
Chapter 1

Introduction

1.1 Overview

Transition-metal oxides (TMO) have a wide range of interesting physical

phenomena, such as high-temperature superconductivity [1], colossal mag-

netoresistance [2, 3], metal-to-insulator transition [4], half-metallicity [5], and

non-Fermi liquid behavior, etc. An electron in a solid has three attributes:

charge, spin, and orbital. The orbital degree of freedom determines the

shape of the electron cloud or the electron’s probability-density distribution

in solids. These three attributes determine the physical properties of solids.

One, therefore, can modify the physical properties by controlling the doping,

pressure, and external magnetic field. The richness of these physical insights

is intimately associated with strong coupling among charge, spin, orbital and

lattice degrees of freedom.

The Coulomb interaction between the electrons in a solid, known as the

electron-correlation effect, is responsible for a rich variety physical phenom-

ena. The electron-correlation effect has been a long-standing research topic in
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condensed-matter physis, and is the key ingredient for understanding many

unusual physical properties such as high-temperature (high-Tc) superconduc-

tivity and colossal magnetoresistance (CMR). Particularly after the discovery

of high-Tc copper oxides, another interesting subject is the physics of doped

Mott insulator. An insulator with an energy gap determined by the cor-

relation effects is called the Mott Insulator. The doping might yield many

fascinating physical phenomena. For example, a metal-to-insulator transition

could be induced.

Another example is the high-temperature superconductivity, CuO2 sheets

in high-Tc oxides by the doping are separated from each other by ionic block-

ing layers. Although it has conduction electron or hole per Cu site, each

CuO2 sheet of the undoped cuprates is insulating because of the large on-site

Coulomb energy. When holes are doped into the CuO2 layers, change in the

number of conduction leads to the superconductivity. Another correlated-

electron systems in widespread interesting is the colossal magnetoresistant

phenomenon in which the resistance is gigantically decreased by application

of a magnetic field. The phase changes in CMR manganites arise from the

interplay between three electron attributes and their interaction with the

lattice. To control the electronic and magnetic phases of correlated-electron

materials in unconventional ways could provide an opportunity for future

novel electronics.
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1.2 Electron Correlations

1.2.1 Mott-Hubbard Insulators

In the Mott-insulating state of a transition-metal oxide, the d -electrons

are almost entirely localized on the atomic site. The electrons cannot hop to

other sites when the kinetic energy gain is smaller than the on-site Coulomb

repulsion energy (U). The fundamental idea of the electron correlations was

first developed by Mott [6] and Hubbard [7]. Mott took the first important

step for understanding how the electron-electron correlations could explain

the insulating state; such a state is called as the Mott insulator. He con-

sidered a single electronic orbital on each lattice site. Without the electron

correlation effect, the overlap of each orbital can form a single band, and

the band becomes full when two electrons occupy each lattice site. If these

two electrons sitting on the same site, they will feel a large Coulomb repul-

sion. The Coulomb repulsion will split one band into two. The lower band

is formed from electrons that occupied one empty site.

A simple one-dimension lattice, as shown in Figure 1.1, is a brief intro-

duction to the concept of Mott insulator. Considering the electron-electron

interaction, the Coulomb repulsion energy of two electrons sitting on the

same site i can be described as

U =
∫
dr1

∫
dr2|φ(r1)|2

e2

|r1 − r2|
|φ(r2)|2. (1.1)

The Coulomb repulsion decreases the probability for the two electrons on

the same site, so this U will reduce the electron hopping. Including both
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Figure 1.1: A simple 1D electron system with antiferromagnetic coupling.

hybridization and on-site Coulomb repulsion, the simplest Hamiltonian was

proposed by Hubbard and written as:

H = ε
∑
iσ

n̂iσ −
∑
〈ij〉,σ

tij(c
†
σicσj + c†σjcσi) + U

∑
i

n̂i↑n̂i↓, (1.2)

N ≡
∑
i,σ

niσ, (1.3)

where the c†iσ creates an electron on site i with spin σ. The number operator

is niσ ≡ c†iσciσ. The transfer matrix element, ti,j = 〈i|H|j〉, describes the

hopping between two neighbors, also named as hopping integral. The second

term is the kinetic-energy operator, which is obtained from the overlap of

two atomic orbitals. And the third term describes the Coulomb repulsion of

two electrons on the same site, as shown in Equation 1.1.

Let us consider the simplest case where the system is a half filled band,

i.e., the number of electrons is equal to the number of sites in this system. If

U ¿ t, the system is metallic because the band is half filled. On the other

hand, in the opposite limit of U À t, it is unfavorable for two electrons to be

on the same site, i.e., there are no double occupied sites in the ground state.

