Chinese Abstract	i
English Abstract	V
Contents	xi
List of Figures	xiii
List of Tables	xxiii
Chapter 1 Introduction	1
Chapter 2 Experiments	15
2.1 Preparation and Characterization of Thin Films	15
2.1.1 Pulsed Laser Deposition System	16
2.1.2 Structure Characterization of Thin Films	17
2.1.2.1 X-ray Diffraction	
2.1.2.2 Atomic Force Microscopy	19
3.1.3 Resistance (Resistivity) Measurement	20
2.2 Device Preparation	21
2.3 Oxygen-Controlling	22
2.3.1 Oxygen-Controlling Procedure	23
2.3.2 The Effects of Oxygen Stoichiometry on the Transport	Properties of
YBCO and Ca-YBCO Thin Films	
2.4 Calibration and Microwave Measurements	
Chapter 3 Theory	
3.1 S Parameter	
3.2 Losses of Microstrip Device	54
3.2.1 Conductor Loss	54
3.2.3 Dielectric Loss	57
3.2.2 Radiation Loss	
3.3 Quality Factor (Q) of Resonator	
3.3.1 Measured Quantities	59

3.3.2 Series Resonant Circuit
3.3.3 Total Losses of Resonator
3.3.4 Two Ports Measurements of Unloaded Quality Factor
3.4 Complex Conductivity
3.5 Penetration Depth
3.6 Some Models in Disordered d-wave Superconductors (Lee's mode
Vishveshwara and Fisher's model)
Chapter 4 Results and Discussion
4.1Determination of Hole Concentrations with Various Critics
Temperatures
4.2 Resonance Frequency and Penetration Depth
4.2.1 Ferrel-Glover-Tinkham (FGT) Sum Rule
4.2.2 Fermi-Liquid Correction Factor
4.3 Quality Factor and Surface Impedance
4.3.1 Real Part Conductivity11
4.3.2 Imaginary Part Conductivity
Chapter 5 Conclusion
References
Curriculum vitae

List of Figures

Chapter 1

Chapter 2

- Fig. 2.5. The images of the surface morphologies of the YBCO thin film deposited on the LAO (100) substrate. (a). The surface roughness of the YBCO thin film

- Fig. 2.6. The images of the surface morphologies of the Ca-YBCO thin film deposited on the LAO (100) substrate. (a). The surface roughness of the YBCO thin film was 6.2±3.4 nm. (b). The grain size of the Ca-YBCO thin film was 153±24 nm.

ESVE

- Fig. 2.15. The temperature dependence of resistance for the $YBa_2Cu_3O_{7-\delta}$ thin films with various oxygen contents. Note that the resistance are measured form
- Fig. 2.16. $\rho_{ab}(T)$ for a YBCO film with various oxygen contents. Curves 1 to 8 represent 7- δ (=x) = 7.0, 6.9, 6.8, 6.75, 6.7, 6.55, 6.5, and 6.45, respectively.
- Fig. 2.17. The temperature dependence of d.c. resistivity for the Y_{0.7}Ca_{0.3}Ba₂Cu₃O_{7-δ}
- Fig. 2.18. The photography is a HP8510 C Network Analyzer to measure the scattering parameters of a one- or two-port microwave network from 40 MHz
- Fig. 2.19. The temperature dependence of the resonance frequency f(T) and scattering matrix S_{21} at Tc=90K for the YBCO film. The abrupt change for

Chapter 3

Chapter 4

- Fig. 4.1. The hole concentrations of the $YBa_2Cu_3O_{7-\delta}$ and the $Y_{0.7}Ca_{0.3}Ba_2Cu_3O_{7-\delta}$ thin films are obtained by using the empirical relation $T_c/T_{c,max}=1-82.6(p-0.16)^2$. Here $T_{c,max}$ for $YBa_2Cu_3O_{7-\delta}$ thin film is taken as 91K and the one for
- Fig. 4.2. The temperature dependence of resonance frequency f(T) of the ring resonator for the YBCO thin film with various hole concentrations p.127
- Fig. 4.3. The temperature dependence of resonance frequency f(T) of the ring resonator for the Ca-YBCO thin film with various hole concentrations p. ...128

