability Engineering International, 4, 159–169 (1988).method deals with a one-dimensional problem and

9. G. G. Vining and R. H. Myers, ‘Combining Taguchi andTOPSIS handles a multi-dimensional problem. As a
response surface philosophies: a dual response approach’,

result, the relative closeness computed in TOPSIS Journal of Quality Technology, 22, 38–45 (1990).
10. E. Castillo and D. C. Montgomery, ‘A nonlinear program-can be used as a performance measurement index for

ming solution to the dual response problem’,Journal ofoptimizing multi-response problems in the Taguchi
Quality Technology, 25, 199–204 (1993).

method. In the opinion of the authors, four signifi- 11. C. H. Hung, A cost-effective multi-response off-line quality
control for semiconductor manufacturing,Master thesis,cant contributions are achieved in the proposed pro-
National Chiao Tung University, Taiwan, 1990.cedure. First, the relative importance of each

12. G. H. Shiau, ‘A study of the sintering properties of iron
response can be expressed easily by the linguistic ores using the Taguchi’s parameter design’,Journal of the

Chinese Statistical Association, 28 253–275, (1990).term. Secondly, only one performance measurement
13. C. Y. Tai, T. S. Chen, and M. C. Wu, ‘An enhanced(TOPSIS value) is required for the multiple

Taguchi method for optimizing SMT processes’,Journal ofresponses at each experimental trial. Thirdly, the Electronics Manufacturing, 2, 91–100 (1992).
14. J. J. Pignatiello, Jr., ‘Strategies for robust multiresponseprocedure is a universal approach which can be

quality engineering’,IIE Transactions, 25, 5–15 (1993).used in any type of multi-response problems.
15. L.-I. Tong, C.-T. Su and C.-H. Wang, ‘The optimization of

Fourthly, the proposed method can simultaneously multi-response problems in Taguchi method’,International
Journal of Quality & Reliability Management,14, (1997,deal with a multi-response problem involving both
forthcoming).continuous and discrete data types. Additionally, an

16. C. L. Hwang and K. Yoon,Multiple Attribute Decision
experiment on the plasma enhanced chemical vapour Making—Methods and Applications, A State-of-the-Art Sur-

vey, Springer-Verlag, New York, 1981.deposition process in the IC manufacturing field has
17. H. J. Zimmermann,Fuzzy Set, Decision Making, and Expertbeen performed to substantiate the authors’ proposed

System, Kluwer, Boston, 1987.
optimization procedure. 18. S. J. Chen and C. L. Hwang,Fuzzy Multiple Attribute

Decision Making—Methods and Applications, Springer-Ver-
lag, New York, 1992.
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