Because of U À t, moving an electron to another site will cost the Coulomb
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Figure 1.2: Left: Energy diagram of a n-electrons system in the Hubbard model. The
ground state energy of n-electrons is ε while that of (n+ 1)th electron on site i is ε+ U .
Right: Schematic representation of the origin of Hubbard sub-bands. The hopping of an
spin-up electron on the background of spin-down electrons gives rise to a band width ∼ 2t
centering on ε+U . Similarly, the motion of a spin-down hole leads to the lower sub-band.

energy U . Each site is forced to be occupied by exactly one electron and

each electron can not move to other sites. The electrons are fully localized

and the system becomes insulating. Despite the simplicity, Hubbard model

implies that a metal-insulator transition by a function of U/t. It tells us

that the ratio of the Coulomb integral to the bandwidth is one important

parameter. This is very interesting feature of the Hubbard model suggesting

that an insulator to metal might be expected when U is reduced to values

comparable or even smaller than the bandwidth.

In the limit case, that the lattice distances approach infinite, there is no

orbital hybridization between sites. The Hamiltonian can be written as:

H = ε
∑
σ

n̂iσ + Un̂i↑n̂i↓. (1.4)

The energy of electron occupying on site i is ε. When a second electron is
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added on the same site, the energy ε + U should be added to the system,

and the total energy of the system is 2ε+ U . The two-level spectrum of the

1-D system is shown in Figure 1.2. In the case that there are ↓-spin electrons

occupying in the lower level ε and one ↑-spin electron with an energy ε+U ,

the hopping of the ↑-spin electron broadens the upper energy level into a

band with a bandwidth ∼ 2t. In other words, two bands of states are with

a bandwidth ∼ 2t at the central atomic levels energy of ε and ε + U , and

knows as the Hubbard sub-bands. The energy gap is U −W , where W is the

band width which is the order of t.

The drastic simplification in the Hubbard model is only consider elec-

trons in a single orbit, say s-orbit. However, the transition-metal oxides are

d-electron systems, and orbital degeneracy is an important and unavoidable

property of complicated behavior. The effects of orbital fluctuations and

orbital symmetry breaking play important roles in d-electron systems. An-

other aspect is the overlap of the d-band in transition metals with the p-band

of oxygen. The ligand atoms play important roles which bridge transition

metals in oxides. This part of discussion will be described later.

1.2.2 Zaanen-Sawatzky-Allen scheme

An important assumption in the Hubbard model is that the oxygen

does not introduce an extra degree of freedom. For a late transition-metal

elements such as copper in high-temperature superconductors, the charge

gap of the Mott insulator cannot be accounted for solely with d-electrons;
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Figure 1.3: Anderson lattice model or p − d model in transition-metal compounds based
on the on-site Coulomb interaction U and the charge transfer energy ∆. The on-site
Coulomb energy: U = E(dn+1) + E(dn−1) − 2E(dn), and the charge transfer energy:
4 = E(dn+1L)− E(dn)

oxygen p-electrons degrees of freedom need to be considered. The importance

of the charge transfer energy as a fundamental parameter determining the

properties of transition-metal compounds was first realized by Fujimori and

Minami [8], Sawatzky and Allen [9]. Shortly after, Zaanen, Sawatzky and

Allen [10] proposed a classification scheme for transition-metal compounds

based on the on-site Coulomb interaction U and the charge transfer energy

4.

The Anderson lattice model (or p − d model) is shown in Fig. 1.3, the

on-site Coulomb interaction U can be conveniently defined as the energy cost

in the charge fluctuations of dndn → dn+1dn−1, written as

U = E(dn+1) + E(dn−1)− 2E(dn), (1.5)
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Figure 1.4: Schematic illustration of energy levels of (a) a Mott-Hubbard insulator and
(b) charge-transfer insulator.

where the E(dn+1), E(dn−1) and E(dn) are the energies of electron ionization,

affinity, and the ground state of the system, respectively. This formula de-

scribes the energy change in removing an electron from one site in solids and

then putting back to another atomic site. In addition, the charge transfer

energy (4) is defined as the energy cost for removing an electron from O 2p

band and putting into transition metal 3d orbitals:

4 = E(dn+1L)− E(dn), (1.6)

where L denotes a hole in the ligand band.