- Fig. 4.4. The temperature dependence of resonance frequency f(T) of the microstrip line resonator for the YBCO thin film with various hole concentrations *p*. ..129

- Fig. 4.12. The normalized temperature dependence of the resonance frequency f(T)/f(5K) of the microstrip line resonators for (a) the YBCO thin film with p = 0.148 and (b) the Ca-YBCO thin film with p = 0.217, respectively.137
- Fig. 4.13. Doping dependence of the a-b plane penetration depth λ (5K). By using the Uemura relation, $n_s \propto T_c$, and the empirical formula T_c/T_{c,max}=1-82.6(*p*-0.16)²,

- Fig. 4.20. Plot of superfluid density $(1/\lambda^2(5K))$ versus the product of the d.c. conductivity (σ_{dc}) and the superconducting transition temperature (T_c) for the YBCO and Ca-YBCO thin films with various oxygen contents. (σ_{dc} is measured just above the transition, and parallel to the CuO₂ (a-b) plane; data are shown on a linear scale) The values for σ_{dc} and $1/\lambda^2(5K)$ are obtained from standard four probe technique and microwave measurement, respectively. The $1/\lambda^2(5K)$ used in this scaling relation has been derived from the

in-plane London penetration depth $\lambda(5K)$ measurement, where $1/\lambda^2(5K)$ is proportional to the number of carriers in the condensate. The dotted, solid and dashed lines are described by $\lambda^{-2} = 4700\sigma_{dc}T_c$, $\lambda^{-2} = 5700\sigma_{dc}T_c$ and

- Fig. 4.22. The temperature dependence of $1/\lambda^2(T)$ with various hole concentrations for the (a) YBCO and (b) Ca-YBCO ring resonators at T<0.35T_c.147
- Fig. 4.24. The temperature dependence of the unloaded quality factor, Q, of the same YBCO ring resonator for p = 0.16, 0.148, 0.134, 0.098, 0.09, and 0.074, respectively.

- Fig. 4.30. The temperature dependence of (a) the Rs and (b) the Xs of the YBCO microstrip line resonator with p = 0.148, 0.106, and 0.09, respectively.155

- Fig. 4.35. (a) The normalized conductivity $\sigma_1/\sigma_1(5K)$ versus T_c/T for the Ca-YBCO ring resonator with p=0.218. The solid line is the formula, $\sigma_1/\sigma_1(5K) = (1 - Ae^{-c_1 \cdot T_c/T})$, fitted to the experimental data. (b) The normalized conductivity $\sigma_1/\sigma_1(5K)$ versus T_c/T for the Ca-YBCO ring resonator with p=0.121. The solid line is the formula, $\sigma_1/\sigma_1(5K) = (1 - Ae^{-c_1 \cdot T_c/T})$, fitted to the experimental data.160

and the

and the

Fig. 4.52. Plot of $\sigma_2/\sigma_2(5K)$ versus T_c/T for the YBCO and Ca-YBCO microstrip

List of Tables

Chapter 2

Chapter 4

- Table 4.3. Some parameters for the YBCO and Ca-YBCO thin films are obtained from the microwave and the resistivity measurements.

 100

- Table 4.6. Some parameters for the YBCO and Ca-YBCO ring resonators are obtained from the numerical fitting of the real-part conductivity σ_1114
- Table 4.7. Some parameters for the YBCO and Ca-YBCO microstrip line resonators are obtained from the numerical fitting of the real-part conductivity σ_1118
- Table 4.8. Some parameters for YBCO and Ca-YBCO ring resonators are obtained from the numerical fitting of the imaginary-part conductivity σ_2124

Table 4.9.	Some para	ameters fo	or the YBC	O and C	Ca-YBC	CO microstrip lin	ne resonators
are	obtained	from the	numerical	fitting	of the	imaginary-part	conductivity
$\sigma_{_2}$							125