For transition metals with an open 3d shell, we could regard the Hubbard

model as a description of a d-band only. A singly occupied d-band is called the



1.2. Electron Correlations 16

Mott-Hubbard
insulator

U=

U

Charge transfer
insulator

P
-t

yp
e 

m
et

al

d-type metal

W/2

w

Figure 1.5: Zaanen-Sawatzky-Allen classification scheme for transition metal compounds
based on the on-site Coulomb interaction U and the charge transfer energy ∆. (from
Ref. [10])

lower Hubbard band, and the upper Hubbard band is a doubly occupied d-

band (with spin up and down). The charge-excitation gap is formed between

the lower and upper Hubbard band. As show in Fig. 1.4(a), if ∆ > U , the

dnL configuration would lie below the dn−1 configuration and leading to a d-d

band gap. This d-d type band gap in the original Hubbard picture is called

a Mott-Hubbard gap and the corresponding compound is called a Mott-

Hubbard insulator. On the other hand, for U > ∆, the p band is located

between the upper and lower Hubbard bands; the band gap is of the p-d type

and called a charge-transfer gap, as shown in Fig 1.4(b). The corresponding
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compound is called a charge-transfer insulator. The term ”Mott insulator”

is used in a broad sense which covers both types.

In the Zaanen-Sawatzky-Allen scheme, as shown in Fig 1.5, two parame-

ters U and 4 roughly divide the transition-metal compounds into a charge

transfer (U > 4) or a Mott-Hubbard (U < 4) insulator. Furthermore, even

for U →∞, we can get a p−type metallic ground state if ∆ < W/2. And a

d−band metal appear when U < w even for U < 4. Here w and W denote,

respectively, the bandwidth of the transition-metal 3d and oxygen 2p bands.

1.3 Exchange Interaction

In strongly correlated materials, the presence of local moments is associ-

ated to the strong Hund’s rule of atomic exchange energy. Usually below a

certain critical temperature, the local moments of the strongly correlated

magnetic insulators show a long range magnetic order because of strong

inter-atomic exchange interactions. These interactions are from the chemical

bonding between atoms and the Pauli exclusion principle.

The inter-atomic exchange interactions dependent on the hybridization

and Coulomb interactions could be considered as a two-site Hubbard model.

If t¿ U , the inter-atomic exchange energy J can be approximated as:

J ≈ −2t2

U
, (1.7)

where J is the energy difference of the lowest triplet state and singlet state.

The negative sign of J means that the local magnetic moments with anti-
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ferromagnetically aligned make the lowest energy. This indicates that the

antiparallel is more favourable because the electron hopping back and forth

between sites could gain kinetic energy. But in the parallel configuration,

Pauli exclusion principle does not allow the electron hopping. However, for

understanding the exchange mechanism on the magnetic properties, one must

take into account the spin and orbital degrees of freedom. Because the magni-

tude and the sign of exchange interactions depend on the orbital occupation,

both ferromagnetic and antiferromagnetic might occur.

The study of manganite perovskites started form Wollan and Koehler [11]

on La1−xCaxMnO3 in the 1955. Immediately, Goodenough [12] announced a

theoretical treatise on using the ideas of superexchange and double exchange,

which have been successful in explaining the magnetic arrangements.

1.3.1 Superexchange

The indirect interaction involving two metal atoms with an intervening

oxygen is known as superexchange. The superexchange interactions with

mediating oxygens are important if the bond angles of metal-oxygen are close

to 180◦, like in many perovskite structures. The spins at the neighboring

metal ions are antiparallel because antiferromagnetic ground state has the

lowest energy, like shown in Fig. 1.6(a). An electron hops from O to M1

and another from M2 to O form a virtual excitations like in Fig. 1.6(b). In

figure 1.6(c), two oxygen electrons hop to M1 and M2. In Fig. 1.6(b), it

can be seen as one of the excited configurations involving with the Hubbard
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Figure 1.6: Antiferromagnetic superexchange interaction in a metal-oxygen-metal arrange-
ment. Electron configuration of the ground state (a) can mix with two types of excited
configuration (b) and (c).

energy U ; Fig. 1.6(c) depends on the charge-transfer gap between valence

(O 2p) band and empty 3d band. This leads to an effective superexchange

interaction including charge-transfer energy ECT is

J ≈ −2t2[ 1
U

+
1

ECT

]. (1.8)

This is an simple way to understand the superexchange interaction. Goodenough-

Kanamori rules [22] could be used to predict the situation in simple cases.

1.3.2 Double Exchange

In some mixed-valent transition-metal oxides, ferromagnetism associated

with high spin electronic conductivity is known as double exchange mech-

anism. Double exchange mechanism is based on the fact that the electron

hopping does not flip the spin, i.e., coherent tunnelling of electrons between
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atoms with spin conservation. Both metallic behavior and especially fer-

romagnetism are rare in oxides. Most of them are anti-ferromagnetic or

ferrimagnetic with dominating anti-ferromagnetic interactions. Certain spe-

cial conditions have to meet to stabilize ferromagnetism. One of the main

mechanisms invoked to explain ferromagnetic ordering in these systems is the

double exchange mechanism [16]. This was stimulated by the study of the

colossal magnetoresistance manganites La1−x(Ca,Sr)xMnO3. The undoped

compound (x = 0, LaMnO3) is an anti-ferromagnetic insulator. The system

with a nominal doping (0.2 < x < 0.5) causes a paramagetic to ferromag-

netic transition and accompanies with a large decrease in resistance. In ionic

picture, the effect of substituting a 2+ cation for a 3+ cation at the La site is

to force a nearby Mn to change from 3+ to 4+ ionic valence. In Hund’s rule,

each Mn ion is of Mn3+ (t32g e
1
g) and Mn4+ (t32g) configuration. In shortly, the

doping of 2+ cation changes the valence of Mn from 3+ to 4+ and introduces

an hole in the eg-state. The lowest energy of the system corresponds to a

parallel alignment of the spins of the two sites. The state reached after the

electron hopping (Mn4+-O2−-Mn3+) is degenerate in energy with the initial

state before the hopping (Mn3+-O2−-Mn4+). Therefore, in the case of ferro-

magnetic alignment, electrons can freely and coherently hopping from site to

site without flipping the spin.
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1.4 Jahn-Teller Distortion

The Jahn-Teller effect describes the geometrical distortion of the elec-

tron cloud in a molecule under certain situations. Sometimes, this effect

is also known as Jahn-Teller distortion, and plays an important role in the

description of transition-metal oxides.

For a transition-metal ion (M+) surrounded by six oxygen ions (O2−)

to form a MO6 octahedron in a perovskite-structure crystal, as shown in

Fig. 1.7, the oxygen ions give rise to a crystal-field potential which partly

lifts the degeneracy of the d -electron of the transition-metal ion into two

groups with t2g and eg symmetries. The wavefunctions of d-electrons pointing

toward O2− ions are called the eg orbitals, including dx2−y2 and d3z2−r2 . The

wavefunctions pointing between two adjoined oxygen ions are called the t2g

orbitals, including dxy, dyz, and dzx. The ground state energy of the eg

orbitals are higher than the t2g orbitals, because of the Coulomb repulsion

between electrons. Such an energy difference is the crystal field splitting,

called the 10Dq.

When the energy 10Dq is greater than the exchange energy, the spin of the

d-orbitals is minimized, typically forming a low-spin state. In such a low-spin

state, the t2g orbitals will be occupied before the eg orbitals are occupied. On

the other hand, if crystal-field splitting energy is smaller than the exchange

energy, the spin of the d-orbitals is maximized to form a high-spin state.

In addition, any structure distortion will further remove the degeneracy
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Figure 1.7: The d -electron orbital symmetry of a transition metal with an octahedron of
oxygen. The lattice distortion changes the electronic structure.

of the eg and the t2g states, as shown in Fig. 1.7. In the MO6 octahedron

structure, if the crystal has a lattice distortion with an elongation of the

distance between the transition-metal ion and oxygen ion along the z-axis,

d3z2−r2 in the eg orbitals has an energy lower than that of dx2−y2 , because of

the Coulomb repulsion along the z-axis is smaller than that in xy-plane. In

contrast, if the MO6 octahedron is with a contraction of the bond length along

the z-axis, the ground-state energy of dx2−y2 is lower than that of d3z2−r2 . In

an octahedral structure, the Jahn-Teller effect is mostly observed when an

odd number of electrons occupy the eg orbitals. The Jahn-Teller distortion

of a high-spin d4-system in Mn3+ compounds is frequently observed . In this

thesis, we studied the Jahn-Teller effect of manganese oxides.
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1.5 Charge and Orbital Ordering

For doping manganese oxide by the substitution of trivalent rare earth

elements with divalent alkaline earth elements (such as Ca, Sr, Pb) to, holes

are doped in the MnO2 layers and the tetravalent Mn4+ is distributed among

the trivalent Mn3+ lattice. The mixed-valent manganites are typically con-

sidered as disordered compounds, in which Mn3+ and Mn4+ cations randomly

distribute in the lattice. However, in certain condition such as chemical pres-

sure or temperature, these cations order coherently over long distances and

form a charge-ordered lattice.

It was first proposed the possibility of ion ordering in La0.5Ca0.5MnO3 by

Wollan and Koehler [11]. They realized that the magnetic scattering inten-

sities of this antiferromagnetic were very sensitive to the coherent ordering

of Mn3+ and Mn4+ cations. This observation of insulating behavior at low

temperature also led Goodenough [12] to suggest that the migration of elec-

tron from Mn3+ to Mn4+ ions makes it possible for ordering of the Mn3+ and

Mn4+ ions, forming the charge ordering.

Neutrons scattering does not detect the electronic charge but senses the

lattice distortion or spin ordering as a result of the charge ordering. Charge

ordering cannot be detected by neutrons, but x-ray or electron diffraction

could explore the charge ordering directly. Chen and Cheong [13] reported

direct evidence of charge ordering for La0.5Ca0.5MnO3 with electron diffrac-

tion. And charge ordering has been also reported in Nd0.5Sr0.5MnO3 [14]
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Figure 1.8: The orbital and spin ordering of d-electrons in LaMnO3. The eg orbitals
(d3x2−r2 and d3y2−r2) stagger in the xy-plane.

and Pr0.5Ca0.5MnO3 [15], similar to that found in La0.5Ca0.5MnO3. All of

these compounds are half-doped and exhibit the CE-type antiferromagnetic

structure. However, not all the half-doped manganese compounds will have

charge ordering behavior. For example, Pr0.5Sr0.5MnO3 has a A-type anti-

ferromagnetic insulating ground state and also has equal amounts of Mn3+

and Mn4+ cations, but does not have a charge ordering characteristic.

The ordering of either charges or orbitals associated with the crystal dis-

tortion is very important for comprehension of the physics of condensed mat-

ters. LaMnO3, for example, has parallel spin moments in the xy-plane, but

spins between the adjoin xy-planes are antiparallel as antiferromagnets. The

spin ordering structure is layered-type or so-called A-type antiferromagnetic.

In this Mn3+ compounds, the Mn sites have four d -electrons, and show an
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electronic configuration of t32ge
1
g. As mentioned above, the Jahn-Teller distor-

tion lifts the orbital degeneracy and favors the occupation of either d3z2−r2

or dx2−y2 orbitals. In addition, d3x2−r2 and d3y2−r2 orbitals of the eg state

occupy alternately in xy-plane with an transition temperature around 800

K [20]. This A-type antiferromagnetic state with alternating d3x2−r2 and

d3y2−r2 in LaMnO3 is attributed to the anisotropic superexchange interac-

tions and Jahn-Teller distortion [21].

The phenomenons of spin and orbital ordering in the transition-metal ox-

ides has been understood by means of the Goodenough-Kanamori rules [22,

23]. If there is a large overlap between the partly occupied orbitals at two

magnetic ions, the antiferromagnetic between them is superexchange inter-

actions because of the Pauli exclusion principle. And ferromagnetic is due to

the overlap of partly occupied and unoccupied orbitals because of the Hund’s

exchange.

In the typical case of 180◦ bonds through a ligand ion, the spin and

orbital ordering become interdependent. The ferro-orbital ordering supports

antiferromagnetic spin order, and the alternating orbital ordering supports

ferromagnetic spin order. As in the LaMnO3, ferromagnetic spin correlations

in the ab-planes are accompanied by alternating orbital order. On the other

hand, along the c-axis, the antiferromagnetic correlations are accompanied

by ferro-orbital order.

Goodenough-Kanamori rules have been successful in explaining the mag-

netic and orbital structures in a wide range of transition-metal oxides. Sur-



1.5. Reference 26

prisingly, they assumed that the orbital occupation is static. In the partly

filled d-electron system, orbitals are degenerate and the degrees of freedom

of spin and orbital should be considered as dynamic quantum variables [24].

Generally in eg orbitals, the Goodenough-Kanamori rules could still work well

because the Jahn-Teller coupling of degenerate orbitals to lattice fixes the

orbital occupations well. However, for the t2g orbitals, such as the perovskite

titanates [25, 26] and vanadates [27], the Goodenough-Kanamori rules can

not satisfy this condition.

Transition-metal oxides have a long history of research and have as ma-

terials with variety of interesting properties, such as magnetic, optical and

transport properties. It is true that many basic ingredients responsible for

these phenomena have been proposed such as double exchange [16, 17], Jahn-

Teller effect, charge ordering [11, 12] and orbital ordering [18, 19]. Be-

cause these different mechanisms would be able to cause similar phenom-

ena, it still difficultly to identify the real controlling mechanism of each phe-

nomenon clearly. Here, we mainly present the studies of orbital physics in

La1−xSr1+xMnO4, La0.5Sr0.5MnO3 and NaxCoO2 by using soft x-ray absorp-

tion spectroscopy.
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